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A bstract

Computer graphics has a major impact in our day-to-day life It is used in diverse areas such as 

displaying the results of engineering and scientific computations and visualization, producing 

television commercials and feature films, simulation and analysis of real world problems, 

computer aided design, graphical user interfaces that increases the communication bandwidth 

between humans and machines, etc Scientific visualization is a well-established method for 

analysis of data, originating from scientific computations, simulations or measurements The 

development and implementation of the 3Dgen software was developed by the author using 

OpenGL and C language was presented in this report 3Dgen was used to visualize three- 

dimensional cylindrical models such as pipes and also for limited usage in virtual endoscopy 

Using the developed software a model was created using the centreline data input by the user or 

from the output of some other program, stored in a normal text file The model was constructed 

by drawing surface polygons between two adjacent centreline points The software allows the 

user to view the internal and external surfaces of the model The software was designed in such a 

way that it runs in more than one operating systems with minimal installation procedures Since 

the size of the software is very small it can be stored in a 1 44 Megabyte floppy diskette 

Depending on the processing speed of the PC the software can generate models of any length 

and size Compared to other packages, 3Dgen has minimal input procedures was able to 

generate models with smooth bends It has both modelling and virtual exploration features For 

models with sharp bends the software generates an overshoot
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C hapter 1 INTRODUCTION

Many definitions of graphics (including computer graphics) can be found However, an apt, 

contemporary explanation [1] is given by David Cassings of Tektronix, “The representation of 

quantitative data through visual symbols” portraying reality “by artificial-and sometimes fairly 

abstract-conventions accepted by the user” Computer graphics displays objects on computer 

screens for human cognition Thus, computer graphics serves as a type of human interfaces 

to identify objects in human cognitive spaces Human interfaces heavily rely on visualizing 

objects [2] and by using computers this task is much more simplified Some of the basic 

techniques used in visualizing objects are shown to have their origins not in computer 

graphics but in early cartographic and diagrammatic presentations

It could be argued that the first computer graphics system appeared with the first digital 

computers, but the Whirlwind project at the Massachusetts Institute of Technology is generally 

marked as the beginning of computer graphics [3]

The doctoral thesis of Ivan Sutherland, Sketchpad interactive drawing system [4], is 

considered to be a milestone in computer graphics He introduced data structures for storing 

symbol hierarchies built up via easy replication of standard components, a technique akin to 

the use of plastic templates for drawing circuit symbols He also developed interaction 

techniques that used the keyboard and light pen (a hand-held pointing device that senses light 

emitted by objects on the screen) for making choices, pointing, and drawing, and formulated 

many other fundamental ideas and techniques still in use today

1 2 T h ree -d im en sio n a l com p u ter  gra p h ics

Following quickly on Sutherland’s work, Timothy E Johnson [5] extended Sketchpad to 

function in three dimensions Nowadays three-dimensional computer graphics is applied in 

many areas ranging from fantasy world of film and television to more practical areas such as 

computer-aided design (CAD) of mechanical engineering parts In this sense three- 

dimensional computer graphics is possibly the most important aspect of computer graphics 

While certain techniques are used only in engineering, users as diverse as molecular 

scientists, television animators, architects, urban planners, doctors etc , use three-dimensional 

modelling and rendering techniques

1 1 Introduction
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1 3  Interactive com p u ter  grap h ics

Interactive computer graphics is the most important mechanised means of producing and 

reproducing pictures since the innovation of photography and television It has added 

advantage that, with the computer, it is possible to make picture not only of the concrete, real 

world objects, but also of abstract, synthetic objects and of data that have no inherent 

geometry, such as survey results Although static pictures are a good means of 

communicating information, dynamically varying pictures are frequently even more effective, 

especially for the time-varying phenomena, both real and abstract With motion dynamics, 

objects can be moved and tumbled with respect to a stationary observer The objects can also 

remain stationary and viewer can move around them, pan to select the portion in view, and 

zoom in or out for more or less detail, as though looking through the viewfinder of a rapidly 

moving video camera Update dynamics is the actual change of the shape, colour, or other 

properties of the objects being viewed, or modelled Interactive computer graphics permits 

extensive, high-bandwidth user-computer interaction such as in-flight data of an airplane or 

display of various parameters of a control system of a nuclear reactor Such interactions 

significantly enhance the user ability to understand data, to perceive trends, and to visualise 

real or imaginary objects

1 4  C on cep tu a l fram ew ork for interactive grap h ics

At hardware level the computer receives input from information devices, and output images to 

display device The software has three components (Figurel 1) The first, the application 

program, create, store and retrieve from the second component, the application model, which 

represents the data or objects to be projected on the screen The application program also 

handles user input This program produced views by sending to the third component, the

graphics system, a series of graphics output commands that contain both a detailed geometric

description of what is to be viewed and the attributes describing how the objects should 

appear The graphics system is thus an intermediary between the application program and the 

display hardware that effects an output transformation from objects in the application model to 

a view of the model Symmetrically, it effects an input transformation from user actions to 

inputs to the application program that will cause the application to make changes in the model 

or picture
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Figure 1 1 Conceptual framework

The fundamental task of the designer of an interactive graphics application program is to 

specify what classes of data items or objects are to be generated and represented pictorially 

and how the user and the application program are to interact to create and modify the model 

and its visual representation Most of the programmer’s task concerns creating and editing the 

model and handling user interaction, rather than actually creating views, since that task is 

handled by graphics system

1 5  Im age d isp lay

The primary objective in this field is to efficiently generate realistic images ranging from 

objects in the real world to objects or scenes of virtual world This encompasses areas such 

as three dimensional modelling, human perception, computer hardware etc ,

The Figure 1 2 outlines the processes in creating a three dimensional image This shows how 

a realistic three-dimensional scene can be presented using a two-dimensional medium, such 

as a Visual Display Unit or a paper

In the first stage, a three-dimensional world model was created which consisted of a finite set 

of objects (spheres, cones, polyhedra, parametric surfaces, e tc ) This model existed in the 

three-dimensional cartesian space [6]

Figure 1 2 Procedure involved in image display
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The world model then undergoes a series of transformations, that produce a screen model of 

the world as it would be seen by an observer with a given position and orientation, this 

combination of position and orientation is the observer’s viewpoint A screen model is a finite 

set of objects in the two-dimensional cartesian space Points in the screen model may also 

retain a reference to the corresponding points of the world model These references were 

used to create a more realistic final image Finally, the objects in the screen model were 

rendered, producing the final two-dimensional image

Until recently computer graphics was understood and used only by a selected group of people 

linked with expensive display hardware, complex software and extraordinary computer 

resources In the last few years, however, it has benefitted from the steady and sometimes 

even drastic reduction in hardware price because of technological innovations in 

semiconductors This also led to the development of high level, device independent graphics 

packages that help to ease the burden in graphics programming

1 6 M otivation

The world of computing is fast evolving due to advancements in semiconductor technology, 

mathematical modelling and also different types of algorithms In early 1980’s computer 

graphics was a small, specialized field, largely because the hardware was expensive and 

graphics-based application programs were few Then, personal computers with built-in raster 

graphics displays such as the Apple Macintosh and the IBM PC and its clones popularised the 

use of bitmap graphics for user-computer interaction A bitmap is a ones and zeros 

representation of the rectangular array of points, called pixels or picture elements, on the 

screen Once bitmap graphics became affordable, an explosion of easy to use and 

inexpensive graphics based applications soon followed

Graphics based user interfaces allowed millions of new users to control simple, low-cost 

application programs, such as spreadsheets, word processors and drawing programs The 

concept of desktop became a popular metaphor for organizing screen space This was done 

by means of a window manager by which the user can create, resize, position rectangular 

screen areas on the desktop, called windows, that acted as virtual graphics terminals, each 

running an application Also part of this desktop was the display of icons that represented not 

just data files, application programs e tc , but also mailboxes, trash can, recycle bin 

equivalents of their real-life counterparts This leads to the direct manipulation of objects by 

pointing and clicking which replaced the process of typing the complex commands Thus the 

users were able to easily interact with computers without the interna! knowledge of the 

complex commands involved in with any kind of application
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This led to the widespread scenario of people using computers in areas ranging from houses 

to offices and industries Many people developed different graphics packages to cater various 

needs of industry as well as common man use In spite of all the technological developments 

there are limitations which limits widespread usage of a software package in terms of 

compatibility, computer hardware limitations, memory size of the package etc ,

The present task is to develop a software program for education and visualisation purposes of 

pipe networks allowing the user to view the internal and external surfaces and also limited 

virtual endoscopy purposes The program should be compatible with more than one operating 

system using existing hardware and software resources of a standard desktop PC The 

developed software “3Dgen" is one such approach that used datasets obtained either from 

some other software or typed in by the user in a simple format and the model was generated 

based on the datasets The software was developed using OPENGL with C language The 

size of the software is so small that it can be stored in any standard 1 44 Megabyte floppy 

diskette
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C H A PTER  2 H ISTO RY A N D  LITERATURE SU R V E Y

2 1 H istoric p ersp ec tiv e

Visualisation can be defined as forming a mental picture of something not visible or present 

Possible earliest examples of visualisation are from astronomy, meteorology and cartography 

and the concept is also used in areas like geology, medicine, biology, fluid dynamics etc

2 1 1 Astronomy, M eteorology and Cartography

The earliest examples of data visualization from astronomy, meteorology and cartography 

were driven by the needs to develop accurate aids to assist sailors in navigating oceans and 

the military used this technique to survey lands Influenced by the mechanical astrolabes of 

the early middle ages, the Bavarian lawyer and amateur astronomer Johann Beyer published 

first modern set of star charts in 1603 [7] He plotted star positions based on the observations 

of the Danish astronomer Tycho Brahe, which were accurate to one minute of arc Beyer was 

also the first to draw them on a grid of latitude and longitude lines using the elliptic coordinate 

system Edmund Hailey was the first modern scientist who had the ability to reduce large 

amounts of numerical data to a meaningful representation He published the first 

meteorological chart in 1686 in the form of a map of world showing the distribution of 

prevailing winds over the oceans by the use of arrow plots

The use of contour lines on topographic maps to represent elevations above sea level, and on 

nautical charts to represent depths, came with the advent of accurate surveying techniques 

These were first employed from the middle of 18th century, when France, England and 

Switzerland undertook elaborate national surveys to produce maps for military reasons If a 

coastline - being the zero elevation -  line can be considered a contour line, then contour lines 

first appeared around 1748 But the more usual, nonzero elevation contour lines were not in 

common use until after the British Ordinance Survey Act of 1841 An isothermal chart 

prepared by Alexander von Humboldt in 1817 for low and middle latitudes of the northern 

hemisphere, was the first use of isolme methods to show the geographic distribution of a 

quantity other than elevation This was followed by the isochromatic lines (equal colour) in 

1829, the isogeothermal lines (equal temperature below the surface of the earth) in 1832 and 

the isobars (equal pressure) in 1864

2 1 2  G eology and G eography

It was not until towards the end of the last century that data visualisation expanded to include 

techniques other than isolines and into other scientific disciplines Colour was used in maps
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between contour lines and in the representation of different types of vegetation This followed 

the use of gray scale on contour maps of North Wales by Aaron Arrowsmith in 1818 Colour 

was used in maps to represent different types of rocks

2 1 3 Biology

Related techniques were used in biology, based on the serial sectioning of specimens The 

reconstruction of the third dimension from serial electron micrographs was achieved by taking 

micron-thick slices from the specimen Each slice was photographed in an electron 

microscope and the images were traced on to transparent acetate sheets, which were stacked 

up with separators Different cell structures were traced in a different colour

2 1 4 M edicine

The field of medicine was revolutionized by the discovery of X-rays by Wihelm Röntgen in 

1895 This was followed rapidly by the generation of the first stereo pair of X-ray photographs 

of a mouse in 1896 More importantly, James MacKenzie-Davidson developed measurement 

techniques in 1898 for the location of foreign bodies using stereo X-ray photographs These 

were extensively used during the First World War to assist surgeons in locating bullets and 

shrapnel However, X-ray photographs have limitations because a three-dimensional volume 

of data has been flattened on to a two-dimensional image, losing much of the three 

dimensional information The resolution of this problem came with the emergence of 

transverse axial tomography in 1938, which allowed X-ray sections or slices to be generated 

Nowadays computer graphics is playing an ever increasing role in fields such as diagnostic 

medicine, surgery planning etc In the case of surgery, surgeons use graphics as an aid to 

guide the instruments and to determine precisely the area of diseased tissues for removal 

Widely used techniques such as image reconstruction using CT and MRI images makes a 

significant impact in the area of diagnosis

2 1 5 Fluid dynam ics

The field of experimental fluid dynamics has contributed many of the techniques that were 

used in the visualization of vector properties Thus ribbons were fixed to the surface of aircraft 

and ships’ hull, in wind tunnel and tanks respectively, to observe the fluid flow and vorticity 

fields that led to the concept of streamlines Smoke particles were released in wind tunnels 

and dyes injected into liquids to observe the motions of fluid particles which led to the concept 

of particle advection
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2  2  A p p lica tion s o f  C om p u ter gra p h ics

2 2 1 Computer Graphics in multimedia sy stem s

Computer graphics and the closely related fields of virtual reality, computer-aided geometric 

design, and scientific visualization, compact storage and fast display of shape information are 

vital For interactive applications such as military flight simulators, video games, and 

computer-aided design, real time performance is a very important goal For such applications, 

the geometry can be simplified to multiple levels of detail, and display can switch or blend 

between the appropriate levels of detail as a function of the screen size of each object [8] The 

process of walkthrough can be defined as redisplaying a static scene from a moving 

viewpoint For off-line, more realistic simulations such as special effects in entertainment, real 

time is not vital, but reasonable speed and storage are nevertheless important

2 2 2 Computer Graphics in cartography

Computer graphics is used to produce both accurate and schematic representations of 

geographical and other natural phenomena from measured data In modern day cartography, 

simplification is one method among many for the “generalisation” of geographic information 

[9] In that field, curve simplification is called “line generalisation” It is used to simplify the 

representations of rivers, roads, coastlines, and other features when a map with large scale is 

produced It is needed for several reasons to remove unnecessary detail for aesthetic 

reasons, to save memory/disk space, and to reduce plotting/display time The principal 

surface type simplified in cartography was, of course, the terrain Map production was formerly 

a slow, off-line activity, but it is currently becoming more interactive, necessitating the 

development of better simplification algorithms The ideal error measures for cartographic 

simplification include considerations of geometric error, viewer interest, and data semantics

2 2 3 Com puter Graphics in Finite Elem ent A nalysis

Engineers use the finite element method for structural analysis of bridges, to simulate the 

airflow around airplanes, and to simulate electromagnetic fields, among other applications A 

preprocess to simulation is a “mesh generation” step In 2D mesh generation, the domain, 

bounded by curves, is subdivided into triangles or quadrilaterals In 3D mesh generation, the 

do-mam is given by boundary surfaces Surface meshes of triangles or quadrilaterals are first 

constructed, and then the volume is subdivided into tetrahedron or hexahedron The criteria 

for a good mesh include both geometric fidelity and considerations of the physical phenomena 

being simulated (stress, flow, etc) To speed up simulation, it is desirable to make the mesh as 

coarse as possible while still resolving the physical features of interest

10



2 2 4  Com puter Graphics and Virtual Reality

The role of computers in future world is described of having a synthetic 3D universe that is as 

believable as the real physical universe Such virtual reality (VR) systems [10] create a 

cyberspace where it is possible to interact with anything and anyone on a virtual level The 

key technologies behind such imaginative writing are real-time computer graphics, colour 

displays and simulation software Virtual reality is used to model and explore familiar 

environments such as kitchens, planes, offices, studios, ships, submarines, hospitals etc , It is 

also used to explore unfamiliar environments such as molecules, atoms, galaxies, viruses, 

crystals etc , VR is creating new ways of manipulating and visualizing all types of data [11] It 

is also used to train surgeons for new surgical skills [12]

2 2 5 Computer graphics and Medical imaging

The role of accurate investigation and diagnosis and diagnosis in the management of all 

disease is unquestionable Medical imaging not only provides for diagnosis but also serves to 

assist with planning and monitoring the treatment of diseases such as cancer The discovery 

of X-rays, invention of X-ray computed tomography (CT) and magnetic resonance imaging 

(MRI) changed the whole scenario Nowadays virtual reality is used to reconstruct images 

obtained using CT and MRI as an efficient and quicker way to diagnose and also to monitor 

the treatment This also lead to a new technique called virtual endoscopy [13] Three- 

dimensional models are constructed from CT and MRI image datasets [14] Two methods 

used for postprocessing the data are surface rendering and volume rendering These 

techniques are being studied at various research centers for a variety of applications such as 

exploration [15] and inspection of colon [16], tracheobronchial tree [17], blood vessels, urinary 

tract etc

2 2 6 Computer Graphics and Education

Computer graphics is widely used in education ranging from digital library to virtual 

classrooms With the development of immersive, non-immersive and hybrid applications [12] 

which gives an idea about virtual domain [11] coupled with world wide web promises and 

interesting concept of e-learning and virtual classroom [18] It is also used to teach various 

skills such as surgical training etc

2 3  A d v a n ta g e s  o f com p u ter  grap h ics

Graphics provides one of the most natural means of communicating with a computer In many 

design, implementation and construction processes today, the information the pictures can 

give is virtually indispensable Probably it is the most important means of producing pictures

11



since the invention of photography and television It has the added advantage that with the 

computer it possible to make pictures not only of concrete, real world objects but also of 

abstract, synthetic objects and of data that have no inherent geometry such as survey results

2  4  L ite ra tu re  s u rv e y

Many applications of computer aided design and scientific visualization regularly create 

complex environments [19] that exceed the interactive visualization capabilities of current 

graphics

Frederick Brooks [20] presented a virtual walkthrough concept, which aims at providing a tool 

in which virtual buildings designed but not yet constructed, can be explored by “walking 

through” them in the same way that simulated airplanes “fly” over virtual terrain However 

there are many questions left unanswered in terms of frame rate, levels of details to determine 

the definition of the object and wide-angle view

James Clark [21] suggested that by using an extension of traditional structure information, ora 

geometric hierarchy, five significant improvements to current techniques are possible 

Hierarchical approach was a unified structural approach that embodies the ideas of polygon- 

based approach, parametric surface approach and procedurally modelled objects First, the 

range of complexity of an environment was greatly increased while the visible complexity of 

any given scene was kept within a fixed upper limit Second, a meaningful way was provided 

to vary the amount of detail presented in a scene Third, “clipping” becomes a very fast 

logarithmic search for the resolvable parts of the environment within the field of view Fourth, 

frame-to-frame coherence and clipping define a graphical “working set” or fraction of total 

structure that should be present in primary store for immediate access by the visible surface 

algorithm Finally, the geometric structure suggests a recursive descent, visible surface 

algorithm in which the computation time potentially grows linearly with visible complexity of the 

scene In this structural approach multiple descriptions of the same object is defined which 

eventually increases the processing time

Enkson and Manocha [22] presented a new approach for fast display of large static and 

dynamic environments Given a geometric dataset, it is represented using a scene graph and 

automatically compute levels of detail (LODs) for each node in the graph For drastic 

simplification, i e , reducing the polygon count by an order of magnitude or more, hierarchical 

levels of details (HLODs) are computed which represent portions of the scene graph When 

objects move in dynamic environment, a subset of the HLODs were incrementally recomputed 

on the fly Some features of the approach are,
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• In a given environment the algorithm automatically computed the HLODs of the scene 

graph The implementation of this approach used GAPS algorithm [52] to compute 

LODs as well as HLODs

• By grouping objects to create HLODs, polygons were merged from different objects 

during simplification This merging increased the visual quality of drastic, or low 

polygon count, approximations

• LODs and HLODs are rendered using display lists, to make the best possible use of 

performance of current high-end graphics systems The HLOD recomputation 

algorithm can also utilize multiple processors on high-end graphics machines

The HLODs of a scene graph were computed as follows

• HLODs are recursively generated in a bottom-up fashion for each node in the scene 

graph

• HLODs of a leaf node are equivalent to its LODs

• HLODs of an intermediate node in the scene graph were computed by combining the

LODs of the node with the HLODs of its children The highest resolution HLOD for the 

node was formed by combining the coarsest LOD of the node with coarsest HLOD of 

each of its children A simplification algorithm was used to compute a series of 

hierarchical levels of detail for the node, starting from the initial HLOD The highest 

resolution HLOD will be discarded from the series once it was complete

The approach can efficiently handle scenes with a limited amount of dynamic changes 

Furthermore, it supports two rendering modes one that renders at a specified image quality 

and another that targets a desired frame rate But the algorithm can handle only limited 

amount of object motion in a large environment

Kenneth Hoff [23] proposed the concept of not drawing the objects which were not seen The 

increasing demand of 3D game realism -  in terms of both scene complexity and speed of 

animation - are placing excessive strain on the current low-level, computationally expensive 

graphics drawing operations Despite these routines being highly optimized, specialized and

often being implemented in assembly language or even in hardware, the ever increasing

number of drawing requests for a single frame of animation causes even these systems to 

become overloaded, degrading the overall performance To offset these demands and 

dramatically reduce the load on the graphics subsystem, Hoff [12] presents a system that 

quickly and efficiently finds a large portion of the game world that is not visible to the viewer
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each frame of animation, and simply prevent it from being sent to the graphics system A 

search mechanism is also built for unseen parts from common and easily implementable 

graphics algorithm

Lindstrom et al [24] presented an algorithm for real-time level of detail reduction and display of 

hi-complexity polygonal surface data A new level of detail display algorithm was applicable to 

surfaces that were represented as uniformly gridded polygon height fields The various steps 

in the algorithm are as follows

• Reduction in number of polygons rendered Typically, the surface grid was decimated 

by several orders of magnitude with no or little loss in image quality, accommodating 

interactive frames rates for smooth animation

• Smooth, continuous changes between different surface levels of detail The number 

and distribution of rendered polygons change smoothly between successive frames, 

affording maintenance of consistent frame rates

• Dynamic generation of levels of detail in real-time The need for expensive generation 

of multiresolution models ahead of time was eliminated, allowing dynamic changes to 

the surface geometry to be made with little computational cost

• Support for a user-specified image quality metric The algorithm was easily controlled 

to meet an image accuracy level within a specified number of pixels This 

parameterisation allows for easy variation of the balance between rendering time and 

rendered image quality

The algorithm used a compact and efficient regular grid representation, and employed a 

variable screen-space threshold to bound the maximum error of the projected image A coarse 

level of simplification was performed to select discrete levels of details for blocks of surface 

mesh, followed by further simplification through repolygonalization in which individual mesh 

vertices were considered for removal These steps compute and generate the appropriate 

level of detail dynamically in real-time, minimizing the number of rendered polygons and 

allowing for smooth changes in resolution across areas of the surface The implementation of 

the algorithm for approximating and rendering digital terrain models and other height fields, 

led to a consistent performance at interactive frame rates with high image quality

