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Adaptive dis
retization of stationary andin
ompressible Navier{Stokes equations bystabilized Finite Element MethodsStefano BerroneDipartimento di Ingegneria Aeronauti
a e Spaziale, Polite
ni
o di Torino,Corso Du
a degli Abruzzi 24, 10129, Torino, Italy,e{mail: sberrone�
alvino.polito.ithome page: http://
alvino.polito.it/~sberroneAbstra
tWe have derived a residual-based a posteriori error estimator for a stabilized �niteelement dis
retization of the stationary in
ompressible Navier Stokes equations withgeneral boundary 
onditions. An adaptive algorithm based on this error estimatoris dis
ussed and tested on some analyti
al and physi
al problems. When possiblewe study pre
isely the behaviour of the e�e
tivity index.Key words: A posteriori error estimators, adaptive mesh-re�nement te
hniques,Navier Stokes equations, bounds on the e�e
tivity index.1991 MSC: 65N30, 65N15, 65N50, 76D05, 76M10.1 Introdu
tionIn the numeri
al simulation of real 
ows many questions are still open. Oneof them is how to 
ontrol the a

ura
y of a numeri
al approximation for thesolution of equations modeling these phenomena and how to use the available
omputational fa
ilities to rea
h the needed a

ura
y with the lowest possible
omputational and man time as well as memory requests. Very often engineersand physi
ists need to solve problems in 
omputational 
uid dynami
s in whi
hthe overall a

ura
y is deteriorated by the presen
e of interior or boundarylayers, sho
k fronts and 
omplex geometries with 
orners. So, diÆ
ulties in avery little part of the 
omputational domain may 
ause a 
onsiderable redu
-tion of the overall a

ura
y of the solution. A natural remedy is to in
reasethe number of grid-points in these 
riti
al regions and simultaneously pla
every few points where the solution is smooth, in order to balan
e a

ura
yPreprint submitted to Elsevier Preprint 20th O
tober 2000



and eÆ
ien
y. To rea
h this target, we need an easily 
omputable a posteriorierror estimator that gives us information on how to distribute the points inan eÆ
ient manner.One of the most important goals in the analysis of an a posteriori error estima-tor is to establish an equivalen
e relation between it and the true error of thenumeri
al solution, measured in a suitable norm. From the pioneering workof Babu�ska and Rheinboldt [3℄ many interesting results have been a
hieved(see, for instan
e, [1,9,19,21,26℄ and the referen
es therein), but many aspe
tsof this problem are still un
lear. In the present work we fo
us our attentionon some of them, in the frame of the residual-based error estimators for thestationary in
ompressible Navier-Stokes equations. Following Verf�urth's work,we have derived in [4℄ an error estimator for a stabilized dis
retization [10℄ ofthe linear problem. Here, we 
arefully analyse the in
uen
e of the Reynoldsnumber in the relation whi
h expresses the equivalen
e between the error esti-mator and the true error. We perform this analysis by numeri
al experimentson a problem with an analyti
 solution. Next we present an adaptive algorithmbased on this error estimator and dis
uss several aspe
ts about its behaviourand, in parti
ular, its e�e
tivity index.At last, in Se
tion 7 we apply our algorithm to a 
lassi
al CFD problem.Although in [4℄ we derived the error estimator and we studied its e�e
tivityindex for a linear model, when we apply these results to the non-linear Navier-Stokes equations we get good results mat
hing with previous analysis.
2 Linear in
ompressible Navier-Stokes model2.1 The 
ontinuous problemWith the aim of introdu
ing the error estimator and des
ribing its use, weprefer to avoid the diÆ
ulties of the non-linearity of the true Navier-Stokesequations and we pro
eed 
onsidering a linear, steady-state, in
ompressiblemodel:� 1Re4 u+ �a � r�u+rp = f in 
; (1)r� u = 0 in 
; (2)u = 0 on �D; (3)1Re � u�n̂ � pn̂= gN on �N ; (4)2



where: Re is the Reynolds number; 
 is a bounded domain in R2 with aregular boundary �
 that belongs to the 
lass C0;1 (�
 
