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An extension of the Blume-Emery-Griffiths model with a plaquette four-spin interaction term, on the square
lattice, is investigated by means of the cluster variation method in the square approximation. The ground state
of the model, for negative plaquette interaction, exhibits several new phases, including frustrated ones. At finite
temperature we obtain a quite rich phase diagram with two new phases, a ferrimagnetic and a weakly ferro-
magnetic one, and several multicritical poirfiS0163-182606)04222-]

[. INTRODUCTION trated ground states in a smaller parameter space. In this
The spin-1 Ising model with a bilinear and biquadratic ;e;];; lfgresrggﬁihg:ezmpose can be regarded as a minimal
nearest-neighbor _interaction, the BIume-Emer_y-Gr!ffith; The CVM is an apprbximate variational technique for the
(BEG) model, has attracted a great deal of attention since ifeatment of cooperative phenomena and has been success-
was o_rlglnally_pro_posed to des_crlbe phase separation and SHilly applied to study the critical behavior of spin-1
perfluid ordering in®He-*He mixtures! It has subsequently | odels2—27 It is especially suited for the analysis of com-
been used to describe the properties of several systems rangex phase diagrams since the order of a phase transition can
ing from multicomponent fluidé microemulsions,semicon-  he easily recognized and order parameters, local correlation
ductor alloys; and electronic conduction mod2Ig reen-  functions, and the free energy are readily obtained. The ac-
trant behavior of lyotropic nematic liquid crystalst is just  curacy of the approximation can be systematically improved
the richness of its phase diagram that is one of the mailby increasing the basic clusters. On a square lattice, however,
reasons for this interest. In fact, the system has been studiede square approximation is in most cases sufficient to obtain
by a variety of techniques: the mean field approximati6r®, ~ a qualitatively correct phase diagram and also quite good
high-temperature  series expansidn, Monte Carlo  approximations for numerical results.
methods;'? renormalization group®~2° effective field The main purpose of our work is to analyze the effect of
theory?~2*and cluster variation methét?” among others. the plaquette interaction term on the phase diagram of the
Recently, it has been shown that the global phase diagram &EG model, paying particular attention to the case of a nega-
this system includes nine distinct topologies and three ortive plaquette interaction. A negative plaquette interaction
dered phase$Swith the appearence of ferrimagnetic phasesintroduces frustration effects which result in an infinite de-
for a certain range of coupling parameté&td.he occurrence generacy of the ground state, although the entropy per site
of a reentrance in the ferrromagnetic-paramagnetic transitiostill vanishes in the limit of zero temperature. At finite tem-
has been also pointed out by some autfdfd-2427 perature some interesting effects appear, such as two new
In this paper we shall investigate, in the framework of thephases, a ferrimagnetic and a weakly ferromagnetic one, un-
square approximation of the cluster variation methodcommon behaviors in the order parameters, and several mul-
(CVM),28-3 an extension of the square lattice BEG model,ticritical points.
which includes a four-spiriplaquett¢ quadrilinear interac- Our paper is organized as follows. In Sec. Il the model is
tion term, in order to analyze the thermodynamic of the fruspresented and the free energy of the system is written in the
trated phases which arise in this case. Such phases may B&M square approximation. Section Il is devoted to the
obtained also by including next-nearest-neighbor interacanalysis of ground-state configurations. In Sec. IV the equa-
tions, but in this case it is necessary to introduce both dions for the critical temperature are determined. In Sec. V
bilinear and a biquadratic coupling, thus increasing the diwe discuss the finite-temperature phase diagram and the re-
mensionality of the parameter space by 2. The four-spin insults of CVM square calculations for the model. Some con-
teraction has then the advantage to allow us to obtain frussluding remarks are presented in Sec. VI.
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Il. MODEL AND THE CVM FREE ENERGY

1 o1 S
f=Tr(psHs) +kgT| =Tr(p}Inp}) + =Tr(p}Inp’
We consider a spin-1 modétomposed of a bilinear in- (paHa) ks [4 (Plnp1) 4 (p1lnpa)

teraction, a biquadratic interaction, and crystal-field tgrms
: ; . : 1 1 1
with a four-body interaction term, in the form —Tr(p1|npl)+ —Tr(p1|npl) —Tr(p Inp)

:—JE SS - K% $?§2+D2 §7- GZ SSSS —imp Inp! )—-Tr(p;lnpz')—-mp Inpl})
(2.2)

