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Compact Conversion and Cyclostationary
Noise Modeling of pn–Junction Diodes in
Low-Injection—Part I: Model Derivation
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Abstract—Starting from the well known low-injection approxi-
mation, a closed form, analytical compact model is derived for the
small-signal (SS) and forced quasi-periodic operation of junction
diodes. The model determines the small-signal and conversion ad-
mittance matrix of the device as a function of the applied (dc or
periodic-time varying) bias. Noise characteristics, in both the sta-
tionary (SS) and cyclostationary cases, are also evaluated by means
of a Green’s function approach.

Index Terms—Frequency conversion, pn–junctions, semicon-
ductor device modeling, semiconductor device noise.

I. INTRODUCTION

THE DC, ac and small-signal noise modeling of pn–junc-
tion diodes is a classical, well established topic in electron

device design. The dc diode theory in low-injection conditions
was proposed in the 1940s–1950s (see [1] and references
therein); in the same period, a small-signal distributed diode
ac model was then developed through the solution of the
frequency-domain continuity equations in the quasineutral
diode sides [1]. Concerning small-signal noise modeling, a
complete physics-based analysis based on Green’s function
techniques was developed by Van Vliet in [2], although the
empirical (but, as pointed out already by van der Ziel [3],
widely misinterpreted) shot-noise model had been widely
used for years in circuit design. Further extensions in the field
of diode modeling was stimulated by radio frequency (RF)
applications in which junction diodes were exploited to perform
frequency conversion (like in resistive mixers and frequency
multipliers). Starting from the pioneering paper by Dragone
[4] circuit-oriented models were developed for the so-called
small-signal large-signal (SSLS) or conversion diode behavior
[5] and for the cyclostationary diode noise arising under
large-signal periodic excitation. While the conversion matrix
diode model proved successful in circuit design, a number of
basic issues involving noise modulation and conversion are still
a matter of active research [6], [7].
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Although numerical physics-based semiconductor device
simulation, recently extended to the large-signal noise and
conversion modeling [8]–[10], has provided during the last few
years a valuable tool for device design, closed-form, computa-
tionally efficient models (often referred to as compact models)
still are a valuable asset, and often an indispensable tool in
circuit design. In the present paper we propose a closed-form
analytical distributed model for frequency conversion and
cyclostationary noise for pn–junction diodes in low-injection
conditions, providing the diode conversion matrix and noise
sideband correlation matrix [11]. For conversion modeling,
the approach can be considered as a straightforward extension
and generalization of the small-signal distributed model based
on the analytical solution of the diffusion equations in the
quasineutral diode sides, while the cyclostationary noise model
extends the small-signal Green’s function approach [12].
The model validation through comparisons with results from
numerical models is presented in the companion paper [13],
together with a further discussion on circuit-oriented compact
model strategies for cyclostationary noise modeling. Further-
more, besides its practical interest per se in RF and microwave
analog applications, the present compact model is also the basis
for conversion and cyclostationary noise modeling in other
junction devices, such as the bipolar transistor.

The structure considered in the derivation of the model,
shown in Fig. 1, is an abrupt one-dimensional (1-D) junction,
with constant doping in the two sides. The depletion region
width is , and the two neutral regions have widths

and in the n and p sides, respectively.
The compact diode model is based on the standard low-in-

jection theory expressing the junction (intrinsic) current as the
sum of minority carrier diffusion currents in the two quasineu-
tral sides of the device, thus neglecting the current contribution
due to generation-recombination (GR) in the depletion region
[14]; majority carrier densities are approximated by their equi-
librium value. Furthermore, the parasitic resistance , associ-
ated to the resistivity of the neutral regions, and the junction
depletion capacitance have to be included in the model ac-
cording to the circuit in Fig. 2, where the junction voltage
and current are defined, as well as the applied device voltage

and current . By extending the customary terminology for
transistors, the junction variables will also be called intrinsic.

The paper is structured as follows: In Section II the basic
equations for the derivation of the diode compact model are
introduced, including the relevant boundary conditions. Sec-
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Fig. 1. Structure of the pn–junction diode.

Fig. 2. Equivalent circuit of the pn–junction diode.

tion III is devoted to the evaluation of the small-signal diode ad-
mittance and of the large-signal admittance conversion matrix.
The small-signal and cyclostationary noise compact models are
derived in Sections IV and V, respectively. Finally, conclusions
are drawn in Section VI.

II. BASIC EQUATIONS

This section is devoted to the discussion of the basic equations
used in deriving the compact model. We separately consider the
evaluation of the device working point (dc or periodically time-
varying) in Section II-A, the perturbation approach to small-
signal (SS) and conversion (see [5] and [8] for an introduction)
analyzes in Section II-B, and the noise model in Section II-C.