an be lo
ally des
ribedby Lips
hitz 
ontinuous fun
tions [13,18℄); the boundary �
 is split into twosubsets �D and �N , where �D is 
losed and the following 
onditions holds true:�
 = �D [ �N , �D \ �N = ; and j�D j 6= 0; a2 [H1(
)℄2 \ [L1(
)℄2; r � a =0 in 
; n̂ � a � 0 on �N , where n̂ is the usual unit outward normal ve
tor to�
; f 2 [L2(
)℄2; gN 2 [H 12 (�N)℄2.Let us �rst derive a weak formulation of problem (1-4). The fun
tional spa
eswe deal with are the usual Sobolev spa
e H10;D(
) def= fv 2H1(
) : vj�D = 0gand Lebesgue spa
e L20(
) def= fq2L2(
) : R
 q d
 = 0g. Moreover we set V def=[H10;D(
)℄2 and Q def= L20(
) if j�N j = 0 or Q def= L2(
) if j�N j > 0. If j�N j = 0,the pressure p in (1) 
an be determined only up to an additive 
onstant thatwe �x by seeking a pressure with a zero mean value. A weak formulationof the problem 
an be written as: Find [u; p℄ 2 V�Q su
h that 8[v; q℄ 2V�Q one has :1Re �ru;r v�+ ��a � r�u; v�� �p;r� v�= �f; v�+(gN ; v)�N ; (5)�q;r� u�=0; (6)where (:; :) denotes the usual inner produ
t in L2(
) or in [L2(
)℄2 and (:; :)�Ndenotes the inner produ
t in [L2(�N )℄2. Existen
e and uniqueness of the solu-tion for all positive Re follows from the usual 
oer
ivity inequality and inf-sup
ondition (see, e.g., [13℄).2.2 The dis
rete problemIn order to dis
retize problem (1-4), we assume 
 to be a polygonal domainand we introdu
e a regular family of partitions fThgh of 
 into triangles whi
hsatisfy the usual 
onformity and minimal-angle 
onditions [8℄. It is useful tointrodu
e the diameter hT of the element T 2 Th. The parameter h of thefamily fThgh represents h = maxT2Th hT . Let Vh � V and Qh � Q be two
onforming �nite element spa
es based on the partition Th. If we 
onsiderthe pure Galerkin approximation of the 
ontinuous problem (5,6), we have tosatisfy the dis
rete version of the inf-sup 
ondition [6,13,18℄.In what follows, we are going to use 
ontinuous �nite elements for the ve-lo
ity: Vh def= �vh2V \ hC0(
)i2 : vjT 2 [Pk(T )℄2; 8T 2Th� and the pressure:Qh def= nqh 2 Q \ C0(
) : qhjT 2 Pl(T ); 8T 2 Tho. Here Pi(T ) is the spa
e ofpolynomials of degree i � 1 on the element T 2 Th. In the dis
retization of3



the problem, we also 
onsider approximations of the data a, f , gN by someinterpolations �T a, �T f , �E gN whose de�nition will be given later on. Withan arbitrary 
hoi
e of k and l these spa
es may not satisfy the dis
rete inf-sup 
ondition [6℄. However, this diÆ
ulty may be avoided by resorting to a
onsistent modi�ed approximation of the problem known as the StreamlineUpwind/Petrov Galerkin (SUPG) method [10,11,15℄: Find [uh; ph℄ 2 Vh�Qhsu
h that 8[vh; qh℄ 2 Vh�Qh let be :1Re �r uh;r vh�+ ���T a � r�uh; vh�� �ph;r � vh�+ XT2Th �T �� 1Re 4 uh+ ��T a � r�uh+rph; ��T a � r� vh�T+ XT2Th ÆT �r �uh;r � vh�T= ��T f; vh�+(�E gN ; vh)�N + XT2Th �T ��T f; ��T a � r� vh�T ; (7)�qh;r�uh�+ XT2Th �T �� 1Re 4 uh+ ��T a � r�uh+rph;rqh�T= XT2Th �T ��T f;rqh�T : (8)Here �T and ÆT depend on the lo
al 
onditions of the 
ow in ea
h elementexpressed by ReT def= mk k�T a k1;T hT4 1Re and mk def= minn13 ; 2C�o, C� being the
onstant of the inverse inequality [14℄: h2T k4vh k20;T � C� krvh k20;T ; 8vh 2Vh : For linear elements, obviously, mk = 13 . Pra
ti
ally, following [10℄ weset �T def= mk h2T8 Re, ÆT def= � mk k�T a k1;T h2TRe4 if 0 � ReT < 1 and �T def=hT2 k�T a k1;T , ÆT def= � k�T a k1;T hT if ReT � 1. We take � to be either 1or 0, depending whether we want or we do not want to 
onsider the termsmultiplied by the parameter ÆT . By using the SUPG method, not only we
ir
umvent the inf-sup 
ondition [5,6,15℄, but also we stabilize the adve
tiveoperator preventing the os
illations in the velo
ity �eld that appear for highReynolds numbers [7,10,11℄.3 A residual-based error estimatorIn [4℄ we have derived a residual-based error estimator for our model problemfollowing Verf�urth's works [23,24,26,27,28℄. Parti
ularly, we have derived aglobal upper bound and a lo
al lower bound for the error measured in anenergy-like norm. Here, for spa
e reasons, we only re
all those results, butwe invite the interested reader to look at [4℄ for a detailed des
ription of the4



hypotheses and methods used in the proofs. Let us re
all some useful notationsand de�nitions. For ea
h edge E of the triangulation we 
onsider a unit ve
torn̂E su
h that n̂E is orthogonal to E and equals the unit outward ve
tor normalto �
 if E � �
. For any triangle T 2Th let be E(T ) the set of its edges,!T def= [fT 0: E(T )\E(T 0) 6=;gT 0 and !E def= [fT 0: E2E(T 0)gT 0:Given any internal edge E and any '2L2(!E ) with 'jT 0 2C0(T 0 ) 8T 02!E, wedenote by ['℄E the jump of ' a
ross E along the orientation of n̂E. Moreover:� def= uh� u and 	 def= ph � p;RT ([uh; ph℄) def= � 1Re 4 uh+ ��T a � r�uh+rph��T f;RE ([uh; ph℄) def= �n̂E �� 1Re r uh�ph I��E;RE;N ([uh; ph℄ ;�E gN) def= n̂ �� 1Re ruh�ph I���E gN ;At last, we give the de�nition of our residual-based a posteriori error estimatoron the triangle T 2 Th:�2R;T def= h2T 