+Tr(p4|np4) . (26)

whereS; is thez component of a spin-1 operator at sitef
a square latticeZ ;;, indicates summation over all nearest
neighbors = ;) indicates summation over four sites in the In Eq. (2.6) we have considered four sublattices. The labels
square(plaquette, andJ>0. The above model reduces to the 1, 2, and 4 refer, respectively, to site, pair, and square density
Blume-Emery-Griffithd BEG) modef whenG=0 and tothe matrices, whild,j,k,| label the sublatticeéand the sites of
Blume-Capel?* (BC) model forK=0 andG=0. Notice the plaquette belonging to thénof the square cluster
also that, in the limit of an extreme negative crystal field, our{i —j,j —k,k—1I,I —i are nearest-neighb@NN) siteg. More-
model reduces to the well-known Ising model with aover,
plaquette interactiofisee, e.g., Ref. 31

We shall analyze the phase transitions of the model in the D
square approximation of the cluster variation method H4———[(Si+Sk)(S +S|)]+—[S +S5 2+352+57]
(CVM). In the CVM the entropy of the system is approxi-
mated as a sum of suitably weighted cluster entropies rela- K
tive to a setI’ of maximal clusters and of all their - E[(S‘2+ SA)(S2+59)]1-G[SSSS]. (27
subclusterg?

Taking into account the constraints, E.5), the free energy
_ f can be considered as a function of the elements of the
S= (;r 3oNoSo 2.2 square density matrix only, obeying the conditiom =+ 1.
Looking for a stationary point one obtains the equations
where
P4(Si 8] .S, 8) =T4(Si,S) Sk, S) € a5 5 S A,
So=—keTr(p,INp,) (2.3 28
is the entropy associated with the cluster In the above where §=1KkgT.
equationskg is the Boltzmann constant, the absolute tem-
perature,N, is the total number of clusters of the kind, ~ T4(Si,S;j.Sk,S1)
a, is a counting factor, which can be calculated using Moe-

E;Sgtérr];ersmrﬁ and p, is the reduced density matrix for [p (S| ,sj)p (sJ -Sk)Pz(Sk S|)p (5| s 142 29
) 1/4 ’ .
The free energy per siteis then written as [P1(s)Ph(8))PE(8p1(S1)]
and

N,
f= 2 N TrpH) +keTa, Tr(pyinp,)], (2.4
oCI’

M= X 148,85 5)e Pl s ses), (2.10
. . . . . . S ,Sj 1Sk S
whereH  is then-body interaction contribution associated e

with the clustero (the maximal clusters should be taken

. : : . - In Egs. (2.89-(2.10, s;,sj,S¢,s are the eigenvalues of the
ﬁ;ge enough to contain all kind of interactions present mspin—l operators at sité.j.k,| and can take the values

According to the CVM, the free energlywill be mini- —1,0,1. They have been used to label the diagonal density

mized with respect to the density matri with the con- matrix elements.
P y 9&S, Equations(2.8) can be solved by using the natural itera-

straints tion method® It is possible to show that the solutions ob-
tained by this method are always local minimafofWhen
Trpo=1, p=Tryep, n>0, (2.5  f has many local minima, these can be determined by choos-
ing several different guess values for the iteration; the solu-
Tr,.» denoting a partial trace. tion will be the one which minimizes the free eneryy

In the CVM square approximation, the entropy will be the  Once Egs(2.8) are solved, we can easily determine the
sum of contributions of one-site clusters, two-site clustersdipolarm (r=i,j,k,1) and quadrupolag"” order param-
and four-site clusters, and the free energy will take the formeters in each sublattice by
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mV=(S)=pi(+1)—pi(—1), T
(2.11)
q"=(S%)=pi(+1)+pi(—1), r=ijkl, o0+ 0 4+ 0 4+ 0
as well as the two-site NN and four-sitglaquette correla- + + + + + + + 4

tions ((- - -) means thermal average

Ill. GROUND STATE

+ o+

In this section we shall consider the ground-state configu-
rations of the spin-1 model introduced above. The ground
state of an Ising-like spin model can be easily determined, in
the cluster variation method, by looking for the configura-
tions of the maximal clusters which minimize the free energy
at T=0, that is, the internal energy. The results so obtained
are exact provided the exact ground state is homogeneous;
i.e., it can be obtained by indefinitely repeating a unique,n;m , v/ S T
local ground-state for a cluster equal to, or smaller than, g /. +2"% which in _the thefmodynamlc limit yields a van-
maximal cluster. ;rrggi?nzgggpy per site, again reproduced exactly by our ap-
In the present approximation scheme a configuration o ' .
the maxirTF:aI clusteEFi)s specified by the eigenval%es of the The case of thes local groynd state Is ?OmeWhat more
four spin-1 operators lying on a square, and is denoted b volved becauset and — spins can coexist in the same

