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Partial integration and local mean-field approach for a vector lattice model of microemulsions

C. Buzano,1 L. R. Evangelista,1,2 and A. Pelizzola1
1Dipartimento di Fisica del Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

2Departamento de Fı´sica, Universidade Estadual de Maringa´, Avenita Colombo, 5790, 87020-900, Maringa´, Paraná, Brazil
~Received 6 November 1996!

A vector model on the simple cubic lattice, describing a mixture of water, oil, and amphiphile, is considered.
An integration over the amphiphile orientational degrees of freedom is performed exactly in order to obtain an
effective Hamiltonian for the system. The resulting model is a three-state~spin-1! system and contains many-
site interaction terms. The analysis of the ground state reveals the presence of the water–oil-rich phase as well
as the amphiphile-rich and the cubic phases. The temperature phase diagram of the system is analyzed in a
local mean-field approach, and a triple line of water-rich, oil-rich, and microemulsion coexistence is obtained.
For some values of the model parameters, lamellar phases also appear in the system, but only at finite
temperature. The Lifshitz line is determined in a semianalytical way in order to locate the microemulsion
region of the disordered phase.@S1063-651X~97!10007-1#

PACS number~s!: 82.70.Kj, 05.50.1q, 64.60.Cn

I. INTRODUCTION

Liquid mixtures of water, oil, and amphiphiles~surfac-
tants! have recently been the subject of a very intense inves-
tigation@1#. The reason for such an interest is twofold: on the
practical side, the characteristic feature of the amphiphiles,
that is the presence in the same molecule of a polar head
attracting water and a nonpolar tail attracting oil, makes it
possible to reduce the water-oil interface tension by several
orders of magnitude; on the theoretical side, it is the richness
of their phase diagram which makes these mixtures very in-
teresting. At low enough temperatures, in addition to the
ordered water-rich and oil-rich phases that are found at low
surfactant concentration, for a sufficiently high concentration
of surfactant, the liquid mixture can exhibit structured, long-
range ordered phases like the lamellar, hexagonal, or cubic
phases. At higher temperatures, a reminiscence of these
structures is found in the so-called microemulsion. The mi-
croemulsion is a region of the disordered phase in which
particular short-range correlations are present, and can occur
even with low surfactant concentration. In this region oil-
and water-occupied microscopic regions are separated by
fluctuating layers of amphiphile. The existence of both struc-
tured phases and microemulsions is of course due to the ba-
sic feature of amphiphiles described above of being mol-
ecules with selective ends that tend to be located between oil
and water particles.

To distinguish the microemulsion from an ordinary disor-
dered fluid, two criteria have been used in the literature,
based on the Lifshitz line@2# or the disorder line@3,4#, re-
spectively, which must not be confused. The Lifshitz line is
identified by searching the maximum of the water-water
scattering amplitude, which is located at nonzero values of
the wave number for a microemulsion but not for an ordinary
disordered fluid. The disorder line, on the other hand, is
given by the condition that the asymptotic decay of the
water-water correlation function changes its behavior from
monotonic to nonmonotonic. In any case these are not lines
of thermodynamic phase transitions. In this paper the border
between the microemulsion and the ordinary disordered fluid

will be identified by the Lifshitz line which, in our approach,
can be easily calculated.

From the theoretical point of view, the phase diagram and
the structure function for the disordered phase have been
intensively investigated. Various phenomenological and mi-
croscopic models, continuous as well as on the lattice, have
been proposed to analyze these systems. Among the lattice
models there have been several proposals, put forth by Wi-
dom @5#, Schick and co-workers@6–8#, Matsen and Sullivan
@9# ~MS in the following! and Ciach, Ho”ye, and Stell@10–
15# ~CHS from now on!. In the model proposed by Widom,
three species of molecules occupy the bonds of a lattice; the
model can be mapped on an Ising model with extended in-
teractions in which the1 and2 spins represent water and
oil molecules, and the Peierls surfaces separating domains of
a given sign represent amphiphilic layers. It is evident that
such a model cannot represent neither thick amphiphile lay-
ers nor fluctuations in the direction of amphiphilic mol-
ecules. In the proposal by Schick and co-workers, a true
three-component mixture is introduced, and a three-body in-
teraction term was employed to account for the tendency of
the amphihilic molecules to aggregate water-amphiphile-oil
triples. As in the Widom model, however, an orientational
degree of freedom for the amphiphile is still missing.

This latter feature was finally introduced by MS and CHS,
who dealt with models of three-component mixtures in
which amphiphilic molecules carry an additional orienta-
tional degree of freedom~which is manifestly not parity in-
variant!, usually constrained to the lattice directions, a great
simplification which, however, should not alter the basic
thermodynamical properties.

