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A bstract

Conjugated Linoleic Acid (CLA), a polyunsaturated fatty acid, refers to a group of 

dienoic derivatives of linoleic acid that can be found in natural food sources, such as milk fat 

and the meat of ruminant animals. CLA has been shown to have anti-carcinogenic activity in 

many in vitro and in vivo studies. Previous studies have focused on the effects of dietary 

CLA on the prevention of tumour appearance, yet relatively little is known about the actual 

mechanism of CLA’s anti-cancer activity.

The most lethal aspect of cancer is the ability of tumour cells to metastasise and form 

secondary tumours. The matrix metalloproteinases (MMPs), a multi-gene family of enzymes, 

which degrade components of the extracellular matrix (ECM) have been implicated as major 

role players in tumour invasion and metastasis. The aim of this study was to examine the 

effect of CLA on the proliferation, migration, invasion and MMP-9 expression of a murine 

mammary cancer cell line, 4T1, which is known to be highly metastatic in vivo.

Cells were treated with CLA, which contains a mixture of various isomers, and with 

the purified predominant isomers present in CLA, 9c, 11 i ( l8:2) and 10/,12c(l 8:2). 

Cytotoxicity o f CLA was examined by varying the concentration and incubation time. Sub- 

lethal as well as lethal doses were determined. Interestingly, it appeared that the 

10 / , l2 e ( l8 :2 ) isomer had the most lethal effect.

Flow cytometric analysis revealed deregulation o f the cell cycle correlating with the 

observed cytotoxic effects of CLA, especially with the 10i,12c(18:2) CLA isomer. The effect 

of CLA and its isomers on apoptosis was also investigated. The results from this assay were 

inconclusive, although examination of the cell cycle histogram plots indicated that cell death 

due to CLA was not occurring through an apoptotic pathway as there was no sub-Go/Gi peak.

Treatment o f the cells with a sub-lethal dose of CLA and its isomers resulted in a 

reduction of the invasive activity of the 4T1 cell line with the 9c, 11 18:2) isomer having the 

greatest effect. CLA and its isomers also resulted in a reduction in the percentage migration 

o f the cells, especially the 9c, 11/(18:2) isomer and the CLA mixture. Substrate zymography 

gels were used to detect MMP activity and showed that the 4T1 cells expressed significant 

amounts of murine MMP-9. Following treatment with CLA and its isomers, there was no 

reduction in MMP expression.
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* asterisk

9:11 9c, 11/(18:2)

10:12 10r,12c(18:2)

a  Alpha
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BRCA2 Breast cancer 2
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MT-MMP Membrane type MMP

MTS (3-(4,5-dimethyIthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-

(4-sulfophenyl)-2H-tetrazolium 

MW Molecular weight

OD Optical density

v



co Omega

%  Percentage

p21 Protein 21
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PAGE Polyacrylamide gel electrophoresis
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CHAPTER 1



1.1 Cancer

The fundamental abnormality resulting in the development of cancer is the 

continual unregulated proliferation of cancer cells. Rather than responding appropriately 

to the signals that control normal cell behaviour, cancer cells grow and divide in an 

uncontrolled manner, invading normal tissues and organs and eventually spreading 

throughout the body (Cooper, 1990).

Carcinogenesis, the process by which cancers are generated, is a multistep process 

resulting from the accumulation of mistakes in vital regulatory pathways. It is initiated in 

a single cell, which then multiplies and acquires additional changes that give it survival 

advantage over its neighbours. It takes time and large numbers of cells to generate these 

errors, and so it follows that the longer one lives the greater the likelihood is to develop 

cancer. Hence, cancer is a disease associated with old age, although this is not always 

true, as in the case o f childhood leukaemia (King, 2000).

There are many kinds of cancer but only a few occur frequently. The four most 

common cancers are those of the prostate, breast, lung, and colon/rectum (Parkin et al, 

2001). Cancer is reported as being the second highest cause of death, behind heart 

disease, in the western world. In the USA, it is responsible for over 20% of all deaths 

(King, 2000). Figure 1.1 shows the incidence of, and mortality due to, many cancers.

Malas FamalM
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Figure 1.1. Number of new cases (depicted by heavy black line) and deaths (depicted by

white line) worldwide for the 15 most common cancers in men and women, 2000 (Parkin

et al, 2001).



1.2 Breast cancer

Breast cancer is the second most common cancer in the world today, and by far 

the most common cancer in women, with over 999,000 new cases o f breast cancer each 

year (about 22% of cancers in women) and 375,000 deaths (figure 1.1) (Parkin et al, 

2001). High rates are observed in the US, Europe, Australia and New Zealand, and in the 

south of South America, especially Uruguay and Argentina. In contrast, low rates are 

found in most African and Asian populations, although they are increasing. Survival 

from breast cancer in Europe is 91% at 1 year and 65% at 5 years (Parkin et al, 2001).

The principal causes of death in Ireland in 1997 are outlined in table 1.1. Cancer 

accounted for almost 24% of all deaths; breast cancer deaths comprised 2% of all deaths 

and 8.5% of all cancer deaths. Since all these cases occurred in women in this study, this 

number constitutes 4.2% of all deaths in women and 18.1% of all cancer deaths in 

women. Breast cancer is confirmed as being a principle cause of premature mortality in 

women. It constitutes approximately 20% of all female deaths between the ages of 40 

and 59 years. Ireland has severely high age-standardised mortality rates due to breast 

cancer. It lags behind only Denmark and Israel out o f 40 countries studied regarding 

mortality due to breast cancer (Codd et al, 1999).

Cause of Death Percentage (%)

Cardiovascular disease 4.0

Cancer Lung 4.0

Colon 2.0

Breast 2.0

Others 15.0

Respiratory 15.0

Other circulatory disease 11.0

Table 1.1. Principle causes of death in Ireland, 1997. Values are rounded to nearest 

percentage (Codd et al, 1999).

Five to ten percent of breast cancer is attributable to the autosomal dominant 

inheritance of a high-risk susceptibility gene. There are a number o f known inherited 

cancer syndromes that result in a higher risk of breast cancer. Genes, such as the BRCA1 

gene, which is responsible for 45% of hereditary early-onset breast cancer, and the



BRCA2 gene that accounts for approximately 40% of hereditary early-onset breast cancer 

(Miki et al, 1994, Futreal el al, 1994, Wooster el al, 1995, Radford and Zehnbauer, 

1996). Mutations in these genes can occur more frequently in certain populations, such 

as in Ashkenazi Jews (Bertwistle and Ashworth, 1998). Studies of these genes help in 

not only understanding inherited breast cancer syndromes but also in non-inherited, or 

sporadic, breast cancer.

Sporadic breast cancer, which constitutes more than 90% of all breast cancers, is a 

complex and heterogeneous disease at both the clinical and molecular levels. Despite this 

heterogeneity, the natural history of breast cancers involves a sequential progression 

through defined clinical and pathological stages starting with atypical epithelial 

hyperplasia, progressing to carcinoma in situ then invasive carcinomas and culminating 

in metastatic disease (Polyak, 2001). This is depicted in figure 1.2.

Figure 1.2. The progression of pre-malignant benign breast disease to metastatic 

carcinoma. The lungs are the major sites for the formation of secondary tumours of 

breast cancer (Rose & Connolly, 1999).

There is an increase in numbers of women with the disease and this has been 

largely attributed to mammographie screening programs, which are being practised in 

many developed countries. Since the establishment of the National Breast Screening 

Programme in Ireland in 1999, approximately 50% of women aged 50-64 have been 

targeted for mammographie screening (Codd et al, 1999). The stage of the disease at the 

time o f diagnosis, i.e. whether it is localised or has metastasised, is the most important 

prognostic variable regarding long term survival, and it is here that the importance o f the



mammographie screening programmes can be seen. It has been observed that the risk of 

breast cancer increases with age in women up to 50 years, whereby the onset of the 

menopause (characterised by lower oestrogen levels) slows down this increase (Parkin et 

al, 2 0 0 1 ).

1.2.1 The causes of breast cancer

Many factors are reported as either initiating or promoting cancer through the 

build-up of a series of mutations in cells, which will lead onto malignant growth. 

Cigarette smoke, radiation, chemical carcinogens, hormones, and viruses have all been 

indicated in playing roles in the development of certain cancers, as well as behaviour, 

lifestyle (which includes diet) and inherited genetic mutations (figure 1.3).
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Figure 1.3. Summary of factors influencing breast carcinogenesis.

