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Abstract

We have derived a residual-based a posteriori error estimator for a stabilized finite
element discretization of the stationary incompressible Navier Stokes equations with
general boundary conditions. An adaptive algorithm based on this error estimator
is discussed and tested on some analytical and physical problems. When possible
we study precisely the behaviour of the effectivity index.
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Navier Stokes equations, bounds on the effectivity index.
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1 Introduction

In the numerical simulation of real flows many questions are still open. One
of them is how to control the accuracy of a numerical approximation for the
solution of equations modeling these phenomena and how to use the available
computational facilities to reach the needed accuracy with the lowest possible
computational and man time as well as memory requests. Very often engineers
and physicists need to solve problems in computational fluid dynamics in which
the overall accuracy is deteriorated by the presence of interior or boundary
layers, shock fronts and complex geometries with corners. So, difficulties in a
very little part of the computational domain may cause a considerable reduc-
tion of the overall accuracy of the solution. A natural remedy is to increase
the number of grid-points in these critical regions and simultaneously place
very few points where the solution is smooth, in order to balance accuracy
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and efficiency. To reach this target, we need an easily computable a posteriori
error estimator that gives us information on how to distribute the points in
an efficient manner.

One of the most important goals in the analysis of an a posteriori error estima-
tor is to establish an equivalence relation between it and the true error of the
numerical solution, measured in a suitable norm. From the pioneering work
of Babuska and Rheinboldt [3] many interesting results have been achieved
(see, for instance, [1,9,19,21,26] and the references therein), but many aspects
of this problem are still unclear. In the present work we focus our attention
on some of them, in the frame of the residual-based error estimators for the
stationary incompressible Navier-Stokes equations. Following Verfiirth’s work,
we have derived in [4] an error estimator for a stabilized discretization [10] of
the linear problem. Here, we carefully analyse the influence of the Reynolds
number in the relation which expresses the equivalence between the error esti-
mator and the true error. We perform this analysis by numerical experiments
on a problem with an analytic solution. Next we present an adaptive algorithm
based on this error estimator and discuss several aspects about its behaviour
and, in particular, its effectivity index.

At last, in Section 7 we apply our algorithm to a classical CFD problem.
Although in [4] we derived the error estimator and we studied its effectivity
index for a linear model, when we apply these results to the non-linear Navier-
Stokes equations we get good results matching with previous analysis.

2 Linear incompressible Navier-Stokes model

2.1 The continuous problem

With the aim of introducing the error estimator and describing its use, we
prefer to avoid the difficulties of the non-linearity of the true Navier-Stokes
equations and we proceed considering a linear, steady-state, incompressible
model:

L —e\- e = .
—EAu—i—(a-V)u—l— p=1Ff in €, (1)
V-u=0 in €, (2)
T =0 on ['p, (3)
1 0w L
Re 0n —pn=4gn on 'y, (4)



where: Re is the Reynolds number; € is a bounded domain in R?* with a
regular boundary 952 that belongs to the class %! (952 can be locally described
by Lipschitz continuous functions [13,18]); the boundary 0% is split into two
subsets I'p and I'y, where ['p is closed and the following conditions holds true:
89 == FD U FN, FD N FN = @ and |FD | 7£ 0, EE[HI(Q)]Q N [LOO(Q)] s V-E =
0in Q; 7-@ > 0 on 'y, where 7 is the usual unit outward normal vector to

00 TE[L2 ()] gy € [HE (Dy)]2.

Let us first derive a weak formulation of problem (1-4). The functional spaces
we deal with are the usual Sobolev space H}]’D(Q) def {veHY(Q) : vy, = 0}

and Lebesgue space L3(Q) “gel2(Q) Jo qd2 = 0}. Moreover we set V wf

[HS ()2 and Q & L2(Q) if Ty | = 00r Q & L2(Q)if [Ty | > 0. 1f [Ty | = 0,

the pressure p in (1) can be determined only up to an additive constant that
we fix by seeking a pressure with a zero mean value. A weak formulation
of the problem can be written as: Find [u,p] € VXQ such that V[v,q] €
VxQ one has :

1
Re

(Va,vo)+ ((@-V)ao) - (p.V-7) = (£.7) + @x. D)r,,. (5)
where (.,.) denotes the usual inner product in L?(Q) or in [L*(Q)]* and (., )
denotes the inner product in [L?(I"y)]?. Existence and uniqueness of the solu-

tion for all positive Re follows from the usual coercivity inequality and inf-sup
condition (see, e.g., [13]).

