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Partial integration and local mean-field approach for a vector lattice model of microemulsions

C. Buzano! L. R. Evangelistal? and A. Pelizzold
Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, ltaly
2Departamento de Bica, Universidade Estadual de Maring&venita Colombo, 5790, 87020-900, Marindarana Brazil
(Received 6 November 1996

A vector model on the simple cubic lattice, describing a mixture of water, oil, and amphiphile, is considered.
An integration over the amphiphile orientational degrees of freedom is performed exactly in order to obtain an
effective Hamiltonian for the system. The resulting model is a three-&piB-1) system and contains many-
site interaction terms. The analysis of the ground state reveals the presence of the water—oil-rich phase as well
as the amphiphile-rich and the cubic phases. The temperature phase diagram of the system is analyzed in a
local mean-field approach, and a triple line of water-rich, oil-rich, and microemulsion coexistence is obtained.
For some values of the model parameters, lamellar phases also appear in the system, but only at finite
temperature. The Lifshitz line is determined in a semianalytical way in order to locate the microemulsion
region of the disordered phag&1063-651X97)10007-1

PACS numbd(s): 82.70.Kj, 05.50+q, 64.60.Cn

I. INTRODUCTION will be identified by the Lifshitz line which, in our approach,
can be easily calculated.
Liquid mixtures of water, oil, and amphiphilgsurfac- From the theoretical point of view, the phase diagram and

tantg have recently been the subject of a very intense investhe structure function for the disordered phase have been
tigation[1]. The reason for such an interest is twofold: on theintensively investigated. Various phenomenological and mi-
practical side, the characteristic feature of the amphiphiles;roscopic models, continuous as well as on the lattice, have
that is the presence in the same molecule of a polar hedaeen proposed to analyze these systems. Among the lattice
attracting water and a nonpolar tail attracting oil, makes itmodels there have been several proposals, put forth by Wi-
possible to reduce the water-oil interface tension by severalom[5], Schick and co-worker6—8], Matsen and Sullivan
orders of magnitude; on the theoretical side, it is the richnesgd] (MS in the following and Ciach, Hge, and Stel[10—
of their phase diagram which makes these mixtures very in15] (CHS from now on. In the model proposed by Widom,
teresting. At low enough temperatures, in addition to thethree species of molecules occupy the bonds of a lattice; the
ordered water-rich and oil-rich phases that are found at lownodel can be mapped on an Ising model with extended in-
surfactant concentration, for a sufficiently high concentratiorteractions in which thet and — spins represent water and
of surfactant, the liquid mixture can exhibit structured, long-oil molecules, and the Peierls surfaces separating domains of
range ordered phases like the lamellar, hexagonal, or cubi given sign represent amphiphilic layers. It is evident that
phases. At higher temperatures, a reminiscence of theseich a model cannot represent neither thick amphiphile lay-
structures is found in the so-called microemulsion. The mi-ers nor fluctuations in the direction of amphiphilic mol-
croemulsion is a region of the disordered phase in whictecules. In the proposal by Schick and co-workers, a true
particular short-range correlations are present, and can occthree-component mixture is introduced, and a three-body in-
even with low surfactant concentration. In this region oil- teraction term was employed to account for the tendency of
and water-occupied microscopic regions are separated ke amphihilic molecules to aggregate water-amphiphile-oil
fluctuating layers of amphiphile. The existence of both structriples. As in the Widom model, however, an orientational
tured phases and microemulsions is of course due to the bdegree of freedom for the amphiphile is still missing.
sic feature of amphiphiles described above of being mol- This latter feature was finally introduced by MS and CHS,
ecules with selective ends that tend to be located between oitho dealt with models of three-component mixtures in
and water particles. which amphiphilic molecules carry an additional orienta-
To distinguish the microemulsion from an ordinary disor-tional degree of freedortwhich is manifestly not parity in-
dered fluid, two criteria have been used in the literatureyariany, usually constrained to the lattice directions, a great
based on the Lifshitz ling2] or the disorder lind3,4], re-  simplification which, however, should not alter the basic
spectively, which must not be confused. The Lifshitz line isthermodynamical properties.
identified by searching the maximum of the water-water None of the above models is exactly solvable at finite
scattering amplitude, which is located at nonzero values ofemperature in more than one spatial dimension, and hence
the wave number for a microemulsion but not for an ordinarythey have all been thoroughly investigated by the usual ap-
disordered fluid. The disorder line, on the other hand, iproximate methods of equilibrium statistical mechanics. In
given by the condition that the asymptotic decay of theparticular, the CHS model has been investigated originally
water-water correlation function changes its behavior fromby means of the mean-field approximatif0,12), but un-
monotonic to honmonotonic. In any case these are not line®rtunately these studies were based on a ground-state analy-
of thermodynamic phase transitions. In this paper the bordesis[11] which turned out to be incorrect for the simple-cubic
between the microemulsion and the ordinary disordered fluidattice case. The correct ground state was determined later
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[13] and there soon followed a full, correct mean-field treat-occupation-number operators can then be expressed in terms
ment of the case in which a direct amphiphile-amphiphileof the spin-1 operators using Kronecker deltas as
orientational interaction is absefit4]. Some work was also