RT ([uh; ph℄) 


20;T +12 XE2E(T ) hE 


RE ([uh; ph℄) 


20;E ++ XE2 E(T )\Eh;N hE 


RE;N ([uh; ph℄ ;�E gN) 


20;E + 


r� uh 


20;T : (9)We report the upper and lower bounds derived for the 
ase Re � 1 andassuming that the problem is well a-dimensionalized, in the sense that j
 j � 1,k�T a k1;!T � 1 and k a k1;!T � 1 for all T 2Th.Proposition 1 There exist two 
onstants C" and C#, independent of anymesh-size and Reynolds number, but depending on the smallest angle of thetriangulation, su
h that the global upper bound���� ���1+ k	 k0 � C"Re8<:sXT2Th �2R;T ++ k�T a� a k1 juh j1+ 


�T f � f 


0+ k�E gN � gN k0;�No (10)and the lo
al lower bound 5



�R;T � C# ����� ���1;!T + k	 k0;!T +hT �k�T a� a k1;!T juh j1;!T+ 


�T f � f 


0;!T� + XE2 E(T )\Eh;N qhE k�E gN � gN k0;E9=; (11)hold true.Remark 2 We noti
e that the 
onstants C" and C# depend only on the 
on-stants in Cau
hy-S
hwarz's, Poin
ar�e-Friedri
hs', Young's and tra
e inequal-ities, as well as the 
onstants of interpolation in Sobolev spa
es and the inf �sup 
onstant. All these 
onstants are O(1), so we dedu
e that C" and C# arealso O(1).Remark 3 Inequalities (10,11) agree with results presented in [25,26℄ for thenon-linear Navier-Stokes equations. Inequality (10) shows expli
itly the depen-den
e upon the Reynolds number of the 
onstant appearing in the analogousestimates of [25,26℄. Moreover in [4℄ we have 
onsidered the analogous esti-mates for the Stokes problem obtaining the same results of [23℄.Remark 4 Comparing inequalities (10,11) with analogous estimates given in[23,24,25℄ or [2℄, we observe that the part of our approximation error 
on
ern-ing f and gN is multiplied by a power of h that is di�erent from those in the
ited papers. This is due to the fa
t that we introdu
e the approximation of thedata in the dis
retization of the problem as well, not only in the 
omputationof the error estimator like in those works.Remark 5 The results of Proposition 1 look to be non-optimal, sin
e thethe upper and lower bounds di�er by the fa
tor Re. In [28℄ the presen
e ofthe zero-order term in a s
alar rea
tion-
onve
tion-di�usion equation allowsthe use of a more suitable energy-like norm for measuring the error, namely1pRe juh � u j
;1+ kuh � u k
;0. The resulting upper and lower bounds di�eronly by the fa
tor 
+pRe k a k1;
min fhpRe; 1g, whi
h is of the order of thelo
al ReT or pRe depending upon the 
ow 
onditions. Unfortunately, for thesteady Navier-Stokes equations here 
onsidered, one 
annot take advantage ofany zero order term in the equations.4 Equivalen
e between the true error and the error estimatorLooking forward to the use of the error estimator in the 
onstru
tion of asequen
e of adapted Delaunay triangulations, we need some more 
onsidera-tions. At �rst we deal with some interpolations �T f , �T a and �E gN of thedata f , a and gN with polynomials of degree n1; n2; n3 � 1 respe
tively. Let6



us suppose that for any triangulation Th under 
onsideration and for suitableintegers n1; n2; n3 the following hypotheses hold:8T 2 Th; f j!T 2 [Hn1+1(!T )℄2;8T 2 Th; a j!T 2 [Wn2+1;1(!T )℄2;8T 2 Th : 9E � �T \ �N 6= ;; gN jE 2 [Hn3+1(T )℄2;whereWn+1;1(!T ) def= fv 2 L1(!T ) : ��v 2 L1(!T ); 8� 2 R2 : j�j � n+ 1g;moreover, we assume that the 
hosen interpolations satisfy following estimates:


�T f � f 


0;!T - hn1+1T ��� f ���n1+1;!T ; (12)k�T a� a k0;1;!T - hn2+1T j a jn2+1;1;!T ; (13)k�E gN � gN k0;E - hn3+1E j gN jn3+1;E : (14)Furthermore we suppose that, using �nite elements of the same order k forthe velo
ity and the pressure, the true errort:e: def= ���� ���1+ k	 k0 (15)de
ays, at most, proportionally to hk+ 12 . This agrees with the 
onvergen
eresults of the used stabilized method [10,18,22℄ (in the last two referen
es we
an see that a mesh-dependent norm of the true error for equal order �niteelements behaves like hk when 0 � ReT � 1 and like hk+ 12 when ReT > 1).At last, using (10) and (12-14) we 
on
lude that it is possible to 
hoose thedegrees n1, n2, n3 of interpolation for the data in su
h a way that, for anymesh-size h less than a 
ertain ~h, the errors due to the approximation of thedata appearing in inequalities (10,11) are negligible with respe
t to the globalerror estimator [2,17℄ �
 def= sXT2Th �2R;T : (16)After these additional remarks we 
an use inequalities (10) and (11) to statethe equivalen
e between the true error and the global error estimator, i.e.,
 �
 � ���� ���1+ k	 k0 � C Re �
 ; (17)where 
 and C depend upon C" and C#.7



5 Sensitiveness to the Reynolds numberThe theoreti
al analysis developed in [4℄ whose results are brie
y re
alledabove, suggests an equivalen
e relation between our error estimator and thetrue error of the form C �
 � ���� ���1+ k	 k0 � C �
 ; (18)where C and C are two 
onstants with respe
t to any mesh-size, but they maydepend on the Reynolds number. Estimates (17) tell us that C is boundedfrom below independently of Re, whereas C is bounded from above by a linearfun
tion of Re. We now perform a numeri
al investigation of the behaviour ofthese 
onstants. To this end, the e�e
tivity index plays a fundamental role inthe study of the equivalen
e relation between the error estimator and the trueerror; indeed, it is de�ned as the ratio between our global error estimator andthe true error [2℄: e:i: def= �
���� ���1+ k	 k0 : (19)From inequalities (18) it follows thatC � 1e:i: = ���� ���1+ k	 k0�
 � C : (20)In the sequel we will perform a numeri
al study of the behaviour of the e�e
-tivity index and its inverse to get some indi
ations on the values of C and C.Taking into a

ount Remark 2 we expe
t that, at least for moderate Re, this
onstants be O(1).5.1 A test problemIn order to test our error estimator we have 
onsidered the following linearNavier-Stokes problem in the unit box 
 def= (0; 1)2:� 1Re 4 u+ �a � r�u+rp= f in 
;r� u= 0 in 
;u= 0 on �D = �
:8
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Figure 2. R1 = 4:2985; R2 = 0:1We de�ne the ve
tor �eld a = [a1; a2℄ as follows:a1(x; y) def= 0�1� 
os0�2 � �eR1 x � 1�eR1 � 1 1A1A�� sin0�2 � �eR2 y � 1�eR2 � 1 1A R22� eR2 y(eR2 � 1) ; (21)a2(x; y) def= � sin0�2 � �eR1 x � 1�eR1 � 1 1A��0�1� 
os0�2 � �eR2 y � 1�eR2 � 1 1A1A R12� eR1 x(eR1 � 1) (22)where R1, R2 are two stri
tly positive real parameters. With a suitable 
hoi
eof f = [f1; f2℄, the solution [u; p℄ of the problem isu1(x; y)= a1(x; y); (23)u2(x; y)= a2(x; y); (24)p(x; y)=R1R2 sin0�2 � �eR1 x � 1�eR1 � 1 1A sin0�2 � �eR2 y � 1�eR2 � 1 1A�� eR1 x eR2 y(eR1 � 1) (eR2 � 1) : (25)Obviously, [u; p℄ is also the solution of the standard (non-linear) Navier-Stokesproblem with the same f . The velo
ity �eld of this solution is similar toa 
ounter
lo
kwise vortex in a unit-box (see Figures 1,2). Playing with theparameters R1 and R2 we 
an move the 
entre of this vortex that has 
oordi-nates x0 = 1R1 log � eR1+12 � and y0 = 1R2 log � eR2+12 �. In
reasing R1, the 
entregoes rapidly towards the right-hand verti
al side, whereas in
reasing R2 it9