The development o f breast cancer is a long process, comprising a series of 

biological events that drive a normal mammary cell towards malignant growth. 

However, it is not known when the initiation of breast cancer occurs. The etiology of 

breast cancer may be associated with fat, fibre, fruits, vegetables, (3-carotene, vitamin C, 

zinc, phytoestrogens, and alcohol. Variations in diet, found between populations, is a 

viable possibility to account for the differences in cancer incidence worldwide.

It has been proposed that most women develop subclinical breast cancer at an 

early premenopausal age and that diet, especially overnutrition, plays an important role in 

the progression from such putative preneoplastic lesions to clinical disease (Woutersen et



al, 1999). Potential carcinogens, as well as cancer preventive agents are all found in 

foods. There are several dietary factors, which have been implicated, and generally 

agreed, to play significant roles in cancer. Some examples of these are given in table 1.2 

(Cooper, 1990). Although the most important factors influencing the risk of breast 

cancer are reproductive and hormonal, observation at international level of a strong 

correlation between mortality from cancer o f the breast and per capita intake of dietary 

fat has implicated the role o f dietary fat as an important risk factor (Parkin et al, 2001).

Dietary Component Effect on Cancer Risk

High fat Increased risk of colon and possibly breast cancer

High calorie Obesity resulting in increased risk of endometrial and possibly

breast cancer

Cured, smoked, and pickled foods Increased risk o f stomach cancer

Aflatoxin Increased risk of liver cancer

Vitamin A or /J-carotene Decreased risk o f lung and other epithelial cancers

Vitamin C Decreased risk o f stomach cancer

Vitamin E and selenium Deficiencies are associated with increased cancer risk

Fibre Decreased risk o f colon cancer

Cruciferous vegetables Decreased cancer risk

Table 1.2. The effect of several common food components on cancer risk.

Saturated Fatty Acids (SFAs) and Polyunsaturated Fatty Acids (PUFAs) have 

been studied extensively as part of cancer research. Studies carried out by Guthrie and 

Carroll (1999) showed that SFAs failed to increase the yield of tumours induced by a 

mammary carcinogen, 7,12-dimethylbenz(a)anthracene (DMBA). However, when SFAs 

were administered along with PUFAs, the mixture promoted mammary cancer as well as 

a high level o f PUFAs. Fatty acids (FAs) play important roles in cancer growth and 

proliferation. The fact that PUFAs are present in many foodstuffs, and our intake of 

dietary fats, in general, is growing with increasing economic development, research into 

dietary PUFAs, and the effect they have on clinical cancer, is of prime importance in 

cancer research today.
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1.2.2 Epidemiological evidence supporting the relationship between PUFAs

and breast cancer incidence

One hypothesis, as to the initiation of breast cancer, is that a high oestrogenic 

environment, often brought on by a high dietary fat diet, during the perinatal period 

increases subsequent breast cancer risk. Hilakivi-Clarke et al (1999) presented evidence 

that a high maternal intake o f dietary fats increased serum oestrogens during pregnancy 

and increased breast cancer risk in daughters. High fat diets in women increased greatly 

the level of circulating oestrogens in the human body. Birth weight was suggested to 

reflect high foetal oestrogenic environment, and there was a reported higher breast cancer 

incidence in women with high birth weight. A clear correlation between high fat intake, 

high oestrogen levels and increased risk of breast cancer has been observed.

Ecological studies show a wide variation in breast cancer incidence and mortality 

rates between countries and correspondingly large differences in dietary practices. 

Interestingly, migration studies have shown that when women move from countries such 

as Japan, in which breast cancer and dietary fat are relatively low, to countries such as the 

U.S., where the reverse is true, their breast cancer incidence rates increased within one or 

two generations (Wouterson et al, 1999). Although Japanese women continued to have a 

relatively low incidence o f breast cancer, it has risen significantly over the last 30 years 

accompanied by dietary changes, most notably an increase in total fat consumption, and 

urbanisation (Rose and Connolly, 1999, Wouterson et al, 1999).

It has been widely agreed that epidemiological and ecological studies may not 

always be accurately relied on. If a survey is being carried out, the researcher must rely 

on the honesty o f the participants. Also, when research is being carried out on sufferers 

of cancer in the past, recall o f important dietary practices may not always be accurate and 

additional environmental factors may not be reported. This is true for all epidemiological 

studies, i.e. what other inter-country and inter-population factors may be playing an 

influential role? Research into the influence of dietary factors on cancer incidence often 

do not take into account the role played by interacting dietary components (Stoll, 1998). 

For example, when looking at fatty acids, antioxidant vitamins such as vitamin-E may 

also be studied (van den berg et al, 1995). For these reasons, experimental evidence is 

required in great quantity and depth. When experimental evidence reflects conclusions 

drawn from epidemiological studies, the research takes on a more reliable perspective.
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1.3 Chemistry of PUFAs

1.3.1 Nomenclature

The customary chemical nomenclature of PUFAs is to begin the systematic 

numbering o f carbons from the carboxyl terminal group (-COOH). The carbons 

numbered 2 and 3 from the carboxyl group are referred to as the a  and (3 carbons. The 

last carbon is the co- (omega-) or n- carbon (methyl end, H3C-). A number following co- 

indicates the carbon where the double bond is, when counting from the co end. The 

position of the double bond may also be indicated by the symbol A, followed by a 

number. For example, A9 or co-9 refers to a double bond between carbons 9 and 10.

1.3.2 The metabolism of co-6 PUFAs

There exist four families of PUFAs, co-9, co-7, co-6  and o>3. Among these 

families co-3 and co-6  are the essential fatty acids (EFAs). EFAs must be obtained from 

the diet. All EFAs are PUFAs and contain >two C=C double bonds. Other PUFAs in the 

co-6  and co-3 series are either converted from their parent EFAs or can be obtained 

directly from the diet (Jiang et al, 1998a).

Linoleic acid (LA), an co-6  fatty acid, is metabolised to longer-chain FAs, largely 

in the liver. LA is the metabolic precursor o f arachidonic acid (AA) and thus eicosanoids 

(collective name for metabolites o f PUFAs). These eicosanoids are known to modulate 

the interaction of tumour cells with various host components in cancer metastasis. Their 

synthesis involves the release o f AA from cellular phospholipids by phospholipase A2 

(PLA2), followed by metabolism by cyclooxygenases (COXs) and lipoxygenases 

(LOXs). Increases in chain length (mediated by elongases) and degrees o f unsaturation 

(mediated by desaturases) are achieved by adding extra double bonds between the 

existing double bond and the carboxyl group (Jiang et al, 1998a). These metabolic events 

are depicted in figure 1.4.

PUFAs are key elements in our body playing important physiological roles. They 

serve as metabolic fuel to provide energy, they are inherent parts of cellular membranes, 

and they serve as building blocks for other lipids and as a source of eicosanoids.
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Linoleic Acid

Delta-6 desaturase

Gamma Linolenic Acid

Elongases

Phospholipases
Phospholipids

Arachidonic Acid
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Figure 1.4. The metabolism o f LA into the collective group of metabolites known as the 

eicosanoids. Important enzymes and pathways are highlighted in blue. There are many 

other pathways that LA and AA may take that are not shown here.

1.3.3 co-6 PUFAs of Clinical Importance

Due to the fact that the EFAs are PUFAs, and many studies have implil#te4 

possible roles they play in cancer development, these PUFAs have become the most 

widely studied FAs. Table 1.3 shows common PUFAs, including CLA, which have been 

studied, both in vitro and in vivo.
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Fatty Acid Tumour Type Study method Response

GLA Breast Cancer In vitro Decreases invasion

Prostate cancer In vitro No significant effect

Lung cancer In vivo Reduces tumour growth

Prostate cancer In vitro Decreases proliferation

EPA Breast Cancer In vitro Inhibits cell growth

Prostate cancer In vitro Stimulates growth at low 

concentrations but inhibits 

at high concentrations

LA Breast Cancer In vivo 

In vitro

In vitro and In vivo

Promotes metastasis and 

growth

Increases cell-matrix 

adhesion and invasion 

Increases cell growth and 

invasion

Prostate cancer In vitro Stimulates proliferation

ALA Breast cancer In vitro Inhibits tumour cell growth

Lung cancer In vivo Reduces tumour growth

DHA Breast cancer In vivo Reduces tumour cell kinetics

CLA Prostate cancer In vivo Decreases metastasis and 

tumour growth.