None of the above models is exactly solvable at finite
temperature in more than one spatial dimension, and hence
they have all been thoroughly investigated by the usual ap-
proximate methods of equilibrium statistical mechanics. In
particular, the CHS model has been investigated originally
by means of the mean-field approximation@10,12#, but un-
fortunately these studies were based on a ground-state analy-
sis @11# which turned out to be incorrect for the simple-cubic
lattice case. The correct ground state was determined later
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@13# and there soon followed a full, correct mean-field treat-
ment of the case in which a direct amphiphile-amphiphile
orientational interaction is absent@14#. Some work was also
done on the two-dimensional case@16–19# and, recently,
Matsen and Sullivan@19# compared mean-field and Bethe
approximations with Monte Carlo simulations on the face-
centered-cubic lattice.

An interesting feature of the CHS model is that, in the
absence of orientational amphiphile-amphiphile coupling,
the corresponding degrees of freedom can be exactly inte-
grated out~summed out, actually!. This integration of the
simple-cubic lattice CHS model, together with a local mean-
field analysis of the resulting Hamiltonian, is the purpose of
the present paper. Notice that this program has never been
carried out in three dimensions~a short account of a small
part of this work has been previously published by us@20#!,
but only in two dimensions@15#, where several important
features of these mixtures are missing due to the reduced
dimensionality.

This paper is organized as follows. In Sec. II the construc-
tion of the Hamiltonian from a multicomponent lattice-gas
model is discussed. In Sec. III the exact integration of the
orientational degrees of freedom is explicitly performed and
the resulting effective spin-1 Hamiltonian is presented. In
Sec. IV the general equations for the local mean-field ap-
proximation are determined, and the analysis of the uniform
phases is presented. In Sec. V we calculate the Lifshitz line,
while the phase diagrams are discussed in Sec. VI and, fi-
nally, in Sec. VII, we draw our conclusions.

II. MODEL

The CHS model is a vector lattice model in which every
site of a cubic lattice is occupied by a particle of some kind
~water, oil or amphiphile!. The starting point to build up the
Hamiltonian of the mixture is to consider the following mul-
ticomponent lattice-gas model, in which the orientation-
dependent interactions of the amphiphile molecules with oil
and water~but not among themselves! have been explicitly
included:

H52(
i , j

(
r ,r8

@e i j ~r 82r !Ni~r !Nj~r 8!#2(
i

(
r

m iNi~r !

2(
r
NA~r !(

r8,k
fk@n~r !•~r 82r !#Nk~r 8!, ~2.1!

whereNj (r )50,1 (j5W, O, and A) are the occupation-
number operators for water (W), oil (O) and amphiphile
(A), n(r ) is a unit vector representing the amphiphile orien-
tation which, for the case of a simple-cubic lattice considered
here, is restricted to a discrete set of orientations such that it
points towards one of the six nearest neighbors of a given
site ~it is of course meaningless if the siter is occupied by
water or oil!, e i j are the coupling energies between the spe-
cies andfk (k5W andO) the orientational couplings. The
lattice-gas formalism can be transformed into a spin-1 for-
malism by associating, as customary, the eigenvalues11,
21, and 0 of the third component of a spin-1 operator
s(r ) to water, oil, and surfactant, respectively. The

occupation-number operators can then be expressed in terms
of the spin-1 operators using Kronecker deltas as

NW5d„s~r !,1…5 1
2 @s2~r !1s~r !#,

NO5d„s~r !,21…5 1
2 @s2~r !2s~r !#, ~2.2!

NA5d„s~r !,0…512s2~r !.

Now, if we consider only nearest-neighbor interactions
and assume~thereby restricting ourselves to balanced sys-
tems! that water and oil behave symmetrically~antisym-
metrically when interacting with the amphiphile orientational
variables, as it must be!, that is mW5mO , eWW5eOO ,
eOA5eWA , andfO52fW , the Hamiltonian~2.1! can be
easily expressed~apart from an irrelevant additive constant!
in terms of spin variables as

H52
J

2(r ,d s~r !s~r1d!2
K

2(r ,d s2~r !s2~r1d!1D(
r
s2~r !

2A(
r ,d

@12s2~r !#s~r1d!n~r !•d, ~2.3!

where d is a vector of length equal to one lattice spacing
pointing toward nearest neighbors. The new parameters are
related to the physical coupling energies by the relations

J5~eWW2eWO!/2, K5~eWW1eWO!/21eAA22eWA ,

D5mA2mW16~eAA2eWA!, A5fW . ~2.4!

The final Hamiltonian Eq.~2.3! is then characterized by four
parameters. The parameterJ.0 favors oil-water separation,
whereas the sign of the surfactant strengthA is not important
@more precisely the model is invariant with respect to the
transformationA→2A, s(r )→2s(r )#, and will be assumed
to be positive. We observe that whenA50 the Hamiltonian
is of the form of the Blume-Emery-Griffiths@21# ~BEG!
model.