Re R1 h ��� ��1 k	 k0 t:e: e:i:17 0.060177 8.8388E-02 2.1475E-01 9.9644E-03 2.2462E-01 0.642624.4194E-02 1.0662E-01 2.4963E-03 1.0896E-01 0.586142.2097E-02 5.3273E-02 6.3073E-04 5.3833E-02 0.572711.1048E-02 2.6631E-02 1.6118E-04 2.6759E-02 0.5705034 0.700903 8.8388E-02 2.3392E-01 1.2997E-02 2.6763E-01 0.599594.4194E-02 1.1054E-01 3.3034E-03 1.2367E-01 0.514692.2097E-02 5.4573E-02 8.3373E-04 6.0504E-02 0.489441.1048E-02 2.7202E-02 2.1025E-04 2.9989E-02 0.4835968 1.295759 8.8388E-02 3.7340E-01 2.2786E-02 4.5952E-01 0.647994.4194E-02 1.3368E-01 5.8645E-03 1.7231E-01 0.517742.2097E-02 5.9664E-02 1.4835E-03 7.9991E-02 0.460341.1048E-02 2.8909E-02 3.7302E-04 3.9085E-02 0.44271136 1.883831 8.8388E-02 1.2138E+00 4.9425E-02 1.3045E+00 0.696164.4194E-02 2.8285E-01 1.2812E-02 3.3278E-01 0.557932.2097E-02 8.6756E-02 3.2432E-03 1.2549E-01 0.468811.1048E-02 3.4549E-02 8.1441E-04 5.7136E-02 0.42379Table 1Convergen
e results on uniform triangulationsapproa
hes the top edge.Every numeri
al result that we shall present is obtained using 
ontinuouslinear �nite elements for both velo
ity and pressure. Moreover, every integralneeded to set up the linear system is 
omputed assuming n1 = n2 = 3 in(12,13); this is a
hieved by 
omputing the integrals with suitable quadratureformulas on ea
h triangle. A quadrature formula of order 5 on ea
h element isused for 
omputing the norms in the true error. The parameter � appearingin the stabilizing parameter ÆT in (7) is set to 0.5.2 Numeri
al results on uniform triangulationsAt �rst, we want to study how the e�e
tivity index e:i: (19), the true errort:e: (15) and ea
h one of its 
omponents vary with the mesh-size h and theReynolds number on a uniform grid. As a test problem we 
onsider the
ase in whi
h the 
entre of the vortex moves with Re on the horizontal line10
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Figure 7. Uniform Grid: 1=e:i: Figure 8. Example ofquasi-uniform Grid: Nnode = 284y0 = 0:5125 (R2 = 0:1) and its distan
e from the right-hand verti
al wall is14pRe . This is obtained by 
hoosing the parameterR1 su
h that 1R1 log � eR1+12 � =1� 14pRe . From Table 1 and Figure 5 we 
an see that the true error ���� ���1+ k	 k0de
ays, at most, like hk+ 12 as we have assumed. Moreover, for the largest
onsidered Reynolds numbers, a super-linear behaviour of ���� ���1+ k	 k0 isobserved when in some parts of the domain the lo
al Reynolds number is in11



the order of unity or larger. Figure 6 shows that the e�e
tivity index presentslittle 
hanges with h. Figure 7 shows that the dependen
e on the Reynoldsnumber of the upper bound in (17) is too pessimisti
. Indeed, estimate (20)with C = 
 and C = C Re says that 1=e:i: may in
rease linearly with Re,but our experiments indi
ate that the inverse of the e�e
tivity index tendsto present a low variation for high values of this parameter. In Figure 7, we
an observe a strange behaviour of the e�e
tivity index for low Re due to thefa
t that the hypothesis Re � 1 introdu
ed in (10,11) to simplify the errorestimator is not 
ompletely ful�lled.5.3 Super-
onvergen
e behaviour of the pressureAs a by-produ
t of our analysis we have observed a somehow unexpe
ted be-haviour of the pressure error. Indeed, from Table 1 and Figures 3-4 we notethat the error in the velo
ity ���� ���1 de
ays linearly with h, for h less than a
ertain ~h, whereas the error in the pressure k	 k0 is quadrati
 in h for all uni-form grids we used. We have 
onsidered the same problem on quasi-uniformgrids like the one shown in Figure 8. These tests aimed at ex
luding any super-
onvergen
e e�e
t for the pressure due to the use of some parti
ular grid. There�ning 
riterion used on these grids is not, as for the previous 
ases, to splitea
h triangle in four nested similar triangles by adding mid-points of any edge.Instead, we generate a possibly di�erent grid in whi
h the area of the new tri-angles is about one fourth of the area of the old triangles that 
overed thesame part of the domain. We observed that the quadrati
 
onvergen
e of thepressure persists on these distorted grids. For the sake of 
ompleteness, wehave also 
onsidered the pure Stokes problem. With the same exa
t solution,we observed an h 32 -de
ay of the pressure error; moreover, the errors of pressureand velo
ity divergen
e are 
on
entrated near the boundaries. With a di�er-ent exa
t solution whose velo
ity is 
at near all boundaries, one re
overs thequadrati
 de
ay of the pressure error for the Stokes problem also. In this 
aser �uh as well as the pressure error near the boundaries are negligible withrespe
t to the 
orresponding errors inside the domain.6 The adaptive algorithmNow we show how the double inequality (18) 
an be used to generate a �nitesequen
e of adapted Delaunay triangulations su
h that the solution on the lasttriangulation is reliable and eÆ
iently 
omputable. To this end we follow thestrategy of equidistribution of the error indi
ator presented in [3,16,17℄ withthe appropriate 
hanges needed for the problem under 
onsideration. Firstly,12