{si.Sj,sk,Si}, where the indices refer to the four sublattices laquette and hence one may ask whether ttfe- (spin
previously introduced. flip) symmetry is broken or not in the global ground state. If

; ) - - he symmetry is broken, the only plaquettes available to
Among the possible ground-state configurations we Shal{lz)uild up the local ground state are, e.g., those with three

certainly have those of the usual Blume-Emery-Giriffiths . .
model, i.e., the ferromagnetic state{1,1,1,3 (or *+ spins and one- spin, and the glpbal ground state can be
(-1 _’1 1 '_1} as wel), which will be deno’te,d ’by: the obtained from theE one by replacing all the 0 spins with

paramagnetic®) state{0,0,0,Q, and the so-called antiqua- __ .spir_15. We shall dgnote this case Ayrom now on. If the .
drupolar or staggered quadrupola®)( state{0,= 1,0~ 1}. spin-flip symmetry is preserved, the global ground state is

In the Q state, all the spins belonging to two non-nearest-made up of plaquettes which satisfy the condition

neighbor sublatticesj(and| or i and k) can take on the
values 1 and-1 independently and with the same probabil-
ity. Given anNXM lattice there are ®™'? such states and
thus we have & =0 entropy per site which, in the thermo-
dynamic limit, equalsiin2, exactly reproduced by our ap-
proximation. In terms of the square density matrix this stat
is characterized by(s;,s;j,sx,s)=1/4 if s;=s,=0 and
Isj|=|s/|=1 and zero otherwise.

I_n addition, having mt_roduced a plaquette Interaction |, order to determine which state is the ground state in a
which can take on negative values, we shall consider, i

order to take into account all the possible minima of the ven point of theT=0 phase space we have computed the
) . internal ener er site="Tr(p4H,) of each state, obtainin
internal energy, also the local ground states given by gy p (paHa) g

{1,0,1,3 (with degeneracy 8, since the zero spin can be in
any sublattice and the three nonzero spins can be either 1 or
—1), andS, given by{1,—1,1,1} (again with degeneracy)8

It is easily recognized that the local ground stafeand - 4+ 4+ + + - - +
S correspond to inhomogeneous, highly degenerate, global
ground states. To begin with, let us consider the local ground + + -+ - - + 4
stateE and try to construct a global ground state in which all
the elementary plaquettes are in the stBtean example ,
being reported in Fig. 1. We have two sublatti¢eay,k and + 4+ - o+ - - ¥ 4
I) which are occupied by spins only, while the other two
(i andj) are occupied byt and 0 spins. The relative con- - 4+ 4+ + + - - +
centrations of+ and 0 spins can be different in the two
sublattices andj, but are always equal if the two sublattices
are taken as a whole. On the average, howeveand 0 will
be evenly distributed. Furthermore, two adjacent basic lines
(columns in Fig. 1 are indefinitely repeated with a period e
equal to two lattice constants. The degeneracy of such a
state, for a lattice withN rows and M columns, is FIG. 2. An example of thé& ground state.

+
+
+
+
4
+
+
4+

+ 0 4+ 0 4+ 0 + O

FIG. 1. An example of th& ground state.

SiSjSkS|: - 1, (31)

and an example is shown in Fig. 2. In this case one can
choose freely the value{ or —) of all the spins in a given
row and a given column, and the remaining spins are deter-
mined by Eq.(3.1). The degeneracy is therN2M~1 and
again the entropy per site vanishes in the thermodynamic
limit, as our approximation predicts.

er=D—2K—2J—G, (3.2
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er=0, ¢l

D
eQ:E y
« (x+1)/3

3
eEZZD—K—J, —2(x+1) 1/2 DfaJ

ea=D—2K+G, 5

es=D—2K+G. A

The boundary between the different phases can be easily
obtained by looking for the minimum of the energies above,
except for theA/S boundary, since,=eg. In this case one
has to determine and compare the first terms of the low-
temperature expansions of the free energies of the two
phases.

For theS phase, it is easily recognizdd.g., by numeri-
cal inspectioh that the first excitations above the ground
state are thé&-like local states. The square density matrix at
infinitesimal temperature will be given by

2(x—1)

FIG. 4. Ground-state phase diagram fefl <«<1/2.