Breast cancer In vivo Inhibits mammary carcinogenesis.

Table 1.3. The effect of several PUFAs on cancer cells as shown by various studies 

(Jiang et al, 1998a, Cesano el al, 1998, Ip et al, 1997, 1999a, 1999b). GLA-Gamma 

Linolenic Acid, EPA-Eicosapentaenoic Acid, LA-Linoleic Acid, ALA-Alpha Linolenic 

Acid, DHA-Docosahexaenoic Acid, CLA-Conjugated Linoleic Acid.

Populations of industrialised Western countries tend to have a high fat diet with a 

high co-6  PUFA content, particularly LA, which is found in cheap vegetable oils such as 

com and safflower oils. Higher consumption o f w-6  LA is not only a substrate for lipid 

peroxidation and free radical formation, but in addition, can aggravate insulin resistance 

and hyperinsulinaemia (Stoll, 1998).
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1.4 Conjugated Linoleic Acid (CLA)

Although the role o f specific fatty acids in the onset of cancer in humans remains 

unclear, current evidence cannot discount the association of increased intake of LA with 

the incidence o f colorectal or prostatic cancer in humans (Erickson, 1998; Zock and 

Katan, 1998). PUFAs are incorporated into cell membrane phospholipids, whereby they 

can then play a role in cell signalling and metabolism. Due to their increased 

proliferation, cancer cells have an increased requirement for fatty acids. This opens up a 

novel avenue for cancer prevention or treatment through the provision of anti- 

carcinogenic fatty acids to proliferating cancer cells.

CLA, a derivative o f LA, has become the focus of much attention recently due to 

its anti-cancer properties. CLA is a naturally occurring polyunsaturated fatty acid found 

in small quantities in ruminant meats and diary products. CLA is a collective term, 

which refers to a mixture of positional and geometric isomers of LA, and like LA it 

belongs to the co-6  group of fatty acids. The double bonds in LA are at the 9th and 12th 

carbon from the carboxyl end in the cis configuration, whereby the bonds in CLA are in 

positions 9 and 11 or 10 and 12 (i.e. conjugated). These bonds can be in the cis or trans 

configuration. The 9c,ll/-18:2  and the 10i, 12c-18:2 are believed to be biologically 

active (Palombo et al, 2002). The structures of CLA and LA are shown in figure 1.5.

Figure 1.5. Structures o f 10/,12c-18:2 CLA (upper panel), 9c,ll/-18:2 CLA (middle 

panel) and LA (lower panel) (Pariza et al, 2001)



1.4.1 CLA in the diet

CLA is formed as a result of microbial biohydrogenation in the rumen, and 

therefore is found primarily in ruminant animal and dairy products. The levels of total 

CLA in various foods have been reported to vary from as low as 0.2mg/g fat in com and 

peanut oil to as high as 17mg/g in beef and 30mg/g in milk fat (O’Shea et al, 1998). 

Negligible amounts have been observed in seafoods and vegetable oils. Due to the wide 

distribution of CLA in common foodstuffs, human dietary intakes of CLA may vary 

widely depending on food selection.

The CLA content of food products can vary greatly due to numerous reasons. Ha 

et al (1987) demonstrated that the CLA content of ground beef could be increased four­

fold after grilling due to free radical-mediated oxidation of LA. Numerous other studies 

demonstrated several ways in which dairy and meat CLA content can be changed 

(Garcia-Lopez et al, 1994; Shantha el al, 1994; Jiang et al, 1998b). However, the natural 

variation o f CLA content that occurs in milkfat is by far more significant than those foods 

mentioned so far. This is due to factors that may affect ruminant animals such as diet, 

feeding regime, animal breed and seasonal influences (O’Shea et al, 1998)

CLA’s inhibitory effects on tumourigenesis can be found at intake levels suitable 

for humans, and therefore CLA may prove to be an important chemopreventive 

component of our diet. To date, there have been many inconclusive findings regarding 

the effect o f fatty acids on tumourigenicity. This may be due to the use of complex 

mixtures of dietary fats in experimental studies. By using simple mixtures and individual 

purified isomers o f CLA in experimental research, the principal anti-carcinogenic 

isomers can be identified. These can then be developed for use in dietary supplements 

(such as ‘functional foods’), especially for patients with an increased risk o f developing 

cancer, or as an adjuvant treatment for patients with cancer (Palombo et al, 2002).

1.4.2 Evidence supporting the anti-cancer properties of CLA

1.4.2.1 In vivo experimental studies

Cesano et al (1998) carried out a study to examine the effects of LA and CLA, 

both co-6  FAs, on the local growth and metastatic properties of DU-145, a human 

prostatic carcinoma cell line, in severe combined immunodeficient (SCID) mice. The 

mice were fed different diets over a 14-week period (after the second week they were 

inoculated with the cells). Mice receiving the LA-supplemented diet displayed



significantly higher body weights, lower food intake and increased tumour load as 

compared to the other groups. Mice fed the CLA-supplemented diet displayed not only 

smaller local tumours than the regular diet-fed group, but also a drastic reduction in lung 

métastasés. These results support the view that LA and CLA differently influence the 

prognosis o f prostatic cancer patients, thus opening the possibility of new therapeutic 

options.

Studies were carried out by Hilakivi-Clarke et al (1999) where pregnant rats were 

fed two different isocaloric com oil diets, one was a high fat diet (high LA), the other was 

a low fat diet (low LA). The diets were designed to ensure that they contained the same 

calories so that results obtained could not be attributed to one diet promoting weight gain 

and the other not, i.e. increased tumour growth could not be attributed to obesity. They 

concluded that a maternal exposure to these differing diets significantly affected DMBA- 

induced tumourigenesis in female offspring. Mammary tumour incidence was higher and 

latency for tumour appearance shorter among the rats that were exposed in utero via 

maternal feeding of an isocaloric diet high in LA, when compared with the offspring of 

mothers fed a low fat diet. An increase in serum oestrogen was observed for rats fed the 

high fat diet.

During pregnancy, oestrogen and other placental hormones cause a rapid 

proliferation of the mother’s epithelial structures within the breast, namely the Terminal 

End Buds (TEBs). TEBs are the primary sites for the chemical induction of mammary 

carcinomas in rodents (Banni et al, 1999). Hilakivi-Clarke et al, (1999) concluded that 

consumption of a high LA diet during pregnancy, possibly through an increase in 

circulating oestrogen levels and increased growth of transformed TEBs, increased the risk 

of developing DMBA-induced mammary tumours in female rats.

Ip et al (1997, 1999a) reported that CLA had significant activity in inhibiting 

mammary carcinogenesis. Rats were treated with a single dose of DMBA, and were 

subsequently given 1 % CLA in the diet for 4 weeks, 8 weeks or continuously (20 weeks) 

(Ip et al, 1997). In the 4 and 8 weeks group, no cancer protection was evident, while 

significant tumour inhibition was observed in the 20 weeks group. In a subsequent 

experiment (Ip et al, 1999a), rats were fed a CLA-enriched butter fat diet during the time 

of pubescent mammary gland maturation, altered mammary gland morphogenesis was 

observed. The mass of TEB cells, the target cells for mammary chemical carcinogenesis, 

was reduced by 30%, and mammary tumour yield was inhibited by 53%. It was
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concluded from these experiments that the CLA-enriched butterfat reduced cancer risk in 

these rats.

Hubbard et al (2000) inoculated mice with a metastatic cell line, 4526, which was 

derived from a mouse mammary adenocarcinoma. They found reduced metastases and 

tumour burden in the lungs, as well as increased latency in mice fed a CLA diet ranging 

from 0.1% to 1%. To date, there have been few studies on the effect o f CLA on 

metastasis, and no evidence has been presented to support any mechanisms by which 

CLA may reduce metastasis.

1.4.2.2 Proposed mechanisms behind CLA’s anti-cancer properties

Various factors have been implicated in the mechanism of CLA’s anti-tumour 

action. These include increasing oxidative stress, alterations in the metabolism of fatty 

acids to the biologically active eicosonoids, and changes in membrane composition, 

which could affect cell signalling pathways (Diggle, 2002). The first two mechanisms 

have been the most commonly researched.