A. Working Point

Let us consider first the evaluation of the device working
point; the related variables will be denoted throughout the paper
by subscript “0.” The working point is set by the applied voltage

, determining the intrinsic working point voltage .
Two cases are considered: dc operation, wherein is inde-
pendent of time, and periodic large-signal (LS) conditions, cor-
responding to a a periodically time-varying working point with
fundamental (angular) frequency .

In both cases, according to the device structure in Fig. 1, the
low-injection device current is written as

(1)

where is the electron charge, is the cross section, is the
minority carrier diffusivity, and

are the excess minority carrier densities,
and are the equilibrium minority carrier den-
sities, is the intrinsic carrier concentration and , are
the doping densities of the and side, respectively.

Neglecting the electric field in the quasineutral regions, the
minority carrier continuity equations are expressed as

(2a)

(2b)

where is the minority carrier lifetime. The boundary condi-
tions associated to (2) assume ohmic contacts at the device ter-
minals

(3)

At the interface between depletion and neutral regions, the
excess minority carrier concentration is related to the intrinsic
voltage through the junction law

(4a)

(4b)

where , is the Boltzmann constant and is the
temperature.

In dc conditions ( independent of time), the solu-
tion of (2) is [14]

(5a)

(5b)

where is the diffusion length for carrier
, and and are given by (4) evaluated for

.
In LS operation, the periodically time-varying working point

[5], [8] is expressed according to the Fourier decomposition

(6)

where is the -th harmonic component of signal ,
at . The steady-state excess carrier concentrations are
also a periodic function of time; thus

(7)

with a similar expression for holes. Due to linearity of (2) and
(3), (5) can be generalized into

(8a)

(8b)

where , ,
and and are the -th harmonic com-
ponents of the corresponding excess carrier densities, evaluated
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by decomposing in Fourier series the junction law (4) with
given by (6).

Notice that the continuity equations (2) are, for constant mo-
bility and diffusivity, linear, as well as the current expression
(1). Therefore, according to the discussion in [15], the intrinsic
diode can be modeled as the cascade of a nonlinear, memory-
less system, corresponding to (4), and of a linear, time-invariant
system represented by (1) and (2).

B. Perturbation Analysis

The small-signal (SS), conversion, and noise [12] analyzes
are all based on a perturbation approach: the device (electrical
and physical) variables are approximated as the sum of the
working point-dependent part, and of a small perturbation,
derived by linearizing the device equations around the working
point. Since (1) and (2) are already linear, linearization must be
performed on the boundary conditions (4) only.

Let us consider first the case of a dc working point, relevant
to SS and stationary (small-signal) noise analyzes. The intrinsic
voltage is decomposed as , where

is constant and an harmonic perturbation at (angular) fre-
quency has been considered. This causes a perturbation of
the excess minority carrier concentrations, having, in the limit of
the small-change approximation, a harmonic time dependence
at the same frequency: ,
with a similar expression for holes. From (2), the harmonic per-
turbations of the excess minority concentrations satisfy

(9a)

(9b)

whose boundary conditions are derived from (3)

(10)

and by linearizing (4) around

(11a)

(11b)

The (harmonic) perturbation of the intrinsic current is evaluated
starting from (1)

(12)

In large-signal (LS) conditions, the periodic working point is
determined by the harmonic complex amplitudes of the various
variables (voltages, currents, carrier concentrations etc.) evalu-
ated at the harmonics ( integer). In order to per-
form the perturbation analysis following the standard SSLS (or
conversion) approach [5], [8], the frequency spectrum is con-
veniently decomposed into a superposition of nonoverlapping
intervals denoted as sidebands. Each sideband is characterized

by an absolute frequency defined by an offset (called side-
band angular frequency) with respect to the -th harmonic ;
the absolute frequency within sideband is therefore expressed
as . The perturbation applied is an harmonic signal
at sideband , denoted as ; according to the small-change
assumption, the resulting perturbation of the working point can
be expressed (being affected by frequency conversion) as the
superposition of harmonic components at all sidebands, e.g.,

(13)

where is the -th sideband amplitude of the perturbation.
The -th sideband amplitudes of the excess minority carrier

densities satisfy the following equations, derived from (2)

(14a)

(14b)

completed by boundary conditions derived from (3)

(15)

and from the linearization of (4) around the periodic working
point. For instance, linearization of (4a) yields

(16)

where is the th harmonic component of the periodic

function of time . A similar
treatment is carried out for holes. This means that the boundary
conditions of (14) are, in general, nonzero at all of the sideband
frequencies (i.e., frequency conversion occurs), with sideband
amplitudes