Chamberlain et al [25] presented a new method for accelerating the rendering of complex 

static scenes The approach was to construct a spatial hierarchy of cells over the scene and to 

associate with each cell a simplified representation of its contents This hierarchical method 

accelerates the rendering process without greatly sacrificing image quality Each node in the
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hierarchy represented a region of the scene, or cell Associated with each cell was an 

approximation to the distant appearance of the geometry contained within the cell This 

approximation can be rendered in less time than the geometry within the cell, and was used in 

place of the geometry when the projected size of the cell on the image plane was sufficiently 

small The approach [25] consisted of subdividing the input scene using an octree The 

appearance of each cell in the octree was approximated using a colour cube -  a cube with a 

colour and opacity associated with each of its six faces The hierarchy was constructed as a 

preprocessing step and served as a multiresolution volumetric approximation to the original 

scene At display time, regions of the scene in the near field were drawn using actual 

geometry Regions further from the viewer were drawn by rendering the faces of their 

associated colour-cubes, with each cube selected from the hierarchy so that it projected no 

more than a pixel on the display The technique was applicable to unstructured scenes 

containing arbitrary geometric primitives and has sublmear asymptotic complexity The scene 

was rendered using a traversal of the hierarchy in which a cell’s approximation was drawn 

instead of its contents if the approximation was sufficiently accurate

The octree was traversed recursively to render the scene as shown in the algorithm listed 

below, starting at the root

Render(cell)

If no part of cell is in the view frustum return

If projected size of cell< e then

Draw cell’s colour-cube using a Z-buffer

else if cell is a leaf then

Draw cell’s geometry using a Z-buffer

else

for each child of cell (in back to front order) do 

Render(child)

end for

end if

e -  threshold value of the projected size of the cell on the screen

Even though the algorithm handled “suspension-like objects (such as leafy trees) well, it can 

produce noticeable artifacts when rendering continuous surfaces

Pfister et al [26] presented a paradigm called surface elements (surfels) to efficiently render 

complex geometric objects at interactive frame rates Unlike classical surface discretizations
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i e , triangles or quadrilateral meshes, surfels are point primitives without explicit connectivity 

Surfel attributes comprise depth, texture colour, normal, and others As a pre-process, an 

octree-based surfel representation of a geometric was computed and during sampling, surfel 

positions and normals were optionally perturbed, and different levels of texture colours were 

prefiltered and stored per surfel While rendering, a hierarchical forward warping algorithm 

projects surfels to a z-buffer Visible surfels were shaded using texture filtering, Phong 

illumination and environment mapping using per-surfel normals Because of the simplicity of 

the operations, the surfel rendering pipeline is amenable for hardware implementation They 

concluded by saying that surfel rendering was capable of high image quality at interactive 

frame rates increasing the processor performance and possible hardware support will bring it 

into the realm of real-time performance

Teller and Sequin [27] presented a method for rendering architectural models at interactive 

frame rates They describe a method of visibility preprocessing that was efficient and effective 

for axis-aligned or axial architectural models The model was subdivided into rectangular cells 

whose boundaries coincide with major opaque surfaces After the subdivision, a maximal set 

of sightlmes was found from each cell to the rest of the subdivision The novel aspect of the 

algorithm was that sightlmes were not cast from discrete sample locations Instead, cell-to-cell 

visibility was established if a sightline exists from any point in one cell to any point in another 

The data structure created during this gross visibility determination was stored with each cell, 

for use during an interactive walkthrough phase

Non-opaque portals are identified on cell boundaries and used to form an adjacency graph 

connecting the cells of the subdivision They also made two simplifying assumption in which 

they restrict the attention to “faces” that are axial line segments in the plane i e line segments 

parallel to either x or y-axis and also the coordinate data occur on a grid Then they compute 

cell-to-cell visibility for each cell of the subdivision by linking pairs of cells between which 

unobstructed sightlmes exist The cell-to-cell visibility can be further dynamically culled against 

the view cone of an observer, again producing a reliable superset of the visible scene data, 

the eye-to-cell visibility The detailed data contained in each visible cell, along with associated 

normal, colour, texture data etc , were passed to hardware renderer for removal of hidden 

surfaces (including those polygons invisible to observer, which was crucial) The two-fold 

model pruning described admits a dramatic reduction in the complexity of the exact hidden- 

surface determination that must be performed by a real-time rendering system

During an interactive walkthrough phase, an observer with a known position and view cone 

moved through the model At each frame, the cell containing the observer was identified, and
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the contents of potentially visible cells were retrieved from storage The set of potentially 

visible cells were then sent to a graphics pipeline for hidden surface removal and rendering 

But generalising the visibility computations to non-axial scenes posed a problem, which was of 

conceptual and technical nature Even though the method produces sightlines through portals 

in two dimension it failed when the portals are in three-dimension

Brodsky and Watson [28] presented an algorithm, R-Simp, for simplification of large models at 

interactive speeds The algorithm was fast and guaranteed to display results within a given 

time limit and of good quality R-Simp was inspired by splitting algorithms from the vector 

quantization literature [29] The models were simplified in reverse, beginning with an 

extremely coarse approximation and refining it At every iteration of the algorithm, the number 

of vertices in the simplified model was known, enabling control of output model size 

Approximations of surface curvature guide the simplification process, permitting preservation 

of important model features, and thus a reasonable level of output model quality Performing 

simplification in a reverse direction makes it possible to refine intermediate output as long as 

some state of information was saved Because of its divide and conquer approach, the 

algorithm can be extended to create continuous level of detail hierarchies The algorithm’s 

complexity was 0{n, log n0), where n, was the size of the input model and n0 was the size of 

the output model This enables the algorithm to scale linearly with respect input size for a 

given output size

The algorithm begins with the triangulated model in a single cluster (cluster -  collection of 

faces from the original model) The initial cluster was then divided into eight sub-clusters 

These eight sub-clusters were then iteratively divided until the required number of clusters 

was reached Clusters were chosen for division based on the amount of normal variation on 

the surface in the cluster The three steps of the algorithm are

• Initialisation global face and vertex lists were created, as well as vertex and vertex -  

face adjacency lists Also eight clusters were created

• Simplification the model simplification consists of four stages

a Cluster with most face normal variation was chosen

b Based on the amount and direction of the face normal variation clusters 

were partitioned

c The amount of face normal variation in each of the sub-clusters was 

computed

d Iteration until the required number of clusters was reached
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• Post processing a representative vertex was computed for each cluster that was left 

and the model was retnangulated

It was also possible to further refine the earlier simplifications by using them as input to the 

algorithm As mentioned earlier the algorithm fails to produce a simplified model in a given 

time frame if the input model is extremely large Since the algorithm simplifies in a coarse to 

fine direction, it should be well suited for application in progressive transmission of 3D models

Erikson and Manocha [30] proposed a new approach for simplifying polygonal objects The 

approach in general works on models that contain both non-manifold geometry and surface 

attributes It was automatic since it required no user input to execute and returns approximate 

error bounds used to calculate switching distances between levels of detail, or LODs The 

algorithm called General and Automatic Polygonal Simplification, or GAPS for short, uses an 

adaptive distance threshold and surface area preservation along with a quadric error metric to 

join unconnected regions of an object

The name comes from the ability to fill in the gaps of an object GAPS used a new object 

space error metric that combines approximations of geometric and surface attribute error It 

efficiently produces high quality and drastic simplifications of a wide variety of objects, 

including complicated pipe structures This ability to perform drastic simplification allowed it to 

create levels of detail to accelerate the rendering of large polygonal environments, consisting 

of hundreds of objects

The algorithm can be described as follows

• Value of x (distance threshold) checked and if necessary the value was doubled 

Doubling occurs when either there were no more local pairs in the heap or when the 

pair on top of the heap had error greater than x When the value of x was doubled, 

error and legality of all active pairs must be recalculated

• Top pair from heap was extracted Two vertices in the pair were deleted from the hash

table with grid cells of size x New vertex was inserted into hash table to find virtual

edges Quadrics and point clouds were added and information was stored with new 

vertex

• Pairs affected by vertex merge were either updated or deleted

• Iteration until a specified number of vertices or faces remain or an error threshold had 

been reached
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The algorithm handled all polygonal objects, whether they were manifold meshes or 

unorganised lists of polygons. As a preprocess, objects were triangulated and then 

represented by sharing vertices and calculating normals. A simple internal representation was 

used for objects where faces consist of three corners. Each corner had a pointer to a vertex 

and a vertex attribute. Vertices consisted of a three dimensional point plus a list of pointers to 

adjacent faces. Even though two objects may be in close proximity but the algorithm will never 

merge disconnected regions between the pair because it simplified them separately.

Cohen et al [31] proposed the idea of simplification envelopes for generating hierarchy of 

level-of-detail approximations for a given polygonal model. Simplification envelopes were a 

generalisation of offset surfaces. Given a polygonal representation of an object, they allow the 

generation of minimal approximations that were guaranteed not to deviate from the original by 

more than a user-specifiable amount while preserving global topology. The original polygonal 

surface was surrounded by two envelopes and simplification was performed within this 

volume. This approach guaranteed that all points of an approximation were within a user- 

specifiable distance ‘e’ from the original model and that all points of the original model are 

within a distance ‘e’ from the approximation. Simplification envelopes provide a general 

framework within which a large collection of existing simplification algorithms can run. They 

demonstrated this technique in conjunction with two algorithms, one local and the other global. 

The local algorithm based on the work of [32], [33] and [34], provided a fast method for 

generating approximations to large input meshes. It begins by placing all vertices in a queue 

for removal processing. For each vertex in the queue an attempt was made to remove it by 

creating a hole (removing the vertex’s adjacent triangles) and attempting to fill it. If the hole 

was successfully filled, the mesh modification was accepted, the vertex was removed from the 

queue and its neighbours were placed back in the queue. If not, the vertex was removed from 

the queue and the mesh remains unchanged. This process terminates when the global error 

bounds eventually prevent the removal of any more vertices.

The global algorithm [35] provided the opportunity to avoid local minima and possibly achieve 

better simplifications as a result. Each approximation attempts to minimise the total number of 

polygons required to satisfy the above constraint. The key advantages of their approach are

• General technique providing guaranteed error bounds for genus-preserving 

simplification.

• Automation of both the simplification process and the selection of appropriate viewing 

distances.
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• Prevention of self-interaction.

• Preservation of sharp features.

• Allows variation of approximation distance across different portions of a model.

While implementing this approach the authors chose to accept only manifold triangle meshes 

(or bordered manifolds). This means that each edge is adjacent to two (one in case of a 

border) triangles and that each vertex is surrounded by single ring of triangles.

Li and Watson [36] presented “Semisimp” a tool for semiautomatic simplification of three 

dimensional polygon models. Existing automatic simplification technology was quite mature, 

but it seems not sensitive to the heightened importance of distinct semantic model regions 

such as faces and limbs, nor to simplification constraints imposed by model usage such as 

animation. “Semisimp” allowed the users to preserve such regions by intervening in the 

simplification process. Users can manipulate the order in which basic simplifications are 

applied to redistribute model detail, improve the simplified models themselves by repositioning 

vertices with propagation to neighbouring levels of detail, and adjust the hierarchical 

partitioning of the model surface to segment simplification and improve control of reordering 

and position propagation. “Semisimp” was a unique synthesis of simplification and 

multiresolution modelling functions, emphasizing the improvement of aggressively simplified 

models. It begins by accepting a fully detailed model as input and applying an automatic 

simplification algorithm to construct a simplification hierarchy. Users can then edit and 

improve this hierarchy for their target application in three ways.

• Order manipulation: User can adjust the distribution of detail on simplified models by 

changing the order in which model regions were simplified. This was accomplished 

through matching changes in the order in which the simplification hierarchy was 

traversed.

• Geometric manipulation: User can improve the positions of vertices in simplified 

models. These improvements can be automatically propagated to both simpler and 

more detailed models. Propagation to more detailed models can be attenuated to 

preserve the shape of the original model.

• Hierarchy manipulation: User can halt the simplification, modify the partitioning of the 

original model described by the partial simplification hierarchy to match semantics and 

intended model use, and continue simplification in a segmented fashion. Since both 

geometric and order manipulation operate in the context of the simplification hierarchy, 

their effectiveness was greatly increased.

But geometric manipulations propagated to descendants can easily introduce discontinuities 

in the model surface when the manipulations deviate significantly from the shape of the input
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model. The authors suggested that it might be possible to reduce these discontinuities with 

more advanced filtering and smoothing schemes. Propagated geometric manipulations can 

also alter previously made geometric manipulations. The authors suggested that it was 

possible to elaborate interpolation scheme between manipulated nodes of the simplification of 

hierarchy. Also “Semisimp” takes a long time to process larger models.

Low and Tan [37] presents a technique to automatically compute approximations of polygonal 

representations of 3D objects. It was based on a previously developed model simplification 

technique which applies vertex-clustering.

Figure. 2.1 Vertex clustering method 

The process or method has the following steps:

i. Grading -  a weight was computed for each vertex according to its visual 

importance.

ii. Triangulation -  polygons were divided into triangles.

iii. Clustering -  vertices were grouped into clusters based on geometric proximity.

iv. Synthesis -  a vertex representative was computed to replace the vertices in each 

cluster and thus simplified some triangles into edges and points.

v. Elimination -  duplicated triangles, edges and points were removed, and

vi. Adjustment of normals -  normals of resulting edges and triangles were 

reconstructed.

Major advantages of the vertex-clustering technique were its low computational cost and high 

data reduction rate, and thus suitable for use in interactive applications. The authors improved 

the technique with careful consideration of approximation quality and smoothness in 

transitions between levels of simplification, while maintaining its efficiency and effectiveness. 

Its major contributions include: accuracy in grading vertices for indication of their visual 

importance, robustness in clustering for better preservation of important features and

21



consistencies between levels of simplification, thick-lines with dynamic normals to maximize 

visual fidelity, and exploitation of object and image space relationship for levels-of- 

simplification.

Lindstrom and Turk [38] were under the view that conventionally, in order to produce high- 

quality simplified polygonal models, the information about the original model must be retained 

and used during the simplification process. But the authors said that excellent simplified 

models can be produced without the need to compare against the information from original 

geometry while performing local changes to the model. Their approach was to use edge 

collapses to perform simplification like many other methods. This approach selected an edge 

and replaces it with a single vertex. This removed one vertex, three edges and two faces. The 

position of the new vertex was selected so that the original volume of the model was

maintained and to minimize the per-triangle change in volume of the tetrahedra swept out by

those triangles that were moved. The surface areas near the boundaries were maintained and 

the per-triangle area changes are minimized. Two decisions were central to a simplification 

method that uses edge collapse:

i. The position of the new vertex created by the edge collapse and

ii. The ordering of the edges to be collapsed (the edge priority)

Volume and surface area information were used to make both the decisions. The placement 

of the new vertices was constrained so that the volume of the closed model was not altered. If 

the new vertex was near a boundary of the model, the surface area surrounding the edge that 

was being collapsed was preserved. Often these two constraints do not fully determine the 

position of the new vertex. The volume swept out by triangles that are moved by the operation 

were minimized. The area swept out by boundary edges were also minimized and finally 

attempt to produce well-shaped triangles if the vertex was still underconstrained. The method 

unifies different constraints by describing each of them as one or more planes in which the 

new vertex must lie. When three non-parallel planes were determined, the vertex position was 

fully defined. Calculating the edge collapse priorities and the positions of the new vertices 

requires only the face connectivity and the vertex location in the intermediate model.

Maciel and Shirley [39] presented a visual navigation system using textured clusters. The 

system used texture-mapped primitives to represent clusters of objects to maintain high and 

approximately constant frame rates. In cases of more unoccluded primitives inside the viewing 

frustum that can be drawn in real time on the workstation, this system ensures that each 

visible object, or a cluster that included it, was drawn in each frame. The system also supports
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the use of traditional level-of-detail representations for individual objects, and supports the 

automatic generation of certain type of level-of-detail for objects and cluster of objects. The 

system supports the concept of choosing a representation from among those associated with 

an object that accounts for the direction from which the object was viewed. The system as a 

whole can be viewed as generalization of the level-of-detail concept, where the entire scene 

was stored as a hierarchy of levels-of-detail that was traversed top-down to find a good 

representation for a given viewpoint. The system does not assume that visibility information 

can be extracted from the model and is thus especially suited for outdoor environments.

Westermann and Ertl [40] proposed an idea for extensively using graphics hardware for the 

rendering of volumetric data sets in various ways. OpenGL [41] and its extensions provide 

access to advanced per-pixel operations available in the rasterisation stage and in framebuffer 

hardware of modern graphics workstation. Westermann and Ertl dealt with the efficient 

generation of a visual representation of the information present in volumetric data sets. For 

scalar-valued volume data two standard techniques, the rendering of iso-surfaces, and the 

direct volume rendering, have been developed to a high of degree sophistication. However, 

due to the huge number of volume cells, which have to be processed, and to the variety 

different cell types only a few approaches allow parameter modifications and navigation at 

interactive rates for realistically sized data sets.

Figure. 2.2. Clipping geometries
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They introduced the concept of clipping geometries by means of stencil buffer operations and 

exploit pixel textures for mapping of volume data to spherical domains. The approach was 

pixel oriented, taking advantage of rasterisation functionality such as colour interpolation, 

texture mapping, colour manipulation in the pixel transfer path, various fragment and stencil 

tests, and blending operations. The idea was to determine all pixels which were covered by 

the cross section between the object and the actual slicing plane (Figure 2.2).

These pixels were locked, thus preventing the textured polygon from getting drawn to these 

locations. The locking mechanism was implemented exploiting the OpenGL stencil buffer test. 

It allows pixel updates to be accepted or rejected based on the outcome of a comparison 

between a user defined reference value and the value of the corresponding entry in the stencil 

buffer. Before the textured polygon gets rendered the stencil buffer has to be initialised in such 

a way that all colour values written to pixels inside the cross-section will be rejected. In order 

to determine for a certain plane whether a pixel was covered by a cross section or not, the 

clipping object was rendered in polygon mode. An additional clipping plane was enabled 

which has the same orientation and position as the slicing plane. All back faces with respect to 

the actual viewing direction were drawn and everything in front of the plane was clipped. 

Wherever a pixel would have been drawn the stencil buffer was set. By changing the stencil 

test appropriately, rendering the textured polygon, now, only affects those pixels where the 

stencil buffer was unchanged.

3D texture mapping and advanced pixel transfer operations were combined in a way that 

allows the iso-surface to be rendered on a per-pixel basis. The approach was similar to 

traditional volume ray-casting for the display of shaded iso-surfaces. If the material values 

along the ray exceeded the iso-value for the first time which means the surface was hit. At that 

location the material gradient was computed which was then used in the lightening 

calculations. The texture samples above the iso-value nearest to the image plane were 

evaluated by OpenGL alpha test, which was used to reject pixels, based on the outcome of a 

comparison between their alpha component and a reference value. Each element of the 3D 

texture was assigned the material value as it’s alpha component. Texture mapped rendering 

was performed, but pixel values were only drawn if they satisfy the z-buffer test and also the 

alpha value should be greater or equal to selected iso-value. This idea can be used only in 

high-end graphics workstations.

Guthe et al [42] presented an algorithm for rendering very large volume data sets at 

interactive frame rates on standard PC hardware. The algorithm accepts scalar data sampled 

on a regular grid as input. The input data was converted into a compressed hierarchical
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wavelet representation in a preprocessing step. The representation was much more compact 

that allows for an efficient extraction of different levels of detail of the data set, since the 

wavelet transformation was equivalent to applying a series of lowpass and highpass filters to 

the original data. During rendering, the wavelet representation was decompressed on-the-fly 

and rendered using hardware texture mapping. For rendering the volume data was 

represented in the form of a multiresolution octree: the root node in the tree contained a very 

rough approximation of the data set. The task was to extract information relevant for a certain 

point of view. This can be done in two steps: a) Projective classification of step was performed 

to adjust the resolution of the data set to the screen resolution. B) A consideration of 

approximation error was incorporated into the classification algorithm to further reduce the 

amount of data to be processed in each frame. The level of detail used for rendering was 

adapted to the local frequency spectrum of the data and its position relative to the viewer. The 

problem of out-of-core rendering was latency due to hard disk seek times.

Aliga et al [43] presented a framework for rendering very large 3D models at nearly interactive 

frame rates. The framework scales with model size and it can integrate multiple rendering 

acceleration techniques including visibility culling, geometrical levels of detail, and image 

based approaches. A database representation scheme was used by the framework for the 

massive models. Data representation and database management was the major issue in 

integrating multiple techniques for the display of large models. A representation should 

support multiple rendering acceleration techniques and be scalable across computers with 

different amounts of memory. A scene graph represents the model in a bounding volume 

hierarchy, a viewpoint cell structure to manage the run-time walkthrough, and geometry and 

texture prefetching to make the system adaptable to variable memory sizes.