<

2.2 The discrete problem

In order to discretize problem (1-4), we assume €2 to be a polygonal domain
and we introduce a regular family of partitions {7}, of Q into triangles which
satisfy the usual conformity and minimal-angle conditions [8]. It is useful to
introduce the diameter h; of the element 1" € 7,. The parameter h of the
family {7,}, represents h = maxyey, hy. Let V), C V and Q, C Q be two
conforming finite element spaces based on the partition 7. If we consider
the pure Galerkin approximation of the continuous problem (5,6), we have to
satisfy the discrete version of the inf-sup condition [6,13,18].

In what follows, we are going to use continuous finite elements for the ve-

locity: V, < {@hEV N [CO(Q)r : @TE[P,C(T)]Q,VTE’FL} and the pressure:

Qn def {qh cQNC’(Q): g, € A(T),VT ¢ E} Here P;(T) is the space of

polynomials of degree ¢ > 1 on the element 7" € 7,. In the discretization of



the problem, we also consider approximations of the data @, f, gy by some
interpolations I1; @, IIy f, 15 g, whose definition will be given later on. With
an arbitrary choice of £ and [ these spaces may not satisfy the discrete inf-
sup condition [6]. However, this difficulty may be avoided by resorting to a
consistent modified approximation of the problem known as the Streamline
Upwind/Petrov Galerkin (SUPG) method [10,11,15]: Fiind [Ty, pp] € Vi X Qp
such that Y[ty qn] € Vi, x Qy let be :

= (I 7, 90) + (Mp G, o)y + Y 7 (U 7, (D@ V) 3), (7)

(Qh,v'ﬂh) + > (— éﬂﬂhﬂL (HTE'V) Uy, +V_ph7_Qh>T

TeTh
=Y w (W), ®

Here 7+ and ér depend on the local conditions of the flow in each element

rall ,h . :
expressed by Rer el mkw and my, el mln{é, Cl}, C, being the

4
constant of the inverse inequality [14]: h2 || Avy, ||(2)7T < Cy|| Vuy, ||(2)7T7 Vo, €

Vy, . For linear elements, obviously, my, = i. Practically, following [10] we

d 2 d lira hi.Re . d
set 7 mk%TRe, or A mk—H Ta”"Z’T 4 0 < Rep < 1 and 7p <

hp O def )\HHTEHOO,T hp if Rep > 1. We take A\ to be either 1

2[[Iralle 7’

or 0, def)qénding whether we want or we do not want to consider the terms
multiplied by the parameter dr. By using the SUPG method, not only we
circumvent the inf-sup condition [5,6,15], but also we stabilize the advective
operator preventing the oscillations in the velocity field that appear for high
Reynolds numbers [7,10,11].

3 A residual-based error estimator

In [4] we have derived a residual-based error estimator for our model problem
following Verfiirth’s works [23,24,26,27,28]. Particularly, we have derived a
global upper bound and a local lower bound for the error measured in an
energy-like norm. Here, for space reasons, we only recall those results, but
we invite the interested reader to look at [4] for a detailed description of the



hypotheses and methods used in the proofs. Let us recall some useful notations
and definitions. For each edge E of the triangulation we consider a unit vector
ng such that ng is orthogonal to £ and equals the unit outward vector normal
to 0Q if E C 092. For any triangle T'€ 7}, let be £(T) the set of its edges,

Wy def U T’ and Wg def U T'.
{T": (T)NET)A0} {T": Ecg(T")}

Given any internal edge E and any ¢ € L?(wg ) with ¢, € C°(T") VI" €wp, we
denote by [p],, the jump of ¢ across E along the orientation of 7. Moreover:

—-u and 14 def Ph — D,

e | N _
([uhvph])d:f_ EAU};—F (HTCL-V) up + Vp, — 7 f,

i () [ (- T -mT)]

T

Ql

Ry ([Un,pn) , Upgy) = 0 <_Vﬂh —pfj> —Ig gy,

At last, we give the definition of our residual-based a posteriori error estimator
on the triangle T' € T:

N1 = H Ry ( Uh;ph])

Z hg HRE [, pn)) H +

) 0,FE

+ > hi HRE,N [@n, pr) , g Gy ) HzEﬂLHV up,
Ee &(T)N&y N

N C)

We report the upper and lower bounds derived for the case Re > 1 and
assuming that the problem is well a-dimensionalized, in the sense that || <1,
| T al|| <1 and ||E||oo’wT <1 for all T €7y

o0,wT

Proposition 1 There exist two constants CT and C|, independent of any
mesh-size and Reynolds number, but depending on the smallest angle of the
triangulation, such that the global upper bound

7| +I wnoscme{ IS ndr+
TeTh

+ U@ —ally ||, + | Or T =T + 11 Te gy — T lor, } (10)

and the local lower bound



nror < C) {‘T ‘LUJT +|| @ HO,wT +hp (” lra—a ||oo,wT | @, |1,wT

B B SR ||HEyN—yN||0,E} (11)

Ee &(T)Nén,N

+H Oy f—F

hold true.