For theA phase one sees that the first interactions above
the ground state are obtained replacing thespins of the
1—s ground state with zero spins. The square density matrix at

R S if SiS;SS =1, very low temperature is then

€A

pa(L11-1)=ps(11-1D="5",

€
p4(Si ,Sj ,Sk,S|): ?S |f Si:Sj:Sk:S|: il, (33)

with gg infinitesimal and the remaining elements negligible pa(1,1,1,0 =p,(1,1,0,0= SZ—A, (3.6

with respect teeg. The free energy, Ed2.6), then takes the

form where agaire, is infinitesimal and the remaining elements
are negligible with respect te,. The free energy now be-

1—85) comes

g=—2K+D+G—&gU+Gy+@TFE<

€g 1_85
+2£(?> —4£( 2

1_8A 1 SA
2 )*zﬁ(?

ar| EES) o

+1|2
Zn

aT| ot
B2

. (37

(3.9
o . i which, minimized with respect to g, Vyields
where £(x) =xInx. Minimizing with respect tce 5 one finds & o= exf B(4)—4K+D+4G)] and

es=1exf B(2J+2G)], and then

1

el

Comparing Eq(3.5) with Eq. (3.8 one sees that the tran-
sition between theS and the A phases takes place for
G=-—D/2+2K—J. Reporting on the same plane this tran-
(2x+1)/4 sition line together with those obtained by simple compari-
,1 V DiaJ son of internal energies we have obtained three possible to-
pologies for the ground-state phase diagram at constant
x=K/J, which are reported in Figs. 3-5.
For «>1/2 (Fig. 3) we find only three ground states,
P, andS. The unigue substantial modification with respect
to the ordinary BEG model is the replacement of the
ground state with thé& one (which, however, turns into a
ferromagneticlike phase at finite temperajurefor
FIG. 3. Ground-state phase diagram fer=K/J>1/2. The G/I<-1.
F/P phase boundary is given =D — 2K —2J and theS/P one For —1<«<1/2 (Fig. 4) the E and A ground states ap-
by G=-D+2K. pear, actually breaking the sublattice invariance. It is on
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Gl L L
[ 3 4
—2(s+1 / (WO_— —+——)
Cl+ C, Q—0C,

Ly _5>< L, AL )=o 2

g—C; Qg/\g—Cy C1tC

-2 P where, for compactness, we have introduced several quanti-

A ties which will be defined in the sequel, agdc,, andc, are
the valuesy, c;, andc, for m—0. These quantities are

1)741 +

Li=4vyia;+9y,8,+4yza3+2ysa,+4ys53s5

2k -1)

+ yeas+27y7a7+ ygas,

FIG. 5. Ground-state phase diagram fox — 1. Lo=6y2a,+4ysas+2yeaet+4y7a7+ 27ygag,
these regions of the phase diagram that most of our attention ~ Ls=87v181+ 8728, 8y3a3+ 4748, + 27585,
will concentrate in the following.

Finally, for k<—1 (Fig. 5 the antiquadrupola® ground
state also appears. The antiquadrupolar phase is well known
from the study of the ordinary BEG model and we shall
almost completely disregard it, since here we are mainly,,, _

: ' : .2 Wp=2vy,a;+87y,a,+8vyza3+ 16y,a,+ 8ysas+ 8yea
concerned with the effects due to the plaquette interaction’ © < 1917 ©¥2%27T 8Ysda™ 20Yala ™ EY5ds™ Y6
term. Our approximation scheme, however, does not need +87y,a; +8vygagt 8ygagt 4y a0t 2y@11+as,,
any modification in order to take into account also this phase. 4.3

Li=4vy,a,+2ysas,

Ls=2v1a1+ 3yza,+2y3a3+ y4a4+ vsas,

IV. CRITICAL TEMPERATURE where

. . o — 2 — — — 1/2
In order to determine the temperature phase diagram itis =~ 21=7° =70, a=7{, a=(7{)" o,

useful to obtain explicitly the equation for the critical tem-
perature of the ferromagnetic-paramagnetic transition. Since as=(n7
in this case no sublattices are to be introduced, only two _ 12 . o o
order parametersn and q (m=m(®, q=q, r=i,jk,1) a=({7)"w, a=7¢{, au={, ap=71, “a
and three two-site NN correlations ¢;=(SS;), '
c,=(S2S%), cx=(SS;?) are to be considered. They can be with
written in terms of the square density matrix elements as