III. EFFECTIVE MODEL: INTEGRATION OF THE
SURFACTANT ORIENTATIONS

As already pointed out, in the model represented by Eq.
~2.3! the interaction between amphiphile orientational vari-
ables is absent. It is then possible to integrate out exactly the
orientational degrees of freedom represented byn(r ) in order
to obtain an effective Hamiltonian involving only spin vari-
ables and temperature-dependent coupling energies. To ac-
complish this task, let us rewrite Eq.~2.3! as
H5HBEG1HA , whereHBEG is the Blume-Emery-Griffiths
Hamiltonian recovered forA50, which depends only on the
spin-1 variables, whileHA is the remainder, proportional to
A, which accounts for the orientation-dependent interactions.

The partition function can be formally written as

Z5 (
$s~r !,n~r !%

e2H5 (
$s~r !%

e2HBEG (
$n~r !%

e2HA

5 (
$s~r !%

e2~HBEG1H!, ~3.1!
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where we have absorbed a factorb5(kBT)
21 into the model

parameters~as a consequence, from now on 1/J will repre-
sent the reduced temperature!, and

H52 ln (
$n~r !%

e2HA ~3.2!

is an effective Hamiltonian which depends only on the spin
variables and is calculated in detail below.

As a first step we write, using the fact that the$n(r )% do
not interact with each other,e2H5) rz(r ), where

z~r !5(
n~r !

expHA(
d

@12s2~r !#s~r1d!n~r !•dJ
52 (

a5x,y,z
cosh$A@12s2~r !#Das~r !% ~3.3!

andDas(r )5s(r1da)2s(r2da), with da denoting the unit
lattice vector along directiona. Considering the 3752187
spin configurations of the cluster formed by a site and its six
nearest neighbors, one can see thatz(r ) can take on only a
few different values, which are reported in Table I. Looking
at Eq.~3.3! above and at Table I, one realizes that, apart from
the coefficient 12s2(r ) which can be easily dealt with,
z(r ) depends only on@Das(r )#

2, which in turn can take on
the values 0, 1, and 4 only, implying that expandingz(r )
~and hence also its logarithm! in powers of@Das(r )#

2 one
has to retain only terms up to the second order~that is fourth
order in the bare differences!. On the basis of the above
remarks, we introduce the symbols

Pklm~r !5@Dxs~r !#
2k@Dys~r !#

2l@Dzs~r !#
2m,

k,l ,mP$0,1,2%, ~3.4!

and write

H~r !52 lnz~r !

52s2~r !ln62@12s2~r !#(
k50

2

(
l50

2

(
m50

2

HklmPklm~r !,

~3.5!

where theHklm’s are ~temperature-dependent, although not
manifestly since temperature has been absorbed into the
model parameters! coefficients, invariant under permutation
of their indices, to be determined. It can be easily checked
that there are as many differentHklm’s as rows in Table I
corresponding to 12s2(r )51, and thus Eq.~3.5! above can
be viewed as a set of ten linear equations in our ten unknown
coefficients. Solving the latter with a symbolic manipulator
like MATHEMATICA one ends up with

Hklm5(
r51

10

hklm;r lnz r , ~3.6!

where thehklm;r ’s are numerical coefficients~again symmet-
ric under permutations ofk, l , andm) reported in Table II
while thez r have already been given in Table I. The effec-
tive Hamiltonian can finally be written asH5( rH(r ), and
contains multispin interactions~up to seven spins, that is one
spin and all its nearest neighbors involved in the same cou-
pling! hidden in thePklm(r ) symbols.

IV. THE LOCAL MEAN-FIELD EQUATIONS

The local mean-field equations can be obtained from the
approximate total free energy written as a function of the
local expectations m(r )5^s(r )& and q(r )5^s2(r )&:
F5( r(U(r )2S(r )). We have

F5(
r

HU~r !1FLS q~r !1m~r !

2 D1L@12q~r !#

1LS q~r !2m~r !

2 D G J , ~4.1!

with L(x)5x lnx. The local energy is

TABLE I. Values ofz(r ). In the second column we report only one representative permutation, since all
permutations are equivalent.

12s2(r ) „@Dxs(r )#
2,@Dys(r )#

2,@Dzs(r )#
2
… z(r ) Degeneracy Symbol

0 ; 6 1458
1 ~0,0,0! 6 27 z1
1 ~0,0,1! 412 coshA 108 z2
1 ~0,1,1! 214 coshA 144 z3
1 ~1,1,1! 6 coshA 64 z4
1 ~0,0,4! 412 cosh2A 54 z5
1 ~0,1,4! 212 coshA12 cosh2A 144 z6
1 ~1,1,4! 4 coshA12 cosh2A 96 z7
1 ~1,4,4! 2 coshA14 cosh2A 48 z8
1 ~4,4,4! 6 cosh2A 8 z9
1 ~0,4,4! 214 cosh2A 36 z10
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U~r !52
J

2(d
m~r !m~r1d!2

K

2(d
q~r !q~r1d!1Dq~r !