Scene graph was a bounding volume hierarchy in which each node groups spatially proximate 

geometry. Many real-world models had an object hierarchy which groups geometry according 

to non-spatial criteria. On such models, a top-down spatial subdivision of polygon centers 

were performed to find a usable hierarchy. An octree style subdivision recursively subdivided 

the model, terminating when either a minimum number of polygons per leaf or a maximum 

depth was reached. A bounding volume hierarchy for polygons were computed by first 

computing the bounding boxes of each leaf of the spatial subdivision and then propagate 

those boxes to the root of scene graph. An important component of a framework for a scalable 

walkthrough system was a method for localising the geometry rendered. A method based on 

viewpoint cells was used and cull boxes to provide this localisation. The 3D space of the input 

model was partitioned into a set of cells. The cull box, associated with each cell, was an axis- 

aligned box containing cell and was considerably larger than the cell itself. When the
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viewpoint was in a particular cell all the geometry that lies completely outside the cell’s cull 

box were culled. The geometry needed to render the user’s view was typically only a small 

subset of entire model. Only that geometry and textured depth mesh data needed to render 

for the current cell must actually be in main memory. An effective pipeline was provided to 

manage the allocation of system resources among different techniques. The framework was 

not focussed on high-density objects and also models with moving parts.

LaMar et al [44] presented a magnification lens technique for volume visualisation. Volume 

visualisation of large data sets suffers from either the user can visualise the entire data set 

and loosing small details or visualise small region and loose context. The issue with the 

magnification lens is the boundary or the transition region. The lens centre and the exterior 

have constant zoom factor and are simple to render. It was the border region that blends 

between the external and internal magnification and has a non-constant magnification. The 

perspective correct textures capability, available in most current graphics system was used to 

produce a lens with a tessellated border region that approximates linear compression with 

respect to the radius of magnification of lens. The concept failed to efficiently clip the lens 

against individual tiles.

Xia et al [45] presented an algorithm for performing adaptive real-time level of detail based 

rendering for triangulated polygonal models. The simplifications were dependent on viewing 

direction, lighting and visibility and were performed by taking advantage of image-space, 

object-space and frame-to-frame coherences. In contrast to the traditional approaches of 

precomputing a fixed number of level of detail representations for a given object the approach 

involves statically generating a continuous level of detail representation of the object. This 

representation was then used at run-time to guide the selection of appropriate triangles for 

display. The list of displayed triangles was updated incrementally from one frame to the next. 

The approach was more effective than the current level of detail based rendering approaches 

for most scientific visualization applications where there are a limited number of highly 

complex objects that stay relatively close to the viewer. The approach was also applicable for 

scalar as well as vector attributes.

Schaufler and Sturzlinger [46] presented a method by which a small detail in the model was 

represented by many spatially close points. The approach implements a reasonable fast 

method to generate several LODs from polygonal object models. The algorithm was not 

required to exactly keep the topology of the geometry. Nevertheless the generated LODs 

resemble the original model closely though with less and less polygons. The coarsest LOD
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should not contain more than a few dozen polygons for an original object consisting of several 

thousands polygons. The algorithm can be described as followed:

• A hierarchical clustering algorithm was applied to the vertices of the object model to 

produce a tree of clusters.

• For each LOD a new object model was generated using cluster representatives 

instead of original polygon vertices.

• Removal of multiple occurring, redundant primitives from each LOD.

In the second stage a layer in the cluster tree was determined which described the way the 

LOD approximated the original model. Using the clusters of this layer, each polygon had its 

vertices replaced by the representative of the cluster it belonged to. This may leave the 

number of vertices unchanged, the number of vertices may be reduced, the polygon may 

collapse into a linestroke or its new representation may be a single point. In this way formerly 

unconnected parts of the model may eventually become connected when separated points of 

different polygons fall into one cluster and were, therefore, mapped onto one cluster 

representative. However, as the clustering algorithm only clusters spatially close points the 

overall appearance of the object remains the same depending on the degree of approximation 

desired in the current LOD. In particular polygons become bigger if their points were moved 

apart through clustering. Therefore the surface object will never be torn apart.

A hierarchical clustering algorithm was used to generate hierarchy of clusters from the 

vertices of the object’s polygons. Each cluster was replaced by one representative point and 

polygons are reconstructed from these points. A static detail elision algorithm was 

implemented to prove the practicability of the method.

Chhugani et al [47] presented vLOD, a scalable system for performing interactive 

walkthroughs of very large geometric models on commodity graphics hardware. The system 

performs work proportional to the required detail in visible geometry. A pre-computation phase 

was used to determine cell based visibility as well as level of detail. This pre-computation 

phase generates the geometry visible from a view cell at the right level of detail. The changes 

between the neighbouring cell’s vLOD were encoded, which was not required to be memory 

resident. Incremental reconstruction of vLOD for the current view-cell was done then it was 

rendered. Due to the small runtime overhead, it was possible to display models with over tens 

of million polygons at interactive framerates with less than 1 pixel error. The performance of 

rendering algorithm was directly dependent on the size of vLODs and the implementation was 

unable to control the size of vLODs for each cell. When the view-cells were subdivided it only
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increased the storage requirement without sufficient improvement in the vLOD size. Only 

limited update of detail was allowed during rendering.

Cohen et al [48] presented GLOD, a geometric level of detail system integrated into the 

OpenGL rendering library. GLOD provides a low-level lightweight API for level of detail 

operations. Unlike heavyweight scene graph systems, GLOD supported incremental adoption 

and may be easily integrated into existing OpenGL applications. GLOD provided a simple path 

for developers to add level of detail to their system, while retaining a minimalist close-to-the 

hardware approach compatible with high performance rendering and future extension of the 

OpenGL layer. GLOD is not a scene graph system.

The fundamental principles that lead to the formation of GLOD and its API are:

• Incremental adoption: Unlike scene graph approaches, users of the GLOD API should

not be forced into use of the entire pipeline, but should instead be allowed to

independently adopt just the portions of the system that they desire.

• FastPath Principle: for every type of LOD task, the API must support a way to achieve

that task in a high performance fashion.

• The API should be straightforward to use, especially to any developer already familiar 

with OpenGL.

• Two forms of extensibility were required. First, through development efforts, GLOD API 

must be capable of supporting a wide variety of geometric level of detail tasks. 

Second, the GLOD API must not lose its usefulness through lack of development, but 

instead must evolve without code redesign as OpenGL acquires new extensions.

This minimalist API should leave as much as possible to the user, keeping the interface 

simple for simple applications while providing parameters where necessary for advanced 

users to hook into features necessary for high-performance rendering.

Schmalstieg and Schaufler [49] presented a new class of polygonal simplification called 

Smooth LODs. A very large number of small details encoded in a data stream allows a 

progressive refinement of the object from a very coarse approximation to the original high 

quality representation. Advantages of the new approach includes progressive transmission 

and encoding suitable for networked applications, interactive selection of any desired quality, 

and compression of the data by incremental and redundancy free coding.
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Funkhouser and Sequin [50] described and adaptive display algorithm for interactive frame 

rates during visualization of very complex environments. The algorithm relies upon a 

hierarchical model representation in which objects were described at multiple levels of detail 

and can be drawn with various rendering algorithms.

An object tuple(0,L,R) was as the instance of the object O, rendered at level of detail L, with 

rendering algorithm R. The two heuristics for object tuples were defined as Cost(0,L,R) and 

Benefit(0,L,R)- The Cost heuristic estimates the time required to render an object tuple; and 

the Benefit heuristics estimates “the contribution of model perception” of a rendered object 

tuple. S was defined as the set of object tuple rendered in each frame. Using these 

formalisms, the approach for choosing a level of detail and rendering algorithm for each 

potentially visible object can be stated as:

Maximize:

I s Benefit(0,L,R);

Subject to:

Zs Cost(0,L,R) < TargetFrameTime.

As such, it can be applied to a wide variety of problems that require images to be displayed in 

fixed amount of time, including adaptive ray tracing (i.e. given a fixed number of rays, cast 

those that contribute most to the image), and adaptive radiosity (i.e. given fixed number of 

form-factor computations, compute those that contribute most to the solution). Using this 

approach it is possible to generate images in a short, fixed amount of time, rather than waiting 

much longer for images of the highest quality attainable.

For this approach to be successful, Cost and Benefit heuristics had to computed quickly and 

accurately. Unfortunately, Cost and Benefit heuristics for a specific object tuple cannot be 

predicted with perfect accuracy, and may depend on other object tuples rendered in the same 

image. A perfect cost heuristic may depend on the model and features of the graphics 

workstation, state of the graphics system, state of the operating system and state of the other 

programs running on the machine. A perfect Benefit heuristic would consider occlusion and 

colour of other object tuples, human perception and human understanding. It was not possible 

to quantify all of these complex factors in heuristics that can be computed efficiently. However, 

using several simplifying assumptions, Cost and Benefit heuristics that are both efficient to 

compute and accurate enough to be useful was developed.
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The idea behind the algorithm was to adjust the image quality adaptively to maintain a 

uniform, user-specified target frame rate. A constrained optimisation was performed to choose 

a level of detail and rendering algorithm for each potentially visible object in order to generate 

the best image possible within the target frame time. The aim was to find combinational levels 

of details and rendering algorithms for all potentially visible objects that produces the best 

image possible within the target frame rate.

Funkhouser et al [51] presented techniques for managing large amounts of data during an 

interactive walkthrough of an architectural model. These techniques were based on a spatial 

subdivision, visibility analysis, and a display database containing objects described at multiple 

levels of detail. In each frame of the walkthrough, a set of objects were computed to render

i.e. those potentially visible from the observer’s viewpoint, and a set of objects to swap into 

memory, i.e. those that might become visible in near future. An appropriate level of detail was 

chosen at which to store and to render each object, possibly using very simple 

representations for objects that appear small to the observer, thereby saving space and time. 

Using these techniques large portions of the model, which were irrelevant from observer’s 

viewpoint, were culled and thereby achieving interactive frame rates.

Volino and Thalmann [52] proposed a fast geometrical wrinkling algorithm which can be 

implemented on top of any rough surface deformation model, and which modulated the 

amplitude of a predefined wrinkle height map in order to simulate metric surface conservation. 

A wrinkle pattern was initially applied on the animated surface mesh. The native edge length 

of the mesh was used to compute dynamically the amplitude of the wrinkles as the mesh was 

deformed using a fast and robust geometric model. Several wrinkle patterns can be combined 

to simulate complex deformations.

Hong et al [53] presented a method called 3D virtual colonoscopy which incorporates several 

advanced visualisation techniques to enable the physician to virtually examine the inner 

surface of the colon for identifying and inspecting colonic polyps. Using normal optical 

colonoscopic procedures spiral CT scan of patient’s abdomen are taken and the 2D slices are 

reconstructed into a 3Dvolume. After the construction of 3Dvolume, finding the key points and 

determining the camera direction at each key point generate a fly-through animation along the 

inside of the colon.

Beckhaus et al [54] presented a system which can deal with rapidly changing user interest in 

objects of a scene or model as well as with dynamic models and changes of the camera 

position introduced interactively by the user or through cuts. The system, CubicalPath, a field
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based camera control system that helps with the exploration of virtual environments. The 

CubicalPath method operated only on the number of the cubes that define that cube space. It 

uses an “abstract” and simplified version of the geometry data through its cubes. Many 

limitations such as the camera could end up alternating between two objects having the same 

attraction instead of first viewing on objects for a while and then moving to other, occurrence 

of unwanted local minima.

Pridmore et al [55] presented a method by which camera orientation relative to the pipe axis 

may be recovered from a single frame of a survey video of a small-bore brick sewer. If it can 

be fully recovered, the pipe axis provided part of a frame of reference within which three- 

dimensional descriptions of sewer shape may be expressed. The concept of the vanishing 

point was introduced and it was shown that the vanishing point position supplies information 

about the relative orientations of the camera and pipe axes. A method for the automatic 

detection of vanishing points is presented and used to analyse the camera motion underlying 

a number of sewer survey videos. The technique might form an active part of a more 

comprehensive image understanding system recovering pipe shape and/or be used as an 

experimental tool during the design of such a system. The method fails when there is a bend 

section in the pipe.
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CHAPTER 3 : SOFTWARE AND GRAPHICS STANDARDS

3.1  Introduction
A model is a representation of some features of a concrete or abstract entity. The purpose of 

a model of an entity is to allow people to visualise and understand the structure or behaviour 

of the entity and to provide a convenient vehicle for experimentation with and prediction of the 

effects of input or changes to the model. A selection of modelling and animation software are 

available to cater people in various fields. Not all the softwares can cater the various needs of 

the fields. Some software are developed purpose built to cater a specific area or task. This 

can be termed as both advantageous and also disadvantageous. Since the software is 

developed for a particular task or with limitations the user or developer can maximise the 

available resources which is advantageous and this also acts as a disadvantage because the 

same software cannot be used for other tasks or simply it is not flexible. Developers analyse 

the needs and impact of the software before deciding on the framework and limitations of the 

software, which is crucial. The approach to the development can be roughly classified into two 

types, namely

1. Software or programmes developed using other software (eg. 3Dstudio MAX,

VRTSuperScape etc.)

2. Software developed using computer languages with or without various library fuctions.

(Eg. C,C++, PASCAL, FORTRAN, OpenGL, DIRECTX etc.,)

This chapter gives a brief overview of 3Dstudio MAX and also various features and flexibility 

of OpenGL, which along with C language was used to develop the software 3Dgen.

3 .2  3 D Studio MAX
3D Studio MAX referred as 3DS MAX is a single document application widely used to create 

professional quality 3D models, photo realistic images and film quality animation. The 

cornerstone of 3DS MAX is an integrated modelling environment. It performs 2D drawing, 3D 

modelling, and animation etc. within the unified workspace [56]. Various complex objects and 

shapes are predefined so that the user or the developer can build the model or scene by 

selecting various objects and entering the required information. A scene is a collection of 

various objects and or shapes in a particular fashion. 3DS MAX organizes the building of 

scene into seven basic categories: Geometry, Shapes, Lights, Cameras, Helpers, Space 

wraps, and systems and each category contains multiple subcategories. The user can edit the 

objects into their final form by changing parameters, applying modifiers and directly
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manipulating sub-object geometry. The modifiers are stored in a stack. The user can revert 

back at any time and change the effect of the modifier or removing it from the object.

It also provides a sophisticated materials editor to create realistic materials by defining 

hierarchies of surface characteristics. The surface characteristics can represent static 

materials or be animated for special effects. It allows the user to create lights with various 

properties to illuminate the scene. 3DS MAX has three types of lighting: omni, spot, directional 

lights.

• Omni light -  unfocussed light in all directions. It is like an unshaded bulb

• Directional light -  Parallel light rays in a single direction as the sun does at the surface 

if the earth.

• Spotlight -  focused beam of light towards a specified target point.

Lights can be set to any colour and can even animate the colour to simulate dimming or colour 

shifting lights. The lights can cast shadows, project images and create volumetric effects for 

atmospheric lighting. Cameras can be created which will have real-world controls for lens 

length, field of view and motion control such as dolly, pan and truck. Real world cameras use 

lenses to focus the light reflected by a scene onto a focal plane that has a light-sensitive 

surface. The distance between the lens and the light-sensitive surface is called focal length of 

the lens. Focal length affects how much of the subject appears in the picture. Lower focal 

length means more of the scene in the picture and higher focal length means less of the 

scene but shows greater detail of more distant object.

The field of view controls how much of the scene is visible and it is measured in degrees. If 

the focal length is longer then the field of view will be narrower and vice versa. Short focal 

lengths emphasize the distortions of perspective, making objects seem in-depth. Long focal 

lengths reduce perspective distortion, making objects appear flattened and parallel to the 

viewer. Camera objects in 3DS MAX simulate cameras by projecting geometry onto the view- 

plane defined by the camera’s position and orientation in the scene. The main parameter for a 

camera is its field of view, which determines how much of the view-plane is visible to the 

camera. There are two kinds of camera objects in 3DS MAX: target cameras and free 

cameras

• Target camera -  view the area around a target object. They are easier to use when the 

camera does not move along a path while rendering a scene or animation.
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• Free camera -  view the area in the direction the camera is aimed. Free cameras are 

easier to use when the camera’s position is animated along a path. They can bank as 

they travel the path, which Target cameras cannot.

Animation is based on a principle of human vision. If a person view a series of related still 

images in quick succession, then he will perceive them as continuous motion. Each individual 

image is referred to as a frame. Most of the frames in an animation are routine, incremental 

changes from the previous frame directed toward some goal. Important frames or keyframes 

will be created by master animator and the in-between frames or tweens will be created by 

assistants. A similar concept is used in 3DS MAX which acts as an animation assistant. If the 

user creates keyframes that record the beginning and end of each animated sequence, 3DS 

MAX automatically calculates the values for the in-between frames to produce the complete 

animation. 3DS MAX can animate just about any parameter in the screen. Modifier 

parameters such as a Bend angle or a Taper amount, material parameters, such as colour or 

transparency of the object and much more can be animated. Once the animation parameters 

are specified 3DS MAX renderer takes over the job of shading and rendering each frame 

resulting a high quality animation. Animation in 3DS MAX is a time based one and the time 

can be reconfigured to a format best suited to the work. Various animation tools, control 

features and modelling features that are not available in standard 3DS MAX can be developed 

using 3DS MAX plug-in software development kit (MAXSDK). Those features are developed 

as special plug-ins, which are small software programs written in C++ language using 

specially defined classes and functions. These classes and functions are defined by 3DS MAX 

itself. When the plug-ins are developed they can be added as an additional feature in 3DS 

MAX window application.

3 .3  Limitations
3DS MAX is a single document application and to generate the model the user needs to work 

in 3DS MAX which is compatible only in few operating systems. Even though it has animation 

features these features can’t be customised easily and they are not flexible enough to 

accommodate any kind of control or modelling mechanism. Any custom feature has to be 

developed as a plug-in using MAX SDK which not only requires programming knowledge and 

expertise in C++ language but also a clear knowledge and understanding of various classes 

and functions defined by SDK. 3DS MAX manages graphics interfaces and memory very well 

but falls short of providing a flexible environment generating the model dynamically with 

various motion and view controls. As such 3DS MAX occupies a good amount of hard disk 

space and the user needs to install a copy of 3DS MAX if he wants to generate the model in a
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different PC. 3DS MAX can generate a pre-defined and preplanned animation but it lacks 

features to animate the scene dynamically.

So softwares like 3DS MAX, VRTSuperscape etc., offers either high-end modelling, 

animation, and graphics management but lacks the flexibility in terms of developing 

customised controls dynamic model generation and dynamic on screen effects. Regarding 

compatibility also these aren’t that flexible enough to run in any operating system. This leads 

to exploration of features and advantages of graphics libraries supported by computer 

languages.

3 .4  Graphics standards
Since the purpose of computer graphics is the creation and manipulation of graphic scenes, it 

is important to be able to evaluate and modify these scenes in an interactive, fast-responsive 

way. Interactive computer graphics is needed, therefore, to give human control to the graphics 

process. One of the major requirements for a computer graphics system is that applications 

should be portable to any physical system and should be developed without hardware in mind. 

To attain this portability, standardisation of the graphics environment at the functional level is 

necessary, providing language and device independence.

Computer graphics (especially 3D graphics, and interactive 3D graphics in particular) is 

finding its way into an increasing number of applications, from simple graphing programs for 

personal computers to sophisticated modelling and visualization software on workstations and 

supercomputers. As the interest in computer graphics has grown, so has the desire to be able 

to write an application so that it runs on a variety of platforms with a range of graphical 

capabilities. A graphics standard eases this task by eliminating the need to write a distinct 

graphics driver for each platform on which the application is to run.

Several standards have succeeded in integrating specific domains of 2D graphics. The 

PostScript page description language [57] has become widely accepted, making it relatively 

easy to electronically exchange, and, to a limited degree, manipulate static documents 

containing both text and 2D graphics. The X window system [58] has become standard for 

UNIX workstations. A programmer uses X to obtain a window on a graphics display into which 

either text or 2D graphics may be drawn; X also provides a standard means for obtaining user 

input from such devices as keyboards and mice. The adoption of X by most workstation 

manufacturers means that a single program can produce 2D graphics or obtain user input on 

a variety of workstations by simply recompiling the program. This integration even works 

across a network: the program may run on one workstation but display on and obtain user

36



input from another, even if the workstations on either end of the network are made by different 

companies.

For 3D graphics, several standards have been proposed, but none has (yet) gained wide 

acceptance. One relatively well-known system is PHIGS (Programmer's Hierarchical 

Interactive Graphics System). Based on GKS [59] (Graphics Kernel System), PHIGS is an 

ANSI (American National Standards Institute) standard. PHIGS (and its descendant, PHIGS+ 

[60]) provides a means to manipulate and draw 3D objects by encapsulating object 

descriptions and attributes into a display list that is then referenced when the object is 

displayed or manipulated. One advantage of the display list is that a complex object need be 

described only once even if it is to be displayed many times. This is especially important if the 

object to be displayed must be transmitted across a low-bandwidth channel (such as a 

network). One disadvantage of a display list is that it can require considerable effort to re- 

specify the object if it is being continually modified as a result of user interaction. Another 

difficulty with PHIGS and PHIGS+ (and with GKS) is that they lack support for advanced 

rendering features such as texture mapping.

Figure 3.1 shows the model for standardising the graphics environment. The programming 

language interface level in this model specifies the boundary between an application program 

and a graphics support package.

Figure 3.1 Model for standardisation of graphics environment

It establishes the language bindings to various high-level languages making the functions in 

the graphics library appear to the programmer to the programmer like standard library 

functions.

3 .5  Device independence
Device independence allows a graphics application program to run on hardware of various 

types. This is accomplished through “logical” input and output devices available to the
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application software through the graphics support package, and mapped to the actual physical 

devices at execution time. The major portion of the standardization effort at the application 

programmer’s level is found within the computer graphics support package. Several graphics 

standards have been developed over the years, including CORE (1977, revised 1979) and 

GKS(graphics kernel system, 1984-85), developed particularly to address the need for 

standardized two-dimensional input and output. Some of these became official standards, 

accepted by the American National Standards Institute (ANSI), the International Standards 

Organization (ISO), and others [61]. These first efforts were followed by new standards 

addressing the needs of three-dimensional applications with a high level of interactivity. GKS- 

3D added three-dimensional capabilities to the existing standards.