)1/2w, ag={(w, a7=w2, ag=Tw,

Gt GG 14600
7T (&g @ T (17

m= 2 Sipa(Si,Sj Sk,SI),
S ,Sj Sk S| q__c_2

“= Bati—an™ *9
— 2
q—s_ ,S_Z‘;k,sl SiP4(Si:S),S.8), The parameters of the model enter expression(E®) by
o means of the functiony;, i=1,...,11, introduced above

and defined as

= SiSjpa(Si,Sj,Sk:SI),

— —D+2J+2K+G
Sj ,Sj Sk S| ‘)’1— eﬁ( ),

y,=eh 3D/4+J+K)

yszeﬁ(—mzK—G), y4:eﬁ(—3D/4+K),

_ 2.2
Co= SiSipa(Si,Sj ,Sk,S1),

Sj 1Sj +Sk S| V5= eﬁ(fD+J+ K)/2,
— - —J+
= X SiS7pa(Si,S) Sk.S)).- 4.7 ye= el
Si 5] .Sk y,=eB(-DD) ., — gB(~DIA)
Inserting Eq.(2.8) into Eq. (4.1 and considering that the _ B(-D—J+K)I2 _ _B(-D+2K+G)
site and pair density matrix elements can be easily expressed Ye=€ » Y10~ € ’
as linear combinations of, g, ¢;, ¢,, andc,,%® we obtain J1pm @Bl ~D-2042K4G) 4.6

five equations in the variable®,q,c;,c,,c,. The critical - o
temperature is evaluated by considering the limit-:0. We  The quadrupolar order parameigrand the correlations,
obtain the following equation for the critical temperature  andc, satisfy the equations
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q=(2y,a1+6ya,+8yza3+12y,a,+4ysas+ 6yeast+ 4y7a;+2ygag+4yeagt+4y102101 2¥11811)/ W,
C1=(2y18;1t4y,8,+2ysa5— 4ysas— 2¥9a9— 2711811/ Wy, 4.7

Co=(2y1a1+4y,8,+8yza3+8ysas+2ysa5+4ysas+ 2y9a9+ 410210+ 2711810/ Wo .

In particular, in the limitD— —oo, corresponding to the turns out that the lattice is divided in lines of spins with
Ising model with a plaquette interaction, the critical line is alternatively high and low values of the order parameters. In

given by the case of Fig. @& the ferrimagnetic and paramagnetic
phases are completely separated by the ferromagnetic phase
G 1 2e2P) (except at zero temperature, of coyrdmut this does not hold
3= ZIBJln(eZ,BJ_l)(ZeZ,BJ_l)' (4.8 true in general, as can be seen in Figb)pwhere a first-
orderl/P transition appears at low temperature.
It can be checked that one has alw&ykl> —1, with G/J WhenG/J= —1.50 the ground states follow, for increas-

tending to the limit value- 1 for vanishing temperature, and ing D/4J, in the orderS, A, E, P and the phase diagram is
that our result is in good agreement with a previous transferreported in Fig. 7). The A andE ground states turn into the
matrix study by Nightingalé* Furthermore, foiG/J=0 one  same ferrimagnetic phase with no finite-temperature tran-
recovers exp(8J)=(5+/17)/4, as in Ref. 28. sition between them, but only a zero-temperature transition
point which is indicated by an arrow in Fig(&J. On the left
of this phase there is a low-temperature second-order phase
transition between th8 and P phases. A similar phase dia-

In the present section we shall present and discuss thgram (without a direct!/P transition is found for the
results we have obtained for the finite-temperature phase di@lume-Capel model with plaquette interaction and shown in
gram, paying particular attention to the effects of theFig. 7(b), and theS/P transition temperature tends to zero in

V. TEMPERATURE PHASE DIAGRAM

plaquette interaction term. the limit D/4J— — oo, in agreement with Eq4.8).