done on the two-dimensional cag&6—19 and, recently, Nw=8(s(r),1)= 2[s?(r)+s(r)],
Matsen and Sullivar19] compared mean-field and Bethe
approximations with Monte Carlo simulations on the face- No=8(s(r),—1)= 2 [s%(r)—s(r)], (2.2)
centered-cubic lattice.
An interesting feature of the CHS model is that, in the Na= 8(s(r),0)=1—sXr).

absence of orientational amphiphile-amphiphile coupling,
the corresponding degrees of freedom can be exactly inte- Now, if we consider only nearest-neighbor interactions
grated out(summed out, actually This integration of the and assuméthereby restricting ourselves to balanced sys-
simple-cubic lattice CHS model, together with a local meantems that water and oil behave symmetricalfgntisym-
field analysis of the resulting Hamiltonian, is the purpose ofmetrically when interacting with the amphiphile orientational
the present paper. Notice that this program has never beesriables, as it must Bethat is uw=pmo, €ww= €00,
carried out in three dimensioria short account of a small ega=ewa, and ¢o=— ¢y, the Hamiltonian(2.1) can be
part of this work has been previously published by[2@]), easily expressethpart from an irrelevant additive constant
but only in two dimensiong15], where several important in terms of spin variables as
features of these mixtures are missing due to the reduced 3 K
dimensionality. __ Y K 202 2

This paper is organized as follows. In Sec. Il the construc—H_ 2% S(Ns(r+2) 2% SN+ 5)+D2r s(r)
tion of the Hamiltonian from a multicomponent lattice-gas
model is discussed. In Sec. Ill the exact integration of the
orientational degrees of freedom is explicitly performed and
the resulting effective spin-1 Hamiltonian is presented. In
Sec. IV the general equations for the local mean-field apwhere & is a vector of length equal to one lattice spacing
proximation are determined, and the analysis of the unifornpointing toward nearest neighbors. The new parameters are
phases is presented. In Sec. V we calculate the Lifshitz lingglated to the physical coupling energies by the relations

while the phase diagrams are discussed in Sec. VI and, fi- _ _
nally, in Sec. VII, we draw our conclusions. J=(eww— €wo)/2, K=(ewwT €wo)/2+ €an—2€wa,

D=up—puwt6(ean—€wn, A=dw. (2.9

. . ] ) The final Hamiltonian Eq(2.3) is then characterized by four
_The CHS model is a vector lattice model in which every parameters. The parametir 0 favors oil-water separation,
site of a cubic lattice is occupied by a particle of some kind,hereas the sign of the surfactant strendytis not important
(water, oil or amphiphile The starting point to build up the [ nore precisely the model is invariant with respect to the
Hamiltonian of the mixture is to consider the following mul- {ransformatiomA— — A, s(r)— —s(r)], and will be assumed
ticomponent lattice-gas model, in which the orientation-i; pe positive. We observe that whér=0 the Hamiltonian

dependent interactions of the amphiphile molecules with oilg ot the form of the Blume-Emery-Griffith§21] (BEG)
and water(but not among themselvebave been explicitly ,5qel.

included:

—AEﬁ [1—s2(r)]s(r+&)n(r)- 4, (2.3

Il. MODEL

Ill. EFFECTIVE MODEL: INTEGRATION OF THE
H=-3'S [eij(r’—r)Ni(r)Nj(r’)]—Z S LN SURFACTANT ORIENTATIONS
B! T As already pointed out, in the model represented by Eq.
(2.3) the interaction between amphiphile orientational vari-
—E NA(r)E A [N(r)-(r'—=r)INg(r"), (2.1 ables is absent. It is then possible to integrate out exactly the
' r'k orientational degrees of freedom represented(y in order
to obtain an effective Hamiltonian involving only spin vari-
where Nj(r)=0,1 (j=W, O, and A) are the occupation- ables and temperature-dependent coupling energies. To ac-
number operators for wateM\(), oil (O) and amphiphile complish this task, let us rewrite Eq.2.3 as
(A), n(r) is a unit vector representing the amphiphile orien-H="Hgggt Ha, WhereHpeg is the Blume-Emery-Griffiths
tation which, for the case of a simple-cubic lattice consideredHamiltonian recovered foh=0, which depends only on the
here, is restricted to a discrete set of orientations such that &pin-1 variables, whilé<, is the remainder, proportional to
points towards one of the six nearest neighbors of a givei\, which accounts for the orientation-dependent interactions.