To achieve portability, the standards establish for an application program minimize changes 

that allows it to address various input or output devices. Initially, the programmer establishes a 

modelling coordinate system in which the object is described, usually referred as world 

coordinate system. Two-dimensional square areas in the viewing surfaces on which the image 

will appear define the normalised device coordinate system. The normalised device 

coordinates are subsequently transformed to device coordinates. The application programmer

World Normalised Device
coordinate coordinate ----- ►► coordinate

system system system

Figure 3.2 Device independence in the process of picture creation

interacts with the normalised coordinate system in a consistent manner irrespective what 

physical output device is used.

PHIGS (Programmer Hierarchical Graphics System, 1984) and PHIGS+ include more 

powerful three-dimensional graphics functions and the ability to interactively create and 

manipulate complex graphics data. Graphics standards have also resulted from industry 

acceptance of specific interfaces proposed by various companies and not available within the 

official standards mentioned above. Notable among these is a system like X-Windows, a 

window management program, which, in addition to creating and manipulating variable size 

windows, supports a variety of input functions and two-dimensional graphics operations. A 

three-dimensional extension of the X-windows system was started in 1987 and named PEX, 

supporting various three-dimensional graphics capabilities.
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Also nonofficial industry standards have also proven to be important for interactive graphics 

and this includes Silicon Graphics OpenGL [62]. Even though there are many differences 

between PHIGS PLUS and the likes of OpenGL, they are far more alike, at least in their basic 

capabilities if not in their procedural Application Program Interface (API).

Standards like GKS and PHIGS make use of several commonly used graphics functions that 

are typically accessed through a collection of linkable library object programs. The standards 

attempt to describe an all-inclusive set of graphics functions, but it is obvious that any given 

set may be insufficient for some specific application.

To achieve device independence, the graphics standard must be able to receive and send 

data from/to various input and output devices. To accomplish this task, the standards make 

use of the concept of a logical workstation.

A logical workstation [63] is an abstract graphics device that provides a logical interface 

between the application program and the physical device. The term is different from “graphics 

workstation" or normal workstation. A logical workstation can be of 3 types

• Input only -  at least one logical input device and no output capability.

• Output only -  only display area available with no input capability.

Application
program

TT
GKS

Figure 3.3 GKS stores graphics data at the workstation level
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The concept of the logical workstation is embedded in both GKS and PHIGS. However, each 

standard handles the storage of graphics data used by the workstation differently. Graphics 

data are different from application model data that are maintained by the application program 

in a form suitable for its manipulation. The graphics data are maintained by graphical support 

package in a form suitable for graphics manipulation and rendering. GKS stores graphics data 

at the workstation level.

3 .6  PHIGS and SPHIGS
PHIGS stores information in a special purpose database called the central structure storage 

(CSS) and from there the data are sent to individual logical workstations. A structure in PHIGS 

is sequence of elements-primitives, appearance attributes, transformation matrices, and 

invocations of subordinate structures-whose purpose is to define a coherent geometric object 

[64]. Thus, PHIGS effectively stores multipurpose modelling hierarchy, complete with 

modelling transformations and other attributes passed as parameters to subordinate 

structures. PHIGS may be viewed as the specification of a device-independent hierarchical 

display list package; a given implementation is, of course, optimised for a particular display 

device, but the application programmer need not be concerned with that. Many PHIGS 

implementations are purely software; the most common arrangement is to do CSS 

manipulation in software and to use a combination of hardware and software rendering.

• Input/output -  combining the above characteristics.

Figure 3.4 PHIGS stores graphics data at a centralized location

PEX [65], which is often said to be an acronym for PHIGS Extension to X, extends X to 

include the ability to manipulate and draw 3D objects. (PEXlib [66] is the programmer's 

interface to the PEX protocol.), Among other extensions, PEX adds immediate mode
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rendering to PHIGS, meaning that objects can be displayed as they are described rather than 

having to first complete a display list. One difficulty with PEX has been that different suppliers 

of the PEX interface have chosen to support different features, making program portability 

problematic. PEX also lacks advanced rendering features, and is available only to users of X.

SPHIGS (Simple PHIGS) is a subset of PHIGS. It preserves most of PHIGS’s capabilities and 

power, but simplifies or modifies various features to suit straightforward applications. SPHIGS 

also has several enhancements adapted from PHIGS PLUS extensions. SPHIGS has been 

designed to introduce concepts in simplest possible way, not to provide a package that is 

strictly upward compatible with PHIGS. There are three major differences between SPHIGS 

and integer raster packages such as SRGP(Simple Raster Graphics Package) or Xlib 

package of the X window system. First, to suit engineering and scientific applications, 

SPHIGS uses a 3D floating-point coordinate system and implements the 3D viewing pipeline. 

The second, further-reaching difference is that SPHIGS maintains a database of structures. A 

structure is logical grouping of primitives, attributes and other information. Structures contain 

not only specifications of primitives and attributes, but also invocations of subordinate 

structures. Structures thus exhibit some of the properties of procedures in programming 

languages. In particular, just as procedure hierarchy is induced by procedures invoking 

subprocedures, structure hierarchy is induced by structures invoking substructures. Such 

hierarchical composition is especially powerful when one can control the geometry (position, 

orientation, size) and appearance (colour, style, thickness, etc.,) of any invocation of a 

substructure. The third difference is that SPHIGS operates in an abstract, 3D world coordinate 

system, not in 2D screen space, and therefore does not support direct pixel manipulation. 

Because of these differences, SPHIGS and SRGP address different sets of needs and 

applications and no single graphics package meets all needs.

3 .7  OpenGL

3 .7.1 Introduction
OpenGL ("GL" for "Graphics Library") provides advanced rendering features in either 

immediate mode or display list mode. While OpenGL is a relatively new standard, it is very 

similar in both its functionality and its interface to Silicon Graphics' IRIS GL, and there are 

many successful 3D applications that currently use IRIS GL for their 3D rendering [62].

Like the graphics systems already discussed, OpenGL is a software interface to graphics 

hardware. The interface consists of a set of several hundred procedures and functions that 

allow a programmer to specify the objects and operations involved in producing high-quality 

graphical images, specifically colour images of three-dimensional objects. Like PEX, OpenGL
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integrates 3D drawing into X, but can also be integrated into other window systems (e.g. 

Windows/NT) or can be used without a window system.

OpenGL draws primitives into a framebuffer subject to a number of selectable modes. Each 

primitive is a point, line segment, polygon, pixel rectangle, or bitmap. Each mode may be 

changed independently; the setting of one does not affect the settings of others (although 

many modes may interact to determine what eventually ends up in the framebuffer). Modes 

are set, primitives specified, and other OpenGL operations described by sending commands 

in the form of function or procedure calls [41].

Geometric primitives (points, line segments, and polygons) are defined by a group of one or 

more vertices. A vertex defines a point, an endpoint of an edge, or a corner of a polygon 

where two edges meet. Data (consisting of positional coordinates, colours, normals, and 

texture coordinates) are associated with a vertex and each vertex is processed independently, 

in order, and in the same way. The only exception to this rule is if the group of vertices must 

be clipped so that the indicated primitive fits within a specified region; in this case vertex data 

may be modified and new vertices created. The type of clipping depends on which primitive 

the group of vertices represents.

OpenGL provides direct control over the fundamental operations of 3D and 2D graphics. This 

includes specification of such parameters as transformation matrices, lighting equation 

coefficients, antialiasing methods, and pixel update operators. It does not provide a means for 

describing or modelling complex geometric objects. Another way to describe this situation is to 

say that OpenGL provides mechanisms to describe how complex geometric objects are to be 

rendered rather than mechanisms to describe the complex objects themselves.

The effects of OpenGL commands on the framebuffer are ultimately controlled by the window 

system that allocates framebuffer resources. It is the window system that determines which 

portions of the framebuffer that OpenGL may access at any given time and that 

communicates to OpenGL how those portions are structured. Similarly, display of framebuffer 

contents on a CRT monitor (including the transformation of individual framebuffer values by 

such techniques as gamma correction) is not addressed by OpenGL. Framebuffer 

configuration occurs outside of OpenGL in conjunction with the window system; the 

initialisation of an OpenGL context occurs when the window system allocates a window for 

OpenGL rendering. Additionally, OpenGL has no facilities for obtaining user input, since it is 

expected that any window system under which OpenGL runs, must already provide such 

facilities. These considerations make OpenGL independent of any particular window system.
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Since its first release in 1992, OpenGL has been rapidly adopted as the graphics API of 

choice for real-time interactive 3D graphics applications. OpenGL fosters innovation and 

speeds application development by incorporating a broad set of rendering, texture mapping, 

special effects, and other powerful visualization functions. Developers can leverage the power 

of OpenGL across all popular desktop and workstation platforms, ensuring wide application 

deployment. The OpenGL state machine is easy to understand, but its simplicity and 

orthogonality enable a multitude of interesting effects. OpenGL is a procedural rather than 

descriptive interface. In order to generate, for example rendering of a geometric primitive, the 

programmer must specify the appropriate sequence of commands to set up the camera view 

and modelling transformations, draw the geometry with specific colour, etc. Other systems 

such as VRML (virtual reality modelling language) are descriptive [67]; The user has to simply 

specify that an object of desired shape and size, for example, a blue coloured cube should be 

drawn at certain coordinates with out worrying about many parameters such as window 

management, screen depth, memory management, floating point precision and most 

importantly the way the object is constructed and rendered. The disadvantage of using a 

procedural interface is that the application must specify all of the operations in exacting detail 

and in the correct sequence to get the desired result. The advantage of this approach is that it 

allows great flexibility in the process of generating the image.

Different features of OpenGL functionality can be combined as building blocks to create 

innovative techniques and produce new graphics capabilities. One of the advantages in 

OpenGL is that (it’s procedures and or commands) it is not pixel specific. This allows OpenGL 

to be implemented across a range of hardware platforms.

Figure 3.5 OpenGL schematic diagram

OpenGL draws primitives into a framebuffer subject to a number of selectable modes. Each 

primitive is a point, line segment, polygon, pixel rectangle, or bitmap. Each mode may be 

changed independently; the setting of one does not affect the settings of others (although
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many modes may interact to determine what eventually ends up in the framebuffer). Modes 

are set, primitives specified, and other OpenGL operations described by issuing commands in 

the form of function or procedure calls.

Figure 3.5 shows a schematic diagram of OpenGL. Commands enter OpenGL on the left. 

Most commands may be accumulated in a display list for processing at a later time. 

Otherwise, commands are effectively sent through a processing pipeline.

The first stage provides an efficient means for approximating curve and surface geometry by 

evaluating polynomial functions of input values. The next stage operates on geometric 

primitives described by vertices: points, line segments, and polygons. In this stage vertices 

are transformed and lit, and primitives are clipped to a viewing volume in preparation for the 

next stage, rasterisation. The rasteriser produces a series of framebuffer addresses and 

values using a two-dimensional description of a point, line segment, or polygon. Each 

fragment so produced represents a portion of a primitive that corresponds to a pixel in the 

framebuffer. Then each fragment may be modified by texture mapping, after which it is fed to 

the next stage that performs operations on individual fragments before they finally alter the 

framebuffer. These operations include conditional updates into the framebuffer based on 

incoming and previously stored depth values (to effect depth buffering), blending of incoming 

fragment colours with stored colours, as well as masking and other logical operations on 

fragment values.

Finally, pixel rectangles and bitmaps (2D images) bypass the vertex processing portion of the 

pipeline to send a block of fragments directly through rasterisation to the individual fragment 

operations, eventually causing a block of pixels to be written to the framebuffer. A unique 

feature of OpenGL is that pixel rectangles and bitmaps (2D images) are also rasterised to 

produce fragments; fragments are treated the same no matter if they come from a geometric 

or image primitive. Values may also be read back from the framebuffer or copied from one 

portion of the framebuffer to another. These transfers may include some type of decoding or 

encoding.

3 .7 .2  Compatibility
OpenGL is supported on all UNIX workstations, and normally included with every Windows 

95/98/2000/NT and MacOS PC, no other graphics API operates on a wider range of hardware 

platforms and software environments. OpenGL runs on every major operating system 

including Mac OS, OS/2, UNIX, Windows 95/98, Windows 2000, Windows NT, Linux, 

OPENStep, and BeOS; it also works with every major windowing system, including Win32,
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MacOS, Presentation Manager, and X-Window System. OpenGL is callable from Ada, C, 

C++, Fortran, Python, Perl and Java and offers complete independence from network 

protocols and topologies [68].

3 .7 .3  Performance
A fundamental consideration in interactive 3D graphics is performance. Numerous 

calculations are required to render a 3D scene of even modest complexity, and in an 

interactive application, a scene must generally be redrawn several times per second. An API 

for use in interactive 3D applications must therefore provide efficient access to the capabilities 

of the graphics hardware of which it makes use. But different graphics subsystems provide 

different capabilities, so a common interface must be found.

The interface must also provide a means to switch on and off various rendering features. This 

is required both because some hardware may not provide support for some features and so 

cannot provide those features with acceptable performance, and also because even with 

hardware support, enabling certain features or combinations of features may decrease 

performance significantly. Slow rendering may be acceptable, for instance, when producing a 

final image of a scene, but interactive rates are normally required when manipulating objects 

within the scene or adjusting the viewpoint. In such cases the performance-degrading features 

may be desirable for the final image, but undesirable during scene manipulation.

3 .7 .4  Device independence or Low level
An essential goal of OpenGL is to provide device independence while still allowing complete 

access to hardware functionality. The API therefore provides access to graphics operations at 

the lowest possible level that still provides device independence. As a result, OpenGL does 

not provide a means for describing or modelling complex geometric objects. Another way to 

describe this situation is to say that OpenGL provides mechanisms to describe how complex 

geometric objects are to be rendered rather than mechanisms to describe the complex objects 

themselves.

OpenGL's emphasis on low-level functionality arises partly from the desire to expose as much 

performance of any underlying graphics hardware as is feasible. Sometimes this emphasis 

detracts from ease-of-use. OpenGL's error checking, for instance, is rudimentary so as not to 

burden implementations with potentially slow checks that would not be needed in a working 

program. A debugger is provided with OpenGL that can monitor commands and flag errors or 

suspicious conditions. Toolkits built on top of OpenGL also provide sophisticated error 

checking as well as other easy-to-use features that were consciously omitted from OpenGL.
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As a software interface for graphics hardware, OpenGL main purpose is to render two and 

three-dimensional objects into frame buffer. These objects are described as sequences of 

vertices or pixels. OpenGL performs several processing steps on this data to convert it to 

pixels to form the final desired image in the framebuffer. OpenGL draws geometric primitives 

such as points, lines, and polygons etc., which are defined by a group of one or more vertices. 

A vertex is defined as a point, may be a corner of a polygon or endpoint of a line. A vertex 

has associated data such as vertex coordinates, colours, normals, texture coordinates, and 

edge flags. Each vertex and its associated data are processed independently, in order, in the 

same way. The only exception to this rule is if the particular primitive doesn’t fit with the 

specified region or layout then the group of vertices will be clipped so that the particular 

primitive fits within a specified region. In this case the vertex data may be modified and new 

vertices are created. The type of clipping depends on which primitive the group of vertices 

represents.

Commands are always processed in the order in which they are received, although there may 

be an intermediate delay before a command takes effect. This means that each primitive is 

drawn completely before any subsequent effect takes effect. It also means that state querying 

commands return data that’s consistent with complete execution of all previously issued 

OpenGL commands.

3 .7 .5  Descriptive programming Vs Procedural programming
OpenGL provides a fairly direct control over the fundamental operations of two and three- 

dimensional graphics. This includes specification of such parameters as transformation 

matrices, lighting equation coefficients, antialiasing methods, and pixel update operators [41]. 

However it does not provides the means for describing or modelling complex geometric 

objects. The OpenGL commands will specify how a certain result should be produced rather 

than what exactly that result should look like. That is, OpenGL is fundamentally procedural 

rather than descriptive. Because of this procedural nature, it helps to know how OpenGL 

works, the order in which it carries out its operations so that the user can fully understand how 

to use it.

3 .7 .6  Execution model
The model for interpretation of OpenGL commands is client-server. An application (the client) 

issues commands, which are interpreted and processed by OpenGL (the server). The server 

may or may not operate on the same computer as the client. In this sense, OpenGL is 

network-transparent. A server can maintain several GL contexts, each of which is an
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encapsulated GL state. A client can connect to any one of these contexts. The required 

network protocol can be implemented by augmenting an already existing protocol or by using 

an independent protocol. The effects of OpenGL commands on the frame buffer are ultimately 

controlled by window system that allocates frame buffer resources. The window system 

determines which portions of the frame buffer OpenGL may access at any given time and 

communicates to OpenGL how those portions are structured. Therefore, there are no OpenGL 

commands to configure the frame buffer or initialise OpenGL. Frame buffer configuration is 

done outside of OpenGL in conjunction with the window system. OpenGL initialisation takes 

place when the window system allocates a window for OpenGL rendering.

3 .7 .7  Antialiasing
Antialiasing is a technique for reducing the jagged effect created when only portions of 

neighboring pixels properly belong to the image being drawn. Such jaggies are usually the 

most visible with near-horizontal or near-vertical lines.

3 .7 .8  Rendering
Rendering describes the overall process of going from a database representation pf a three- 

dimensional object to a shaded two-dimensional projection on a view surface[69]. These 

models or objects are constructed from geometric primitives that are specified by their 

vertices. The final rendered image consists of pixels drawn on the screen. A pixel (picture 

element) is the smallest visible element the display hardware can put on the screen. 

Information about the pixels is organized in system memory in bitplanes. A bitplane is an area 

of memory that holds one bit of information for every pixel on the screen. For instance, the bit 

might indicate how blue a particular pixel is supposed to be. The bitplanes are themselves 

organized into a frame buffer, which holds all the information that the graphics display needs 

to control the intensity of all the pixels on the screen.

3 .7 .9  OpenGL state machine
OpenGL is a state machine. It is possible to put it into various states that they remain in effect 

until the changes are done manually or by the application. For instance, current colour is a 

state variable. It can be set to any colour and thereafter every object is drawn with that colour 

until it is set to a different colour. There are many state variables like current colour, which are 

preserved by OpenGL. Many state variables refer to modes that are enabled or disabled with 

the command glEnable() or glDisablef). Each state variable or mode has a default value, and 

at any point it can be queried for each variable’s current value.

47



Figure 3.6 shows the more detailed block diagram of the OpenGL processing pipeline. For 

most of the pipeline there are three vertical arrows between major stages.

3 .7 .1 0  O p e n G L  p r o c e s s in g  p ip e lin e :

Vertices

Primitives

Fragments

I
Pixels

Normal Colour index Texture Coord

Figure 3.6 Processing pipeline
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These arrows represent vertices and the two primary types of data that can be associated with 

vertices namely the colour values and texture coordinates. The vertices are assembled into 

primitives, then to fragments, and finally to pixels in the frame buffer. Many OpenGL 

commands are simple variations of each other, differing mostly in the data type of arguments; 

some commands differ in the number of related arguments and whether those arguments can 

be specified as a vector or whether they must be specified separately in a list.

The effect of an OpenGL command may vary depending on whether certain modes are 

enabled. For example, lighting has to enabled if the lighting-related commands are to have the 

desired effect of producing a properly lit object.

3 .7.11 Vertex and primitives
In OpenGL, most geometric objects are drawn by enclosing a series of coordinate sets that 

specify vertices and optionally normals, texture coordinates, and colours between gIBegin and 

glEnd command pairs.

Each vertex may be specified with two, three, or four coordinates (four coordinates indicate a 

homogeneous three-dimensional location). In addition, a current normal, current texture 

coordinates, and current colour may be used in processing each vertex. OpenGL uses 

normals in lighting calculations; the current normal is a three-dimensional vector that may be 

set by sending three coordinates that specify it. Colour may consist of either red, green, blue, 

and alpha values (when OpenGL has been initialised to RGBA mode) or a single colour index 

value (when initialisation specified colour index mode). One, two, three, or four texture 

coordinates determine how a texture image maps onto a primitive.

Each of the commands that specify vertex coordinates, normals, colours, or texture 

coordinates comes in several types to accommodate differing application's data formats and 

numbers of coordinates [41]. Data may also be passed to these commands either as an 

argument list or as a pointer to a block of storage containing the data. Most OpenGL 

commands that do not specify vertices and associated information may not appear between 

gIBegin and glEnd.

This restriction allows implementations to run in an optimised mode while processing primitive 

specifications so that primitives may be processed as efficiently as possible. When a vertex is 

specified, the current colour, normal, and texture coordinates are used to obtain values that 

are then associated with the vertex (Figure 3.7).
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Vertex coordinates

Figure. 3.7 Association of current value with vertex

The vertex itself is transformed by the model-view matrix, a matrix which can represent both 

linear and translational transformations. The colour is obtained from either computing a colour 

from lighting or, if lighting is disabled, from the current colour. Texture coordinates are 

similarly passed through a texture coordinate generation function. The texture coordinates 

obtained from the function or from current texture coordinates are transformed by the texture 

matrix (this matrix may be used to effectively scale or rotate a texture that is applied to a 

primitive).

A number of commands control the values of parameters used in processing a vertex. One 

group of commands manipulates transformation matrices; these commands are designed to 

form an efficient means for generating and manipulating the transformations that occur in 

hierarchical 3D graphics scenes. A matrix may be loaded or multiplied by a scaling, rotation, 

translation, or general matrix. Another command controls which matrix is affected by a 

manipulation: the model-view matrix, the texture matrix, or the projection matrix (to be 

described presently). Each of these three matrix types also has an associated stack onto 

which matrices may be pushed or popped.

Lighting parameters are grouped into three categories: material parameters, that describe the 

reflectance characteristics of the surface being lit, light source parameters, that describe the 

emission properties of each light source, and lighting model parameters, that describe global 

properties of the lighting model [70]. Lighting is performed on a per-vertex basis; lighting 

results are eventually interpolated across a line segment or polygon. The general form of the 

lighting equation includes terms for constant, diffuse, and specular illumination, each of which
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may be attenuated by the distance of the vertex from the light source. A programmer may 

sacrifice realism in favour of faster lighting calculations by indicating that the viewer, the light 

sources, or both should be assumed to be infinitely far from the scene.