Remark 2 We notice that the constants CT and C| depend only on the con-
stants in Cauchy-Schwarz’s, Poincaré-Friedrichs’, Young’s and trace inequal-
ities, as well as the constants of interpolation in Sobolev spaces and the inf —

sup constant. All these constants are O(1), so we deduce that CT and C| are
also O(1).

Remark 3 Inequalities (10,11) agree with results presented in [25,26] for the
non-linear Navier-Stokes equations. Inequality (10) shows explicitly the depen-
dence upon the Reynolds number of the constant appearing in the analogous
estimates of [25,26]. Moreover in [4] we have considered the analogous esti-
mates for the Stokes problem obtaining the same results of [23].

Remark 4 Comparing inequalities (10,11) with analogous estimates given in
[23,24,25] or [2], we observe that the part of our approxzimation error concern-
ing f and Gy is multiplied by a power of h that is different from those in the
cited papers. This is due to the fact that we introduce the approximation of the
data in the discretization of the problem as well, not only in the computation
of the error estimator like in those works.

Remark 5 The results of Proposition 1 look to be non-optimal, since the
the upper and lower bounds differ by the factor Re. In [28] the presence of
the zero-order term in a scalar reaction-convection-diffusion equation allows
the use of a more suitable energy-like norm for measuring the error, namely

\/;—e |up —u g, +|lun — ullgy. The resulting upper and lower bounds differ

only by the factor c+v Re ||@||, o min{hv Re, 1}, which is of the order of the

local Rer or v/ Re depending upon the flow conditions. Unfortunately, for the
steady Navier-Stokes equations here considered, one cannot take advantage of
any zero order term in the equations.

4 Equivalence between the true error and the error estimator

Looking forward to the use of the error estimator in the construction of a
sequence of adapted Delaunay triangulations, we need some more considera-
tions. At first we deal with some interpolations Il f, Il; @ and Il gy of the
data f, @ and gy with polynomials of degree n;, ny, ns > 1 respectively. Let



us suppose that for any triangulation 7, under consideration and for suitable
integers ny, ns, ng the following hypotheses hold:

VT € 771: ?|WT € [Hnl+1(wT)]27
VT €T, Ty, € [W2Hh® ()2,
VT €T,: IECITNTN #£0,9y |z € [H=TH(T)]?,

where

W () E v € L% (wr) 1 0% € L®(wr),Ya € B : o] < n +1};

moreover, we assume that the chosen interpolations satisfy following estimates:

F 7 < ni+1 |7
H HT f f HO,(UT ~ hT ‘ f n1+1,wT7 (12)
|| HTa_a“O,oo,wT jh%2+1 |6|n2+1,OO,wT’ (13)
I Megy —Tn llop 3 h gy g1, - (14)

Furthermore we suppose that, using finite elements of the same order £ for
the velocity and the pressure, the true error

e | T| +wl, (15)

decays, at most, proportionally to h*+3. This agrees with the convergence
results of the used stabilized method [10,18,22] (in the last two references we
can see that a mesh-dependent norm of the true error for equal order finite
elements behaves like h* when 0 < Rey < 1 and like h*+3 when Rep > 1).
At last, using (10) and (12-14) we conclude that it is possible to choose the
degrees ny, ng, ng of interpolation for the data in such a way that, for any
mesh-size h less than a certain h, the errors due to the approximation of the
data appearing in inequalities (10,11) are negligible with respect to the global

error estimator [2,17]
def
e = | 20 M (16)
TeTn

After these additional remarks we can use inequalities (10) and (11) to state
the equivalence between the true error and the global error estimator, i.e.,

en, < | 7|+l wlly < T Ren, (17)

where ¢ and C depend upon C' and C|.