site (it is of course meaningless if the siteis occupied by The partition function can be formally written as
water or oi), ¢; are the coupling energies between the spe-

cies andgy (k=W andO) the orientational couplings. The 2= Y eM= e MY et
lattice-gas formalism can be transformed into a spin-1 for- {s(rym(n} (5} o)

malism by associating, as customary, the eigenvalués

—1, and 0 of the third component of a spin-1 operator = 2 e~ (Meeat D), (3.0

s(r) to water, oil, and surfactant, respectively. The {s(n}
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TABLE I. Values of {(r). In the second column we report only one representative permutation, since all
permutations are equivalent.

1-s%(r) ([As(r) 12 [Ays(NT%[AS(r)]?) Z(r) Degeneracy  Symbol
0 v 6 1458

1 (0,0,0 6 27 4
1 (00,2 4+2 costA 108 >
1 01,2 2+4 costA 144 ls
1 1,1, 6 costA 64 la
1 (0,0,9 4+2 coshA 54 {5
1 0,19 2+ 2 costA+2 coshA 144 Ls
1 (1,19 4 costA+2 cosh 96 {7
1 (1,49 2 costh+4 cosh 48 {s
1 (4,49 6 cosh2 8 Lo
1 0,4,9 2+4 coshA 36 {10

where we have absorbed a fac® (kgT) ~* into the model H(r)=—In¢(r)
parametergas a consequence, from now ord Will repre-
sent the reduced temperatyrand

2 2
—sX(NIN6—[1-s4)1> > > HumPum(r),

k=0 1=0 m=0

H=—InD e Ha (3.2 (3.9
{n(n}
where theH,,,'s are (temperature-dependent, although not
manifestly since temperature has been absorbed into the
is an effective Hamiltonian which depends only on the spinmodel parameteyscoefficients, invariant under permutation

variables and is calculated in detail below. of their indices, to be determined. It can be easily checked
As a first sFep we write, using the fact that ti®r)} do  that there are as many differeht,’s as rows in Table |
not interact with each otheg™ 7*=11,(r), where corresponding to +s%(r)=1, and thus Eq(3.5 above can

be viewed as a set of ten linear equations in our ten unknown
coefficients. Solving the latter with a symbolic manipulator

g(r)=2 ex AE [1—s%(r)]s(r+&)n(r)- & like MATHEMATICA one ends up with
n(r) B 0
=2a§yz cosHA[1—s2(r)]A,s(r)} (3.3 Hk|m=21 Ny INg; (3.6

where theh,..'s are numerical coefficien{@gain symmet-
andA s(r)=s(r+48,)—s(r—48,), with §, denoting the unit  ric under permutations dt, |, andm) reported in Table Il
lattice vector along directionr. Considering the 3=2187  while the ¢, have already been given in _Table I. The effec-
spin configurations of the cluster formed by a site and its sixive Hamiltonian can finally be written =3 H(r) and
nearest neighbors, one can see (@) can take on only a contains multispin interactionsip to seven spins, that is one
few different values, which are reported in Table I. Looking spin and all its nearest neighbors involved in the same cou-
at Eq.(3.3 above and at Table I, one realizes that, apart fronpling) hidden in thePy;,(r) symbols.
the coefficient +s?(r) which can be easily dealt with,
£(r) depends only ofiA s(r)]?, which in turn can take on
the values 0, 1, and 4 only, implying that expandif{g)
(and hence also its logarithnin powers of[ A ,s(r)]? one The local mean-field equations can be obtained from the
has to retain only terms up to the second ordeat is fourth  approximate total free energy written as a function of the
order in the bare differencesOn the basis of the above local expectations m(r)=(s(r)) and q(r)=(s(r)):

IV. THE LOCAL MEAN-FIELD EQUATIONS

remarks, we introduce the symbols F=2,(U(r)—S(r)). We have
Prm(r) =[As(r) 1M {Ays(r)17'[A,s(r)]™, F=> [U(r)+[£(W)+E[l—q(r)]
Kl.me{0.1.2) (3.4 o 20O “ @1

and write with £(x)=x Inx. The local energy is
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TABLE II. The coefficientshyn,., invariant under permutations of the indidgsl andm.