3 .7 .1 2  Clipping
Points, line segments and polygons are handled slightly differently during clipping. Points are 

either retained in their original state or discarded. If portions of line segments or polygons are 

outside the clip volume, new vertices are generated at the clip points. For polygons, an entire 

edge may need to be constructed between such new vertices. For both line segments and 

polygons that are clipped, the edge flag, colour and texture information is assigned to all new 

vertices.

3 .7 .1 3  Rasterisation
Rasterisation produces a series of frame buffer addresses and associated values using a two 

dimensional description of a point. Rasterisation converts a projected, viewport-scaled 

primitive into a series of fragments. Each fragment comprises a location of a pixel in the 

framebuffer along with colour, texture coordinates, and depth(z) [69]. When a line segment or 

polygon is rasterised, these associated data are interpolated across the primitive to obtain a 

value for each fragment. The rasterisation of each kind of primitive is controlled by a 

corresponding group of parameters. One width affects point rasterisation and another affects 

line segment rasterisation. Additionally, a stipple sequence may be specified for line 

segments, and a stipple pattern may be specified for polygons.

3 .7 .1 4  Framebuffer
The destination of rasterised fragments is the framebuffer, where the results of OpenGL 

rendering may be displayed. In OpenGL, the framebuffer consists of a rectangular array of 

pixels corresponding to the window allocated for OpenGL rendering. Each pixel is simply a set 

of some number of bits. Corresponding bits from each pixel in the framebuffer are grouped 

together into a bitplane; each bitplane contains a single bit from each pixel.

The bitplanes are grouped into several logical buffers: the colour, depth, stencil, and 

accumulation buffers. The colour buffer is where fragment colour information is placed. The 

depth buffer is where fragment depth information is placed, and is typically used to effect 

hidden surface removal through z -buffering. The stencil buffer contains values each of which 

may be updated whenever a corresponding fragment reaches the framebuffer. Stencil values
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are useful in multi-pass algorithms, in which a scene is rendered several times, to achieve 

such effects as CSG (union, intersection, and difference) operations on a number of objects 

and capping of objects sliced by clip planes.

The accumulation buffer is also useful in multipass algorithms; it can be manipulated so that it 

averages values stored in the colour buffer. This can have effects such as full-screen anti­

aliasing (by jittering the viewpoint for each pass), depth-of-field (by jittering the angle of view), 

and motion blur (by stepping the scene in time) [71]. Multi-pass algorithms are simple to 

implement in OpenGL, because only a small number of parameters must be manipulated 

before each pass, and changing the values of these parameters is both efficient and without 

side effects on the values of other parameters that must remain constant.

OpenGL supports both double buffering and stereo, so the colour buffer is further subdivided 

into four buffers: the front left & right buffers and the back left & right buffers. The front buffers 

are those that are typically displayed while the back buffers (in a double-buffered application) 

are being used to compose the next frame. A monoscopic application would use only the left 

buffers. In addition, there may be some number of auxiliary buffers (these are never 

displayed) into which fragments may be rendered. Any of the buffers may be individually 

enabled or disabled for fragment writing.

3 .7 .1 5  Fragments
OpenGL allows a fragment produced by rasterisation to modify the corresponding pixel in the 

framebuffer only if it passes a series of tests like Pixel ownership test, scissor test, alpha test, 

stencil test and depth buffer test. If it does pass, the fragment’s data can be used directly to 

replace the existing frame buffer values, or it can be combined with existing data in the 

framebuffer, depending on the state of certain nodes.

3 .7 .1 6  OpenGL invariance
OpenGL is not a pixel-exact specification. It therefore does not guarantee an exact match 

between images produced by different OpenGL implementations. However, OpenGL does 

specify exact matches, in some cases, for images produced by the same implementation.

The obvious and most fundamental case is repeatability. A conforming OpenGL 

implementation generates the same results each time a specific sequence of commands is 

issued from the same initial conditions. Although such repeatability is useful for testing and 

verification, it's often not useful to application programmers, because it is difficult to arrange 

for equivalent initial conditions. For example, rendering a scene twice, the second time after



swapping the front and back buffers, doesn't meet this requirement. So repeatability cannot be 

used to guarantee a stable, double-buffered image.

A simple and useful algorithm that counts on invariant execution is erasing a line by redrawing 

it in the background colour. This algorithm works only if rasterising the line results in the same 

fragment (x, y) pairs being generated in both the foreground and background colour cases. 

OpenGL requires that the coordinates of the fragments generated by rasterisation be invariant 

with respect to framebuffer contents, which colour buffers are enabled for drawing, the values 

of matrices other than those on the top of the matrix stacks, the scissor parameters, all 

writemasks, all clear values, the current colour, index, normal, texture coordinates, and edge- 

flag values, the current raster colour, raster index, and raster texture coordinates, and the 

material properties. It is further required that exactly the same fragments be generated, 

including the fragment colour values, when framebuffer contents, colour buffer enables, 

matrices other than those on the top of the matrix stacks, the scissor parameters, writemasks, 

or clear values differ.

OpenGL further suggests, but doesn't require, that fragment generation be invariant with 

respect to the matrix mode, the depths of the matrix stacks, the alpha test parameters (other 

than alpha test enable), the stencil parameters (other than stencil enable), the depth test 

parameters (other than depth test enable), the blending parameters (other than enable), the 

logical operation (but not logical operation enable), and the pixel-storage and pixel-transfer 

parameters. Because invariance with respect to several enables isn't recommended, you 

should use other parameters to disable functions when invariant rendering is required. For 

example, to render invariantly with blending enabled and disabled, set the blending 

parameters to GL_ONE and GL_ZERO to disable blending, rather than calling 

glDisable(GL_BLEND). Alpha testing, stencil testing, depth testing, and the logical operation 

can all be disabled in this manner.

Finally, OpenGL requires that per-fragment arithmetic, such as blending and the depth test, be 

invariant to all OpenGL state except the state that directly defines it. For example, the only 

OpenGL parameters that affect how the arithmetic of blending is performed are the source 

and destination blend parameters and the blend enable parameter. Blending is invariant to all 

other state changes. This invariance holds for the scissor test, the alpha test, the stencil test, 

the depth test, blending, dithering, logical operations, and buffer writemasking.

As a result of all these invariance requirements, OpenGL can guarantee that images rendered 

into different colour buffers, either simultaneously or separately using the same command
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sequence, are pixel identical. This holds for all the colour buffers in the framebuffer, or all the 

colour buffers in an off-screen buffer, but it isn't guaranteed between the framebuffer and off­

screen buffers

3 .6  Model construction techniques, efficiency and framework for 

the software
Complex virtual environments such as games, urban visualization, town planning, flight 

simulators etc., are constructed from large amounts of data and are made of numerous 

polygons. Some of the complex environments created using the geometric data may well 

exceed the interactive visualization capabilities of current graphics systems. Some of the 

applications in virtual reality needs a cluster of PC’s and displays [72] to create the VR effect. 

This leads to the simplification of data, which means simplifying the amount of data (level of 

detail) [22] available to define an object in the environment. Since the environment is 

constructed using polygons, polygon simplification techniques offer one solution for 

programmers. Several algorithms [73,74] are devised to simplify polygons based on various 

ideas like culling invisible face, view frustum culling [23], vertex clustering (vertex merging) 

etc., and it is also dependent on the view. So the developer has to minimize the levels of detail 

(LOD) and also the number of details to render the scene efficiently. Defining the details in 

simple format or structure is one of the better ways to maximize the rendering of the 

hardware/software of the graphics system. The framework for the proposed software, 3D gen, 

which generates the model or scene based on the geometric data by constructing numerous 

polygons. A delicate balance has to be achieved by minimising the amount of data used to 

define the model or the scene and also achieving a quality image of the model. OpenGL offers 

a wide variety of features in terms of compatibility, graphics management, window 

management and is flexible enough to use various procedures to achieve desired framerate. 

This coupled with C language (low level language) proves to be a powerful combination for 

development of software and various associated tools.
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C H A P TE R  4



CHAPTER 4 : OVERVIEW AND ALGORITHM OF SOFTWARE

4 .1  Introduction
Three-dimensional images can be created by many ways and the most widely used 

techniques are model reconstruction from photo-realistic images and three-dimensional 

modelling from available data. The available data may be extracted from the image or given 

by the user or the programmer. ‘3Dgen' software is used to create three-dimensional 

cylindrical models using data’s obtained from some other application or given by the user. 

Figure 4.1 shows the model, which can be generated by the software.

Figure 4.1 Model section

The model, which is a hollow cylindrical section, can be extended to any length depending 

upon the requirement. In this chapter the algorithm of software and the various steps of 

execution process are discussed.

The flowchart of the main part of the software is as shown in figure 4.2. The main loop starts 

with the initialisation of the window parameters such as display mode size and position and
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then the windows were opened. Next, the menu options were initialised and the input data file 

is prepared for periodical access.

Figure 4.2 Flowchart of the main function

Next, the model generating procedures were executed followed by window display 

procedures, which actually displays the generated model in the window. This was followed by 

window resize procedures, i.e., the procedures that has to be executed when the user 

changes the size of the window. Keyboard input function and mouse input function checks 

whether any keys in the keyboard and mouse were pressed to execute appropriate option. 

The main() function will be executed continuously until the user chooses to exit the software 

by exit option in menu. The input data file for generating the model was opened in “read-only” 

mode to avoid any loss of data. The full source code of 3Dgen software is available in 

Appendix D.

4 .2  Execution Process
The various steps in the execution process of the software is as shown in Figure 4.3.The first 

step in the execution process is the calculation of the vertices for the polygons from the data 

fetched by data file. These vertices are along the circumference of the faces of the model. The 

vertices are then used to plot polygons around the circumference of faces whose data are 

obtained from data file. The angular displacement of the points along the circumference of the 

face or circle is kept at 1°. Normals were calculated which is essential to generate proper 

lighting and corresponding shades in the model. The model is displayed in the window and the 

movement in the camera were updated dynamically. The image or window refresh rate
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depends on the size of the display memory available in the PC and also the speed of the 

processor.

Figure 4.3 Overview of execution process

4 .3  Window creation and management

Main Window Layout
window

Visual Display unit(VDU) 
of Computer

Figure 4.4 Main and Layout windows in VDU
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3Dgen software creates two windows namely Main window and Layout window at the top left 

corner of the visual display unit of the computer. The window display mode was initialised to 

RGBA mode and the window size and position were specified. The main window is the active 

window which displays the model and also the menu options. The layout window is inactive 

and it shows the walkthrough path inside the model. The layout window gives a better 

understanding for the user to visualise the current position of the camera inside the model 

which was indicated by an yellow block.

4 .4  Menu
A hanging menu was created and it was linked to the operation of the mouse of the PC. 

Clicking the right button of the mouse when the mouse pointer was in main window can 

activate the menu. The various menu options were shown in Figure 4.5.

Figure 4.5 Menu options

The menu can be invoked only when the mouse pointer was in main window since it remains 

as the active window.

4 .4.1 View Menu
Various viewing operations can be done using the view menu option. It has two options 

namely internal and external for viewing the internal and external surfaces of the model. The 

internal and external options can be subdivided into various options. The algorithm for the 

view menu option is as shown below:
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View menu(option number)

{
Switch (option number)

11 : lnternal()

12 : External()

}
If internal option was selected then internal() function was invoked and if external option was 

selected then external() function was invoked.

4 .4 .2  View - Internal
The view - internal option is used for viewing related purposes with respect to the internal 

surfaces of the model. It has two options namely view direction and start position. If view 

direction is selected view direction() function is invoked and if start position is selected start 

position() function is invoked. The algorithm for the view-internal menu option is as shown 

below:

lnternal(option number)

{
Switch(option number)

111: View directionQ;

112: Start position();

}

4 .4 .3  View -  External
The view -  external option is used for viewing related purposes with respect to the external 

surfaces of the model. There are four options in external view namely front view, back view, 
left hand side view and the right hand side view. The camera will be positioned at the starting 

point or one end of the model facing the model and that view is considered as front view and 

other view were shown keeping the front view as a reference. If the front option was selected 

then with reference to the first set of points in the data file the boundary values of the front 

face is calculated based on the size of the model and using that the camera and aim 

coordinates were calculated. The front face acts as a reference for the other three options 

(back, left and right). If the back option is selected the boundary values of the back face is 

calculated with reference to front face and using that camera and aim coordinates were 

determined. Similarly for left and right options the corresponding boundary values were 

calculated for left and right faces and using that aim and camera coordinates were 

determined.
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The algorithm for view -  external option is as shown below:

External(option number)

{
Switch(option number)

121 : if (view external variable = front)

Message (“Already the window shows front view”);

else

Calculate midpoint of the front face;

Calculate camera coordinates(based on midpoint of the

face);

Calculate aim coordinates(based on midpoint of the

face);

Window redisplay with new camera and aim coordinates;

122 : if (view external variable = back)

Message (“Already the window shows back view”);

else

Calculate midpoint of the back face;

Calculate camera coordinates(based on midpoint of the

face);

Calculate aim coordinates(based on midpoint of the

face);

Window redisplay with new camera and aim coordinates;

123 : if (view external variable = left)

Message (“Already the window shows left view”);

else

Calculate midpoint of the left hand side face;

Calculate camera coordinates(based on midpoint of the

face);

Calculate aim coordinates(based on midpoint of the

face);

Window redisplay with new camera and aim coordinates;

124 : if (view external variable = right)

Message (“Already the window shows right view”);
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else

Calculate midpoint of the right hand side face;

Calculate camera coordinates(based on midpoint of the

face);

Calculate aim coordinates(based on midpoint of the

face);

Window redisplay with new camera and aim coordinates;

}

4 .4 .4  Internal - View direction
The viewing direction of the camera can be changed using this menu option. The camera can 

look both in front or in exactly opposite direction as well. There are two options in this menu 

namely front and back. If the front option was selected the camera coordinates and the aim 

coordinates were interchanged. If the back option was selected then the camera coordinates 

and the aim coordinates were interchanged.

The algorithm for the internal -  view direction option is as shown below:

View direction(option number)

{
Switch(option number)

1111 : if (view direction = front)

Messagefview direction is front");

else

Temp variable = camera coordinates;

Camera coordinates = aim coordinates;

Aim coordinates = temp variable;

View direction = front;

Window redisplay based on new camera and aim 

coordinates;

1112 : if (view direction = back)

Message(“view direction is back”);

else

Temp variable = camera coordinates;

Camera coordinates = aim coordinates;

Aim coordinates = temp variable;
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View direction = back;

Window redisplay based on new camera and aim 

coordinates;

}

4 .4 .5  Internal -  Start position
This option allows the user to decide the starting position of the virtual walkthrough inside the 

model. It has two options namely start position and end position. The start position and the 

end position were determined based on the data from the input file. If start position was 

selected the menu function browses the data file and takes the first set of points for calculating 

view position. If end position was selected the menu function takes the last set of points from 

data file for calculating view position.

The algorithm for the Start position option is as shown below:

Startposition(option number)

{
Switch(option number)

1121 : if (position = start)

Message (“camera in start position”);

Else

Browse datafile;

Extract first set of points;

Calculate aim and camera coordinates;

Window redisplay based on new coordinates;

1122 : if (position = end)

Message (“camera in end position”);

Else

Browse datafile;

Extract last set of points;

Calculate aim and camera coordinates;

Window redisplay based on new coordinates;

}
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4 .4 .6  Zoom menu
The model can be zoomed with this menu option. The scaling process of the model can be 

termed as zooming. Closer view of the model or a section of the model can be termed as 

zoom in and distant view of the model or a section of the model can be termed as zoom out. 

With respect to current view the model is scaled and scaling factor was determined by the 

options zoom in or zoom out. The current scaling factor for zoom in was fixed at 2 and for 

zoom out was fixed at 0.5.

The algorithm for zoom option is as shown below:

Zoom(option number)

{
Switch(option number)

21 : store view coordinates;

scale the model(scale factor 2); 

recalculate coordinates;

Window redisplay with new coordinates;

22 : Store view coordinates;

scale the model(scale factor 0.5); 

recalculate coordinates;

Window redisplay with new coordinates;

}

4 .4 .7  Exit
This option allows the user to successfully close the 3Dgen software. The input data file will 

be closed and memory variables and the buffer will be flushed so that the memory space can 

be used by other applications.

4 .5  Data file
Hollow three-dimensional cylindrical models were created from data sets fetched by the data 

file. The datasets can be obtained either from some other software (eg. CAD output file) or 

entered by the user in a simple format in an ordinary text file. The model was constructed 

using the data available in the text file with filename as “datatest.txt”. In the file the data should 

be arranged in a specific format as shown in Figure 4.6. The format is driven by the idea to 

reduce the levels of detail [22] for the model as well as the surfaces [26]. The description of
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the model was kept at a minimal level so as to reduce the processing time in generating the 

model with compromising much in the quality of the model. The data format is structured in a 

simple way so that the user can easily understand the data. There are 8 columns of data and 

each column holds a basic attribute of a slice of the model. The table 4.1 specifies the format 

and the order in which they were arranged. Each value should be separated with a space. The 

advantages of the format are that the data are structured which are easily accessible and can 

be manipulated.

I f !  d a ta te s t.tx t - N o te p a d
File £dit Search Help

0.00000 -0.53729 3.36400 43.00000 0.55000 0.97700 0.50700 0.60800 3
0.00000 -0.56132 3.38932 44.00000 O.55OO0 0.97700 0.50700 0.60800 _J
0.00000 -0.58579 3.41421 45.00000 0.55OOO 0.97700 0.50700 0.60800
0.00000 -0.61068 3.43868 46.00000 0.55O0O 0.97700 0.50700 0 . 60800
0.00000 -0.63600 3.46271 47.00000 0.55000 0.97700 0.50700 0.60800
0.00000 -0.66174 3.48629 48.00000 0.55000 0.97700 0.50700 0.60800
0 . 0 0 0 0 0  - 0 . 6 8 7 8 8  3 . 50942 49.OOO0O 0.55000 0.97700 0.50700 0.60800
0.00000 -0.71442 3.53209 50.00000 0.55000 0.97700 0.50700 0.60800
0.00000 -0.74136 3.55429 51.00000 0.55000 0.97700 0.50700 0 .60800
0.00000 -0.76868 3.57602 52 .00000 O .55000 0.97700 0.50700 0.60800
0.00000 -0.79637 3.59727 53.00000 0.55000 0.97700 0.50700 O.60800
« „n ©ojiji"» r-1 en n rcnnn n 07700 c* C0700 n ^0000

Figure 4.6 Data file

X Y Z

Angle of 
the face 

with 
respect to 

world 
coordinate 

system

Radius 
of the

RED 
value of

GREEN 
value of

BLUE 
value of

coordinate coordinate coordinate current colour colour colour
face coordinate coordinate coordinate

Table 4.1 Data file format

4 .6  Data browse
The data in the data file was accessed all the time during when 3D gen software was running. 

The amount of data in the file was calculated and stored in variable for efficient navigation 

within the file to retrieve the required data. The model was bounded by an imaginary bounding 

box so that the boundary values were calculated which will be used while generating different 

views.
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The model was generated based on the data from the input data file. Using the data, vertices 

are calculated and the polygon is constructed using the vertices of the adjacent faces. A 

display list was created with all the polygons so that it will be easy for generating different 

views by calling the display list instead of recalculating the vertices and normal vectors. 

Normal vectors for each vertex are calculated and assigned to generate better light shading.

4 .7  M o d e l g e n e r a t i o n

Figure 4.7 Model generation process

4 .7.1 Vertex calculation
The model in Figure 4.1 was constructed by building blocks of the model (one shown in Figure 

4.8). The size of each block depends on the data from the input file. Figure 4.8 shows two 

adjacent slices or faces and the model in-between these slices were constructed by 

connecting the vertices on the circumference of face Fn and Fn+i (A, B, C, D, E, F, G, H) to 

form polygons such as ABEF, BCGF etc., The faces Fn and Fn+1 could be of different radii and 

at different orientation with respect to world coordinate system. The angular displacement 

between A and B with respect to centre Pn is kept at minimum value so that arc AB equals AB.
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Figure 4.8 Two adjacent slices or faces of the model with polygon

The algorithm was designed in such a way that the modelling function calculated the vertices 

of the two adjacent slices (circles) and draw the polygons along the circumference. Figure 4.9 

shows two adjacent slices Fn and Fn+i. Let Pn(Xn,Yn,Zn) and Pn+i(Xn+i,Yn+i.Zn+1) be the centre 

points supplied by the data file. The data file also supplied corresponding radii rn and rn+1. Let 

0n and 0n+i are the angles of faces Fn and Fn+1 with respect to World Coordinate System. The 

model between face Fn and Fn+1 was constructed by drawing polygons along the

circumference of Fn and Fn+1. Let 0n be the angular displacement of face Fn and 0n+i be the 

angular displacement of face Fn+1 with respect to world coordinate system. Vertices A, B, C, D 

are calculated to complete a polygon.

A (Xn,Yn,Zn)

Xn— Pn(Xn) + rn cos 0 ,

Yn= Pn(Yn) + (r„ sin 0  * cos 0„);

Z„= Pn(Zn) + (r„ sin 0  * sin 0n);
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Figure 4.9 Two adjacent slices or faces of the model

B (Xn+ijYn+i.Zn+i)

Xn+1 = Pn*i(Xn*i) + rn*i cos 0 ;

Ynti= Pn+i(Yn+i) + (rnti sin 0  * cos 0„*i);

Zn+1= PntiiZn.,) + (r„*, sin 0  * sin 0„+,);

C (X„*,,Yn+1> zn+1)
Xn+1~ Pn+l(Xn+l) + Tn+1 COS (0 +  6);

Yn*i= Pn+i(Yn+i) + (rn+1 sin (0+8) * cos 0n+i);

Zn+i=Pn+i(Zn+i) + rn+i sin (0+6) * sin 0n+l);

D (Xn,Yn,Zn)

Xn= Pn(X„) + rn cos (0+6);

Yn= Pn(Y„) + (r„ sin (0+6) * cos 0n);

Zn= Pn(Z„) + (r„ sin (0+6) * sin 0„);

Where O<=0<=36O

6 8



Using the above equations, vertices on the circumference of face Fn namely A, B, C and D 

were calculated and they were connected to for polygon ABCD. Also using the above 

equations, coordinates of other polygons were also calculated with different values of 0  so 

that the entire circumference was covered.