5 Sensitiveness to the Reynolds number

The theoretical analysis developed in [4] whose results are briefly recalled
above, suggests an equivalence relation between our error estimator and the
true error of the form

Cno <|T| +lwlly <CTnys (18)

where C and C are two constants with respect to any mesh-size, but they may
depend on the Reynolds number. Estimates (17) tell us that C is bounded
from below independently of Re, whereas C is bounded from above by a linear
function of Re. We now perform a numerical investigation of the behaviour of
these constants. To this end, the effectivity index plays a fundamental role in
the study of the equivalence relation between the error estimator and the true
error; indeed, it is defined as the ratio between our global error estimator and
the true error [2]:

P S— (19)
T+l

From inequalities (18) it follows that

C<—=

1 | T el
.—M—OSC. (20)
e.i. M,

In the sequel we will perform a numerical study of the behaviour of the effec-
tivity index and its inverse to get some indications on the values of ¢ and C.
Taking into account Remark 2 we expect that, at least for moderate Re, this
constants be O(1).

5.1 A test problem

In order to test our error estimator we have considered the following linear
Navier-Stokes problem in the unit box Q % (0, 1)2:

1

—EAEjL(E-V)HwLVp:f in Q,
V-u=0 in §2,
u=20 on I'p = 0.
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Figure 1. R = 4.2985, Ry = 0.1 Figure 2. Ry = 4.2985, Ry = 0.1

We define the vector field @ = [ay, as] as follows:

27 (efr® —1
a1($;@/)d§f (1—005( e(Rl 3 ))> X

27 (ef2y — 1 Ray
xsin( ( )>@ ° (21)

eftz — 1

27 (eftr® —1
as(z,y) “sin ( ( )) X

efi —1
27 (ef2v — 1 R, efuw
X | 1 —cos (R ) ki N S (22)
eftz — 1 27 (efr — 1)

where Ry, Ry are two strictly positive real parameters. With a suitable choice
of f ={[f1, f2], the solution [@, p| of the problem is

Ul(ajay):al(ajay)a (23)
U'Q(xay):aﬂ(xay)a (24)
) 27 (eRlI—l) ) 27 (eRQy—l)
p(z,y) = Ry Ry sin o sin R 1 X
Riz ,R2y
e e (25)

e —1) (efe — 1)

Obviously, [@, p] is also the solution of the standard (non-linear) Navier-Stokes
problem with the same f. The velocity field of this solution is similar to
a counterclockwise vortex in a unit-box (see Figures 1,2). Playing with the
parameters R; and Ry we can move the centre of this vortex that has coordi-
nates ry = R% log (&Tﬂ) and yy = R% log (&Tﬂ) Increasing R;, the centre
goes rapidly towards the right-hand vertical side, whereas increasing R, it



Re Ry h | T, el t.e. e.i.
17 1 0.060177 | 8.8388E-02 | 2.1475E-01 | 9.9644E-03 | 2.2462E-01 | 0.64262
4.4194E-02 | 1.0662E-01 | 2.4963E-03 | 1.0896E-01 | 0.58614
2.2097E-02 | 5.3273E-02 | 6.3073E-04 | 5.3833E-02 | 0.57271
1.1048E-02 | 2.6631E-02 | 1.6118E-04 | 2.6759E-02 | 0.57050
34 | 0.700903 | 8.8388E-02 | 2.3392E-01 | 1.2997E-02 | 2.6763E-01 | 0.59959
4.4194E-02 | 1.1054E-01 | 3.3034E-03 | 1.2367E-01 | 0.51469
2.2097E-02 | 5.4573E-02 | 8.3373E-04 | 6.0504E-02 | 0.48944
1.1048E-02 | 2.7202E-02 | 2.1025E-04 | 2.9989E-02 | 0.48359
68 | 1.295759 | 8.8388E-02 | 3.7340E-01 | 2.2786E-02 | 4.5952E-01 | 0.64799
4.4194E-02 | 1.3368E-01 | 5.8645E-03 | 1.7231E-01 | 0.51774
2.2097E-02 | 5.9664E-02 | 1.4835E-03 | 7.9991E-02 | 0.46034
1.1048E-02 | 2.8909E-02 | 3.7302E-04 | 3.9085E-02 | 0.44271
136 | 1.883831 | 8.8388E-02 | 1.2138E+00 | 4.9425E-02 | 1.3045E4-00 | 0.69616
4.4194E-02 | 2.8285E-01 | 1.2812E-02 | 3.3278E-01 | 0.55793
2.2097E-02 | 8.6756E-02 | 3.2432E-03 | 1.2549E-01 | 0.46881
1.1048E-02 | 3.4549E-02 | 8.1441E-04 | 5.7136E-02 | 0.42379
Table 1

Convergence results on uniform triangulations

approaches the top edge.