kIm 1 2 3 4 5 6 7 8 9 10
000 1 0 0 0 0 0 0 0 0 0
001 -2 3 0 0 -4 0 0 0 0 0
002 : -1 0 0 & 0 0 0 0 0
011 s - 2 0 2 - 0 0 0 =
012 -5 3 -3 0 -3 5 0 0 0 — 142
022 i -t 3 0 = - 0 0 0 T
125 2 20 64 25 5 4 1 1 5
111 64 4 ) 27 T 64 6 — 9 36 1728 T 192
25 65 14 16 35 29 2 1 1 11
112 &4 — ) -z 1% -5 3 — 7 1728 576
5 7 13 4 1 5 1 1 1 7
122 — % 22 — 3 2 — 1% % i) 7 — 1728 — 576
1 1 1 1 1 1 1 1 1 1
222 64 T i -3 [ — 3 3% ~ 14 vz 192

J K where é(r)=m(r) or g(r). From Eq.(4.1), one easily ob-
U(r==32 m(nm(r+8) -5 ara(r+9)+Dd(r) tains

—[1—-qa(r)]game(r). (4.2) S 1 g(r)+m(r)

amn) 2 —m(r)’

In Eg. (4.2) the quantitygayp(r) can be obtained from Eq.

(3.5, as a linear combination of the functions 9S 1 [q(r)+m(n)[g(r)—m(r)]
Prim(r) ={(Pum(r)), where the latter expectation has to be 900 =—§I ) A1—qn ] . (4.9
evaluated in the local mean-field approximation. Notice that q q

the term inH 3o cancels with the isolated termq(r)In6 and

reduces to an irrelevant constant. For fhg,’'s one finds
easily that

After introducing

az(r):exp{ —Zi},
Pooi(1) = a(r+ 8,) +q(r—8,) — 2m(r+ s)m(r — 3,), am(r)

Poxdr) =q(r+ &) +q(r—4&y)—2m(r+ &, )m(r—é,),

b‘2(r)=ex;{ - : 4.7

Pl
aa(r)
P1od 1) =0(r+ 8)+q(r = 3 —2m(r + 8)m(r - &),

43 and, using Eq(4.6), Eq. (4.5 can be rewritten as the self-
' consistent equations

PooA 1) =0(r+ ;) +q(r—&,) —8m(r+ &,)m(r — ,)

a’(r)—1
+6q(r+8,)q(r—68,), M= 2y *a(nbin+1’
pOZdr):q(r+5y)+q(r_5y)_8m(r+5y)m(r_5y) aZ(r)+1
+60(r+8,)d(r—8,), U= 2y +ambn+1 “8
Pood 1) =0(r+ &) +aq(r—8,)—8m(r+ 8)m(r—34,) The evaluation of the partial derivatives of the local energy

is presented in the Appendix.

The general approach is remarkably simplified if we re-
strict for a moment our attention to the uniform phases. It is
The remaining expressions can be calculated from the prehen possible to determine analytic equations for the critical
ceeding ones as temperature of the water-oil phase and the corresponding tri-

critical point, and also to determine the Lifshitz line. To
Prim(") = Pkoo(r) Poro(T) Poom()- (4.4 describe the transitions from the water-oil phase to the dis-
ordered phase, one can s&(r)=m, and q(r)=q,, and

The free energy can be now minimized with respect tostudy the free-energy density of uniform phases. If use is
m(r) andq(r) by following standard procedures. This im- made of a magnetic language the disordered phase corre-
plies to solve the equations resulting from sponds to the paramagnetic phase while the water-oil-rich

phase is ferromagnetic. Thus, a standdrnhdau-Ginzburp
dF -0 4.5 expansion of the free-energy density around the disordered
dE(r) ' phase characterized mgy=0 can be easily performed.

+6q(r+48,)q(r—=5y).
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In the uniform case the quantitigs,,,, defined in Egs. ag=151H,,,.
(4.3) and(4.4) become
As usual in the Ginzburg-Landau formalisfy, vanishes

Poo1= Po10= P100=2(0o— M), at a critical point, while botlF, andF, vanish at a tricritical
) ) point, and these equations will be solved numerically in the
P002= Po20= P200= 200+ 605—8mg, temperature vs chemical potential plane to obtain the critical
5 curves and tricritical points presented in Sec. VI.
Po11= P101= P110= Pooz: The explicit expression of the coefficieRt, is

Po12= P120= P201= P210= P102= P021= Poo1Poo2: 1
Fo=-3J+ 20, +6(1—do)[Hoo1+4Ho02

Po22= P202= P220= pcz)ozi (4.9 )
3 +4do(Ho11t SHo12t 4Ho0) +405(3Hp12+ 12H g
P111= Poo1:
, +Hyp11+6H 115+ 9H 155+ 4H 550)
P112= P121= P211= Poo1Poo2; + 2403(H 15+ SH 125+ 4H5p0)
P122= P212= P221= P00t +3605(H oo+ 4H 2001, (4.13
P222= pgoz- while F, is too cumbersome to be written in full form, but