Lipid peroxidation is thought to be a major mechanism of CLA’s anti-cancer 

action. Lipid peroxidation begins with the removal of a hydrogen atom from a PUFA 

double bond, producing a reactive oxygen species (ROS) (figure 1.6), that can propagate 

further reactions. These ROS can then act on macromolecules, such as DNA, causing 

damage. The damaged cell can either repair itself, resulting in an anti-proliferative effect, 

or cell death can occur. The addition of reagents that are able to reverse the cytotoxic 

effect of PUFAs, such as vitamin E and butylated hydroxytoluene (BHT), is often used to 

assess if CLA’s action is through such oxidative stress and lipid peroxidation (den Berg, 

1995, O’Shea, 1999, Igarashi and Miyazawa, 2001, Devery et al, 2001).

Figure 1.4 depicts what happens metabolically to AA. The cyclooxygenase and 

lipoxygenase pathways have been indicated as possible means through which CLA 

affects the production, notably the inhibition, of eicosanoids (Liu and Belury, 1997, 

Banni et al, 1999, Urquhart et al, 2002). The use of inhibitors, some more specific than 

others, can identify if  any of these pathways are important in the anti­

proliferative/cytotoxic effect displayed by CLA.
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Figure 1.6 . Lipid peroxidation o f a PUFA. A double bond of the PUFA is being attacked 

by the reactive oxygen species denoted by a dot (•).

1.4.2.3 In vitro research

There has been much in vitro research to date into the mechanism behind CLA’s 

antiproliferative effects, but contradictory results have been yielded. As there is little 

research published to date regarding the differing effects of the numerous individual CLA 

isomers, when more is known about these effects, a greater understanding of the 

mechanisms may be established.

One proposed mechanism for CLA’s anticancer properties is its relationship to the 

hormone response system. Durgam and Fernandes (1997) found that CLA selectively 

inhibited proliferation of estrogen responsive (ER)-positive MCF-7 cells (breast cancer, 

in origin) as compared with ER-negative MDA-MB-231 cells (breast cancer, in origin). 

Cell cycle studies using flow cytometry also indicated that a higher percentage o f CLA



treated MCF-7 cells remained in the Go/Gi phase of the cell cycle as compared to the 

control and those treated with LA. They concluded that CLA inhibited MCF-7 cell 

growth by interfering with the hormone-regulated mitogenic pathway of breast cancer.

Lipid peroxidation is another such mechanism, which may account for CLA’s 

anti-cancer activity. O ’Shea et al (1999) observed a dose dependent decrease in cell 

numbers and increase in lipid peroxidation, as determined by thiobarbituric acid reactive 

substances (TBARS) in MCF-7 and SW480 (colon, in origin) cell lines following 

incubation with CLA. After lipid peroxidation of PUFAs (figure 1.6), ROS, including 

superoxide and hydroxyl radicals and a complex range of peroxidised and otherwise 

oxygenated lipids (Horrobin, 1990), are produced. Several of the ROS formed react with 

thiobarbituric acid (TBA) to produce coloured material that can be detected by 

spectrophotometry. This measurement of TBARS is a widely used indicator of lipid 

peroxidation, even though it really only gives a relative indication and is not very 

accurate. O ’Shea et al (1999) concluded that the CLA-induced anti-oxidant enzymes 

(super oxide dismutase [SOD] and glutathione peroxidase [GPx]) failed to protect these 

cells from cytotoxic lipid peroxidation products.

The effect of CLA on the breast cancer cell line, MCF-7, has been extensively 

studied. Park et al (2000) found that LA stimulated the growth of MCF-7 cells while 

CLA resulted in inhibition. This data also ruled out the possibility that growth inhibition 

by CLA was mediated through phospholipase-C (PLC)-, protein kinase-C (PKC)- or 

Prostaglandin E2 (PGE2)-dependent signal transduction pathways.

Research carried out by Attiga et al (2000) showed a reduction in both in vitro 

invasion and in matrix metalloproteinase (MMP) levels (these are a group of enzymes 

that degrade the extra cellular matrix (ECM), and they will be discussed in more detail in 

chapter 4) in two prostatic cell lines, after treatment with various COX inhibitors. These 

results indicated a potential role for COX in cancer metastasis, and also provided 

evidence of a possible link between CLA, a proposed COX inhibitor, and MMPs.

Contrary to the study carried out by O ’Shea et al (1999), Igarashi and Miyazawa 

(2001) found that the growth inhibitory effect of CLA on HepG2 (hepatoma cell line) 

was not due to lipid peroxidation but to a change in fatty acid metabolism. The contrary 

conclusions drawn by different researchers indicates that the growth inhibitory effect of 

CLA may be due to more than one mechanism, and may depend on the mixture of CLA 

or individual isomers used, and also on the cell type used.
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The antiproliferative effects of two commercial preparations of CLA and their 

constituent purified isomers, 9 c ,l l f ( l8:2), 9c,llc(18:2) and 10^,12c(18:2) were 

determined in vitro by Palombo et al (2002), using human colorectal (HT-29, MIP-101) 

and prostate (PC-3) carcinoma cells. They found that the antiproliferative effects of the 

preparations were dependent on the type and concentration of the CLA isomer present. 

The 10/,12c(l 8:2) isomer exhibited the greatest potency against colorectal cancer 

proliferation, and the 9c,llc(18:2) and 10/, 12c( 18:2) isomers were moderately effective 

against the prostate cancer. The 10^,12c(18:2) isomer induced caspase-dependent 

apoptosis in MIP-101 and PC-3 cells.

1.5 Polyunsaturated fatty acids and metastasis

1.5.1 The metastatic cascade

Initiation occurs when a single cell becomes modified to exhibit a growth 

advantage over the surrounding tissue to form the primary tumour mass, which, at some 

point, requires neovascularisation to supply nutrients for further growth. As the tumour 

becomes malignant, it acquires the ability to invade the surrounding normal tissue. The 

most lethal aspect of cancer is this ability to invade and metastasise.

The first step in metastasis is intravasation, and it occurs when tumour cells cross 

the basement membrane and enter the lymphatic and/or circulatory system where their 

presence can be detected using a variety of techniques. Detection of tumour cells at this 

point is vital in the treatment of breast cancer, and in the prevention of fatalities. 

Following the tumour cells’ survival in the circulation, extravasation occurs when the 

tumour cells leave the circulation and penetrate the host normal tissue. Metastasis occurs 

if  the tumour cells can establish and grow at this secondary site (McCawley and 

Matrisian, 2000). One of the primary sites for secondary tumours of breast cancer is the 

lungs. These events are illustrated in figure 1.7.
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Figure 1.7. Steps involved in tumour migration and metastasis. The primary tumour 

depicted is in the breast, and the secondary tumour often forms in the lungs. The yellow 

arrows depict the migration o f the cells.

1.5.2 The important roles played by PUFAs in tumour cell migration and

metastasis

There has been much research into the effect certain PUFAs have had on tumour 

cell invasion and metastasis, and a review by Jiang et al, 1998a discusses many o f these 

effects. EPA, GLA and AA have all been shown to inhibit the production of factors, 

involved in metastasis, while LA has been reported as stimulating tumour cell invasion in 

vitro. It has also been demonstrated that EPA and GLA resulted in a time and 

concentration dependent enhancement of E-cadherin, an adhesion molecule associated 

with metastatic suppression, in a range of cancer cells. This was also associated with a 

reduction in invasion. GLA, EPA, DHA and LA have all also been associated with a 

reduction o f tumour adhesion to a range o f matrix components (Jiang et al, 1998a).

PUFAs also regulate immune cells and host immune response to tumour cells, in 

order to minimise the motile and invasive behaviour o f cancer cells, to influence tumour 

cell survival in the circulation, and to form mechanisms in normal tissues to combat 

cancer cells (Jiang et al, 1998a). It has been shown that many PUFAs, including LA, 

play an important role in several steps o f the metastatic process. The use o f PUFAs in 

preventing metastasis may be a novel route in breast cancer treatment, which should be 

investigated.
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1.6 Thesis Overview

The research presented in this thesis examines the effect o f CLA on the proliferation, 

invasion and metastasis of the murine mammary cancer cell line, 4T1. It has been 

divided into two main chapters.