we start by requiring that the true relative errort:r:e: def= ���� ���1+ k	 k0j uh j1+ k ph k0 (26)is bounded from above and from below in terms of a given toleran
e TOL, asfollows: C (1� �)TOL � ���� ���1+ k	 k0j uh j1+ k ph k0 � C (1 + �)TOL; (27)where � is a given parameter in the range (0; 1℄. To rea
h the goal of equidis-tributing the error, we seek to equidistribute the estimated error and to imposefor ea
h triangle the two inequalities(1� �)2TOL2(juh j1+ k ph k0)2NT � �2R;T ; (28)�2R;T � (1 + �)2TOL2(juh j1+ k ph k0)2NT : (29)where NT is the number of elements in the triangulation. Combining the pre-vious relations (27,28,29), for our adaptive algorithm, we get the followingbounds for the e�e
tivity index(1� �)(1 + �) 1C � e:i: � (1 + �)(1� �) 1C ; (30)after equidistribution of the lo
al error estimator �2R;T between the triangles.It is 
lear that the lower and upper bounds for the e�e
tivity index are inde-pendent of the imposed toleran
e and, of 
ourse, of the mesh-size, but theydepend on the parameter �, i.e., on the adaptation strategy. We note thatthe two bounds of the e�e
tivity index depend on the Reynolds number bymeans of the two \
onstants" C and C. The numeri
al results of Subse
tion 5.2suggest us that C seems to be a sub-linear fun
tion of the Reynolds number.6.1 Re�ning and 
oarseningNow we explain how we use the target-relations (28,29) to adapt the mesh.At �rst, on any given mesh we 
al
ulate the solution with �nite elements oforder k, then for any triangle T we 
ompute �R;T . If �2R;T is greater than the13



upper bound in (29), we de
ide to re�ne this triangle, whereas if �2R;T is lessthan the lower bound in (28) then we state that T 
ould be 
oarsened.The re�ning strategy is as follows. Let T be a triangle that has to be re�ned.We add the mid-point of ea
h edge that is shared with another triangle thathas to be re�ned. If none of the triangles having an edge in 
ommon with Thas to be re�ned, we add only the bary
entre of T . If T is a boundary elementwe add the mid-point of the edges shared with triangles to be re�ned and wealways add the middle point of the boundary edges. The 
oarsening strategy
onsists of suppressing a node only if all the elements that share this node asa vertex have to be 
oarsened.After this adding and suppression of points we give the list of points to thetriangulator Triangle [20℄, with the optional request that the minimal angle ofthe new triangulations is not less than a 
ertain value. On the new mesh wesolve the problem and repeat the adaptive algorithm until the elements to bere�ned are less than, say, 2% of all elements and�
j uh j1+ k ph k0 � (1 + �) TOL: (31)This tri
k is useful to avoid last adaptive iterations in whi
h we introdu
e verylittle 
hanges in the mesh, but we have to solve the full problem; usually thisturns out to be very expensive with respe
t to the little in
rease of a

ura
yobtained.6.2 Numeri
al results on adapted triangulationsOur test problem for adaptivity is de�ned like the previous one, but now wesolve it on adapted triangulations. We 
onsider di�erent Reynolds numbersand we apply the adaptive algorithm based on the target inequalities (28,29).In Table 2 we report some meaningful quantities 
on
erning the adaptive algo-rithm: the number iter of adapted grids built to rea
h the imposed toleran
e,the number of nodes Nnode, the true relative error t:r:e: (26) and the estimatedrelative error e:r:e: = �
j uh j1+ k ph k0all on the last adapted grid. Figures 9-11 exhibit the trend of these quantitiesduring the 
onvergen
e towards the target toleran
e. Figures 9,10 show anevident parallel de
ay for the true error t:e: and the global error indi
ator �
14
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Figure 12. Adaptive 
ase: 1=e:i:Re iter Nnode t:r:e: e:r:e: e:i:17 1 289 1.183956E-01 7.608372E-02 0.642634 5 416 1.178450E-01 7.322344E-02 0.621368 7 781 2.237083E-01 7.452908E-03 0.5931136 9 1832 1.044399E-01 6.030074E-02 0.5774272 9 4719 1.094436E-01 6.134174E-02 0.5605544 11 13865 1.213537E-01 6.548881E-02 0.5397600 11 16238 1.234726E-01 6.564014E-02 0.5316650 11 18793 1.230715E-01 6.570488E-02 0.5339800 13 26584 1.243112E-01 6.569474E-02 0.52851088 13 45826 1.247278E-01 6.475542E-02 0.5192Table 2Errors analysis of the adaptive algorithm: TOL = 0:1, � = 0:515