. . . . the equationF,=0 can be(apart from a factor of definite
Therefore the internal energy density can be written down 'r%ign) written as def=0, whereT is a 2x 2 symmetric ma-
extended form as trix of elements '

U=Ddo—3Im3—3Ka3— (1 qo)[ 3HooPoor+ 3Ho11Po11
+ 3H gozPo0zt BHo12P0121 3H 020020+ H111P111]
—(1—do)[BH11P110+ 3H 120120+ Hopddops] . (4.10 +200(H 1111 9H 115+ 24H 155+ 16H 55))

In an ordinary mean-field treatment like that in Rgf4], the +605(H1121+ 8H 155+ 16H 555, (4.149
internal energy densitgand hence also the free-energy den-
sity) reduces to that of the BEG model. Here this is not so
because we have exactly taken into account the fluctuation512= T21= —~ 202 +6[ —Hoo1~4H oozt 4Ho11+ 20H 012
of the amphiphilic orientational degrees of freedom. 0
Upon solving the self-consistent equatioR/dqy=0 for + 16H 9o+ 8qo( —Ho11— 2H 12+ 8H oo+ Hy11+6H 115

go (written as an expansion in powers of) and substitut- 9
ing back intoF, one can write the free-energy density in the *+9H 1291 4H299) + 7205(— 3Ho12~ 12Ho22~ Hany

1
T11:3_qg —48(1—dg)[Ho11+8Hg1ot 16H ¢,

; ; 2
form af a Ginzburg-Landau expansion &s=Fo+F,mg +21H 155+ 20H 599) + 28803 — 2H 130~ 7H 15+ 4H )
+F,mg+ - - -. Sincegq cannot be determined in closed form
even formy=0, one has to deal with coefficiens, which — 108013(H122+ 4H 55, ], (4.1

depend oy, as well as on the model parameters, wigh
solution of the equation

, . A . T22:_3K+m+6[H001_2H002_2H011_4H012
D —6(Hoo1t Hoo2) + @100+ @205+ azto+asdg+asdp
a0 —2H o221+ Ao(9H o2+ 6H 11— 24H 012~ 30H g2~ 4H 114
6_ — — =
+a0o—IN(1—qo) +In 2) 0. .19 —12H 35— 12H 155~ 4H ) + 405(18H 01~ 9H oz
3
where the coefficients, , i=1, . .. ,6 aredefined as +2H110— 12H 15— 30H 10— 16H 25) +6000(3H 22
4 5
a1 =12H g1~ 24H g02~ 24H 11— 48H 12— 24H 022~ 6K, T 2H 110 2H 195~ 4H 220 +540H 1500+ 756H 2200 .
(4.16

3.2: 54H 002+ 36H 011~ 1444 012~ 18(H 022~ 24H 1117 72H 112
—T2H 15— 24H 55, V. STRUCTURE FUNCTION AND THE LIFSHITZ LINE

In the disordered fluid phase, the appearance of the short-
83= 288012~ 144H 020t 32H 111~ 192H 11~ 480H 12 range correlations whichp characterizzpa microemulsion is
—256H,,,, usually recognized by looking at the structure function; that
is, by the momentum space correlation function, or at the
a,=540H gpp+ 360H 1 1,— 360H 15,— 720H,,,, (4.12  real-space correlation function itself. There are two com-
monly accepted criteria to define a microemulsion. The first
as=1296H {55, one, based on the so-callelisorder line[3,4], defines as
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microemulsion that disordered fluid in which the real spacdJsing the above results we can formally write the leading
correlation function has the asymptotic behavior terms of the expansion ifm,,q}:

= xe ¢

g(r)=(s(0)s(r))xe”"scogkr+ ¢), (5.1 FIF0+§k: e o+ Bl i
with k#0 (as usual¢ denotes the correlation lengthThis
means that, superimposed on the usual exponential decay, + y(Meg_ g+ qem_ )]+ -, (5.9
we have an oscillatory behavior, which signals that, although
long-range order is absent, we still have some short-rang&here the coefficients,, By, andy, have again been cal-
structure in which oil- and water-rich regions, separated by &ulated with thevATHEMATICA symbolic manipulator. In the
certain amount of amphiphile, can be identified. The locus oflisordered phaseni,=0) the calculation simplifies consid-
points (in the temperature vs concentration, or temperatur€rably, and in particulaiy, =0, which means that our qua-
vs chemical potential planeat whichk vanishes, is called dratic form is already diagonal. The expectatiomgn_, and
the disorder line dxq_x can then be easily obtained by derivation, and one