• Chapter 3:

The 4T1 cell line was initially treated with a preparation containing a mixture of CLA 

isomers and preparations of individual purified isomers, 9c,lU(18:2) and 1 Or, 12 c (l8 :2). 

A variety of concentrations and incubations times were used to investigate cytotoxicity, 

and to determine if there was a difference in the potency of the isomers.

Using conditions that caused 50% cell death, the effect o f the CLA mixture and its 

purified isomers on the different stages of the cell cycle was investigated using flow 

cytometry. This same dose and time was used to determine if  CLA caused apoptosis to 

occur.

• Chapter 4:

The 4T1 cell line was treated with a dose and for a time period, which caused 

minimal cell death to examine the effect of the CLA mixture and its purified isomers on 

the release of MMP-9 from the cells. This same dose and time was used to look at the 

effect of CLA on the in vitro adhesion, migration and invasion o f the cell line.

The thesis is divided into six chapters. Chapter 1 serves as an introduction to breast 

cancer, CLA and metastasis. There is a common materials and methods section (Chapter 

2) and bibliography (Chapter 6 ). Chapters 3 and 4 each have their own introduction, 

results and discussion sections, while Chapter 5 provides an overall summary of the 

thesis.
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CHAPTER 2



2.1 Materials

All general purpose chemicals and reagents used in experimental work were o f analytical 

grade and were purchased from Sigma-Aldrich Chemical Company; Dublin, Ireland, 

BDH Chemicals Ltd., Poole, Dorset, England and Riedal De Haen AG, Seelze, Hannover, 

Germany.

The CellTiter 96® Aqueous Non-Radioactive Cell Proliferation assay was obtained from 

Promega Corporation, 2800 Woods Hollow Road, Madison, WI, 53711-5399 USA.

Cell culture medium was obtained from Sigma-Aldrich, Dublin, Ireland.

Foetal calf serum was supplied by Sigma-Aldrich, Dublin, Ireland.

Disposable plastics for cell culture, and 96-well plates were obtained from Sarstedt, 

Sinnottstown Lane, Drinagh, Co. Wexford, Ireland.

The 4T1 cell line (American Tissue Culture Collection [ATCC] # CRL-2539) was a kind

gift from Dr. Judith Harmey, Department of Surgery, Beaumont Hospital, Royal College 

of Surgeons in Ireland, Dublin 9, Ireland.

The Suicide-Track™ DNA Ladder Isolation Kit was purchased from Oncogene Research 

Products, 650 Albany Street, Boston, MA 02142

Propidium Iodide (PI) was a kind gift from Claire Condron, Royal College of Surgeons in 

Ireland research centre, Beaumont, Dublin 9, Ireland

CLA mixture [containing 29.5% 9c,11/(18:2) and 29% 1 Or, 12c(l8:2) CLA isomers (in 

addition to minor components o f other isomers)] was obtained from Nu Check Prep, 

Elysian, MN, USA.

Individual purified CLA isomers (99.9% pure), 9c,lU(18:2) and 10/, 12c(l 8:2), were a 

kind gift from Natural ASA, Norway.
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PBS tablets were purchased from Oxoid Ltd., Basingstoke, Hampshire, England.

L-glutamine, trypsin, penicillin/streptomycin were purchased from Sigma-Aldrich, 

Dublin, Ireland.

The BCA reagent for protein determination was obtained from Pierce Chemicals, 

Rockford, Illinois, USA.

Extra cellular matrix (ECM) gel was obtained from Sigma-Aldrich, Dublin, Ireland.

Falcon® cell culture inserts were obtained from Collaborative Biomedical Products, 

Becton Dickinson Labware, 2 Oak Park, Bedford, MA 01730, USA.

BD Biocoat™ Matrigel™ Invasion Chambers were obtained from Collaborative 

Biomedical Products, Becton Dickinson Labware, 2 Oak Park, Bedford, MA 01730, 

USA.

Equipment used is outlined in the relevant methods section.
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2.2 Methods

2.2.1 Preparation and storage of CLA stocks

Three synthetic sources of CLA were used in this study: a mixture of CLA

isomers containing 29.5% 9c,11/(18:2) and 29% 10/,12c(18:2) CLA isomers (in addition 

to minor components of other isomers); purified 9c,11/(18:2) and purified 10/,12c(18:2) 

CLA isomers. CLA stocks (2000 and 3000 jag/ml) were made up in ethanol (EtOH), and 

were stored at -20°C. Further dilutions resulted in stocks of 500, 1000, 1500, 2000, 2500 

and 3000[o.g/ml. l |jl of each stock, when added to 100(il of cell suspension resulted in 

final concentrations of 5, 10, 15, 20, 25 and 30(ig/ml, respectively. These concentrations 

were used throughout the study.

2.2.2 Cell culture methods

All cell culture techniques were performed in a sterile environment using a Holten

HB255 laminar airflow cabinet. Cells were visualised with an Olympus CK2 inverted

phase contrast microscope.

2.2.2.1 Culture of adherent cell lines

The 4T1 cell line under study was maintained in Dublecco’s modification of 

Eagles medium (DMEM) supplemented with 5% (v/v) [DMEM/S5] foetal calf serum 

(FCS), 2mM L-glutamine, ImM N-[2-Hydroxyethl]piperazine-N’-[2-ethanesulfonic acid] 

(HEPES) and 1 unit/ml penicillin and 1 j.ig/ml streptomycin. Cells were cultured in 25cm 

or 75cm tissue culture flasks. As this was a strongly adherent cell line, trypsinisation 

was required for harvesting cells prior to subculturing. For trypsinisation, the growth 

medium was aspirated and the flask rinsed with 3ml of phosphate buffered saline (PBS) 

to remove any residual FCS, which contains a trypsin-inhibitor (a 2-macroglobulin). 2ml 

of fresh trypsin ethylenediamine tetracetic acid (EDTA) (0.025% (w/v) trypsin with 

0.02% (w/v) EDTA in 0.15M PBS, pH 7.4) was then placed in each flask and the flask 

incubated at 37°C for 5-10min or until all the cells had detached from the surface. The 

cell suspension was removed to a sterile universal container containing 5ml of growth 

medium and centrifuged at 2000rpm for 5min. The supernatant was poured off and the 

cells were resuspended in culture medium, which could then be divided between several 

flasks depending on what was required o f the cells. Typically, 14ml of media in total was
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added to a 75cm2 flask and 5 ml to a 25cm2 flask. The flasks were then labelled with the 

name of the cell line and the passage number, which denotes the number o f times the cell 

line has been subcultured. The cell line was incubated in a humid, 5% (v/v) CO2 

atmosphere at 37°C in a Heraeus cell culture incubator.

2.2.2J2 Cell counts

Cell counts were performed using a Neubauer haemocytometer slide. Trypan blue 

exclusion dye was routinely used to determine cell viabilities after the tripsinisation 

process. 20(fl trypan blue was added to lOOpl cell suspension, and the mixture left to 

incubate for 2min. A sample of this mixture was added to the counting chamber of the 

haemocytometer, and the cells visualised by light microscopy. Viable cells excluded the 

dye and remained clear while dead cells stained blue. The number of cells was calculated 

as follows

(A verage num ber o f  v iab le  cells)* 1.2 [d ilu tion  factor] *104 [volum e un d er the  cover slip] 

=  v iab le  cells/m l o f  cell suspension.

2.2.23  Recovery and storage of cells

Long term storage of cells was achieved by storing the cells in liquid nitrogen and 

maintaining them in a cryofreezer (supplied and serviced by Cooper Cryoservice Ltd, 

Dublin, Ireland). Cells to be stored were trypsinised and centrifuged as described in 

Section 2.2.2.1, and the resulting cell pellet resuspended at a concentration of 1*106 

cells/ml in DMEM containing FCS (10% [v/v]) and the cryopreservative,

dimethylsulphoxide (DMSO) (10% [v/v]). 1ml aliquots were transferred to sterile 

cryotubes, and frozen, first at -20°C for 30min, then overnight at -80°C and then 

immersed in liquid nitrogen. The cryotubes were labelled with the name o f the cell line, 

the passage number, the date of storage and the name of the person storing the cells. 