As a first step we shall investigate the modifications oc-
curring in the BEG model ferromagnetic-paramagnetic tran- 035 — —_—
sition as the plaquette interaction is introduced, for the range - @)
of K/J values considered in Refs. 9,285 we said above, we 030 ]

do not consider here the antiquadrupolar phase

A general feature is that a positiv® enhances the ferro-
magnetic long-range order, increasing the corresponding 0.20
transition temperature, and vice versa for negative In
some cases a negative plaquette interaction induces a reen-
trant behavior which was not found f@&= 0. It is also note-
worthy that, forG=0 andK/J=—1, we do not find a reen-
trant behavior, in agreement with renormalization group and 0.05
in contrast with mean field theofy. i

Let us now turn our attention to the situations in which,
for negative enougtG/J, the S, A, and E ground states
appear. We shall takéK/J=—1, corresponding to the
ground state depicted in Fig. @ndeedK/J=—1 is at the
border between this situation and the one of Fig. 5, so that A
the region occupied by th® state has width 0 and the to- 030
pology turns out to be that of Fig.)4and progressively
decreasés/J in order to analyze all the possible combina- I
tions of ground states. 0.20

For G/J=—0.90 the ground state changes,2&J in-

E L
=015

0.10

0.00

0.35

0.25

T/4)

0.15

creases, fronF to E and then toP and the corresponding

finite-temperature phase diagram is reported in Fig.. @he 0.10

E ground state turns into a ferrimagnetic phase at finite tem-

perature, which has been denotedlbyThis phase is rather 0.05

peculiar since it is characterized by the relation I
m;=m;<m,=m; (and the same foq); that is, two of the 0'090.6 .0'.4 -0',2 ' ofo ofz o4
four sublatticega nearest-neighbor pair, sayandj) have D4

large values of the order parameters, which saturate to 1 at
low temperatures, while the other two have smaller order FIG. 6. Phase diagram fdf/J=—1.00, G/J=—0.90 (a) and
parameters, which tend to 1/2 as the temperature vanishes.dtJ=—0.50, G/J=—0.80 (b).
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Decreasing furtherG/J we have considered the case
G/J=—2.10, when the sequence of ground statesS,i#\, 1
P, obtaining the phase diagram reported in Fig. 8. It is very
simple, with only a first-order transition separating the ferri- .
magnetic and paramagnetic phases. A low-temperature g
second-orde/P transition should occur on the left side of i
the phase diagram, but it is not found numerically, perhaps
because the transition temperature is too low.
Notice also that a common feature of all the phase dia- i
grams discussed above is the presence of several multicritical
00 1 n 1 . 1 1 L
0.00 0.05 0.10 0.15 0.20 0.25
020 ——————————————— T/4)
............................ p - FIG. 9. Order parameters andq vs temperature foK/J=0,
0.15 S T, . G/J=-1.20, andD/4J=0.08 (a), 0.12 (b), and 0.26(c). Letters
indicate sublattices.
5 010 . points and reentrant transition lines.
= i In order to better understand the new phases that we have
I . obtained, it is useful to look at how the order parameters
005§ . behave as the temperature varies. Figure 9 refers to the
: : phase diagram in Fig.(B) and has been obtained for a se-
; : quence of increasing values bf4J. In Fig. 9a) we have a
00005~ 7 w03 02 o1 00 ol second-order transition from th® phase, characterized by

D/4}

FIG. 8. Phase diagram fda¢/J=—1.00, G/J=—2.10.

sublattice invariance and weak ferromagnetic long-range or-
der with a vanishingas temperature vanishedipolar order
parameter, into the paramagnetic phase. Incred3idg the
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ground state become&, with [Fig. 9b)] breaking of the

sublattice invariance. At low temperatures the dipolar orde
parameter vanishes in two of the four sublattices and satu-
rates in the remaining two, giving rise to the ferrimagnetic

phasd . By further increasindg/4J [Fig. 9c)] we have still

C. BUZANO, L. R. EVANGELISTA, AND A. PELIZZOLA 53

of the four sublattices and tends to 1/2 in the remaining two.
Finally, a direct, first-order transition from thgwith ground
stateA) to theP phase is reported in Fig. 10, which refers to
the phase diagram given in Fig(ay.

VI. CONCLUSIONS

We have studied the square lattice Blume-Emery-Griffiths
model with a plaquette interaction, using the square approxi-
mation of the cluster variation method. After a detailed study
of the ground state, which for negative plaquette interaction
exhibits several new frustrated phases, equations for the
ferromagnetic-paramagnetic critical temperature have been
derived and the finite-temperature phase diagram has been
discussed, making comparisons with the ordinary BEG
model and with a previous result on the Ising model with
plaguette interaction.

The frustrated ground states evolve at finite temperature
in a homogeneous phagwith weak ferromagnetic long-
range order and in a ferrimagnetic phdseand the phase
diagram exhibits a quite rich structure, with several multi-
Fritical points.
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