Another criteria for the definition of the microemulsion finally has
refers to the so-calletlifshitz line[2]. In this case the mi-
croemulsion is defined as t_hat disordered fluiq in Which the Syw(k) = I(alzl+ﬂlzl)' (5.7)
water-water structure functio8,(k) (to be defined rigor- 8
ously below has a peak at a nonzero wave ve
iO.yThe Iovc\:)us of poirr)ns at whicky,ax =0 is then caﬁ%At)(he ' Expanding(again WithMATHEMATIC/—\') the above expres-
Lifshitz line This definition is more related to the experiment SO~ Up_ t0 zsecond order ink, one finds
than the previous on&,(k) being directly measurable by Sww(K)=So+S;k*+ -, where
neutron scattering, and we shall adopt it from now on, since<x _ 2 2,4 _
in the present approach we have a natural way to determin $2= ~ 230+ 16d5(1~Go)[ Hoort 4H oo

the Lifshitz line, which is illustrated below. +4qo(Ho11+ 5Ho1ot 4Hozp) +405(3H g1+ 12H o)
The water-water structure function is defined as a

momentum-space correlation function; in the multicompo- +H113t 6H 110t OH 150+ 4H50))

nent lattice gas, and then in the spin operator formalism we

have +2405(H 110+ 5H 100t 4H2p0) +3605(H oo+ 4H 29 1.

(5.9

Swl(K) = (Ny(K)Ny(—k)) L _ _
L , 5 The Lifshitz line is then the locus of points at which
=7 ([s(k)+s(K)][s(-k)+s(=K)]). 5.2 g,=p.

In the mean-field approximation we neglect all correlations,

and hence VI. PHASE DIAGRAM

The present section will be devoted to a detailed descrip-
Sww(K)= 7 (MM_+ 00—+ MG+ qM_y). (5.3 tion of the phase diagram that we have obtained in the tem-
perature(that is, 1J) vs chemical potentiall§/J) and tem-
In order to evaluate explicitly the low moment behavior perature vs surfactant concentration planesKiti=1 and
of the above expressiofwhich in turn is required to locate several values of\/J.
the Lifshitz ling, one usually has to introduce the Fourier  The free energy, the iterative equations for our variational
expansions ofm andq, parameters, and the equations for the Lifshitz line, the criti-
cal line, and the tricritical point have already been derived,
so the determination of the finite-temperature phase diagram
is just a matter of standard numerical work. For fixed values
of temperature and chemical potential we have to solve by
A iteration our local mean-field equations on a suitable cluster,
q(r)=do+8a(r)=do+ > aye'*", (5.4  the precise shape of which depends on the phases expected,
. then calculate the free energy of the phases corresponding to
the local minima of our functional, and finally compare them

in the free-energy functional, and to diagonalize the qua-: ) e .
dratic form which results by an expansion to second order i order to find the global minimum and to locate first order

fluctuations(that is in the Fourier components of andq). fhhasﬁ btoundlartlej .a?dtrr?ultlphase fc:;ms'lA” ;ne results can
To begin with, we observe that en be translated into thexperimentally relevantempera-

ture vs surfactant concentration plane.
On the basis of the ground-state analysis by Ciach, H
E sm(r)yom(r+ér)= NE cogk- srymmm_,, dye, and Stel[13] we expect pure water-oil, pure surfactant,
r K and cubic(which was named bicontinuous or ordered bicon-
1 tinuous in previous papers by Ciach and co-workd 14
_= ) and us[20]) ground states. FOA<(J+K)/2 there is a
2 5m(r)5q(r+5r)—2N; cOStk- A1) (QM-—ic+ M) boundary between water-oil and surfactant ground states at
(5.5 D=3J+ 3K, while for A>(J+K)/2 we have the water/oil

m(r)=my+ dm(r)=me+ >, me",
X
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FIG. 1. Phase diagram in the temperatureJ)1v¥s chemical FIG. 2. The same as Fig. 1 f&/J=3.0. The labeld, and

potential O/J) plane forkK/J=1 andA/J=1.5. Solid, dashed, and L5 denote the corresponding lamellar phases.
dotted lines denote first-order transition, second-order transition and

L!fSh'tZ I'n.es reSpeCt'\{ely' The Iab'.ale'w’ ¢, m, andd denme. There is, however, another feature which cannot be ex-
oil-water-rich and cubic phases, microemulsion, and usual disor-

. ; pecteda priori, namely, the appearance of tiny regions oc-
dered fluid, respectively. cupied by the lamellar phasks andL ; (we did not consider