2@12q~r !#gAMP~r !. ~4.2!

In Eq. ~4.2! the quantitygAMP(r ) can be obtained from Eq.
~3.5!, as a linear combination of the functions
pklm(r )5^Pklm(r )&, where the latter expectation has to be
evaluated in the local mean-field approximation. Notice that
the term inH000 cancels with the isolated term2q(r )ln6 and
reduces to an irrelevant constant. For thepklm’s one finds
easily that

p001~r !5q~r1dz!1q~r2dz!22m~r1dz!m~r2dz!,

p010~r !5q~r1dy!1q~r2dy!22m~r1dy!m~r2dy!,

p100~r !5q~r1dx!1q~r2dx!22m~r1dx!m~r2dx!,

~4.3!

p002~r !5q~r1dz!1q~r2dz!28m~r1dz!m~r2dz!

16q~r1dz!q~r2dz!,

p020~r !5q~r1dy!1q~r2dy!28m~r1dy!m~r2dy!

16q~r1dy!q~r2dy!,

p200~r !5q~r1dx!1q~r2dx!28m~r1dx!m~r2dx!

16q~r1dx!q~r2dx!.

The remaining expressions can be calculated from the pre-
ceeding ones as

pklm~r !5pk00~r !p0l0~r !p00m~r !. ~4.4!

The free energy can be now minimized with respect to
m(r ) and q(r ) by following standard procedures. This im-
plies to solve the equations resulting from

]F

]j~r !
50, ~4.5!

wherej(r )5m(r ) or q(r ). From Eq.~4.1!, one easily ob-
tains

]S

]m~r !
52

1

2
ln
q~r !1m~r !

q~r !2m~r !
,

]S

]q~r !
52

1

2
ln

@q~r !1m~r !#@q~r !2m~r !#
4@12q~r !#2

. ~4.6!

After introducing

a2~r !5expF22
]U

]m~r !G ,
b22~r !5expF22

]U

]q~r !G , ~4.7!

and, using Eq.~4.6!, Eq. ~4.5! can be rewritten as the self-
consistent equations

m~r !5
a2~r !21

a2~r !1a~r !b~r !11
,

q~r !5
a2~r !11

a2~r !1a~r !b~r !11
. ~4.8!

The evaluation of the partial derivatives of the local energy
is presented in the Appendix.

The general approach is remarkably simplified if we re-
strict for a moment our attention to the uniform phases. It is
then possible to determine analytic equations for the critical
temperature of the water-oil phase and the corresponding tri-
critical point, and also to determine the Lifshitz line. To
describe the transitions from the water-oil phase to the dis-
ordered phase, one can setm(r )5m0 and q(r )5q0, and
study the free-energy density of uniform phases. If use is
made of a magnetic language the disordered phase corre-
sponds to the paramagnetic phase while the water-oil-rich
phase is ferromagnetic. Thus, a standard~Landau-Ginzburg!
expansion of the free-energy density around the disordered
phase characterized bym050 can be easily performed.

TABLE II. The coefficientshklm;r , invariant under permutations of the indicesk, l andm.

r
klm 1 2 3 4 5 6 7 8 9 10

000 1 0 0 0 0 0 0 0 0 0
001 2

5
4

4
3 0 0 2

1
12 0 0 0 0 0

002 1
4 2

1
3 0 0 1

12 0 0 0 0 0

011 25
16 2

10
3

16
9 0 5

24 2
2
9 0 0 0 1

144

012 2
5
16

3
4 2

4
9 0 2

1
8

5
36 0 0 0 2

1
144

022 1
16 2

1
6

1
9 0 1

24 2
1
18 0 0 0 1

144

111 2
125
64

25
4 2

20
3

64
27 2

25
64

5
6 2

4
9

1
36 2

1
1728 2

5
192

112 25
64 2

65
48

14
9 2

16
27

35
192 2

29
72

2
9 2

1
48

1
1728

11
576

122 2
5
64

7
24 2

13
36

4
27 2

11
192

5
36 2

1
12

1
72 2

1
1728 2

7
576

222 1
64 2

1
16

1
12 2

1
27

1
64 2

1
24

1
36 2

1
144

1
1728

1
192
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In the uniform case the quantitiespklm defined in Eqs.
~4.3! and ~4.4! become

p0015p0105p10052~q02m0
2!,

p0025p0205p20052q016q0
228m0

2 ,

p0115p1015p1105p001
2 ,

p0125p1205p2015p2105p1025p0215p001p002,

p0225p2025p2205p002
2 , ~4.9!

p1115p001
3 ,

p1125p1215p2115p001
2 p002,

p1225p2125p2215p002
2 p001,

p2225p002
3 .