Cells were recovered from liquid nitrogen by thawing rapidly at 37°C and the transferred 

to a sterile universal tube containing 5ml growth media. The cells were centrifuged at 

2000rpm for 5min, resuspended in fresh medium, transferred to culture flasks and 

incubated at 37°C in 5% CO2.
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2.2.3 Cytotoxicty of CLA

The introduction of multiwell plates revolutionised the approach to replicate 

sampling in cell culture. They are economical, easily automated and diverse in their 

application. The most popular in cell culture techniques is the 96-well, flat-bottomed 

microtitration plate. Each well has a growth area of 28-32mm , a capacity for 0.1 or 

0 .2 ml of media and up to 105 cells.

For every experimental treatment, a standard curve of cells was set up. Ensuring 

that the curve remained linear, the validity and reproducibility of the assay was 

monitored. The cells were added to the wells and then allowed to attach to the substratum 

for 24hr before being treated with the CLA or ethanol. The highest point on the standard 

curve (2-2.5 *104 cells/ml, depending on the time period) was used for the treatments. 

Triplicates were always performed, and cells treated with ethanol, to a final concentration 

of 1% (v/v), acted as the control. Percentage cell death was calculated as a percentage of 

the ethanol, whereby the ethanol represents 100% viability. This calculation is shown 

below.

100-[{(C)D o f  sam ple average-OD o f  b lank  aVerage)/(OD o f  contro l aVerage-OD o f  b lank  average)} *100]

where OD is the optical density/absorbance.

2.2.3.1 Time/Dose Response

In order to study the cytotoxicity of the CLA mixture and the two isomers, several 

concentrations of the fatty acids and several treatment times were chosen. The 4T1 cell 

line was incubated in 96-well plates for 1, 2, 3 and 4 days, while being treated with 0, 5, 

10, 15, 20, 25 and 30|a,g/ml o f CLA, and 1% (v/v) ethanol.

2.2.3.2 Promega CellTiter 96® AQue0Us Non-Radioactive Cell Proliferation

Assay

This is a colourimetric method for determining the number of viable cells in 

proliferation or chemosensitivity assays. The CellTiter 96® AQueous Assay is composed of 

solutions of a novel tetrazolium compound (3-(4,5-dimethylthiazol-2-yl)-5-(3- 

carboxymethoxyphenyl)-2-(4-sulphophenyl)-2H-tetrazolium, inner salt; MTS) and an 

electron coupling reagent (phenazine methosulphate; PMS). Dehydrogenase enzymes, 

found in metabolically active cells, convert MTS into a soluble formazan product, whose
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absorbance can be read at 490nm. The quantity o f formazan product formed is 

proportional to the number of living cells in culture.

On arrival into the lab the MTS (100ml) and PMS (5ml) were combined and 

aliquoted into several containers. This reagent was then stored at -20°C in amber 

containers as it is light sensitive.

When the treatment time was complete, 20(J,1 of MTS/PMS was added to the 

treated wells, the control and to the standard curve, bringing up the total volume in each 

well to 120j.il. The plate was then incubated for l-4hr at 37°C in a humidified 5% CO2 

atmosphere, and the absorbance was recorded at 492nm using the multiwell plate reader, 

Rosys Anthos 2010.

2.2.3.3 Statistical analysis

Using the Microsoft Excel™ Program, 2-tailed T-tests were carried out on all the 

triplicate values resulting from the MTS assay. A P value of <0.05 was required for 

significant results.

All results are represented by a value followed by its standard deviation (+/- SD), 

which was calculated using the Microsoft Excel™ Program.

2.2.4 Treatment and preparation of cells for cell cycle analysis
• * 2 5For cell cycle analysis cells were grown and treated in a 25cm flask. 8*10 cells 

were seeded into a flask. Following attachment of the cells to the substratum overnight, 

they were treated with 30|ig/ml CLA for 2 days. This ensured that, while there was cell 

death, there were also a sufficient number of viable cells to be analysed by flow 

cytometry.

After treatment for cell cycle analysis, the cells were trypsinised, as described in 

Section 2.2.2.1, and washed twice in ice-cold PBS. The pellets were then resuspended in 

ice-cold ethanol-PBS (70-30% v/v). Once prepared, cells could be stored on ice, at 4°C, 

for up to 7 days or until time of analysis. Before analysis, fixed cells were pelleted and 

resuspended in 40|ig/ml Propidium Iodide (PI) in PBS, and incubated on ice for 15min. 

Typically, a 70% confluent 25cm2 flask would eventually be resuspended in 2ml of PI. 

Samples were then ready for analysis.
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2.2.5 Use of the flow cytometer

Samples were analysed on a FACScan using 488nm argon ion laser measuring 

forward and orthogonal light scatter with the lysis program to create histograms depicting 

the cell cycle distribution of the sample.

2.2.6 Treatment and analysis of cells for apoptosis
2 5Cells were grown and treated in a 25cm flask. 8*10' cells were seeded into a 

flask. Following attachment of the cells to the substratum overnight, they were treated 

with 30|ig/ml CLA for 2 days. For analysis of apoptosis using the Suicide-Track™ DNA 

Ladder Isolation Kit from Oncogene Research Products both the cells in the monolayer 

and the detached cells were examined.

The Oncogene kit (CAT # AM41) provided a fast, nonisotopic method for the 

detection of DNA laddering in either cell monolayers or suspension (detached) cells. It 

was possible to separate apoptotic DNA from high molecular weight, intact, genomic 

DNA. Following the procedure, which could recover even small amounts of DNA, ladder 

fragments were separated by standard agarose gel electrophoresis and stained with 

ethidium bromide (EtBr). These were then viewed under ultra violet (UV) light and 

photographed.

2.2.6.1 Sample preparation and DNA extraction

After treatment of the cells, the media was removed and spun at 2,000rpm for 

5min. The supernatant was poured off, the pellet resuspended in 500pl of Extraction 

Buffer, and left on ice for 30min. In the meantime, 500|_il of Extraction Buffer was added 

to the monolayer, the cell lysate gently transferred to a microfuge tube, and then left on 

ice for 30min.

Following this the sample was spun at 13,000rpm for 8min at room temperature 

(RT). The supernatant was removed and transferred to a clean tube, discarding the tube 

containing the high molecular weight (HMW) DNA. 20^il of Solution # 2 was added to 

the tube, and it was then incubated at 37°C for 60min. 25 [il of Solution # 3 was added, 

with gentle mixing. The sample was incubated at 50°C overnight.
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2.2.6.2 DNA precipitation

2pl of Pellet Paint™ Co-Precipitant, followed by 60pl of 3M Sodium Acetate, pH 

5.2, was added to the sample, with brief mixing. 662pl of 2-Propanol was added, and the 

sample mixed and left for 2min. The sample was centrifuged at 13,000rpm for 8min, 

whereby a pink pellet was visible.

Following this, the supernatant was removed with a pipette tip and the pellet 

rinsed with 500pl 70% ethanol. The sample was centrifuged at 13,000rpm for 8min. The 

supernatant was removed with a pipette tip, the pellet rinsed with 500jli1 100% ethanol, 

and centrifuged at 13,000rpm for 8min. The supernatant was removed with a pipette tip 

and the sample air-dried by leaving the tube open on the benchtop for a few minutes at 

RT. The pellet was resuspended in 50pl of Resuspension Buffer.

2.2.6.3 DNA gel electrophoresis

Tris-Acetate-EDTA (TAE) buffer (50X) was made up as follows: 242g Tris base 

was dissolved in 750ml dH2 0 ; 100ml 0.5M EDTA (pH 8.0), and 57.1 ml glacial acetic 

acid, was added; final volume was adjusted to 1 liter with d ^ O .

The 50X TAE was diluted to IX with dHiO, and it was used to prepare enough 

1.5% agarose to pour a gel approximately 0.75cm thick. After the solution was heated to 

dissolve the agarose, it was cooled to 60°C and poured into a prepared electrophoresis 

chamber where the comb was positioned to form sample wells. After the gel was 

solidified, the comb was removed and the gel was positioned in the gel buffer tank. IX 

TAE was added to cover the gel to a depth of l-2mm.

21 pi of DNA ladder sample was added to a clean centrifuge tube, along with 4pi 

of 6X Gel Loading buffer. The sample was then loaded onto the gel. 5pl of DNA Marker 

(provided in kit) was also loaded onto the gel.