. B h . L, lamellar phases witk>3) close to the multiphase point,
to cubic boundary & =4J+4K —2A and the cubic to sur- -, the \ater-oil side. A similar situation occurs for the case

factant boundary laD=6A..Furt_hermo.re, accqrding to the A/3=2.0 considered in Refl20], with the presence of a
re;ults by the ordinarjthat is, W'tho.Ut Integration of oren- - small portion of theL, phase, which was not found there
tational 'd.egrees of freedgnmean-field analysis by Ciach gince \ye did not look at lamellar phases of higher periodicity
[14] at finite temperature, we eventually expect a few lamel'thanLl. We also notice that all the new phase boundaries

lar phases,_ with different p_er|0d|c_|ty. - between the lamellar phases and the adjacent ones are first
The cu_blc g_round state is obtained by filling three-fou_rthsorder_ The appearance of such phases can be understood con-
of the lattice sites by surfactant molecules and the remaining;qe ing that they are stabilized, even in the ground state, by
one-fourth by water and oil molecules, V\.’h'Ch are arranged "y small interaction between orientational degrees of freedom
a rggulqr, staggered pattern, eaph Species formmg.a diamo ], and hence the small portions of lamellar phase we see
Iattlce_, in such a way that the first and second neighbors ere might be continuously connected to the macroscopic
ahny gl;]/ent\]/v atgr-lon mltl)lecule are dalwayz_su.rfacr':ziﬂ:‘tqli On region which emerges from the corresponding stable ground
the other hand, arge ?r statesl, enote b%?,vt e OI OW- state (unfortunately, the present approach cannot enter this
Ing, are composed of a regular pattern lolwater layers — oqinn which would be interesting to study in view of the
(orthogonal to one lattice directipra surfactant layeik oil - comnetition arising between the lamellar and cubic phases
layers, another surfactant layer, and so on. _ This situation has to be contrasted with that occurring on
Although in principle one could use a huge cubic clusteryg fec |attice[19], where in the ground state, and hence also
capable of representing all these phases at the same time,jin y macroscopic region of the temperature phase diagram,
order to save CPU time it is much more convenient to study, ;g the structured ordered phases the lamellar phase was
thse pure phases on a single-site cluster, the cubic phase 0@, "It has to be noted that these ground-state results are
4° cluster with periodic boundary conditions, and the lamel-gyact and hence the appearance of different structured or-
lar phases orLxX1x1 clusters of suitable length [the  yered phases on different lattices is really a feature of the
phase denoted by, requiresL. =2 (k+1)], again with peri-  model, and not of the approximations used.
odic boundary conditions. The phase diagrams in the temperature vs surfactant con-

The results of our finite temperature analysiskd0=1  cantration plane are reported in Figs. 46, where all the first-
andA/J=1.5, 3.0, and 5.0 are reported in Figs. 1-3 in the

temperature vs chemical potential plane. The basic structure
of the phase diagram is already clear flJ=1.5 (Fig. ). T - '

The cubic phase is separated from the rich phabesh 4F d
water-oil and surfactant phasey first-order transition lines, m
while the water-oil to disordered phase boundary is partly sk b

second order and partly first order, exhibiting a tricritical k2

point. All the first-order transition lines meet at a multiphase
point, and the Lifshitz line ends in between this point and the
tricritical point, that is on the first order part of the water-oll
to disordered boundary, giving rise to a line of water-oil- r
microemulsion coexistence, which is a crucial experimental
feature of these systemi&]. IncreasingA/J (Figs. 2 and 3 0 L - - S
the most evident modification is that the cubic phasewell o

as its disordered counterpart, the microemulsioloviously

occupy a larger region of the phase diagram. FIG. 3. The same as Fig. 2 fé/J=5.0.

oW

1
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x

FIG. 4. Phase diagram in the temperature vs surfactant concen
tration plane forlK/J=1 andA/J=1.5. Solid lines delimit coexist-

ence regions, and dashed and dotted lines denote second-order tra X
sition and Lifshitz lines, respectively. The symbolB denotes
coexistence of phases and S. FIG. 6. The same as Fig. 4 fé/J=5.0.

order transition lines have now been replaced by coexistencgssumed not to interact with each other, and was carried out
regions. As it can be expected, increasing the surfactanh the three-dimensional case, where it leads to many new
strengthA/J, the region occupied by the microemulsion andmultispin (up to seven spins for the simple cubic latlice
the cubic phase enlarges, and AfJ=5.0 we find the mi- interactions, among which one has the three-body interaction
croemulsion at surfactant concentrations as low as 0.2.  introduced by Schick and co-workers on a phenomenologicall
The present results, which can be expected to be morsasis[6—8|. The exact integration of the amphiphile orienta-
accurate than those previously reported by Cigt#] be-  tional degrees of freedom affects the phase diagram even in
cause of the exact integration we have performed here, shotMe region occupied by uniform phases: while in the simple
that, even forA/J=3.0 and 5.0(corresponding t@/b=1.5 mean-field approximation the orientation-dependent part of
and 2.5, respectively in Ciach’s papémere is no critical end  the Hamiltonian makes a vanishing contribution to the inter-
point. On the contrary, the rich water-oil to disordered tran-nal energy of uniform phases, this is no more true if one first
sition exhibits in all cases a tricritical point, and the Lifshitz performs this exact integration.
line ends on the first order part of the transition line instead In order to characterize the microemulsion region of the
of ending in the critical end point as found by Ciach. Con-disordered phase the Lifshitz line has been calculated, giving
sequently, even in these cases we have a triple line of oila closed-form analytic equation in the model parameters.
water-microemulsion coexistence, which is not found by Ci-Similar equations have been derived for the critical and tri-
ach, and the cubic to microemulsion transition is always firstritical transitions from the pure water-oil to disordered
order in our approach, while Ciach found a tricritical point phase.