4 .7 .2  Polygon construction
Polygons were constructed between the adjacent slices or faces by connecting the vertices on 

the circumference of the slices. By this method surfaces are generated along the 

circumference of the slices to form a cylindrical hollow model as shown in Figure 4.10. The 

gap between the faces Fn and Fn+i was covered by polygons (ex. BCFG, CDHG etc.,) along 

the circumference there by completing the construction of the surface between Fn and Fn+1. It 

has to be noted that only the surface was constructed not the solid model. Hence a virtual 

walkthrough inside the model was possible. The width of the polygon varies with respect to 

the angular displacement 0  and or incremental value d. If the value of d increases the 

cylindrical model will look like multi face solid. Hence the value of d was kept at a critical value 

with out compromising the shape and also the processing time in calculating the number of 

vertices. The polygons were constructed in a similar fashion on all the segments.

Figure 4.10 Polygon construction
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The radii of faces Fn and Fn+i may not be the same there by creating model with variable 

radius for a required length and orientation.

4 .7.3  Light settings
When light rays strike a surface, some of the rays are reflected enabling us to see the surface. 

The appearance of a surface depends on the light that strikes it combined with the properties 

of the surface material such as colour, smoothness, opacity etc., The intensity of light at its 

point of origin affects how brightly the light illuminates an object. A dim light cast on a brightly 

coloured object shows dim colours. The more a surface inclines away from a light source, the 

less light it receives and the darker it appears. The relative to the light source is known as 

angle of incidence. When the angle of incidence is 90° the surface is illuminated with full 

intensity of the light source. As the angle of incidence diverges from 90°, the intensity of 

illumination decreases.

In real world light diminishes over distance. Objects far from the light source appear darker; 

objects near the source appear brighter. This effect is known as attenuation. Natural light 

attenuates at an inverse square rate -  that is, its intensity diminishes in proportion to the 

square of the distance from the light source. It is common for attenuation to be even greater 

when the atmosphere disperses the light, especially when there are dust particles in the 

atmosphere, or fog or clouds.

The light, an object reflects can illuminate other objects. This effect is known as radiosity. The 

more light a surface reflects, the more light it contributes to illuminating other objects. 

Radiosity creates ambient light. Ambient light has a uniform intensity and is uniformly diffuse. 

It has no discernible source and no discernible direction. The colour of light depends partly on 

the process that generates light. Light colour also depends on the medium the light passes 

through. For example clouds in the atmosphere tint daylight blue and stained glass tints light a 

highly saturated colour. Light colours are additive colours; the primary light colours are red, 

green and blue(RGB). As multiple coloured lights mix together, the total light in the scene gets 

lighter and eventually turns white.

Naturally lit scenes such as daylight or moonlight get their most important illumination from a 

single light source. Artificially lit scenes often have multiple light sources of similar intensity. 

Both kinds of scenes require multiple secondary lights for effective illumination. Sunlight and 

moonlight have parallel rays coming from a single direction. The direction and angle vary 

depending on the time of day, the latitude and the season. For example in a clear weather the 

colour of the sunlight is pale yellow, blue in a cloudy weather and dark grey in stormy weather.
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Particles in the air can give sunlight an orange or brown tint. Sunlight and moonlight can be 

defined as directional light. A spotlight is defined as a beam of light focused towards a 

specified target. Ambient light simulates the background radiosity. The colour of ambient light 

tints the scene and usually should be the complement of the colour of the principal light 
source of the scene. The intensity of ambient light affects contrast as well as overall

illumination -  the higher the intensity of ambient light, the lower the contrast. This is because

ambient light is completely diffuse, so the angle of incidence is equal for all faces. Specular 

lighting is what produces the shiney highlights and helps us to distinguish between flat, dull 

surfaces such as plaster and shiney surfaces like polished plastics and metals.

The OpenGL light model presumes that the light that reaches the eye from the polygon 

surface arrives by four different mechanisms:

AMBIENT - light that comes from all directions equally and is scattered in all directions 

equally by the polygons in the scene. This isn't quite true of the real world - 

but it's a good first approximation for light that comes pretty much uniformly

from the sky and arrives onto a surface by bouncing off so many other

surfaces that it might as well be uniform.

DIFFUSE - light that comes from a particular point source (like the Sun) and hits 

surfaces with an intensity that depends on whether they face towards the 

light or away from it. However, once the light radiates from the surface, it 

does so equally in all directions. It is diffuse lighting that best defines the 

shape of 3D objects.

SPECULAR - as with diffuse lighting, the light comes from a point source, but with 

specular lighting, it is reflected more in the manner of a mirror where most 

of the light bounces off in a particular direction defined by the surface 

shape.

EMISSION - in this case, the light is actually emitted by the polygon - equally in all 

directions.

So, there are three light colours for each light - Ambient, Diffuse and Specular (set with 

gILight). OpenGL implementations support at least eight light sources and it computes the 

colour of each pixel in a final, displayed scene that was held in the framebuffer. Part of this
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computation depended on what lighting was used in the scene and on how objects in the 

scene reflect or absorb that light.

In RGBA mode, the illuminated colour of a vertex is the sum of the material emission intensity, 

the product of the material ambient reflectance and the lighting model full-scene ambient 

intensity, and the contribution of each enabled light source [41]. Each light source contributes 

the sum of three terms: ambient, diffuse, and specular. The ambient light source contribution 

is the product of the material ambient reflectance and the light’s ambient intensity. The diffuse 

light source contribution is the product of the material diffuse reflectance, the light’s diffuse 

intensity, and the dot product of the vertex’s normal with the normalised vector from the vertex 

to the light source. The specular light source contribution is the product of the material 

specular reflectance, the light’s specular intensity, and the dot product of the normalised 

vertex-to-eye and vertex-to-light vectors, raised to the power of the shininess of the material.

Specular lighting = Material specular reflectance * Specular light intensity

* (Vertex to eye vector x vertex to light vector)Shininess

All three light source contributions are attenuated equally based on the distance from the 

vertex to the light source and on light source direction, spread exponent, and spread cut-off 

angle. All dot products were replaced with zero if they were evaluated to a negative value. The 

alpha component of the resulting lighted colour was set to the alpha value of the material 

diffuse reflectance

4 .7.4  Normal calculation
To apply lighting, it is necessary to first compute the normals to the polygons. A normal is a 

vector that defines how a surface responds to lighting, i.e. how it is lit. The amount of light 

reflected by a surface is proportional to the angle between the lights direction and the normal. 

The smaller the angle the brighter the surface will look. Normals in OpenGL can be defined 

per face or per vertex. If defining a normal per face then the normal is commonly defined as a 

vector that is perpendicular to the surface. In order to find a perpendicular vector to a face, 

two vectors coplanar with the face are needed. Afterwards the cross product will provide the 

normal vector, i.e. a perpendicular vector to the face. A face normal is a unit vector that 

defines which way a face is pointing. The direction that the normal points represents the front 

or outer surface of the face.
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So the first step was to compute two vectors coplanar to a face. In Figure 4.11 let P(px,py,pz) 

be the centre of the face(circle), A(ax,ay,az) and B(bx,by,bz) be the points of the polygon then 

BP and BA are coplanar vectors and BN is the normal vector.

Vector BP = px-bx,py-by,pz-bz;

Vector BA = ax-bx,ay-by,az-bz;

The following equations give the cross product of the two vectors BP and BA.

BN = BP x BA; (x -  cross product)

BN = (px-bx,py-by,pz-bz) x (ax-bx,ay-by,az-bz);

BNx = [(py-by)*(az-bz)] -  [(ay-by)*(pz-bz)];

Bny = [(ax-bx)*(pz-bz)] -  [(px-bx)*(az-bz)];

BNz = [(px-bx)*(ay-by)] -  [(ax-bx)*(py-by)];

To obtain proper lighting vector BN has to be normalised i.e. making it to unit length. OpenGL 

takes into consideration the length of normal vector when computing lighting. Normalisation is 

done by first computing the length of the vector and then dividing each component by the 

vectors length. The length of the vector was calculated as follows

The problem with specifying normal per face was that the brightness of the each face was 

constant. But there will be a clear difference between faces with different orientation. So for 

smoother lighting normals should be calculated per vertex. While computing normals per

N

Figure 4.11 Coplanar and normal vectors

VL = -jBNx * BNx + BNy * BNy + BNz * BNz

Hence the normalised vector (NvBN) will be
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vertex it will be necessary to take into account the faces that share the vertex. Except for the 

start and end slice the vertices in rest of the slices were shared by four polygons. Hence the 

normal at a vertex should be computed as the normalised sum of unit normal vectors for each  

face the vertex shares.

At the start of the execution of the software the face normals were calculated and stored in a 

text file called “nrd.txt”. While generating the model these values were used to calculate the 

normal for each vertex. Figure 4.12 show s the face normals and the vertex normal for vertex

Figure 4.12 Vertex normal

The vertex normal NVA for A can be calculated by the following equations

EVX = Vx(ABCD) + VX(JKAD) + VX(LSAK) + Vx(ASTB) 

EVy = Vy(ABCD) + Vy(jkaD) + Vy(lSAK) + Vy(ASTB)
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£  Vz -  Vz(abcd) + Vz(jkad) + Vz(lsak) + Vz(astb)

4 .8  V iew p o r t

The viewport is the rectangular region of the window where the image is drawn. The viewport 

is measured in window coordinates, which reflect the position of pixels on the screen relative 

to the lower left corner of the window. The window manager is responsible for opening a 

window on the screen, not the OpenGL. However, by default the viewport is set to the entire 

pixel rectangle of the window that’s opened. The glViewport() command w as used to choose a 

smaller drawing region; for example, the window can be subdivided to create a split-screen 

effect for multiple views in the sam e window.

Void glViewport(Glint x, Glint y, Glsizei width, Glsizei height);

The command defines a pixel rectangle in the window into which the final image w as mapped. 

The (x, y) parameter specifies the lower left corner of the viewport, and width and height are 

the size of the viewport rectangle. By default, the initial viewport values are (0, 0, winWidth, 

winHeight), where winWidth and winHeight are the size of the window.

The aspect ratio of a viewport should generally equal the aspect ratio of the viewing volume. If 

the two ratios are different, the projected image will be distorted as it is mapped to the 

viewport. The subsequent changes to the size of the window do not explicitly affect the 

viewport. The application detects window resize events and modifies the viewport 

appropriately. The window w as set to a size of 300x300 to optimise the graphics hardware 

usage and for better performance. Also the window maximise controls were enabled. The 

coordinate system  in the OpenGL is shown in Figure 4.13.

Y

Figure 4.13. OpenGL coordinate system
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4 .9  C a m e r a  S e t t in g s

The gluLookAt() utility routine was used to create the camera view. Three sets  of arguments 

were used to specify the location of the viewpoint or camera, a reference point toward which 

the camera is aimed, and the up direction.

gluLookAt(Gldouble eyex, Gldouble eyey, Gldouble eyez, Gldouble viewx, Gldouble viewy, 

Gldouble viewz, Gldouble upx, Gldouble upy, Gldouble upz);

The desired viewpoint was specified by eyex, eyey, and eyez. The viewx, viewy, and viewz 

arguments specify any point along the desired line of sight. The upx, upy, and upz arguments 

indicate the up direction.

The pseudo code for camera function

If (move variable = forward)

{
Maintain view direction;

Obtain next set of data from data file based on current position of camera; 

Assign the data to camera and aim coordinate variables;

>
e lse  if (move variable = backward)

{
Maintain view direction;

Obtain previous set of data from data file based on current position of camera; 

Assign the data to camera and aim coordinate variables;

}

The viewpoint or camera location is at the centre of the cylindrical model. The reference point 

or the focus point is the centre of the next face. Here both Y-axis and Z-axis of world 

coordinate system  acts as up vector or up direction depending on the position of the camera. 

Since the coordinates fetched from the data file belong to the centre of the face or slice, it was 

used as the viewpoint or camera coordinates. At any point of time, two sets  of centre 

coordinates of face Fn and Fn+1 will be available in the program and hence the centre 

coordinates of face Fn becom es the camera coordinates and that of face Fn+i becom es the 

view coordinates or aim coordinates.
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The camera movement was managed by the “up arrow” and “down arrow” keys of the 

keyboard for the forward and backward movement. When the up arrow key was pressed  

which m eans a forward movement for the camera, the view direction (front or back) was 

checked and the based on the current coordinates, data were obtained from data file and 

assigned to camera and aim coordinate variables. Similarly when down arrow key was 

pressed the view direction w as checked and previous set of data were obtained from data file 

and assigned to camera and aim coordinate variables.

4 .1 0  W in d o w  idle a n d  W in d o w  r e s h a p e

When the software 3Dgen is running the window idle function keep the main and layout 

window constantly refreshed with respect to changes in model and also with the view. When 

the model is rotated about the axes window function performs the rotation when the speed  

and direction are set. If the window size is changed by the user the reshape function 

calculates the viewport area and readjusts the scen e with respect to the new size of the 

window.
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CHAPTER 5



C H A P T E R  5: R E S U L T S  A N D  D I S C U S S I O N

5.1  I n t r o d u c t io n

This chapter reports the d iscu ssion  and analysis of the output and results of the d evelop ed  

softw are ‘3 D g en ’. A sam p le m odel, hum an d igestive system  with approxim ately 2 7 0 0  lines of 

data, w a s  created  to test the various param eters of the softw are. A num ber of te s ts  w ere  

conducted  to test the compatibility of the softw are with various operating sy stem s.

Sample Model 1:

233Dgen H F l IS ! [Ë3 Layjout

Figure 5.1 S am ple m odel -  hum an d igestive system

Figure 5.1 sh o w s the external view  of the human d igestive system  gen erated  by the software  

using the data supplied by the data file. The data w a s calculated by the author of the 3D gen  

softw are to test the perform ance of the software. The data for the hum an d igestive system  

w a s calculated b ased  on the information available from O regon HSU and approxim ated to get 

the desired sh a p es . T he m odel con sisted  of a ser ie s  of com plex cylindrical sec tio n s at various 

radius and at various a n g le s  of orientation with respect to world coordinate system . The e y e  

coordinates for this view  w ere calculated b a sed  on the s ize  of the m odel.
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W hen the sou rce co d e w a s  com piled the default position of the cam era w a s  at the beginning  

of the m odel focusing inside the m odel. Figure 5 .2  sh o w s the default cam era position and  

view  of the sam p le m odel. The softw are program w a s provided with hanging m enu through 

m o u se  pointer. It can  b e  invoked at any point inside the Main window.

Figure 5 .2  S am ple Internal view

The m ovem ent of cam era (ch an ge in cam era coordinates) w a s  controlled by the ‘up arrow’ 

and 'down arrow’ keys. The direction of view  or view  coordinates can  b e  ch an ged  by clicking 

the m enu option “view  direction” T he white marks on the internal surface of the m odel acts a s  

a reference for the m ovem ent of the cam era inside the m odel.

5 .2  C o m p a t ib i l i ty

The sou rce co d e w a s  d evelop ed  using OpenGL with C functions which g iv es a very good  

flexibility in running the softw are program in various operating system  environm ents such  a s  

Microsoft w indow s NT, Microsoft w indow s 2 0 0 0 , Linux etc., The author tested  the sou rce co d e  

in the ab ove m entioned operating sy stem s and results w ere similar in term s of display excep t  

few  ch a n g es in the m enu fonts.
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Figures 5.1 through 5 .5  w ere gen erated  in W indow s NT 4 .0 0 .1 3 8 1  and W indows 2 0 0 0  

operating sy stem s w here the sou rce  co d e  w a s  com piled using Microsoft Visual C++ 6.0 . O nce  

the co d e  is com piled, an .ex e  file is generated  and that can be u sed  in other Microsoft 

W indows b ased  operating sy stem s b eca u se  th ose  operating sy stem s u s e s  the sa m e  window  

interface and h en ce  the compatibility. M ost of the operating sy stem s [41] supports OpenGL  

and the latest versions of W indow s NT, W indow s 2 0 0 0  and W indow s XP have n ecessa ry  files 

to ex ecu te  the .ex e  file of the d evelop ed  software.

5 .2 .1  W i n d o w s N T / 2 0 0 0

Figure 5 .3  S am ple internal view  with main m enu option

Even if the operating system  is an older version without OpenGL support files, they can be 

dow nloaded from World W ide W eb for free. Figure 5 .3  sh o w s the m enu invoked by the right 

click of the m o u se  button.

5 .2 .2  Linux

Figure 5 .7  sh o w s the output generated  by the sa m e  sou rce co d e  com piled in Linux operating 

sy stem  (Figure 5 .6  gen erated  in Microsoft W indows NT for the sa m e  data set). The output and 

the controls remain the sa m e  a s  that of w indow s operating system . The sou rce co d e  w a s
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tested  in R edhat Linux 7 .2  version and kernel version 2 .4 .2 . Figures 5.7 , 5 .9 , 5 .11 , 5 .13  were  

generated  in R edhat Linux.

View ► Internal ► View Direction ► Front
BackZoom ► External ► Start position ►

Exit

Figure 5 .4  S am p le view  with view  direction options

^3Dgen a 3Lay<j>ut H R  ET

Figure 5.5 Sam ple  view  with external view  options
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Model 2:Pipe network I 

W indows:

Figure 5 .6  Model 2 output in Microsoft W indow s NT (internal view)

Linux:

Figure 5.7 M odel 2 output in R edhat Linux (internal view)
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External view:

W indows:

Figure 5 .8  Model 2 output in Microsoft W indow s NT (external view)

Linux

Figure 5.9 M odel 2 output in R edhat Linux (external view)
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M odel 3: P ipe network II

W indows:

Figure 5 .1 0  Model 3 output in Microsoft W indows NT (internal view)

Linux:

Figure 5.11 M odel 3 output in R edhat Linux (internal view)
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External view:

W indows:

Figure 5 .12  Model 3 output in Microsoft W indows NT (external view)

Linux:

Figure 5.13 M odel 3 output in R edhat Linux (external view)
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5 . 3  D i s c u s s i o n

3DgeA7 runs in both Linux and W indow s b ased  operating sy stem s and Figures 5.1 through 

5 .13  im ages produced for different data se ts . Figure 5 .4  and 5 .5  sh ow s the different hanging  

m enu options available while the softw are is running. The rectangular yellow  patch in the  

layout window indicates the position of the cam era w hen  it is inside the m odel.

5.3.1 H u m a n  d ig e s t iv e  s y s t e m  (M odel 1)

A s m entioned earlier the m odel (Figure 5.1) w a s  generated  using the data file created by the  

author of 3DgeA7 softw are, which h as approxim ately 2 7 0 0  lines of data. The data w ere  

calculated b ased  on the information available from Cliniweb of O regon health sc ie n c e s  

university and various approxim ations w ere applied to g et the desired  sh ap e. The m odel w a s  

generated  in desktop PC with Pentium III 550H z p rocessor with 8 MB display memory. It took  

45m inutes (approx) to gen erate  the model.

The centre line data from the data file w a s  u sed  to construct the su rfaces of the m odel and  

with gullet and o eso p h a g u s  section  had little ch a n g e in the diam eter. The data, which w a s  

u sed  to define the gullet and o eso p h a g u s  section , w ere calculated for variable angular 

disp lacem en ts with respect to the world coordinate system .

World coordinate system  w a s u sed  while developing the softw are so  that u ser  can easily  

understand the input data or if the u ser d ec id es  to input the data by him self then he can type  

the data with respect to world coordinate for the entire m odel without localising the  

coordinates. The user h as to be aw are of only o n e  coordinate system , which is world 

coordinate system .

The stom ach w a s generated  in various sec tio n s with different radii at different orientations to 

the world coordinate system . The small intestine section  is a ser ie s  com plex b en ds that 

requires in depth data to gen erate  that part of the m odel. But the level of details w as  

m aintained so  that data format rem ains undisturbed. The num ber of fa c e s  defined in th o se  

sec tio n s w a s  increased  making it a s  the m ost defined part of the m odel with d istance betw een  

the adjacent s lices  or fa c e s  being le ss .

The data for the large intestine w a s  defined a s  a ser ie s  of variable radii sec tio n s with the 

repetition of the construction but arranged in different orientation with respect to world 

coordinate system . The large intestine w a s given a different colour just to clearly differentiate 

from other sec tio n s of the system .
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Figure 5.1 sh o w s that the gullet and o eso p h a g u s w a s  produced with dark shading when  

com pared to rest of the sec tio n s in the d igestive system . This w a s b e c a u se  of the reversal in 

order of the data input. If the data input order w ere reversed  the polygon will be constructed  

with vertices taken in anti clockw ise direction. This reverses the assign m en t of the vertex  

normals. This problem arises b eca u se  of the wrong arrangem ent of the data.

S in ce  OpenGL functions h as to be specified  in a sp ecific  m anner to get the desired output, 

there should be a reversal in the order of specifying vertices, for exam ple polygon will be  

constructed a s  DCBA instead of ABCD thereby negating the normal vector direction.

Figure 5 .1 4  Order of vertices d ec id es  front fa ce  and back face

Figure 5 .14  sh o w s that N1 will be the vertex normal if the coplanar vectors are specified  a s  

vector BA and BC. If the vectors are specified  a s  vector AB and CB then N2 will be the normal 

vector at vertex B. This proves the importance of vertex normal with respect to the generation  

of light effects and it a lso  signifies the procedural nature of O penG L

5 .3 .2  M odel 2

Figures 5 .6  and 5 .7  sh o w  the output of m odel 2  gen erated  by Microsoft W indows and R edhat 

Linux. The internal view  of m odel 2 sh o w s the white coloured indicator line seg m en ts  which  

a cts a s  a reference and a lso  to create the feeling of the cam era m ovem ent.