(17a)

(17b)

After collecting the sideband amplitudes into a vector, (17) can
be expressed in matrix form as

(18)

where is the conversion matrix [5], [8] associated to the
linearized boundary conditions, with element given by

.
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Finally, the sideband amplitudes of the perturbation of the
intrinsic current are computed from (1) as

(19)

C. Noise Analysis

Noise analysis is based on the standard Green’s function
approach discussed, e.g., in [12], and will be carried out
first in small-signal operation, deriving the stationary noise
compact model, and then in forced, quasiperiodic large-signal
conditions, where noise processes become cyclostationary [8].
In both cases, the noise model results from a two-step pro-
cedure. First, microscopic noise sources are identified within
the device structure as a function of the noiseless working
point (constant, or time-periodic). Secondly, noise sources are
propagated to the device terminals to evaluate the device noise
generators, by assuming that the related perturbation is small
enough to allow for a linearized analysis. In this work, we shall
consider only diffusion and generation-recombination (GR)
noise mechanisms [12] in the neutral regions, and we shall
completely neglect noise generated in the depletion region. In
the first case, the microscopic noise source is a current density
impressed into the continuity equation, while for GR noise the
source is homogenous to the recombination rate: in both cases,
the expressions for such sources depend only on the carrier
concentrations evaluated in the noiseless device working point.
More details can be found in [12].

Concerning the propagation of the microscopic noise
sources, we have to evaluate, on the linearized model equations,
a Green’s function for each carrier species, namely and .
Considering short-circuit current noise generators, the output
variable will be the current variation induced at the device
anode (the side ohmic contact) by an electron or hole scalar
current injected into the electron or hole continuity equation,
respectively.

For stationary noise evaluation, an SS analysis must be per-
formed, i.e., the equations exploited for the determination of the
Green’s functions are (in the frequency domain) [12]

(20a)

(20b)

where the forcing term is an impulsive source, i.e., a Dirac’s
delta function in space, and is a scalar current injected in point

. System (20) is completed by boundary conditions (10) and
(see [12])

(21)

Concerning noise in LS operation, similar considerations
apply (see Section V); the evaluation of the Green’s functions

requires an impulsive source term to be added for each side-
band, thus leading to the equations

(22a)

(22b)

with boundary conditions (15) and, in full analogy with (21)

(23)

Notice that, in general, we should also evaluate the Green’s
functions for majority carriers: we will show in Section IV (the
same result holds also for cyclostationary noise) that minority
carriers suffice (see [2]) for evaluating the noise generator char-
acteristics of the intrinsic diode.

III. SMALL-SIGNAL AND CONVERSION COMPACT MODEL

Following the discussion in Section II, both the SS and SSLS
analyzes are carried out within a small-change approximation
corresponding to a linearized set of boundary conditions.

A. Small-Signal Model

The solution of linear equations (9), completed by boundary
conditions (10) and (11), is

(24a)

(24b)

where is the frequency de-
pendent diffusion length, and .

The intrinsic current perturbation is given by (12), and the
device admittance is evaluated as

(25)
where for . This expression is the standard
distributed model for the intrinsic diode SS admittance [1], [14].
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B. Conversion (SSLS) Model

System (14), completed by boundary conditions (15) and
(17), is formally identical to the SS equations, so that (24) are
still valid for each sideband frequency

(26a)

(26b)

where , and

. Notice that frequency conversion takes place
only through boundary condition (17).

Taking into account (19), (17) and defining the element
of the diode admittance conversion matrix as the ratio

, the following result holds:

(27)

where is the th harmonic component of the periodic
function of time .

IV. STATIONARY NOISE COMPACT MODEL

In SS conditions, noise is represented by stationary stochastic
processes. As discussed in [12], the correlation spectrum of the
current noise generator is expressed as the sum of the diffusion
and GR spectra

(28)

and the two contributions are

(29)

(30)

where the integration domain excludes the depletion region
( where and ),
and is the local noise source [12]

(31a)

(31b)

(32)

Let us consider first the electron Green’s function
. Assuming injection in [see Fig. 3(a)] Kirch-

hoff current law (KCL) yields where is
given by the first term in (12). On the other hand, for ,
i.e., where electrons are majority carriers, all of the injected
current flows through the ohmic contact in and therefore

. Notice that this results from the assumption that the
majority carriers are in equilibrium (low-injection approxima-
tion), and from considering the resistivity of the neutral side as
negligible. The effect of the finite value of the resistivity can be
taken into account in evaluating the Green’s functions as dis-
cussed in Appendix A. Therefore