Every numerical result that we shall present is obtained using continuous
linear finite elements for both velocity and pressure. Moreover, every integral
needed to set up the linear system is computed assuming n; = ny = 3 in
(12,13); this is achieved by computing the integrals with suitable quadrature
formulas on each triangle. A quadrature formula of order 5 on each element is
used for computing the norms in the true error. The parameter \ appearing
in the stabilizing parameter 7 in (7) is set to 0.

5.2 Numerical results on uniform triangulations

At first, we want to study how the effectivity index e.i. (19), the true error
t.e. (15) and each one of its components vary with the mesh-size h and the
Reynolds number on a uniform grid. As a test problem we consider the
case in which the centre of the vortex moves with Re on the horizontal line

10
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quasi-uniform Grid: N,,,q. = 284

Yo = 0.5125 (R, = 0.1) and its distance from the right-hand vertical wall is

\4/%. This is obtained by choosing the parameter 12y such that R% log (#) =

1_6/%' From Table 1 and Figure 5 we can see that the true error ‘T ‘1 +l e,

decays, at most, like hE+3 as we have assumed. Moreover, for the largest
considered Reynolds numbers, a super-linear behaviour of ‘ T ‘1 +|| @, is
observed when in some parts of the domain the local Reynolds number is in

11



the order of unity or larger. Figure 6 shows that the effectivity index presents
little changes with h. Figure 7 shows that the dependence on the Reynolds
number of the upper bound in (17) is too pessimistic. Indeed, estimate (20)
with ¢ = ¢ and ¢ = C Re says that 1/e.i. may increase linearly with Re,
but our experiments indicate that the inverse of the effectivity index tends
to present a low variation for high values of this parameter. In Figure 7, we
can observe a strange behaviour of the effectivity index for low Re due to the
fact that the hypothesis Re > 1 introduced in (10,11) to simplify the error
estimator is not completely fulfilled.

5.3  Super-convergence behaviour of the pressure

As a by-product of our analysis we have observed a somehow unexpected be-
haviour of the pressure error. Indeed, from Table 1 and Figures 3-4 we note
that the error in the velocity ‘ T ‘1 decays linearly with h, for h less than a

certain h, whereas the error in the pressure || ¥ ||, is quadratic in A for all uni-
form grids we used. We have considered the same problem on quasi-uniform
grids like the one shown in Figure 8. These tests aimed at excluding any super-
convergence effect for the pressure due to the use of some particular grid. The
refining criterion used on these grids is not, as for the previous cases, to split
each triangle in four nested similar triangles by adding mid-points of any edge.
Instead, we generate a possibly different grid in which the area of the new tri-
angles is about one fourth of the area of the old triangles that covered the
same part of the domain. We observed that the quadratic convergence of the
pressure persists on these distorted grids. For the sake of completeness, we
have also considered the pure Stokes problem. With the same exact solution,
we observed an h%—decay of the pressure error; moreover, the errors of pressure
and velocity divergence are concentrated near the boundaries. With a differ-
ent exact solution whose velocity is flat near all boundaries, one recovers the
quadratic decay of the pressure error for the Stokes problem also. In this case
V -y, as well as the pressure error near the boundaries are negligible with
respect to the corresponding errors inside the domain.

6 The adaptive algorithm

Now we show how the double inequality (18) can be used to generate a finite
sequence of adapted Delaunay triangulations such that the solution on the last
triangulation is reliable and efficiently computable. To this end we follow the
strategy of equidistribution of the error indicator presented in [3,16,17] with
the appropriate changes needed for the problem under consideration. Firstly,

12



we start by requiring that the true relative error

def ‘T‘1+|| 7l
[ |y + l owll

(26)

is bounded from above and from below in terms of a given tolerance TOL, as
follows:
T| +1 el

C(l—a)TOL < ——
@ [y +en o

<C(1+«a)TOL, (27)

where « is a given parameter in the range (0, 1]. To reach the goal of equidis-
tributing the error, we seek to equidistribute the estimated error and to impose
for each triangle the two inequalities

(1 — )’ TOL* (| |, + || pa llp)

NT §7712%,T7 (28)
(1+ )’ TOL*(|n |, + || pn llp)”
?‘E,TS NT ! 0 " (29)

where Ny is the number of elements in the triangulation. Combining the pre-
vious relations (27,28,29), for our adaptive algorithm, we get the following
bounds for the effectivity index

(1-0a)
1+ «)

(l4+a)l
(1-a)C’

<ei. < (30)

Qll —

after equidistribution of the local error estimator 7%, between the triangles.
It is clear that the lower and upper bounds for the effectivity index are inde-
pendent of the imposed tolerance and, of course, of the mesh-size, but they
depend on the parameter «, i.e., on the adaptation strategy. We note that
the two bounds of the effectivity index depend on the Reynolds number by
means of the two “constants” C and C. The numerical results of Subsection 5.2
suggest us that C seems to be a sub-linear function of the Reynolds number.