The lid was assembled onto the electrophoresis chamber and the electrical leads 

were attached so that the DNA migrated towards the positive (red/anodic) lead. The gel 

was run at 50 constant volts until the dye front was l-2cm from the bottom of the gel. 

This takes about 4-4.5hr. Following electrophoresis, the gel was stained in EtBr 

(0.5mg/ml) for 0.5-lhr, and viewed by UV illumination.
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2.2.7 Treatment and preparation of cells for matrix metalloproteinase

(MMP) analysis

For M M P  analysis, cells were grown until approximately 60% confluent after 

which the growth medium was decanted and the cells rinsed with sterile P B S . 8mls of 

fresh serum-free media (D M E M /S o) was then added to each 75cm2 flask. The cells were 

then incubated in D M E M /So overnight, at 37°C . The following day, fresh D M E M /So was 

added and the flasks were supplemented with either: 15^g/ml of the C L A  mixture; 

9c,llf(18:2) isomer; 1 Or, 12c(l8:2) isomer or 1% (v/v) E tO H . The cells were then 

returned to the incubator for 24hi, after which the media was collected for protein 

determination by the B C A  assay followed by M M P  expression analysis by gelatin 

zymography. This assay was repeated three times on three separate occasions.

2.2.8 Bicinchoninic acid (BCA) protein microassay

In this assay, Cu++ reacts with the protein under alkaline conditions to give Cu+, 

which in turn reacts with BCA to give a coloured product. Two separate reagents were 

supplied in the commercially available assay kit (Pierce Chemicals): A, an alkaline 

bicarbonate solution and B, a copper sulphate solution. Working solution was prepared 

by mixing 1 part reagent B with 50 parts reagent A. 200|al o f this solution was added to 

10fj.l o f the treated sample or protein standard in wells of a microtitre plate. The plate 

was incubated at 37°C for 30min. The absorbance of each well was read at 620nm using 

a microtitre plate reader (Rosys Anthos 2010). Protein concentrations were determined 

from a bovine serum albumin (BSA) standard curve in the 0-0.4mg/ml range. Once the 

protein concentrations o f the treated samples were determined, it could be ensured that 

equal protein was loaded onto the zymography gel.

2.2.9 Zymography

Substrate zymography was performed to localise MMP activity by molecular 

weight. The Laemmeli discontinuous system was used with alterations concerning the 

incorporation of a substrate. The gel was prepared by incorporating the protein substrate 

of interest (gelatin) within the polymerized acrylamide matrix. 1 0% acrylamide gels were 

used and the amounts for one gel are given below.

Resolving gel:

2.5 ml Buffer A (1.5 M Tris-HCl, pH 8 .8 ; 0.4% (w/v) SDS)
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2.5 ml 3 mg/ml gelatin stock

3.3 ml 30% (w/v) acrylamide stock

1.7 ml distilled water

33 |il 10% (w/v) ammonium persulphate (freshly prepared)

5 \il TEMED

Stacking gel:

0.8 ml Buffer B (0.5 M Tris-HCl, pH 6 .8 ; 0.4% SDS)

0.5 ml 30% acrylamide stock 

2  ml distilled water

33|al 10% ammonium persulphate (freshly prepared)

5 \il TEMED

Samples were mixed 3:1 with 4X sample buffer (10% sucrose; 0.25M Tris-HCl, 

pH 6 .8 ; 0.1% (w/v) bromophenol blue) and loaded. The gels were run at 20mA per gel in 

running buffer (0.025 M Tris, 0.19M glycine, 0.1% SDS) until the dye front reached the 

bottom of the gel. Following electrophoresis the gel was soaked in 2.5% Triton-X-100 

with gentle shaking for 30min at room temperature (RT) with one change. The gel was 

then rinsed in substrate buffer (50mM Tris-HCl, pH 8.0; 5 mM CaCT) and incubated for 

24hr in substrate buffer at 37°C. The gel was then stained with Coomassie blue [0.5% 

(w/v) Coomassie Brilliant Blue in acetic acid:isopropanol:H2 0  (1:3:6, v/v/v)] for 2hr with 

shaking, and destained in water until clear bands were visible against a blue backgound.

To confirm the bands as metalloproteinases, identical gels were run as described 

above except the substrate buffer contained the MMP inhibitor, lOmM EDTA.

2.2.9.1 Densitometry and statistical analysis

Densitometry of zymography gels was performed using a Pharmacia Amersham 

Densitometer with Imagemaster software. Two tailed T-tests were performed using 

Microsoft Excel™, whereby p = <0.05.

2.2.10 In  vitro adhesion assays

For these experiments, 106 cells were seeded into 25cm2 flasks, and allowed to

adhere to the substratum overnight. They were then treated with 15^g/ml of CLA

mixture or purified isomers, or 1 % (v/v) EtOH, for 24hr.
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After treatment, 104 cells/well were added to a sterile 96-well plate in triplicate, 

and allowed to adhere to the plastic for 30, 60 and 90min at 37°C. After allowing the 

cells to adhere for the given time, the media and unattached cells were gently ‘flicked’ 

from the wells by inverting the plate. The plate was then spun at 200rpm to gather any 

media, which may be along the sides of the wells. This media could then be aspirated.

In order to calculate percentage cell adhesion, 100/j.l o f the original cell 

suspension was added to a well at this stage (note: this sample was not flicked from the 

plate), thus allowing calculation of 100% attachment. 20f.il of MTS/PMS was added to 

this well.

20|j,l of MTS/PMS was diluted with 100pl of DMEM, and this was added to each 

well. The plate was then incubated for l-4hr at 37°C in a humidified 5% CO2

atmosphere, and the absorbance was recorded at 492nm using the multiwell plate reader, 

Rosys Anthos 2010.

2.2.11 In vitro migration assays

Falcon® cell culture inserts provided a system that allowed assessment of cells 

migratory activity in vitro. The cell culture inserts contained an 8 (j,m pore size, 

polyethylene terephthalate (PET) membrane, which allowed cells to migrate from the 

upper side of the membrane to the lower side, where they can be fixed, stained and 

visualized. Inserts suitable for a 24-well plate were used.

For these experiments, 10 cells were seeded into 25cm flasks, and allowed to 

adhere to the substratum overnight. They were then treated with 15pg/ml of CLA 

mixture or purified isomers, or 1% (v/v) EtOH, for 24hr.

The assays was set up by firstly adding 600|ol of media containing 20% serum 

(DMEM/S20), and 15 jig/ml CLA, to each well of the plate. The cell culture inserts were 

then asceptically placed into the wells, and lOOpl of cell suspension in D M E M /So (104 

cells/well) was placed onto the membrane. The DMEM/S20 acted as a chemoattractant. 

The plates were then incubated for 24hr at 37°C in a 5% CO2 incubator. After 

incubation, the non-migratory cells are removed from the upper surface o f the membrane 

by cleaning gently with a cotton-tipped swab soaked in PBS. The cells on the lower 

surface of the membrane were then fixed for lOmin in methanol, stained for 5min in 

Mayers Haematoxylin solution and rinsed in tap water several times to ‘blue’ the dye. 

The cells and membrane were then dehydrated by incubation, for 2min each, in a series of
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organic solutions (25, 50, 75 & 100% (v/v) ethanol, followed by 100% xylene [mixed 

isomers]). The membranes were then carefully removed from the insert housing using a 

scalpel, and mounted on slides using DPX mounting medium (contains xylene). Cells, 

which had migrated through the membrane, were then viewed under the microscope at 

1 OX and 40X magnification, and counted. The percentage migration for each treatment 

(CLA mixture and individual purified isomers) was calculated by counting five random 

fields under 10X magnification. In general, fields that were too close to the edge of the 

filter were not counted. The number of cells counted for the CLA treated samples were 

divided by the number cells counted for the ethanol-treated sample to get percentage 

migration, i.e.

(N um ber o f  cells fo r C L A -trea ted  c e lls /N u m b e r o f  cells fo r e thano l-treated  cells)* 100

2.2.12 In vitro invasion assays

For these experiments, 10 cells were seeded into 25cm flasks, and allowed to 

adhere to the substratum overnight. They were then treated with 15(ig/ml of the CLA 

mixture or purified isomers, or 1% (v/v) EtOH, for 24hr.

BD Biocoat™ Matrigel™ Invasion Chambers provided a system that allowed 

assessment of cells invasive activity in vitro. The cell culture inserts contained an 8 (am 

pore size membrane that was coated with a layer of Matrigel™ basement membrane 

matrix. The layer of Matrigel™ serves as a reconstituted basement membrane in vitro. 