F igures 5 .8  and 5 .9  sh o w s the right hand sid e external view  of m odel 2 generated  by both 

operating sy stem s. Both the outputs are identical with little or no difference. The layout 

window  g iv es  the virtual walkthrough path without a break in it at the sharp bends.

The model w a s  generated  with the data given in appendix B. The different section s of the 

m odel w ere at different a n g les with respect to the world coordinate system . Figure 5 .6  g ives

88



the internal view  of the m odel and the location of the cam era is at the starting point of the 

m odel (i.e. o n e  end of the m odel). The white marks along the surface of the m odel act a s  a 

reference and g iv es  a feel of the m ovem ent w hen  the cam era m o v es inside the model.

Figure 5 .1 5  O vershoot error

A s show n in figure 5 .1 5  the white circles d en ote  the overshoot error. W hile developing the  

algorithm of 3D gen softw are only sm ooth  ben ds w ere considered  s in ce  alm ost in all industrial 

pipe networks all of the b en d s h ave a sm ooth  curvature. W hen the data for creating a sharp  

bend w a s fetched  the layout window sh ow ed  a discontinuity in the virtual exploration path. To 

counteract this problem the algorithm w a s altered in such  a w ay that at the instant of a sharp  

bend the surface polygons in the previous seg m en t of the m odel and the surface polygons in 

the next seg m en t of the m odel w ere projected to create the sharp corner.

S in ce  the am ount of data available to the softw are with resp ect to bend section  w a s not 

com pletely descriptive, it results in either incom plete bend section  of the m odel or the bend  

overshoot (b ec a u se  of exten sion  of the polygons in the previous and next segm en ts). 

Increasing the description of the m odel can rectify this problem.
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The format of the data file specified  in table 4.1 w as revised  to include o n e  more colum n of the 

data to so lv e  the overshoot problem. The revised format for the data file is a s  show n in table 

5.1

<D <1)
(0Ç
Eo
8

0)
roc
IEo
oo

N

A ngle of
the fa ce Major Minor

with R adius radius
resp ect to of the of the

world current current
coordinate fa ce fa ce

system

RED 
value of 
colour 

coordinate

GREEN  
value of 
colour 

coordinate

BLUE 
value of 
colour 

coordinate

T able 5.1 R evised  data format

The slice or fa ce  of the m odel is defined by only o n e  radius. If this data is replaced with both 

major and minor radius data the vertices will be calculated using the ellipse equations which  

results in defining the slice or fa ce  with greater level of detail (LOD).

5 .3 .3  M odel 3

Figures 5 .10  and 5.11 sh ow  the internal view  of m odel 3 generated  by both the operating 

sy stem s. Figure 5 .1 0  w a s  the result of the m odel gen erated  in Microsoft w indow s operating 

system . The result is identical with Figure 5 .11 , which w a s generated  in R edhat Linux 

operating system .

The data for the m odel is given in appendix C. The data for the m odel created in such a w ay  

that the m odel w a s generated  only using the positive a x e s  of the world coordinate system . 

The generated  m odel can be rotated with resp ect to the origin and world coordinate system  to 

explore the external su rfaces of the model.

W hile rotating the m odel the vertex norm als of various vertices w ere updated with respect to 

the current position of the m odel avoid errors in generating the proper light and sh a d e effects.

Figures 5 .12  and 5 .1 3  sh o w s the external view  of m odel 3 generated  by both the operating 

sy stem s. Again the outputs are nearly identical. T h o se  results a lso  indicate the overshoot 

error while generating the m odel.

A s m entioned earlier modifying the data format of the input data file can rectify this error. By 

replacing the radius of the slice with major radius and minor radius of the slice the vertices
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w ere calculated  using ellipse equations which g iv es a greater level of detail (LOD) of the bend  

section  w hen com pared to the earlier data format.

T he white marks along the inner surface of the m odel act a s  a reference which crea tes the 

illusion of the m ovem ent while the cam era is moving along the exploration path or centreline  

path. S in ce  the surface of the m odel are sm ooth  and sym m etrical the u ser  would not b e  able  

feel the m ovem ent of the cam era inside the m odel and this is rectified by introducing white 

marks along the inner surface.

B eca u se  of the Linux w indow system  and its m ulti-processing feature the m odel w as  

gen erated  quickly w hen  com pared to the p rocessin g  time in Microsoft w indow s operating 

system .

The refresh rate or the fram e rate of the w indow (main w indow  and layout window) can be  

increased  with the availability of more display memory. The sp eed  with which the m odel w a s  

gen erated  and d isp layed in the w indow a lso  d ep en d s on the p rocessin g  of the m icroprocessor  

in the desktop PC.

A dvanced video graphics cards are available which h as in-built p rocessor for hardware 

acceleration along with display memory. With dedicated  p rocessor in the graphics card the 

m odel can be displayed much faster com pared to other graphics cards.

The softw are w a s  not tested  in operating sy stem s su ch  a s  Mac, O S/2, Solaris etc. S in ce the  

sou rce c o d es  are operating sy stem  independent, the author b eliev es  that the source cod e  

should com pile and ex ecu te  in th o se  operating sy stem s a s  well.

The softw are can gen erate  the m odel along or parallel to YZ plane only with respect to world 

coordinate system . But the algorithm can b e modified to gen erate  a m odel in any plane. The 

formulae for vertex A and D h as to be slightly ch an ged  to accom m od ate the angular 

d isp lacem ent in x-axis a s  well.

T he ab ove results prove

• Flexibility of the softw are

• Compatibility of 3D gen.

The software acts a s  a framework and more features can be built on top by adding various 

functions to the existing framework.
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5 .4  A r e a s  o f  a p p l i c a t i o n

3DgreA? can be applied to create any hollow cylindrical objects and h en ce  it can be u sed  to 

visualise  pipe networks. It can  a lso  be u sed  for virtual en d o sco p y  to certain extent. It is 

p ossib le  to write optional function c o d e s  to depict certain property or quality in the model, 

which can be com bined with the main program.

The softw are can  b e u sed  for virtual exploration of cylindrical m odels. It can  be u sed  in 

visualizing a tunnel, both internal and external. It can  a lso  be u sed  to construct and visualise  

steam  pipe network inside boilers in thermal pow er stations.

It can  be u sed  a s  an educational tool for visualisation and exploration of m odels like human  

d igestives system . With little m ore added features the softw are can a lso  be u sed  for three- 

dim ensional ga m e programming.
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CHAPTER 6



C H A P T E R  6: C O N C L U S I O N

6.1  C o n c l u s i o n

3Dge/7 is an user-friendly softw are that w a s d evelop ed  by the author to create three-dim ensional 

cylindrical m odels from data se ts . The softw are w a s d evelop ed  using OpenGL and C language. 

The m odel w a s generated  by the construction of num erous surface polygons. Two w indow s w ere  

available in which the main window sh o w s different v iew s of the m odel and the layout window  

sh o w s the current position of the cam era in the m odel.

3D gen satisfied the following g oa ls se t out by this research project.

• C om pact softw are

• Compatibility with various operating sy stem s such  a s  Microsoft W indows, Redhat 

Linux

• No additional softw are or files w ere required to run the softw are

• U ser friendly

6 .2  R e c o m m e n d a t i o n s  fo r  f u tu r e  w o r k

The softw are can be improved with

• Improvised data format

• Polygon simplification depending on the levels of detail to simplify the s c e n e  for rendering 

with com prom ising the quality

• Dynamic zoom  -  to zoom  the view  dynam ically

• Introducing height gradient to the surface along with texture and material properties 

The framework can a lso  be u se  to

• Simulation arm m ovem ent

•  Simulation of blood flow through arteries and veins
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APPENDIX



A ppendix  A: Instructions to com pile an d  run 3D gen:

The following files are required to compile the source code along with C compiler.

The following header files should be in /include directory with compiler

gl.h

giu.h

glut.h

The following library files should be in /lib directory with compiler

glu32.lib

glut.lib

glut32.lib

opengl32.lib

For Microsoft Windows based operating system  the following files should be in

C:/windows/system or C:/winnt/system32

glu.dll

glu32.dll

glut.dll

glut32.dll

opengl.dll

opengl32.dll

Once the .exe file was generated in Microsoft Windows based operating system  only the 

above .c/// files were required to run the software.

All the above files were available for free in World Wide Web.
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A p p e n d ix  B: M o d e l 2 d a t a

0.00000 0.00000 0.00000 -90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 1.00000 0.00000 -90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 2.00000 0.00000 -90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 3.00000 0.00000 -90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 4.00000 0.00000 -90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 5.00000 0.00000 -90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 6.00000 0.00000 -90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 6.50000 0.00000 -45.00000 0.70600 0.97700 0.50700 0.60800 
0.00000 6.50000 0.50000 0.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 6.50000 1.50000 0.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 6.50000 2.50000 0.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 6.50000 3.00000 45.00000 0.70600 0.97700 0.50700 0.60800 
0.00000 6.00000 3.00000 90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 5.00000 3.00000 90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 4.00000 3.00000 90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 3.00000 3.00000 90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 2.50000 3.00000 45.00000 0.70600 0.97700 0.50700 0.60800 
0.00000 2.50000 3.50000 0.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 2.50000 4.50000 0.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 2.50000 5.50000 0.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 2.50000 6.00000 45.00000 0.70600 0.97700 0.50700 0.60800 
0.00000 2.00000 6.00000 90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 1.00000 6.00000 90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 0.00000 6.00000 90.00000 0.50000 0.97700 0.50700 0.60800 
0.00000 -1.00000 6.00000 90.00000 0.50000 0.97700 0.50700 0.60800
0.00000 -2.00000 6.00000 90.00000 0.50000 0.97700 0.50700 0.60800
0.00000 -3.00000 6.00000 90.00000 0.50000 0.97700 0.50700 0.60800
0.00000 -4.00000 6.00000 90.00000 0.50000 0.97700 0.50700 0.60800

X Y Z Angle Radius Red Green Blue



A p p e n d ix  C: M o d e l 3 d a t a

X Y Z Angle Radius Red Green Blue

0.00000 0.00000 0.00000 0.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 0.00000 1.00000 0.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 0.00000 2.00000 0.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 0.00000 2.50000 -45.00000 0.70600 0.00000 1.00000 1.00000 
0.00000 0.50000 2.50000 -90.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 1.50000 2.50000 -90.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 2.50000 2.50000 -90.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 3.50000 2.50000 -90.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 4.50000 2.50000 -90.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 5.50000 2.50000 -90.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 6.00000 2.50000 -45.00000 0.70600 0.00000 1.00000 1.00000 
0.00000 6.00000 3.00000 0.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 6.00000 4.00000 0.00000 0.50000 0.00000 1.00000 1.00000 
0.00000 6.0000 5.00000 0.00000 0.50000 0.00000 1.00000 1.00000



A p p e n d ix  D: S o u r c e  c o d e

ffifndef FLAT__
#include <windows.h>

#endif
//Remove the above three lines of the code to compile it in operating systems other 
//than Microsoft Windows

#include <GL/gl.h>
#include <GL/glu.h>
#include <GL/glut.h>

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define WIDTH 500 //window size declaration 
#define HEIGHT 500

#define RED 0 // color declaration 
#define GREEN 0 
#define BLUE 0 
#define ALPHA 1

#define KEY_ESC 27 //declaration of keys
#define KEY_S 115
#define KEY_G 103
#define KEY_UP 101
#define KEY_DOWN 103
#define KEY_LEFT 102
#define KEY_RIGHT 100
#define KEY_X 120
#define KEY_Y 121
#define KEY Z 122

GLuint bend 1 ,lis1; / /  call list declaration

#define DELTA 5 //constant definitions 
#define pi 3.14158265 
int x=0,y=0,z=0,speed=0;
GLfloat rotateX=0,rotateY=0,rotateZ=0; //variables for rotating the model in different

// axes
int L_UP,L_DOWN,L_RIGHT,L_LEFT,stillview;
float *p, pp, countx, county, countyy, countz=0.0, thetal, lamda, yrot_prev, zrot_prev, 
yrot_cur, zrot_cur;

void init_scene(); 
void render_scene();

GLvoid initGL(); //initial settings for window and diff. parameters 
GLvoid initGLI ();
GLvoid window_reshape1(GLsizei width, GLsizei height);
GLvoid window_display1();
GLvoid window_idle1();
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GLvoid window_display(); //window display function
GLvoid window_reshape(GLsizei width, GLsizei height); //window reshape function 
GLvoid window_idle(); //window idle function
GLvoid window_key(unsigned char key.int x, int y); //keyboard function - for arrow

// keys
GLvoid window_special_key(int key, int x, int y); //keyborad function - for special

// keys

GLvoid move(); //move function - to move camera
GLint recposnum=0; //position of current aim point of camera with respect to file 

//datatest.txt

GLvoid recnum(); //function to count the number of records in datatest.txt file 
GLint recnumonce, /*  variable to check whether recnum() function is called */ 
rectotal=0; //holds total no. of records in datatest.txt file

GLfloat* readdata(GLfloat*); //function to read aim and camera coordinates from
//datatest.txt 

GLvoid lightsettings(); //light settings function 
GLvoid func_mainmenu(int);
GLvoid func_view_menu(int);
GLvoid func_viewjnternal_menu(int);
GLvoid func_view_internal_viewdir_menu(int);
GLvoid func_viewJnternal_startpos_menu(int);
GLvoid func_view_external_menu(int);
GLvoid func_zoom_menu(int);
GLvoid func_turn_menu(int);
GLvoid func_modeltyp_menu(int);
GLvoid startposition(GLint);
GLfloat finval(GLfloat, GLfloat, int);
GLvoid
fncal(GLfloat,GLfloat,GLfloat,GLfloat,GLfloat,GLfloat,GLfloat,GLfloat,GLfloat,GLfloat,FILE*); 
GLvoid sc1();
GLvoid rs1();
GLvoid ni(GLfloat,GLfloat,GLfloat);

FILE *fp1; //file pointer to handle datatest.txt
GLfloat aim_x, aim__y, aim_z, view_x_cur, view_y_cur, view_z_cur, theta=0, step_theta=10.0; 
/ /  aim and camera coordinates
GLint mfront=0; / /  variable to check whether the movement is forward or backward 

// while pressing arrow keys 
GLfloat upx=0,upy=1 ,upz=1,

maxx,minx,maxy,miny,maxz,minz,
midx,midy,midz;

GLint zoovar,dstyle; 
char zoostat-n'.cee-i'; 
char viewdirection; 
int win1,win2,psn=1;

void
myblock(double,double,double,double,double,double,double,double,double,double,FILE*,FIL 
E*,GLfloat,GLfloat,GLfloat); //function which draws the model
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int main(int argc, char **argv)
{

int m ainj7ienu,viewj7ienu,viewJnternaljTienu,viewJnternal_viewdir_m enu, 
viewJntem al_startpos_m enu,view_extem al_m enu,zoom _m enu; 

glutlnit(&argc, argv);
glutlnitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH); //initializing

//display
//mode

glutlnitWindowSize(300,300); 
glutlnitWindowPosition(510,0); 
win1=glutCreateWindow("Layout");

glutlnitWindowSize(WIDTH,HEIGHT); //initialise window size 
glutlnitWindowPosition(0,0); //initialise window position 
win2=glutCreateWindow("3DgenM); //window creation and naming

if (recnumonce==0)
{

recnum();
recnumonce=1;

} / / to findout no. of records in datatest.txt

if ((fp1=fopen("datatest.txt", "r"))==NULL)
{

printf("cannot open file"); 
exit(1);

} / /  opening the data file

glutSetWindow(win1 );
initGL1();
sc1();
glutDisplayFunc(&window_display1); 
glutReshapeFunc(&window_reshape1); 
glutldleFunc(&window_idle1 );

glutSetWindow(win2);
initGL(); //initial window settings and diff. parameters 
init_scene(); / / draws the model

glutDisplayFunc(&window_display); / /  window display function call 
glutReshapeFunc(&window_reshape); / /  window reshape function call 
glutldleFunc(&window_idle); / /  window idle function call
glutKeyboardFunc(&window_key); //function call when any of the arrow keys are

//pressed
glutSpecialFunc(&window_special_key); //function call when any of the special set

// of keys are pressed

zoom_menu=glutCreateMenu(func_zoom_menu); 
glutAddMenuEntryC’Zoom IN",21);



glutAddMenuEntryC'Zoom OUT",22);

view_extemal_menu=glutCreateMenu(func_view_extemal_menu);
glutAddMenuEntry("Front",121);
glutAddMenuEntry("Back",122);
glutAddMenuEntry("Left",123);
glutAddMenuEntry("Right",124);

viewJnternal_viewdir_menu=glutCreateMenu(func_view_jnternal_viewdir_menu); 
glutAddMenuEntryfFront", 1111); 
glutAddMenuEntry("Back",1112);

viewJnternal_startpos__menu=glutCreateMenu(func_viewJnternal_startpos_menu); 
glutAddMenuEntryC'Start'M 121 ); 
glutAddMenuEntryC'End'M 122);

view_intemal_menu=glutCreateMenu(func_view_internal_menu); 
glutAddSubMenu("View Direction",viewjnternal_viewdir_menu); 
glutAddSubMenu("Start position",view_internal_startpos_menu);

view_menu=glutCreateMenu(func_view_menu);
glutAddSubMenu("lnternar,viewJnternal_menu);
glutAddSubMenu("Externar',view_extemal_menu);
main_menu=glutCreateMenu(func_mainmenu);
glutAddSubMenu("View",view_menu);
glutAddSubMenu("Zoom",zoom_menu);
glutAddMenuEntry("Exit",4);

glutAttachMenu(GLUT_RIGHT_BUTTON);

glutMainLoopO; //loops the above routine

return 1 ;
}

GLvoid initGL()
{

glClearColor(RED,GREEN,BLUE,ALPHA);
L_UP=0;
L_DOWN=0;
L_RIGHT=0;
L_LEFT=0;
pp=0;
p=&pp;
stillview=0;
viewdirection='F';
glClearDepth(I.Of);
glDepthFunc(GL_LESS);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_SMOOTH);
glEnable(GL_COLOR_MATERIAL);

}
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void init_scene()
{

GLfloat rec11_x, rec11_y, rec11_z, red 1_an g le , rec12_x, rec12_y, rec12_z, 
rec12_angle, rec12_len=0;

GLfloat startradius, endradius, rec1_col_R, rec1_col_G, rec1_col_B, rec2_col_R, 
rec2_col_G, rec2_col_B;

FILE *nr,*npp;

if ((nr=fopen("nrd.txt","r"))==NULL)
{

printf("Cannot open normal dat file"); 
exit(1);

}
if ((npp=fopen("nrd1.txt","w"))==NULL)
{

printf("Cannot open normal dat file"); 
exit(1);

}

GLUquadricObj *quadric;

bend1=glGenLists(1); 
glNewList(bend1, GL_COMPILE); 

quadric=gluNewQuadric();
gluQuadricDrawStyle(quadric,GLU_FILL); 

glColor3f(0.977,0.407,0.408);

while (!feof(fp1))
{

if (thetal >0) glPushMatrix();
if (thetal ==0) fscanf(fp1 ,"%f %f %f %f %f %f %f % f, &rec11_x, 

&rec11_y, &rec11_z, &rec11_angle, 
&startradius, &rec1_col_R, &rec1_col_G, 
&rec1_col_B); //first record

fscanf(fp1 ,"%f %f %f %f %f %f %f % f\ &rec12_x, &rec12_y, 
&rec12_z, &rec12_angle, &endradius, &rec2_col_R, 
&rec2_col_G, &rec2_col_B); //scanning next record

myblock(rec11_x,rec11_y,rec11_z,rec11_angle,rec12_x,rec12_y,rec12_z,rec12_angle,startra  
dius,endradius,nr,npp,rec1_col_R,rec1_col_G,rec1_col_B);

//function call to draw first block based on twopoints and two radii

r e d  1_x=rec12_x; //storing the r e d 2 values in red  1
re d  1_y=rec12_y;
r e d  1_z= red2_z;
r e d  1_angle=red2_angle;
startradius=endradius;
red_col_R =rec2_col_R ;
re d  _col_G =rec2_col_G ;
red_col_B=rec2_col_B;
th eta l++;
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gIPopMatrixO;
fprintf(npp,"\n");

}
gluDeleteQuadric(quadric);
glEndList();

GLvoid move()
{

GLfloat viewcoordi[3],aimcoordi[3];

viewcoordi[0]=view_x_cur;
viewcoordi[1 ]=view_y_cur;
viewcoordi[2]=view_z_cur;
aimcoordi[0]=aim_x;
aimcoordi[1]=aim_y;
aimcoordi[2]=aim_z;

if(viewdirection=='F')
{

if(mfront==1)
{

viewcoordi[0]=aimcoordi[0];
viewcoordi[1]=aimcoordi[1];
viewcoordi[2]=aimcoordi[2];
readdata(aimcoordi);

}
e lse  if (mfront==-1 )
{

aimcoordi[0]=viewcoordi[0]; 
aimcoordi[1 ]=viewcoordi[1 ]; 
a i m coo rd i [2]=vi e wcoo rd i [2] ; 
readdata(viewcoordi);

}
}
else if (viewdirection=='B')
{

if(mfront==1 )
{

aimcoordi[0]=viewcoordi[0];
aimcoordi[1]=viewcoordi[1];
aimcoordi[2]=viewcoordi[2];
readdata(viewcoordi);

}
else  if (mfront==-1)
{

viewcoordi[0]=aimcoordi[0];
viewcoordi[1]=aimcoordi[1];
viewcoordi[2]=aimcoordi[2];
readdata(aimcoordi);

}
}
view_x_cu r=vie wcoord i [0] ; 
view_y_cur=viewcoordi[1 j; 
view_z_cur=viewcoordi[2];



aim_x=aimcoordi[0];
aim_y=aimcoordi[1];
aim_z=aimcoordi[2];

}

GLvoid recnum()
{

FILE *fpO,*wrf; 
int ctrr=0;
float xx1 ,yy1 ,zz1 =0.0,angle1 ,radius1 .Rcol.Gcol.Bcol,

xx2,yy2,zz2=0.0)angle2)radius2,Rcol2,Gcol2,Bcol2; 
if ((fpO=fopen("datatest.txt","r"))==NULL)
{

printf("Cannot open file"); 
exit(1);