Therefore the internal energy density can be written down in
extended form as

U5Dq023Jm0
223Kq0

22~12q0!@3H001p00113H011p011

13H002p00216H012p01213H022p0221H111p111#

2~12q0!@3H112p11213H122p1221H222p222#. ~4.10!

In an ordinary mean-field treatment like that in Ref.@14#, the
internal energy density~and hence also the free-energy den-
sity! reduces to that of the BEG model. Here this is not so
because we have exactly taken into account the fluctuations
of the amphiphilic orientational degrees of freedom.

Upon solving the self-consistent equation]F/]q050 for
q0 ~written as an expansion in powers ofm0) and substitut-
ing back intoF, one can write the free-energy density in the
form of a Ginzburg-Landau expansion asF5F01F2m0

2

1F4m0
41•••. Sinceq0 cannot be determined in closed form

even form050, one has to deal with coefficientsFk which
depend onq0 as well as on the model parameters, withq0
solution of the equation

D26~H0011H002!1a1q01a2q0
21a3q0

31a4q0
41a5q0

5

1a6q0
62 ln~12q0!1 lnS q02 D50, ~4.11!

where the coefficientsai , i51, . . . ,6 aredefined as

a1512H001224H002224H011248H012224H02226K,

a2554H002136H0112144H0122180H022224H111272H112

272H122224H222,

a35288H0122144H022132H1112192H1122480H122

2256H222,

a45540H0221360H1122360H1222720H222, ~4.12!

a551296H122,

a651512H222.

As usual in the Ginzburg-Landau formalism,F2 vanishes
at a critical point, while bothF2 andF4 vanish at a tricritical
point, and these equations will be solved numerically in the
temperature vs chemical potential plane to obtain the critical
curves and tricritical points presented in Sec. VI.

The explicit expression of the coefficientF2 is

F2523J1
1

2q0
16~12q0!@H00114H002

14q0~H01115H01214H022!14q0
2~3H012112H022

1H11116H11219H12214H222!

124q0
3~H11215H12214H222!

136q0
4~H12214H222!#, ~4.13!

while F4 is too cumbersome to be written in full form, but
the equationF450 can be~apart from a factor of definite
sign! written as detT50, whereT is a 232 symmetric ma-
trix of elements

T115
1

3q0
3 248~12q0!@H01118H012116H022

12q0~H11119H112124H122116H222!

16q0
2~H11218H122116H222!#, ~4.14!

T125T2152
1

2q0
2 16@2H00124H00214H011120H012

116H02218q0~2H01122H01218H0221H11116H112

19H12214H222!172q0
2~23H012212H0222H111

121H122120H222!1288q0
3~22H11227H12214H222!

21080q0
4~H12214H222!#, ~4.15!

T22523K1
1

2q0~12q0!
16@H00122H00222H01124H012

22H0221q0~9H00216H011224H012230H02224H111

212H112212H12224H222!14q0
2~18H01229H022

12H111212H112230H122216H222!160q0
3~3H022

12H11222H12224H222!1540H122q0
41756H222q0

5#.

~4.16!

V. STRUCTURE FUNCTION AND THE LIFSHITZ LINE

In the disordered fluid phase, the appearance of the short-
range correlations which characterize a microemulsion is
usually recognized by looking at the structure function; that
is, by the momentum space correlation function, or at the
real-space correlation function itself. There are two com-
monly accepted criteria to define a microemulsion. The first
one, based on the so-calleddisorder line @3,4#, defines as
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microemulsion that disordered fluid in which the real space
correlation function has the asymptotic behavior

g~r ![^s~0!s~r !&}e2r /jcos~kr1f!, ~5.1!

with kÞ0 ~as usual,j denotes the correlation length!. This
means that, superimposed on the usual exponential decay,
we have an oscillatory behavior, which signals that, although
long-range order is absent, we still have some short-range
structure in which oil- and water-rich regions, separated by a
certain amount of amphiphile, can be identified. The locus of
points ~in the temperature vs concentration, or temperature
vs chemical potential plane! at which k vanishes, is called
thedisorder line.

Another criteria for the definition of the microemulsion
refers to the so-calledLifshitz line @2#. In this case the mi-
croemulsion is defined as that disordered fluid in which the
water-water structure functionSWW(k) ~to be defined rigor-
ously below! has a peak at a nonzero wave vectorkMAX
Þ0. The locus of points at whichkMAX50 is then called the
Lifshitz line. This definition is more related to the experiment
than the previous one,SWW(k) being directly measurable by
neutron scattering, and we shall adopt it from now on, since
in the present approach we have a natural way to determine
the Lifshitz line, which is illustrated below.