, (33)

where .
The hole Green’s function , defined in

Fig. 3(b), is evaluated similarly. Assuming injection in
, i.e., where holes are majority carriers, KCL reads

. For , where is given by the
second term in (12). This allows us to express

(34)

where .
Because of (33) and (34), (29) reduces to

(35)

i.e., diffusion noise in the diode is due only to velocity fluctu-
ations of minority carriers in the two sides [2], [12]. Similarly,
(32)–(34) allow to simplify (30) into

(36)

The local noise sources for electrons in the side are therefore

(37a)

(37b)

with a similar expression for holes in the side.
The noise contribution of majority carriers in the neutral sides

correponds to the thermal noise of the series diode resistance,
and can be added through embedding to the previous expres-
sions (Fig. 2) in order to recover the total stationary noise spec-
trum.
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(a)

(b)

Fig. 3. Definition of short-circuit current Green’s functions. (a) Electron
Green’s function. (b) Hole Green’s function.

Following the results in Appendix B, the two relevant Green’s
functions are given by

(38a)

(38b)

Making use of (5), (37) and (38), integrals in (35) and (36)
can be easily evaluated, leading to the expression for the two
contributions to the noise current spectrum in (39) and (40),
shown at the bottom of the page, where ,

, . Adding (39) and (40) yields
the total noise current spectrum:

(41)

A lengthy but straightforward calculation shows that (41) is
equivalent to the standard relationship corresponding to the cor-
rected shot-noise expression [2], [3]:

(42)

where is the diode reverse saturation current.
The frequency dependence of the two contributions (39) and

(40) originates from the and parameters, and is therefore
quite complex. As a general remark, the diffusion noise term
(39) exhibits a constant spectrum up to frequencies of the order

(39)

(40)
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of the SS admittance corner frequency, where the noise current
spectrum becomes an increasing function of frequency (see the
discussion in [13]). GR noise contribution (40), on the other
hand, shows the expected low-pass behavior, again with a corner
frequency related to , although not with an exactly
lorentzian shape [13]. Notice that both diffusion and GR noise
are needed to recover the shot-like expression (42), though for
short side diodes the GR contribution becomes negligible with
respect to the diffusion noise term.

V. CYCLOSTATIONARY NOISE COMPACT MODEL

In LS forced operation, noise is represented by cyclosta-
tionary stochastic processes, whose frequency components are
correlated only if they are at the same distance from one of
the harmonics of the working point [8], [12]; in other words,
correlation takes place only between sidebands. For this reason,
the statistical properties of such processes are represented by
the so-called sideband correlation matrix (SCM) [8]. Also
in this case, noise can be evaluated by means of a Green’s
function approach propagating the microscopic noise sources
to the device terminals. Since the microscopic noise sources
are modulated by the time-varying working point, they have to
be modeled as cyclostationary processes characterized by their
own SCM [6], [8]. Furthermore, the propagation step implies,
as a matter of principle, frequency conversion. The Green’s
functions are therefore conversion operators, called conversion
Green’s functions (CGF) [8]. The element of the CGF
represents the output on sideband induced by a unit impulse
harmonic source term injected in sideband . Notice that, since
(22) and the boundary conditions (15), (23) are linear, injection
in sideband results into an output in sideband only, i.e., no
conversion effects actually take place: in other words, within
the assumptions in our model the CGF’s are diagonal.

With analogy to the discussion in Section IV, the short-circuit
current noise SCM can be evaluated as

(43)

where the two contributions are

(44a)

(44b)

The local noise source for electrons in the side is [8]

(45a)

(45b)

where is Kronecker’s symbol. A similar expression holds
for holes in the side.

Concerning the Green’s functions, inspection of (22), (15)
and (23) allows (38) to be directly extended into

(46a)

(46b)

Substituting (8), (45) and (46) into (44), and evaluating the
resulting integrals, yields (47) and (48), shown at the bottom of
the next page, where , ,
and we have defined the following symbols:

(49)

(50)

(51)

Finally, , ,

.
Notice that the small-signal stationary noise spectrum can be

obtained from the previous expressions by setting
and . In the case of a junction diode with long sides,
(47) and (48) are significantly simplified, as shown in [11].

VI. CONCLUSIONS

A closed form, analytical compact model for the small-signal,
conversion and noise behaviors of junction diodes has been pre-
sented. The model is based on decoupling the majority and mi-
nority carrier continuity equations in the neutral sides of the de-
vice, and therefore is based on the well known low-injection as-
sumption. Noise analysis is carried out both in the small-signal
case, wherein the well known corrected shot-like expression is
derived, and in the case of forced large-signal periodic condi-
tions, thus deriving a closed-form expression of the short-circuit
current SCM. Furthermore, analytical expressions are also de-
rived for the conversion device characteristics, i.e., for the diode
admittance conversion matrix.