(16). In Figure 11 we report the standard deviation of �2R;T��2R;T = vuuuut XT2Th ��2R;T � �2R�2NT ; (32)where �2R denotes the mean value of the quantity �2R;T . Its de
ay indi
atesthat the adaptive algorithm really equidistributes the error around the meanvalue. Figure 12 and Table 2 
on�rm the theoreti
al predi
tion that the ef-fe
tivity index is O(1). Furthermore, the results strengthen our opinion thatthe dependen
e on Re of the upper bound in (17) seems to be too pessimisti
;indeed, 1=e:i: presents a very slow in
rease for high Reynolds numbers. Whenwe vary Re by three orders of magnitude, we �nd a little variation for 1=e:i:;the e�e
tivity index always grows less for high Reynolds numbers than for lowones.6.3 Nodes to get a pres
ribed toleran
eSo far, we have dis
ussed how our adaptive algorithm works on a test problemwhen we require a 
ertain value of toleran
e. It is also interesting to inves-tigate the relationship between the pres
ribed toleran
e and the number ofgrid-points needed to mat
h this requirement (i.e., at the 
onvergen
e of theadapted algorithm on the last adapted grid). Obviously, this number dependson the features of the solution. Our main target is to build an algorithm thatpla
es the grid-points in a quasi-optimal manner, i.e., that identi�es the fea-tures of the solution and a
ts 
onsequently. To see if our algorithm rea
hes thisgoal, we 
onsider the previous test problem with Re = 544, whi
h presentsonly a boundary layer at the right-hand wall. Table 3 and Figure 13 showus the relationship between the toleran
e and the number of nodes; Figure
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14 shows the behaviour of the true error, the estimed error and the e�e
tiv-ity index as fun
tions of the toleran
e. We observe that both the true errorand the inverse of number of nodes depend approximately in a linear wayon the toleran
e, in the interval of TOL we have 
onsidered. This behaviour
an be explained: indeed, when the pres
ribed toleran
e is relatively large,the adaptive algorithm dete
ts only the most relevant stru
tures of the so-lution, re�ning only near the right-hand verti
al wall; this is an \essentially1D uniform re�nement", whi
h yields 1Nnode / TOL. As soon as the requestedtoleran
e is small enough so that all the stru
tures of the solution are 
orre
tlyresolved on the 
urrent grid, and if there are no singularities, then the trueerror should rea
h the asymptoti
 behaviour of the linear dependen
e on themesh-size h: thus, in term of number of nodes, for a 2D problem, we shouldobserve 1Nnode / TOL2. However, for this problem, we 
ould not rea
h thisasymptoti
 behaviour due to 
omputer limitations. The present experimentgives a quantitative expression to the superior performan
e of adaptive al-gorithms when the 
hara
teristi
 features of the solution are not 
ompletelyresolved yet, as far as memory requirement is 
on
erned. More investigationsare needed to 
onsider timing performan
es as well.7 Numeri
al results for the non-linear in
ompressible Navier-Stokesmodel: Lid Driven CavityAlthough our previous analysis was performed for the linear Navier-Stokesmodel, we now apply its results to the non-linear stationary in
ompressibleNavier-Stokes equations. We 
onsider the 
lassi
al Lid Driven Cavity problem.This problem 
onsists of the 
ow in a unit square with the following velo
ityboundary 
onditions: u1 = 1, u2 = 0 on the top edge and u1 = 0, u2 = 0 onthe other walls. We are interested in this problem be
ause it is a 
lassi
al test
ase and it allows us to 
onsider the e�e
t of the dis
ontinuity in the boundary
onditions on the adaptive algorithm. We 
ompare our results for the velo
itywith those given in [12℄, that we 
an 
onsider almost exa
t. They have been� = 0:5 � = 0:75 � = 1:0TOL = 0:2 6709 5809 5234TOL = 0:1 13865 12061 10771TOL = 0:075 18752 16129 14425TOL = 0:05 28131 25790 22335TOL = 0:025 57902 51858 46372Table 3Number of nodes at 
onvergen
e varying TOL, Re = 54417



Figure 15. Nnode = 545 Figure 16. Nnode = 1883,Re = 3200 Figure 17. Nnode = 2156,Re = 5000obtained with a  �! formulation of the Navier-Stokes problem, no result forthe pressure is given therein.We 
onsider two 
ases at di�erent Reynolds number: Re = 3200 and Re =5000. To get a solution at these high Reynolds numbers we need to apply the
ontinuation method, so we have 
ombined 
ontinuation in Re and adaptationof the mesh. At ea
h Re-step we solve the problem, then we perform onegrid adaptation based on this solution and we use this new grid to solve theproblem at the next higher Re. We set TOL = 0:06 and � = 0:5. Starting witha very 
oarse grid with 545 nodes at Re = 200, we arrive at Re = 3200 with1883 nodes and at Re = 5000 with 2156 nodes. Then, we apply our adaptivealgorithm, without 
ontinuation, for the two 
onsidered Reynolds numbers,starting from the two previous partially-adapted grids. Figures 18-26 reportsome plots of the obtained results. Figures 18,19,20,21,24,25 display velo
itypro�les: u1 along a verti
al se
tion and u2 along an horizontal se
tion passingthrough the geometri
 