The water-water structure function is defined as a
momentum-space correlation function; in the multicompo-
nent lattice gas, and then in the spin operator formalism we
have

SWW~k!5^NW~k!NW~2k!&

5 1
4 ^@s~k!1s2~k!#@s~2k!1s2~2k!#&. ~5.2!

In the mean-field approximation we neglect all correlations,
and hence

SWW~k!5 1
4 ~mkm2k1qkq2k1mkq2k1qkm2k!. ~5.3!

In order to evaluate explicitly the low moment behavior
of the above expression~which in turn is required to locate
the Lifshitz line!, one usually has to introduce the Fourier
expansions ofm andq,

m~r !5m01dm~r !5m01(
k
mke

ik•r ,

q~r !5q01dq~r !5q01(
k
qke

ik•r , ~5.4!

in the free-energy functional, and to diagonalize the qua-
dratic form which results by an expansion to second order in
fluctuations~that is in the Fourier components ofm andq).
To begin with, we observe that

(
r

dm~r !dm~r1dr !5N(
k
cos~k•dr !mkm2k ,

(
r

dm~r !dq~r1dr !5
1

2
N(

k
cos~k•dr !~qkm2k1mkq2k!.

~5.5!

Using the above results we can formally write the leading
terms of the expansion in$mk ,qk%:

F5F01(
k

@akmkm2k1bkqkq2k

1gk~mkq2k1qkm2k!#1•••, ~5.6!

where the coefficientsak , bk , andgk have again been cal-
culated with theMATHEMATICA symbolic manipulator. In the
disordered phase (m050) the calculation simplifies consid-
erably, and in particulargk50, which means that our qua-
dratic form is already diagonal. The expectationsmkm2k and
qkq2k can then be easily obtained by derivation, and one
finally has

SWW~k!5
T

8
~ak

211bk
21!. ~5.7!

Expanding~again withMATHEMATICA ! the above expres-
sion up to second order in k, one finds
SWW(k)5S01S2k

21•••, where

S2522Jq0
2116q0

2~12q0!@H00114H002

14q0~H01115H01214H022!14q0
2~3H012112H022

1H11116H11219H12214H222!

124q0
3~H11215H12214H222!136q0

4~H12214H222!#.

~5.8!

The Lifshitz line is then the locus of points at which
S250.

VI. PHASE DIAGRAM

The present section will be devoted to a detailed descrip-
tion of the phase diagram that we have obtained in the tem-
perature~that is, 1/J) vs chemical potential (D/J) and tem-
perature vs surfactant concentration planes, forK/J51 and
several values ofA/J.

The free energy, the iterative equations for our variational
parameters, and the equations for the Lifshitz line, the criti-
cal line, and the tricritical point have already been derived,
so the determination of the finite-temperature phase diagram
is just a matter of standard numerical work. For fixed values
of temperature and chemical potential we have to solve by
iteration our local mean-field equations on a suitable cluster,
the precise shape of which depends on the phases expected,
then calculate the free energy of the phases corresponding to
the local minima of our functional, and finally compare them
in order to find the global minimum and to locate first order
phase boundaries and multiphase points. All the results can
then be translated into the~experimentally relevant! tempera-
ture vs surfactant concentration plane.

On the basis of the ground-state analysis by Ciach, H
o”ye, and Stell@13# we expect pure water-oil, pure surfactant,
and cubic~which was named bicontinuous or ordered bicon-
tinuous in previous papers by Ciach and co-workers@13,14#
and us @20#! ground states. ForA,(J1K)/2 there is a
boundary between water-oil and surfactant ground states at
D53J13K, while for A.(J1K)/2 we have the water/oil

56 775PARTIAL INTEGRATION AND LOCAL MEAN-FIELD . . .



to cubic boundary atD54J14K22A and the cubic to sur-
factant boundary atD56A. Furthermore, according to the
results by the ordinary~that is, without integration of orien-
tational degrees of freedom! mean-field analysis by Ciach
@14# at finite temperature, we eventually expect a few lamel-
lar phases, with different periodicity.

The cubic ground state is obtained by filling three-fourths
of the lattice sites by surfactant molecules and the remaining
one-fourth by water and oil molecules, which are arranged in
a regular, staggered pattern, each species forming a diamond
lattice, in such a way that the first and second neighbors of
any given water-oil molecule are always surfactants@14#. On
the other hand, lamellar states, denoted byLk in the follow-
ing, are composed of a regular pattern ofk water layers
~orthogonal to one lattice direction!, a surfactant layer,k oil
layers, another surfactant layer, and so on.

Although in principle one could use a huge cubic cluster
capable of representing all these phases at the same time, in
order to save CPU time it is much more convenient to study
the pure phases on a single-site cluster, the cubic phase on a
43 cluster with periodic boundary conditions, and the lamel-
lar phases onL3131 clusters of suitable lengthL @the
phase denoted byLk requiresL52(k11)#, again with peri-
odic boundary conditions.