6.1 Refining and coarsening

Now we explain how we use the target-relations (28,29) to adapt the mesh.
At first, on any given mesh we calculate the solution with finite elements of
order k, then for any triangle 7" we compute ng . If W%,T is greater than the

13



upper bound in (29), we decide to refine this triangle, whereas if W?{,T is less
than the lower bound in (28) then we state that 7" could be coarsened.

The refining strategy is as follows. Let 17" be a triangle that has to be refined.
We add the mid-point of each edge that is shared with another triangle that
has to be refined. If none of the triangles having an edge in common with 7°
has to be refined, we add only the barycentre of T'. If T' is a boundary element
we add the mid-point of the edges shared with triangles to be refined and we
always add the middle point of the boundary edges. The coarsening strategy
consists of suppressing a node only if all the elements that share this node as
a vertex have to be coarsened.

After this adding and suppression of points we give the list of points to the
triangulator Triangle [20], with the optional request that the minimal angle of
the new triangulations is not less than a certain value. On the new mesh we
solve the problem and repeat the adaptive algorithm until the elements to be
refined are less than, say, 2% of all elements and

Mg
_ < (1+a)TOL. (31)
| Tn |y + [ ow g

This trick is useful to avoid last adaptive iterations in which we introduce very
little changes in the mesh, but we have to solve the full problem; usually this
turns out to be very expensive with respect to the little increase of accuracy
obtained.

6.2 Numerical results on adapted triangulations

Our test problem for adaptivity is defined like the previous one, but now we
solve it on adapted triangulations. We consider different Reynolds numbers
and we apply the adaptive algorithm based on the target inequalities (28,29).
In Table 2 we report some meaningful quantities concerning the adaptive algo-
rithm: the number iter of adapted grids built to reach the imposed tolerance,
the number of nodes N4, the true relative error t.r.e. (26) and the estimated
relative error

= 779

| Tn |y + [T pn o

e.r.€.

all on the last adapted grid. Figures 9-11 exhibit the trend of these quantities
during the convergence towards the target tolerance. Figures 9,10 show an
evident parallel decay for the true error t.e. and the global error indicator 7,

14
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Re | iter | Npode t.r.e. e.r.ce. e.t.
17 1 289 | 1.183956E-01 | 7.608372E-02 | 0.6426
34 5 416 | 1.178450E-01 | 7.322344E-02 | 0.6213
68 7 781 | 2.237083E-01 | 7.452908E-03 | 0.5931
136 9 1832 | 1.044399E-01 | 6.030074E-02 | 0.5774
272 9 4719 | 1.094436E-01 | 6.134174E-02 | 0.5605
044 | 11 | 13865 | 1.213537E-01 | 6.548881E-02 | 0.5397
600 | 11 | 16238 | 1.234726E-01 | 6.564014E-02 | 0.5316
650 | 11 | 18793 | 1.230715E-01 | 6.570488E-02 | 0.5339
800 | 13 | 26584 | 1.243112E-01 | 6.569474E-02 | 0.5285
1088 | 13 | 45826 | 1.247278E-01 | 6.475542E-02 | 0.5192

1200

Table 2
Errors analysis of the adaptive algorithm: TOL = 0.1, « = 0.5
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(16). In Figure 11 we report the standard deviation of 77, ,

—\2
Z (7712?,,T_77?z)
T

T =\ (32

where 7% denotes the mean value of the quantity Ngr- Its decay indicates
that the adaptive algorithm really equidistributes the error around the mean
value. Figure 12 and Table 2 confirm the theoretical prediction that the ef-
fectivity index is O(1). Furthermore, the results strengthen our opinion that
the dependence on Re of the upper bound in (17) seems to be too pessimistic;
indeed, 1/e.i. presents a very slow increase for high Reynolds numbers. When
we vary Re by three orders of magnitude, we find a little variation for 1/e.i.;
the effectivity index always grows less for high Reynolds numbers than for low
ones.