separating a second order part and a first order part. The present results can be regarded as an improvement of
those previously reported by Ciafh] in an ordinary mean-
VII. CONCLUSIONS field approximation. The main modification is that the criti-

cal end-point structure found by Ciach for sufficiently large
We have studied a vector lattice model proposed by Ciamphiphilic interaction is replaced here by the more com-
ach, Hye, and Stell for microemulsions by means of a par-mon tricritical point structure, with the Lifshitz line always
tial exact integration and a local mean-field approach, on thending on the first order part of the water-oil to disordered
simple cubic lattice. The partial integration was possibletransition line, giving rise to a triple line along which water-
since the surfactant orientational degrees of freedom wergnd oil-rich phases coexist with the microemulsion.
It would be interesting to apply the present approach to
5 . — . : the same model defined on the face-centered-cubic lattice, in
E order to compare the results with those from simple mean-
b field approximation and Monte Carlo simulations, and see
what kind of improvements are brought in by the exact inte-
) gration of amphiphile orientations. Finally, since the kind of
structured phases that one finds depends strongly on the lat-
tice, it should also be worth looking for structured ordered
o phases in the ground state of the present model defined on
other lattices. Work is in progress along these lines.

%0 o2 0a 06 o8 1.0 APPENDIX

Let us now evaluate the partial derivatives of the local
FIG. 5. The same as Fig. 4 fév/J=3.0. energy, appearing in E¢4.7). From Eq.(4.2) one obtains
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R100=Hoo1T Ho11(Po1ot Poo1) + Ho1A Po2ot Poo2)

={—=J[m(r+ &) +m(r—35,) +m(r+ ;) +m(r—3,)

om(r) +H11APo10Po02t PozdPo0) + H122P020P002

+m(r+5z)+m(r_5z)]_Dm(r)}y +H111p01000011
aq(r) ={D=Kla(r+ 8 +a(r=28J) +a(r+ &) +a(r=2y) R200=H ooz Ho1A Po1ot Poor) + HozA Pozot Poo2)

+q(r+8,)+a(r—8,) +gawe(r)]—Dg(r)}, (A1) +H112P010P001F H12A Po20Po02t Po20Poor)
wheregavp(r) was defined in Eq(4.2) and *+H2220020P002-

Dur)= > [l—q(r)]— 2 99amp(r’) £=m,q It remains to calculate, directly from EGt.3), the deriva-
¢ Ir' —r|=1 ag(r) ’ tives
(A2)

the summation is restricted to nearest neighbors ofr3ite ~ ?Pook(r") , ,
( g 3 == 2K 5y (1 g M(F = 8,)+ 8 s M1+ 8)],

Furthermore, from Eqg3.5), (4.2), and(4.3), we have om(r)
Tt 3 B e 3, g
i am(r) —2k? [5,r,+5 m(r’ )+5”,_5ym(r +¢jﬁi)
kzzl,Z CoE(r) KO (A3)
where % = —2K2[ 8y 1o s M1 = 8+ 8, s M(r" + 8]
Roo1= Hoo1+ Ho11( Po1ot P100) + Ho1A P200T Poz20)
+H11AP10aPo20t P200P010) + H1220200P020 and
+H111P100P010 (A4) IPoadr’)
Roo2= Hoo2t Ho1A P10t P100) + Ho2A Po2ot P200) Taq(r) Orr+o[ 14601 = 57)]
+ H1120100P0101 H12A P10oPo20t P20dP010) 6 -5 [1+68,0(r" +6,)],
+ H2220200P 020,
Ro10= Hoo1 Ho11(Poo1t P100) + Ho1 P20t Poo2) % =8+ 5y[ 1+68,.0(r'—6))]
i :iz(]plj::pol:::,ﬁ P200P002) T H1240200P002 N 5r’r/_5y[1+ 65,0(1'+8,)],  (A6)
Ro20=Hoo2T Ho1A Poo1t P100) + HozA P200t Poo2) IPxoo(r’) s [14850,0(F — 8]
+H 112010000017 H12A P100P00z2t P200P001) 7a(r) - ’
+Haps 2000002, 68— [1+680(r" + 6]
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