The results of our finite temperature analysis forK/J51
andA/J51.5, 3.0, and 5.0 are reported in Figs. 1–3 in the
temperature vs chemical potential plane. The basic structure
of the phase diagram is already clear forA/J51.5 ~Fig. 1!.
The cubic phase is separated from the rich phases~both
water-oil and surfactant phase! by first-order transition lines,
while the water-oil to disordered phase boundary is partly
second order and partly first order, exhibiting a tricritical
point. All the first-order transition lines meet at a multiphase
point, and the Lifshitz line ends in between this point and the
tricritical point, that is on the first order part of the water-oil
to disordered boundary, giving rise to a line of water-oil-
microemulsion coexistence, which is a crucial experimental
feature of these systems@1#. IncreasingA/J ~Figs. 2 and 3!
the most evident modification is that the cubic phase~as well
as its disordered counterpart, the microemulsion! obviously
occupy a larger region of the phase diagram.

There is, however, another feature which cannot be ex-
pecteda priori, namely, the appearance of tiny regions oc-
cupied by the lamellar phasesL2 andL3 ~we did not consider
Lk lamellar phases withk.3) close to the multiphase point,
on the water-oil side. A similar situation occurs for the case
A/J52.0 considered in Ref.@20#, with the presence of a
small portion of theL2 phase, which was not found there
since we did not look at lamellar phases of higher periodicity
than L1. We also notice that all the new phase boundaries
between the lamellar phases and the adjacent ones are first
order. The appearance of such phases can be understood con-
sidering that they are stabilized, even in the ground state, by
a small interaction between orientational degrees of freedom
@13#, and hence the small portions of lamellar phase we see
here might be continuously connected to the macroscopic
region which emerges from the corresponding stable ground
state~unfortunately, the present approach cannot enter this
region, which would be interesting to study in view of the
competition arising between the lamellar and cubic phases!.

This situation has to be contrasted with that occurring on
the fcc lattice@19#, where in the ground state, and hence also
in a macroscopic region of the temperature phase diagram,
among the structured ordered phases the lamellar phase was
found. It has to be noted that these ground-state results are
exact, and hence the appearance of different structured or-
dered phases on different lattices is really a feature of the
model, and not of the approximations used.

The phase diagrams in the temperature vs surfactant con-
centration plane are reported in Figs. 4–6, where all the first-

FIG. 1. Phase diagram in the temperature (1/J) vs chemical
potential (D/J) plane forK/J51 andA/J51.5. Solid, dashed, and
dotted lines denote first-order transition, second-order transition and
Lifshitz lines respectively. The labelso-w, c, m, and d denote
oil-water-rich and cubic phases, microemulsion, and usual disor-
dered fluid, respectively.

FIG. 2. The same as Fig. 1 forA/J53.0. The labelsL2 and
L3 denote the corresponding lamellar phases.

FIG. 3. The same as Fig. 2 forA/J55.0.
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order transition lines have now been replaced by coexistence
regions. As it can be expected, increasing the surfactant
strengthA/J, the region occupied by the microemulsion and
the cubic phase enlarges, and forA/J55.0 we find the mi-
croemulsion at surfactant concentrations as low as 0.2.

The present results, which can be expected to be more
accurate than those previously reported by Ciach@14# be-
cause of the exact integration we have performed here, show
that, even forA/J53.0 and 5.0~corresponding toc/b51.5
and 2.5, respectively in Ciach’s paper! there is no critical end
point. On the contrary, the rich water-oil to disordered tran-
sition exhibits in all cases a tricritical point, and the Lifshitz
line ends on the first order part of the transition line instead
of ending in the critical end point as found by Ciach. Con-
sequently, even in these cases we have a triple line of oil-
water-microemulsion coexistence, which is not found by Ci-
ach, and the cubic to microemulsion transition is always first
order in our approach, while Ciach found a tricritical point
separating a second order part and a first order part.

VII. CONCLUSIONS

We have studied a vector lattice model proposed by Ci-
ach, Ho”ye, and Stell for microemulsions by means of a par-
tial exact integration and a local mean-field approach, on the
simple cubic lattice. The partial integration was possible
since the surfactant orientational degrees of freedom were

assumed not to interact with each other, and was carried out
in the three-dimensional case, where it leads to many new
multispin ~up to seven spins for the simple cubic lattice!
interactions, among which one has the three-body interaction
introduced by Schick and co-workers on a phenomenological
basis@6–8#. The exact integration of the amphiphile orienta-
tional degrees of freedom affects the phase diagram even in
the region occupied by uniform phases: while in the simple
mean-field approximation the orientation-dependent part of
the Hamiltonian makes a vanishing contribution to the inter-
nal energy of uniform phases, this is no more true if one first
performs this exact integration.