6.3 Nodes to get a prescribed tolerance

So far, we have discussed how our adaptive algorithm works on a test problem
when we require a certain value of tolerance. It is also interesting to inves-
tigate the relationship between the prescribed tolerance and the number of
grid-points needed to match this requirement (i.e., at the convergence of the
adapted algorithm on the last adapted grid). Obviously, this number depends
on the features of the solution. Our main target is to build an algorithm that
places the grid-points in a quasi-optimal manner, i.e., that identifies the fea-
tures of the solution and acts consequently. To see if our algorithm reaches this
goal, we consider the previous test problem with Re = 544, which presents
only a boundary layer at the right-hand wall. Table 3 and Figure 13 show
us the relationship between the tolerance and the number of nodes; Figure

4

x 1 =

2X10 . . . . . . . . a=05
T

1751

15

te., Ny e..
o
o

0.75f

0.5r

0.25F

0

i 1 i 1 1 1 1 1 L 1 1 1 L L 1 1 L L
0 002 004 006 008 01 012 014 016 018 02 OO 002 0.04 006 008 01 012 014 016 018 02
TOL TOL

Figure 13. anode versus TOL Figure 14. n,,, t.e., e.i. versus TOL
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14 shows the behaviour of the true error, the estimed error and the effectiv-
ity index as functions of the tolerance. We observe that both the true error
and the inverse of number of nodes depend approximately in a linear way
on the tolerance, in the interval of TOL we have considered. This behaviour
can be explained: indeed, when the prescribed tolerance is relatively large,
the adaptive algorithm detects only the most relevant structures of the so-
lution, refining only near the right hand vertical wall; this is an “essentially
1D uniform refinement”,
tolerance is small enough so that all the structures of the solution are correctly
resolved on the current grid, and if there are no singularities, then the true
error should reach the asymptotic behaviour of the linear dependence on the
mesh-size h: thus, in term of number of nodes, for a 2D problem, we should
observe Nl X TOL2 However, for this problem, we could not reach this
asymptotlc behaviour due to computer limitations. The present experiment
gives a quantitative expression to the superior performance of adaptive al-
gorithms when the characteristic features of the solution are not completely
resolved yet, as far as memory requirement is concerned. More investigations
are needed to consider timing performances as well.

7 Numerical results for the non-linear incompressible Navier-Stokes
model: Lid Driven Cavity

Although our previous analysis was performed for the linear Navier-Stokes
model, we now apply its results to the non-linear stationary incompressible
Navier-Stokes equations. We consider the classical Lid Driven Cavity problem.
This problem consists of the flow in a unit square with the following velocity
boundary conditions: u; = 1, us = 0 on the top edge and u; = 0, uy = 0 on
the other walls. We are interested in this problem because it is a classical test
case and it allows us to consider the effect of the discontinuity in the boundary
conditions on the adaptive algorithm. We compare our results for the velocity
with those given in [12], that we can consider almost exact. They have been

a=05|a=07 | a=1.0
TOL =0.2 6709 5809 5234
TOL =0.1 13865 12061 10771

TOL = 0.075 | 18752 16129 14425
TOL =0.05 | 28131 25790 22335
TOL = 0.025 | 57902 51858 46372

Table 3
Number of nodes at convergence varying T'OL, Re = 544
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obtained with a 1) —w formulation of the Navier-Stokes problem, no result for
the pressure is given therein.

We consider two cases at different Reynolds number: Re = 3200 and Re =
5000. To get a solution at these high Reynolds numbers we need to apply the
continuation method, so we have combined continuation in Re and adaptation
of the mesh. At each Re-step we solve the problem, then we perform one
grid adaptation based on this solution and we use this new grid to solve the
problem at the next higher Re. We set TOL = 0.06 and o = 0.5. Starting with
a very coarse grid with 545 nodes at Re = 200, we arrive at Re = 3200 with
1883 nodes and at Re = 5000 with 2156 nodes. Then, we apply our adaptive
algorithm, without continuation, for the two considered Reynolds numbers,
starting from the two previous partially-adapted grids. Figures 18-26 report
some plots of the obtained results. Figures 18,19,20,21,24,25 display velocity
profiles: u; along a vertical section and us along an horizontal section passing
through the geometric center of the cavity. The continuous line is our result
and circles indicate the values reported in [12]. These reference-results are
obtained with a multi-grid method on uniform meshes of 129 x 129 = 16641
points for Re = 3200 and of 257 x 257 = 66049 points for Re = 5000. We want
to draw the attention on the very good agreement of our velocity results with
the reference ones, also with a very small number of points, and on the good
description of the two pressure singularities in the two top corners (Figures
22,23,26). Moreover, by observing the thickness of the refined region around
the primary vortex in the last adapted grids (Figures 28,29) we can clearly see

the decreasing of the thickness of the boundary/inner layers while increasing
Re.