enter of the 
avity. The 
ontinuous line is our resultand 
ir
les indi
ate the values reported in [12℄. These referen
e-results areobtained with a multi-grid method on uniform meshes of 129� 129 = 16641points for Re = 3200 and of 257�257 = 66049 points for Re = 5000. We wantto draw the attention on the very good agreement of our velo
ity results withthe referen
e ones, also with a very small number of points, and on the gooddes
ription of the two pressure singularities in the two top 
orners (Figures22,23,26). Moreover, by observing the thi
kness of the re�ned region aroundthe primary vortex in the last adapted grids (Figures 28,29) we 
an 
learly seethe de
reasing of the thi
kness of the boundary/inner layers while in
reasingRe.7.1 Adaptation at Re = 3200Starting from the grid with 1883 nodes we apply the adaptive algorithm withTOL = 0:05 and � = 0:5. Table 4 reports meaningful quantities of the adap-tive pro
ess up to the re�nement of less than 5% of the elements. We note18



iter Nnode e:r:e: �2R;T;MAX �2R;T;min ��2R;T1 1883 0.147747 3.211605E-01 3.653846E-16 6.448319E-032 2436 0.122983 1.319548E-01 1.770035E-11 2.888396E-033 3225 0.0883892 1.030873E-01 1.253682E-11 1.489866E-034 4039 0.0749348 9.820470E-02 3.601742E-11 1.214295E-035 4847 0.0733932 1.234252E-01 1.633134E-11 1.370128E-036 5658 0.0733819 1.281187E-01 8.087796E-12 1.315174E-037 6361 0.0708713 1.308443E-01 1.783953E-11 1.263084E-038 6998 0.0686216 1.321826E-01 1.199139E-11 1.214703E-03Table 4Re = 3200, adaptive iterationsthat the adaptive algorithm produ
es good grids and solutions, but - due tothe dis
ontinuities of the boundary 
onditions - it fails to equidistribute theerror in the two 
orners, as we 
an see from the very low de
reasing of ��2R;T(
ompare with Figure 11). We 
an easily explain this behaviour, sin
e thedis
ontinuities in the boundary 
onditions imply that the solution has strongsingularities and is not in [H10(
)℄2�L20(
), as required in deriving the errorestimator.
7.2 Adaptation at Re = 5000Starting from the grid with 2156 nodes we apply the adaptive algorithm withTOL = 0:075 and � = 0:75 and we arrive at 
onvergen
e on 98% of thetriangles, with 3434 nodes. Then we apply four more adaptive steps withTOL = 0:05 and � = 0:75 to arrive at 
onvergen
e with these new param-eters on more than 95% of the triangles. To understand how the adaptivealgorithm works, let us observe Figures 24-27: although the number of pointsis very small, the velo
ity pro�les are surprisingly good and the des
ription ofthe se
ondary vorti
es is quite good as well. Yet the algorithm does not feelthe onset of the little tertiary vortex in the bottom-right 
orner. Indeed thevelo
ities here are too small ( min = �1:43226E� 06) to have some relevan
eand the error indi
ator gives importan
e prevalently to that phenomena that
ause numeri
ally relevant errors like singularities (exa
tly as we wanted whenwe designed it). 19
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Figure 23. y = 1:0, pressure p8 Con
lusionsConsidering all the results of our test 
ases, we 
on
lude that the adaptivealgorithm des
ribed in Se
tion 6 works well. Indeed, in all our numeri
al ex-periments, it leads to re�ne the grid exa
tly where it is needed and, whenpossible, the equidistribution of the error between the elements is eÆ
ient, as20



iter Nnode e:r:e: �2R;T;MAX �2R;T;min ��2R;T1 2156 0.142289 3.294456E-01 6.032250E-29 6.143309E-032 2296 0.123102 1.295425E-01 3.001397E-12 3.115246E-033 2612 0.0937899 8.172397E-02 1.283356E-10 1.482653E-034 2926 0.0875836 1.333580E-01 3.205355E-12 2.226585E-035 3214 0.0893035 1.579566E-01 5.796903E-11 2.482492E-036 3434 0.0849747 1.253354E-01 3.222002E-12 2.191617E-03Table 5Re = 5000, adaptive iterations: TOL = 0:075, � = 0:75
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Figure 26. y = 1:0, pressure p Figure 27. Re = 5000, Nnode = 3434we dedu
e from the de
reasing behaviour of the standard deviation ��2R;T (Fig-ure 11). We also noti
e that the 
omputation of su
h low-
ost error estimator,
ombined with the numeri
al estimates of the 
onstants involved (whi
h, fromour experiments, turn out to be in the order of the unity), is useful to get ameasure of the quality of the solution, independently of the adaptive strategyused. 21



Figure 28. Re = 3200, Nnode = 6998 Figure 29. Re = 5000, Nnode = 6247Finally we observe that the maximal performan
e of adaptivity versus uniformre�nement and versus \by hand" mesh adaptation is a
hieved in problemsthat present 
hara
teristi
 stru
tures in a limited part of the domain. Whenthe 
hara
teristi
 features of the solution are distributed in a wide part ofthe domain, the superiority of adaptive algorithms is redu
ed [4℄, but theadvantage of building automati
ally a quasi-optimal grid in terms of number ofdegrees of freedom persists. Moreover, on this grid we are sure that the relativeerror in the 
omputed solution 
ould be 
ontrolled by a target toleran
e, thatwe 
an 
hoose suitably in relation to the ne
essities of ea
h problem.A
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