In order to characterize the microemulsion region of the
disordered phase the Lifshitz line has been calculated, giving
a closed-form analytic equation in the model parameters.
Similar equations have been derived for the critical and tri-
critical transitions from the pure water-oil to disordered
phase.

The present results can be regarded as an improvement of
those previously reported by Ciach@14# in an ordinary mean-
field approximation. The main modification is that the criti-
cal end-point structure found by Ciach for sufficiently large
amphiphilic interaction is replaced here by the more com-
mon tricritical point structure, with the Lifshitz line always
ending on the first order part of the water-oil to disordered
transition line, giving rise to a triple line along which water-
and oil-rich phases coexist with the microemulsion.

It would be interesting to apply the present approach to
the same model defined on the face-centered-cubic lattice, in
order to compare the results with those from simple mean-
field approximation and Monte Carlo simulations, and see
what kind of improvements are brought in by the exact inte-
gration of amphiphile orientations. Finally, since the kind of
structured phases that one finds depends strongly on the lat-
tice, it should also be worth looking for structured ordered
phases in the ground state of the present model defined on
other lattices. Work is in progress along these lines.

APPENDIX

Let us now evaluate the partial derivatives of the local
energy, appearing in Eq.~4.7!. From Eq.~4.2! one obtains

FIG. 4. Phase diagram in the temperature vs surfactant concen-
tration plane forK/J51 andA/J51.5. Solid lines delimit coexist-
ence regions, and dashed and dotted lines denote second-order tran-
sition and Lifshitz lines, respectively. The symbola-b denotes
coexistence of phasesa andb.

FIG. 5. The same as Fig. 4 forA/J53.0.

FIG. 6. The same as Fig. 4 forA/J55.0.
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]U

]m~r !
5$2J@m~r1dx!1m~r2dx!1m~r1dy!1m~r2dy!

1m~r1dz!1m~r2dz!#2Dm~r !%,

]U

]q~r !
5$D2K@q~r1dx!1q~r2dx!1q~r1dy!1q~r2dy!

1q~r1dz!1q~r2dz!1gAMP~r !#2Dq~r !%, ~A1!

wheregAMP(r ) was defined in Eq.~4.2! and

Dj~r !5 (
ur82r u51

@12q~r 8!#
]gAMP~r 8!

]j~r !
, j5m,q

~A2!

~the summation is restricted to nearest neighbors of siter ).
Furthermore, from Eqs.~3.5!, ~4.2!, and~4.3!, we have

]gAMP~r 8!

]j~r !
5 (

k51,2

]p00k~r 8!

]j~r !
R00k1 (

k51,2

]p0k0~r 8!

]j~r !
R0k0

1 (
k51,2

]pk00~r 8!

]j~r !
Rk00, ~A3!

where

R0015H0011H011~p0101p100!1H012~p2001p020!

1H112~p100p0201p200p010!1H122p200p020

1H111p100p010, ~A4!

R0025H0021H012~p0101p100!1H022~p0201p200!

1H112p100p0101H122~p100p0201p200p010!

1H222p200p020,

R0105H0011H011~p0011p100!1H012~p2001p002!

1H112~p100p0021p200p001!1H122p200p002

1H111p100p001,

R0205H0021H012~p0011p100!1H022~p2001p002!

1H112p100p0011H122~p100p0021p200p001!

1H222p200p002,

R1005H0011H011~p0101p001!1H012~p0201p002!

1H112~p010p0021p020p001!1H122p020p002

1H111p010p001,

R2005H0021H012~p0101p001!1H022~p0201p002!

1H112p010p0011H122~p020p0021p020p001!

1H222p020p002.

It remains to calculate, directly from Eq.~4.3!, the deriva-
tives

]p00k~r 8!

]m~r !
522k2@d r ,r81dz

m~r 82dz!1d r ,r82dz
m~r 81dz!#,

]p0k0~r 8!

]m~r !
522k2@d r ,r81dy

m~r 82dy!1d r ,r82dy
m~r 81dy!#,

~A5!

]pk00~r 8!

]m~r !
522k2@d r ,r81dx

m~r 82dx!1d r ,r82dx
m~r 81dx!#

and

]p00k~r 8!

]q~r !
5d r ,r81dz

@116dk,2q~r 82dz!#

1d r ,r82dz
@116dk,2q~r 81dz!#,

]p0k0~r 8!

]q~r !
5d r ,r81dy

@116dk,2q~r 82dy!#

1d r ,r82dy
@116dk,2q~r 81dy!#, ~A6!

]pk00~r 8!

]q~r !
5d r ,r81dx

@116dk,2q~r 82dx!#

1d r ,r82dx
@116dk,2q~r 81dx!#.
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