7.1 Adaptation at Re = 3200

Starting from the grid with 1883 nodes we apply the adaptive algorithm with
TOL = 0.05 and a = 0.5. Table 4 reports meaningful quantities of the adap-
tive process up to the refinement of less than 5% of the elements. We note
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iter | Nyode e.r.e. n%,TyMAX U%z,T,mm T2 .
1 1883 | 0.147747 | 3.211605E-01 | 3.653846E-16 | 6.448319E-03
2 2436 | 0.122983 | 1.319548E-01 | 1.770035E-11 | 2.888396E-03
3 3225 | 0.0883892 | 1.030873E-01 | 1.253682E-11 | 1.489866E-03
4 4039 | 0.0749348 | 9.820470E-02 | 3.601742E-11 | 1.214295E-03
5 4847 | 0.0733932 | 1.234252E-01 | 1.633134E-11 | 1.370128E-03
6 56568 | 0.0733819 | 1.281187E-01 | 8.087796E-12 | 1.315174E-03
7 6361 | 0.0708713 | 1.308443E-01 | 1.783953E-11 | 1.263084E-03
8 6998 | 0.0686216 | 1.321826E-01 | 1.199139E-11 | 1.214703E-03
Table 4

Re = 3200, adaptive iterations

that the adaptive algorithm produces good grids and solutions, but - due to
the discontinuities of the boundary conditions - it fails to equidistribute the
error in the two corners, as we can see from the very low decreasing of o2,

(compare with Figure 11). We can easily explain this behaviour, since the
discontinuities in the boundary conditions imply that the solution has strong
singularities and is not in [H}(€2)]* x L2(€2), as required in deriving the error
estimator.

7.2 Adaptation at Re = 5000

Starting from the grid with 2156 nodes we apply the adaptive algorithm with
TOL = 0.075 and o = 0.75 and we arrive at convergence on 98% of the
triangles, with 3434 nodes. Then we apply four more adaptive steps with
TOL = 0.05 and o = 0.75 to arrive at convergence with these new param-
eters on more than 95% of the triangles. To understand how the adaptive
algorithm works, let us observe Figures 24-27: although the number of points
is very small, the velocity profiles are surprisingly good and the description of
the secondary vortices is quite good as well. Yet the algorithm does not feel
the onset of the little tertiary vortex in the bottom-right corner. Indeed the
velocities here are too small (¢, = —1.43226F — 06) to have some relevance
and the error indicator gives importance prevalently to that phenomena that
cause numerically relevant errors like singularities (exactly as we wanted when
we designed it).
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8 Conclusions

Considering all the results of our test cases, we conclude that the adaptive
algorithm described in Section 6 works well. Indeed, in all our numerical ex-
periments, it leads to refine the grid exactly where it is needed and, when
possible, the equidistribution of the error between the elements is efficient, as
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iter | Nyode e.r.e. n%,TyMAX n%z’T,mm T2 .
1 2156 | 0.142289 | 3.294456E-01 | 6.032250E-29 | 6.143309E-03
2 2296 | 0.123102 | 1.295425E-01 | 3.001397E-12 | 3.115246E-03
3 2612 | 0.0937899 | 8.172397E-02 | 1.283356E-10 | 1.482653E-03
4 2926 | 0.0875836 | 1.333580E-01 | 3.205355E-12 | 2.226585E-03
5 3214 | 0.0893035 | 1.579566E-01 | 5.796903E-11 | 2.482492E-03
6 3434 | 0.0849747 | 1.253354E-01 | 3.222002E-12 | 2.191617E-03
Table 5

Re = 5000, adaptive iterations: TOL = 0.075, « = 0.75

Re=5000, N . .=3434

Re=5000, N, . =3434
node’

0.6

Figure 24. z = 0.5, component u;

Re=5000, N,
o

o= 3434

Figure 26. y = 1.0, pressure p

we deduce from the decreasing behaviour of the standard deviation o,2 _ (Fig-

ure 11). We also notice that the computation of such low-cost error estimator,
combined with the numerical estimates of the constants involved (which, from
our experiments, turn out to be in the order of the unity), is useful to get a
measure of the quality of the solution, independently of the adaptive strategy

used.
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Finally we observe that the maximal performance of adaptivity versus uniform
refinement and versus “by hand” mesh adaptation is achieved in problems
that present characteristic structures in a limited part of the domain. When
the characteristic features of the solution are distributed in a wide part of
the domain, the superiority of adaptive algorithms is reduced [4], but the
advantage of building automatically a quasi-optimal grid in terms of number of
degrees of freedom persists. Moreover, on this grid we are sure that the relative
error in the computed solution could be controlled by a target tolerance, that
we can choose suitably in relation to the necessities of each problem.
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