}
if ((wrf=fopen("nrd.txt","w"))==NULL)
{

printff'Cannot open normal dat file"); 
exit(1);

}

while(!feof(fpO))
{

if(ctrr==0)
{

fscanf(fpO,"%f %f %f %f %f %f %f %f', &xx1, &yy1, &zz1, &angle1, &radius1, 
&Rcol, &Gcol, &Bcol);

view_x_cur=xx1 ; 
view_y_cur=yy1 ; 
view_z_cur=zz1 ; 
minx=xx1; 
maxx=xx1 ; 
miny=yy1; 
maxy=yy1 ; 
minz=zz1; 
maxz=zz1 ;

}
e lse  if (ctrr==1)
{

aim_x=xx1 ; 
aim_y=yy1 ; 
aim_z=zz1;

}
fscanf(fpO,"%f %f %f %f %f %f %f %f'f &xx2, &yy2, &zz2, &angle2, &radius2, &Rcol2, 

&Gcol2, &Bcol2); 
fncal(xx1 ,yy1 ,zz1 ,angle1 ,radius1 ,xx2,yy2,zz2,angle2,radius2,wrf); 
rectotal=rectotal+1; 
ctrr++;
minx=finval(minx,xx2,0); 
maxx=finval(maxx,xx2,1 ); 
miny=finval(miny,yy2,0); 
maxy=finval(maxy,yy2,1 ); 
minz=finval(minz,zz2,0);
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maxz=finval(maxz,zz2,1);
xx1=xx2;
yy1=yy2;
zz1 =zz2;
angle1=angle2;
radius 1=radius2;
Rcol=Rcol2;
Gcol=Gcol2;
Bcol=Bcol2;

}
fclose(fpO);
fclose(wrf);
rectotal--;
printf("Total no. of recs. = %d\n",rectotal);
midx=(minx+maxx)/2;
midy=(miny+maxy)/2;
midz=(minz+maxz)/2;
recposnum=2;
return;

}

GLvoid fncal(GLfloat x1, GLfloat y1, GLfloat z1, GLfloat a n g l, GLfloat r1, GLfloat x2, GLfloat 
y2, GLfloat z2, GLfloat ang2, GLfloat r2, FILE *tpp)
{

int i,INCR=1;
GLfloat vx,vy,vz,

ax,ay,az, 
bx,by,bz, 
cx,cy,cz,veclen; 

for (i=0;i<360;i=i+INCR)
{

ax=x1 +r1 *cos(i*pi/180);
ay=y 1 +r1 *(sin(i*pi/180))*(cos(ang 1 *pi/180));
az=z1 +r1 *(sin(i*pi/180))*(sin(ang1 *pi/180));

bx=x1+r1*cos((i+INCR)*pi/180); //vertex of circle with centre x1,y1,z1
// at angle i+incr

by=y1 +r1 *(sin((i+INCR)*pi/180))*(cos(ang1* pi/180)); 
bz=z1 +r1 *(sin((i+INCR)*pi/180))*(sin(ang 1 *pi/180));

cx=x2+r2*cos((i+INCR)*pi/180); //vertex of circle with centre x2,y2,z2
// at angle i+incr 

cy=y2+r2*(sin((i+INCR)*pi/180))*(cos(ang2*pi/180)); 
cz=z2+r2*(sin((i+INCR)*pi/180))*(sin(ang2*pi/180));

vx=(((ay-cy)*(az-bz))-((ay-by)*(az-cz)));
vy=(((ax-bx)*(az-cz))-((ax-cx)*(az-bz)));
vz=(((ax-cx)*(ay-by))-((ax-bx)*(ay-cy)));

veclen = sqrt((vx*vx)+(vy*vy)+(vz*vz));
vx=vx/veclen;
vy=vy/veclen;
vz=vz/veclen;
fprintf(tpp,"%f %f %f',vxtvy,vz); 
if (i<359)
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{
fpr¡ntf(tpp," ");

}
}
fprintf(tpp,"\n");

}

GLfloat finval(GLfloat va, GLfloat vb, ¡nt tem) 
{

GLfloat fval;
¡f (tem==0)
{

if (va>vb)
fval=vb;

else
fval=va;

}
else  if (tem==1)
{

¡f (va>vb)
fval=va;

else
fval=vb;

}
return (fval);

GLfloat * readdata(GLfloat *tempptr)
{

GLfloat Rc,Gc,Bc,dist,ang1; 
int datacntr;
FILE *fpO;

if ((fpO=fopen("datatest.txt"I"r"))==NULL)
{

printf("Cannot open file"); 
exit(1);

}
for (datacntr=1 ;datacntr<=recposnum;datacntr++)
{

fscanf(fpO,"%f %f %f %f %f %f %f % f, &tempptr[0], &tempptr[1], &tempptr[2], &ang1, 
&dist, &Rc, &Gc, &Bc);

}
fclose(fpO); 

return (tempptr);

GLvoid lightsettings()
{

GLfloat globa!amb¡ent[]={0.65,0.65,0.65,1.0}, 
diff0[]={0.5,0.5,0.5,1.0}, 
am bi0[]={0.0,0.0,0.0,1.0}, shine=10.0,
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speclight[]={0.5,0.5,0.5,1.0}, 
atti[]={-1.5,-0.50,-0.50},spotcutoff=90, 
spotdir[]={aim_x,aim_y,aim_z}, 
glemiss[]={0.0,0.0,0.0,1.0}, 
posOD={0.0,0.0,0.0,1.0};

pos0[0]=view_x_cur; 
pos0[1 ]=view_y_cur; 
pos0[2]=view_z_cur;

glLightModelfv(GL_LIGHT_MODEL_AMBIENT,globalambient);
glLightfv(GL_LIGHTO,GL_POSITION,posO);
glLightfv(GL_LIGHTO,GL_DIFFUSE,diffO);
glLightfv(GL_LIGHTO,GL_SPECULAR,speclight);
glEnable(GLJJGHTO);
glEnable(GL_LIGHTING);
glMaterialfv(GL_FRONT,GL_SHININESS,&shine);

}

GLvoid window_display()
{
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glLoadldentity();
gluLookAt(view_x_cur,view__y_cur,view_z_cur,aim_x,aim_y,aim_z,upx,upy,upz);

/ /  camera positon and aim coordinates
if (zoostat = = y )
{

if (zoovar==1)
{

glScaled(2,2,2);
glEnable(GL_NORMALIZE);

}
else  if (zoovar==0)
{

glScaled(1.0,1.0,1.0); 
glEnable(GL_NORMALIZE);

}
zoostat='n';

}

lightsettings();
render_scene();
glutSwapBuffers();
}

GLvoid window_reshape(GLsizei width, GLsizei height)
{

if (height==0) height=1; 
glViewport(0,0,width,height); 
glMatrixMode(GL_PROJECTION); 
glLoadldentity();
gluPerspective(90,(GLdouble)width/(GLdouble)height,0.1,200);
glMatrixMode(GL_MODELVIEW);

}



GLvoid window_key(unsigned char key.int x,int y)
{

switch(key)
{
ca se  KEY_ESC: exit(1);

break;
ca se  KEY_X : rotateX=!rotateX; 

glutPostRedisplay();
break;

ca se  KEY_Y : rotateY=!rotateY; 
glutPostRedisplay();

break;
ca se  KEY_Z : rotateZ=!rotateZ; 

glutPostRedisplay();
break;

default : printf("Pressing %d dosen't do anything \n", key); 
break;

}
}

GLvoid window_special_key(int key, int x,int y)
{

switch (key)
{

ca se  KEY_UP : if (mfront==-1) recposnum=recposnum+1;
mfront=1;
recposnum=recposnum+1; 
move();
glutPostRedisplay(); 
glutPostWindowRedisplay(win1); 
break;

ca se  KEY_DOWN : if (mfront==1) recposnum=recposnum -1;
mfront=-1;
recposnum=recposnum-1; 
move();
glutPostRedisplay(); 
glutPostWindowRedisplay(win1); 
break;

case  KEY_LEFT : speed=(speed-DELTA+360)% 360; 
glutPostRedisplay(); 
break;

ca se  KEY_RIGHT : speed=(speed+DELTA+360)% 360; 
glutPostRedisplay(); 
break;

default : printff'Pressing %d doesn't do anything", key); 
break;

}
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GLvoid window_idle()
{
if (rotateX) x=(x+speed+360)% 360; 
if (rotateY) y=(y+speed+360)% 360; 
if (rotateZ) z=(z+speed+360)% 360; 
if (speed>0 && (rotateX||rotateY||rotateZ)) 
glutPostRedisplay();
}

void myblock(double x1 .double y1 .double z1 .double a n g l , 
double x2,double y2,double z2,double ang2,

double r1 .double r2,FILE *fnr,FILE *fnr2,GLfloat crl.Glfloat
cgl.GLfloat cb1)

{
int INCR=1li,h,g,j,k;
double ax.ay.az.bx.by.bz.cx.cy.cz.dx.dy.dz;
GLfloat vx.vy.vz,

t1 ,t2,t3,t11 ,t12,t13,tt1 ,tt2,tt3,tt11 ,tt12,tt13, 
s1 [360][3],s2[360][3];

float veclen=0,veclen2=0;
FILE *fnr1;

if ((fnrl =fopen("nrd.txt","r"))==NULL)
{

printf("Cannot open normal dat file"); 
exit(1);

}
for (k=1;k<=psn;k++)
{

if (k==psn) for (h=0;h<360;h++) fscanf(fnr1 ,"%f %f % f\ &s1 [h][0],
&s1[h][1], &s1[h][2]);

for (h=0;h<360;h++) fscanf(fnr1 ,"%f %f %f,,&s2[h][0],&s2[h][1]l&s2[h][2]);
}

for (i=0;i<360;i=i+INCR)
{

ax=x1+r1*cos(i*pi/180); //vertex of circle with centre x1,y1,z1 at angle i 
ay=y1 +r1 *(sin(i*pi/180))*(cos(ang 1 *pi/180)); 
az=z1 +r1 *(sin(i*pi/180))*(sin(ang 1 *pi/180));

bx=x1+r1*cos((i+INCR)*pi/180); //vertex of circle with centre x1,y1,z1 at angle
//i+incr

by=y 1 +r1 *(sin((i+l NCR)*pi/180))*(cos(ang 1 *pi/180)); 
bz=z1 +r1 *(sin((i+INCR)*pi/180))*(sin(ang1 *pi/180));

cx=x2+r2*cos((i+INCR)*pi/180); //vertex of circle with centre x2,y2,z2 at angle
//i+incr

cy=y2+r2*(sin((i+INCR)*pi/180))*(cos(ang2*pi/180)); 
cz=z2+r2*(sin((i+INCR)*pi/180))*(sin(ang2*pi/180));

dx=x2+r2*cos(i*pi/180); //vertex of circle with centre x2,y2,z2 at angle i



dy=y2+r2*(sin(i*pi/180))*(cos(ang2*pi/180)); 
dz=z2+r2*(sin(i*pi/180))*(sin(ang2*pi/180));

¡f (¡==0)
g —359,

else
g=(i/INCR)-1;

j=i/INCR;
vx=s1 [g][0]+s10][0]+s2[g][0]+s2[j][0]; 
vy=s1 [g][1 ]+s1 D][1 ]+s2[g][1 ]+s20][1 ]; 
vz=s1 [g][2]+s1 D][2]+s2[g][2]+s2D][2];

glBegin(GL_POLYGON); //joining the vertices of a,b(of 1st circle),c and d(of
// 2nd circle) to form a polygon

veclen = sqrt((vx*vx)+(vy*vy)+(vz*vz)); 
if (cee=='i')

{
glNormal3f(vx/veclen,vy/veclen,vz/veclen);

glColor3f(cr1,cg1,cb1);
glVertex3f(ax,ay,az);
glVertex3f(bx,by,bz);
glVertex3f(cx,cy,cz);
glVertex3f(dx,dy,dz);

} “

else
{

glVertex3f(bx,by,bz);
glVertex3f(ax,ay,az);
glVertex3f(dx,dy,dz);
glVertex3f(cx,cy,cz);

}
glEndQ;
if ((¡>180) && (i<185)==TRUE)
{
ax=x1 +0.99*r1 *cos(i*pi/180); 
ay=y 1 +0.99*r1 *(sin(i*pi/180))*(cos(ang 1 *pi/180)); 
az=z1 +0.99*r1 *(sin(i*pi/180))*(sin(ang 1 *pi/180)); 

bx=x1 +0.99*r1 *cos((i+INCR)*pi/180);
by=y1 +0.99*r1 *(sin((i+INCR)*pi/180))*(cos(ang1 *pi/180)); 
bz=z1 +0.99*r1 *(sin((i+INCR)*pi/180))*(sin(ang 1 *pi/180)); 

cx=x2+0.99*r2*cos((i+INCR)*pi/180);
cy=y2+0.99*r2*(sin((i+INCR)*pi/180))*(cos(ang2*pi/180)); 
cz=z2+0.99*r2*(sin((i+INCR)*pi/180))*(sin(ang2*pi/180)); 

dx=x2+0.99*r2*cos(i*pi/180);
dy=y2+0.99*r2*(sin(i*pi/180))*(cos(ang 1 *pi/180)); 
dz=z2+0.99*r2*(sin(i*pi/180))*(sin(ang 1 *pi/180)); 
t1=ax; t2=ay; t3=az; t11=bx; t12=by; t13=bz; 
tt1=dx; tt2=dy; tt3=dz; tt11=cx; tt12=cy; tt13=cz; 

if ((psn%2)==0)
{

fprintf(fnr2,"i= %d g= %d j=%d\n",i,g,j); 
glBegin(GL_QUADS); 

glColor3f(1,1,1);
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glVertex3f(t1,t2,t3); 
glVertex3f(t11 ,t12,t13); 
glVertex3f(tt11 ,tt12,tt13); 
glVertex3f(tt1 ,tt2,tt3); 

glEndO;
}

}
}

psn++; 
fclose(fnr1 );

}

GLvoid func_mainmenu(int menuoption)
{

switch (menuoption)
{
case  1 :

break;
ca se  2 :

break;
ca se  3 :

break;
ca se  4 : printf("\n SESSION CLOSED"); 

exit(O); 
break;

}
}

GLvoid func_view_menu(int menuoption)
{

switch (menuoption)
{
case  11 :

break;
ca se  12 :

break;
}

}

GLvoid func_view_internal_menu(int menuoption) 
{

switch (menuoption)
{
ca se  111 :

break;
ca se  112 :

break;
}

}

GLvoid func_view_internal_viewdir_menu(int menuoption) 
{



GLfloat tem pvaii ,tempvar2,tempvar3=0;

switch (menuoption)
{
ca se  1111 : if (viewdirection=='F')

{

}
e lse
{

printf("View direction is front\n");

tempvar1=aim_x;
tempvar2=aim_y;
tempvar3=aim_z;
aim_x=view_x_cur;
aim_y=view_y_cur;
aim_z=view_z_cur;
view_x_cur=tempvar1 ;
view_y_cur=tempva r2 ;
view_z_cur=tempvar3;
viewdirection-F';
glutPostRedisplayO;

break;

ca se  1112 : if (viewdirection=='B') 
{

}
else
{

}
break;

printf("View direction is Back\n");

tempvar1=aim_x;
tempvar2=aim_y;
tempvar3=aim_z;
aim_x=view_x_cur;
aim_y=view_y_cur;
aim_z=view_z_cur;
view_x_cur=tempvar1 ;
vie w_y_cu r=te m p va r2 ;
view_z_cur=tempvar3;
viewdirection='B';
glutPostRedisplayO;

GLvoid func_view_intemal_startpos_menu(int menuoption) 
{

int datno;

switch (menuoption)
{
ca se  1121 : datno=1;



cee=Y; 
upz=1 ; 
break;

ca se  1122 : datno=rectotal-1 ;
startposition(datno);
upz=1;
break;

}
}

GLvoid func_view_externaljmenu(int menuoption) 
{

GLfloat st1 ;

startposition(datno);

aim_x=midx;
aim_y=midy;
aim_z=midz;
view_y_cur=midy;

switch (menuoption)
{

ca se  121 : view_x cur=midx;
view_z_cur=minz-(((maxy-miny)/2)+2);
upz=0;
glutPostRedisplayO;
break;

ca se  122 : view_x_cur=midx;
view_z_cur=maxz+(((maxy-miny)/2)+2);
upz=0;
glutPostRedisplayO;

break;

ca se  123 : st1=midy-maxy;
if (st1<0)

st1=-1*st1; 
st1=st1+(0.5*st1); 
view_x_cur=midx+st1 ; 
view_z_cur=midz; 
upz=0;
glutPostRedisplayO;
break;

ca se  124 : st1=midy-maxy;
if (st1 >0)

st1=-1*st1 ; 
st1=st1+(0.5*st1); 
view_x_cur=midx+st1 ; 
view_z_cur=midz; 
upz=0; 
cee='o';
glutPostRedisplayO;
break;



}
}

GLvoid func_zoom_menu(int menuoption)
{

switch (menuoption)
{
ca se  21 : zoostat='y';

zoovar=1;
glutPostRedisplay();
break;

ca se  22 : zoostat='y';
zoovar=0;
glutPostRedisplay();
break;

}
>

void render_scene()
{

glRotatef(x,1,0,0); 
glRotatef(y,0,1,0); 
glRotatef(z,0,0,1);
glCallList(bend1); //calling the list to redraw the model

}

GLvoid initGLI()
{

glClearColor(RED,0,0,ALPHA);
glClearDepth(I.Of);
glDepthFunc(GL_LESS);
glEnable(GL_DEPTH_TEST);
glShadeModel(GL_SMOOTH);
glEnable(GL_COLOR_MATERIAL);

}

GLvoid window_reshape1(GLsizei width, GLsizei height)
{

if (height==0) height=1; 
glViewport(0,0,width,height); 
glMatrixMode(GL_PROJECTION); 
glLoadldentity();
gluPerspective(90,(GLdouble)width/(GLdouble)height,0.1,200); 
rs1();
glMatrixMode(GLJVIODELVIEW);

}

GLvoid window_display1()
{

GLfloat s;
glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);
glLoadldentity();
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s=mídy-maxy; 
if (s>0)

s —1*s; 
s=s+(0.5*s);
gluLookAt(midx+s,midy,midz,midx,midy,midz,0,1,0);
rs1();
glutSwapBuffers();

}

GLvoid window_idle1()
{

glutPostRedisplayO;
}

GLvoid rs1()
{

glCallList(lisl);
ni(view_x_cur,view_y_cur,view_z_cur);

}

GLvoid ni(GLfloat bl.GLfloat b2,GLfloat b3)
{

glColor3f(1,1,0); 
glBegin(GL_QUADS);

glVertex3f(b1 ,b2+0.8,b3-0.8); 
glVertex3f(b1 ,b2+0.8,b3+0.8); 
glVertex3f(b1 ,b2-0.8,b3+0.8); 
glVertex3f(b1 ,b2-0.8,b3-0.8); 

glEnd();
}

GLvoid sc1()
{

lis1=glGenLists(1);
GLfloat a1 ,a2,a3,a4,a5,a6,a7,a8,

a 1 1,312,313,314,315,816,317,318;
FILE *of;
GLint 3=0;
if ((of=fopen("d3t3test.txt","r"))==NULL)
{

printf("Cannot open dat file for line"); 
exit(1);

}

glNewList(lis1, GL_COMPILE);

while (!feof(of))
{

if (3==0) fscanf(of,"%f %f %f %f %f %f %f %f", &a1, &s2, &s3, 
&34, &a5, &s6, &s7, &38); 

fscanf(of,"%f %f %f %f %f %f %f %f', &a11, &a12, &313, &s14, &315, 
&316, &a17, &318);

a++;
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glColor3f(1,1,1); 
glBegin(GL_LINES);

glVertex3f(a1,a2,a3); 
glVertex3f(a11 ,a12,a13); 

glEndO;
a1=a11; a2=a12; a3=a13;

}
glEndList();
fclose(of);

GLvoid startposition(GLint rno)
{

GLfloat coordipj.Rc.Gc.Bc.dist.angl ; 
int datacntr;
FILE *fpO;
if ((fpO=fopen("datatest.txt","r"))==NULL)
{

printf("Cannot open file"); 
exit(1);

}
if (viewdirection=='F’)
{

recposnum=mo;
for (datacntr=1 ;datacntr<=recposnum;datacntr++)
{

fscanf(fpO,"%f %f %f %f %f %f %f % f\ &coordi[0], &coordi[1], 
&coordi[2], &ang1, &dist, &Rc, &Gc, &Bc);

}
view_x_cur=coordi[0]; 
view_y_cur=coordi[1 j; 
view_z_cur=coordi[2]; 
recposnum=rno+1;
for (datacntr=1 ;datacntr<=recposnum;datacntr++)
{

fscanf(fpO,"%f %f %f %f %f %f %f % f\ &coordi[0], &coordi[1], 
&coordi[2], &ang1, &dist, &Rc, &Gc, &Bc);

}
aim_x=coordi[0];
aim_y=coordi[1];
aim_z=coordi[2];
glutPostRedisplayO;

}
e lse  if (viewdirection=='B')
{

recposnum=rno;
for (datacntr=1 ;datacntr<=recposnum;datacntr++)
{

fscanf(fpO,"%f %f %f %f %f %f %f % f, &coordi[0], &coordi[1], 
&coordi[2], &ang1, &dist, &Rc, &Gc, &Bc);

}
aim_x=coordi[0];
aim_y=coordi[1];
aim_z=coordi[2];



recposnum=rno+1;
for (datacntr=1 ;datacntr<=recposnum;datacntr++)
{

fscanf(fpO,"%f %f %f %f %f %f %f % f, &coordi[0], &coordi[1], 
&coordi[2], &ang1, &dist, &Rc, &Gc, &Bc);

}
view_x_cur=coordi[0];
view_y_cur=coordi[1];
view_z_cur=coordi[2];
glutPostRedisplayO;