According to the model assumptions, the expressions are de-
rived by neglecting the parasitic effect due to the (series) resis-
tance of the neutral regions, which in turn is due to the resistivity
associated to majority carrier conduction. The terminal values
of the various quantities are recovered by applying well known
circuit embedding techniques. Notice that, apart from the effect
of the series resistance on the small-signal and conversion ad-
mittance parameters, thermal noise due to majority carriers in
the neutral regions must also be taken into account for the ter-
minal noise evaluation.

The model can also be considered as a starting point for
the derivation of an analytical conversion and cyclostationary
noise model for bipolar transistors, akin to the well known
Ebers–Moll model for dc and small-signal analysis.
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APPENDIX A
EFFECT OF ON THE GREEN’S FUNCTIONS

The finite value of the resistivity of the neutral sides, besides
being important for the junction admittance and noise spectra,
has also an impact on the Green’s functions exploited for the
estimation of the device noise generators. While in the first case
standard circuit embedding/deembedding techniques (based on
the circuit in Fig. 2) can be used, the distributed nature of the
Green’s functions requires a careful discussion.

We discuss here the LS CGF’s, since the SS case can be recov-
ered by substituting the conversion matrices with the SS (scalar)
parameters. For the sake of simplicity, we neglect the modula-
tion of the neutral regions lengths due to the working point de-
pendence of the depletion widths , (see Fig. 2), i.e., we as-
sume . This means that we can decompose the
total resistance according to the contribution of the two sides

, both of them being constant resistances char-
acterized by a diagonal conversion matrix [12]. Furthermore, a
complete analysis requires to consider separately the case of in-
jection of an electron or hole current into the or side: we shall
explicitly treat the case of electron current injection only, since
the extension to the other case is straightforward.

Let us consider first the injection of the impressed scalar elec-
tron current in the side. We can represent the evaluation of the
external CGF for according to the equivalent

circuit shown in Fig. 4, where is the current induced at the
terminal including the effect of , and with

. The “inner” device is represented, after
linearization, by the conversion matrix , that includes the
parallel of the intrinsic conversion matrix (27) and of the con-
version matrix derived by linearizing the junction capacitance
expression around the working point [12]. Furthermore, we as-
sume that the current variation induced at the boundary of the
neutral region is given by the same expression exploited when
the resistivity of the side is neglected: this is represented by the
controlled current source in Fig. 4, which corresponds to cur-
rent in Fig. 3 and contains the “intrinsic” CGF as eval-
uated in Section V. Notice that, as already remarked, linear re-
sistances are represented by diagonal conversion matrices of the
type , where is the identity matrix.

The external current sideband amplitudes satisfy

(52)

therefore the “intrinsic” CGF is related to the external
CGF , corresponding to , by means of the linear
transformation (where )

(53)

(47)

(48)



BONANI et al.: COMPACT CONVERSION AND CYCLOSTATIONARY NOISE MODELLING OF pn–JUNCTION DIODES—PART I 475

Fig. 4. Equivalent circuit representing the evaluation of the electron CGF
including the effect of the resisitivity of the neutral sides: injection in the p side.

Notice that, for , the previous expression reduces to the
relationship (33) discussed in Section IV.

On the other hand, considering electron current injection in
the side ( for ) leads to the the equivalent
circuit shown in Fig. 5, where again we have assumed that the
current variation induced at the border of the neutral region has
the same value as for null resisitivity, i.e., zero [see (33)]. Notice
that in Fig. 5 , with

.
The external current sideband amplitudes satisfy in this

case

(54)

therefore the external CGF for is given by

(55)

APPENDIX B
SS GREEN’S FUNCTIONS EVALUATION

The Green’s functions to be exploited for small-signal noise
analysis are defined by continuity equations (20). For example,
(20a) can be solved separately for and , where the
differential equation is homogeneous. The two solutions must
satisfy boundary conditions (10), (21), and the jump condition
[12]

(56)

Fig. 5. Equivalent circuit representing the evaluation of the electron CGF
including the effect of the resisitivity of the neutral sides: injection in the n side.

Straightforward calculations lead to

(57)
and the corresponding short-circuit current induced at the device
terminal is given by the first term in (12)

(58)

A similar treatment for holes in the side, based on the solu-
tion of (20b), leads to

(59)

and

(60)

Since the Green’s functions are defined as and
, (58) and (60) yield (38).
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