This layer occludes the pores o f the membrane blocking non-invasive cells from 

migrating through the membrane. In contrast, invasive cells were able to migrate through 

the ECM-coated membranes.

The 24-well plate invasion chambers were removed from -20°C storage and 

allowed to come to room temperature. Warm (37°C) DMEM/So was added to the interior 

of the inserts and allowed to rehydrate the matrix components for 2hr at RT. After 

rehydration, excess media was removed from the inserts and replaced with 500[il of cell 

suspension prepared in DMEM/So at a concentration of 1 0 5 cells/ml. 750(j,l of 

chemoattractant (DMEM/ S20) was added to the outside wells o f the plate. The plates 

were then incubated for 24hr at 37°C in 5% CO2 incubator, after which the membranes 

were fixed, stained, visualized and counted as described in Section 2.2.11.
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CHAPTER 3



3.1 Introduction

3.1.1 Cytotoxicity assay

The use of in vitro assay systems for the screening o f potential anticancer agents 

has been common practice almost since the beginning of cancer chemotherapy in 1946, 

following the discovery of the anti-neoplastic activity of nitrogen mustard (Masters, 

2000). The choice o f method depends on the context in which the assay is to be used, the 

type o f cells, and the nature of the drug/compound. One important parameter, which may 

vary between different assays and which may strongly influence the choice o f method is 

the end point used to quantify the drugs’ effect. Endpoints often looked at are 

cytotoxicity/viability and survival (reproductive integrity).

Cytotoxicity assays measure drug-induced alterations in metabolic pathways or 

structural integrity, which may or may not be related directly to cell death. Cytotoxicity 

assays, which measure metabolic events, are more accurately quantified and are very 

sensitive (Masters, 2000).

There are several commercially available cytotoxicity assays. For this project, the 

one chosen was the CellTiter 96® Aqueous Non-Radioactive Cell Proliferation assay, 

from Promega Corporation. The MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3- 

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay, which involves the 

measurement o f the ability of treated cells to metabolise a tétrazolium salt into a coloured 

product is of this type.

MTS is bioreduced by cells into a formazan product (figure 3.1) that is soluble in 

tissue culture medium. The absorbance of the formazan at 490nm can be measured 

directly from 96-well assay plates. The conversion of MTS into the aqueous soluble 

formazan is carried out by mitochondrial dehydrogenase enzymes, found in metabolically 

active cells. The quantity o f formazan product is directly proportional to the number of 

living cells in culture (Promega technical bulletin no. 169).
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MTS --------------------------------------- Fôrrmazan

Figure 3.1. Structure of the MTS tétrazolium salt and its formazan product

3.1.2 The cell cycle

For cell division to occur, DNA and all other components of the cell must be 

replicated and distributed equally to the daughter cells. This occurs during what is 

known as the cell cycle and it is made up o f four main phases, Gap 1 (Gj), Synthesis (S), 

Gap 2 (G2) and Mitosis (M) (figure 3.2).

The first phase, Gi, is often divided to include the Go phase, in order to 

distinguish quiescent cells from those continuing in the cell cycle. Cells in G0/G 1 have a 

diploid DNA content. Cells in Go include cells that have gone into quiescence and 

senescence. Quiescence is a transient growth arrested state, and it can be reversed, while 

senescent cells fail to divide even in response to mitotic stimuli, and thus cannot be 

reversed (Masters, 2000). Gi is the period in which future commitment to division, 

differentiation or death is made and the focal point for important regulatory signals 

(King, 2000).

The second gap phase, G2 has a tetraploid DNA content, as it lies between the S 

phase and mitosis (King, 2000). Knowledge of the DNA content o f the cells is of 

importance when cell cycle analysis is carried out and the histogram plot is being 

interpreted (figure 3.3). Synthesis of DNA and other macromolecules occurs in the S 

phase.
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DNA synthesis

Figure 3.2. The cell cycle and its regulation. In rapidly dividing cells, the different 

phases have the following durations: M lasts one hour; Gi lasts 8-30hr; S lasts 8hr; G2 

lasts 3hr, and the whole cycle lasts 20-50hr (King, 2000).

There are three checkpoints within the cycle that allows for careful regulation of 

events. These are found in Gi, G2 and M. The checkpoint found at the end o f Gi is of 

interest to this research. Anti-cancer drugs, such as cisplatin (Lee et al, 1999), which 

may be targeted towards this checkpoint, result in a reduction o f the number of cells in 

the S phase, and an increase in the number o f cells in the G0/G 1 phase. This is referred to 

as arrest at Gi/S interface.

The number of cells in each phase can be deduced by passing a population of 

labelled cells through the flow cytometer and measuring the amount of DNA in each cell. 

Cells in the G2/M phase will have twice as much DNA as cells in the G0/G1 phase (figure 

3.3). Results from the cell cycle analysis are presented as a histogram plot whereby the 

y-axis represents the number o f cells, and the x-axis represents the amount o f DNA in 

each cell.

Several dyes may be used to label the DNA, such as Hoechst 33342, and, more 

commonly, propidium iodide (PI), which intercalates in the DNA helix and fluoresces 

strongly orange-red. PI was chosen for this research, and it has the advantage that it is 

excited by 488nm light and can be used on most common flow cytometers. However, it
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does require cells to be fixed or permeabilised and therefore non-viable 

(http://www.icnet.Uk/axp/facs/davies/cycle.html#lCol).

Figure 3.3. Histogram plot depicting numbers o f cells on the y-axis versus the amount of 

DNA per cell (relative units) on the x-axis. It can be seen from the plot that the cells in 

G2/M have twice as much DNA per cell than the cells in Gi.

After cells were analysed and histograms were plotted, selection o f the peaks was 

required to ascertain what percentage o f cells, of a given population, were in the chosen 

peak. It was clear which peaks represented which stage of the cell cycle, as there is twice 

as much DNA in the G2/M stage as in the G0/G 1 stage.

3.1.3 Apoptosis

Programmed cell death or apoptosis is initiated by an individual cell in response 

to a specific stimulus or as a result of an inappropriate set o f signals received from the 

external environment (Masters, 2000). There are several mechanisms resulting in 

apoptosis but they all share similar phenotypic markers and behaviours, one o f which is 

the removal o f unwanted and damaged cells from a population o f cells, whether normal 

or carcinogenic. A regulated balance between apoptosis and cell proliferation exists 

within a tumour, and one that is increasing in size exhibits increased proliferation and 

reduced apoptosis. It is the objective o f cancer treatments, be they chemical or physical, 

to regulate proliferation of the cancer cells and increase cell death (King, 2000).
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3.1.3.1 Features of apoptosis

Apoptosis may be analysed in a cell population by looking at either molecular or 

cellular features. Molecular features include activation of caspases and release of cell 

death signals, such as Bcl2, BAX and Bad. Cellular features include chromatin 

condensation, changes in cell morphology and DNA laddering. The sequential activation 

of the caspases results in the major biochemical features of apoptosis, and these are 

depicted in figure 3.4.

DNA damage
Withdrawal o f  growth 

stimulatory signals

Death promoting 
signals

1
^ ^ D N A  l a d d e r ^ ^  '

' ' cc
Chromatin

condensation

Figure 3.4. Pathways promoting apoptosis (King, 2000). DNA laddering is one of the 

main cellular features of apoptosis.
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During apoptosis, the cytoplasm begins to shrink following the cleavage of 

laminin and actin filaments by pro teases. Nuclear condensation can be observed 

following the breakdown o f chromatin, and often the nuclei of apoptotic cells take on a 

horseshoe-like appearance. Cells continue to shrink into a form that allows easy 

clearance by macrophages. These phagocytic cells are responsible for removing 

apoptotic cells from tissues. Apoptotic cells promote their phagocytosis by undergoing 

plasma membrane changes, which trigger the macrophage response. An example of this 

is the transfer o f phosphatidyl serine from inside the cell to the outer surface. Towards the 

end o f the apoptotic process membrane blebs can be observed. Small vesicles called 

apoptotic bodies may also be seen.

(http://www.sghms.ac.uk/depts/immunology/%7Edash/apoptosis).

3.1.3.2 DNA laddering

A major biochemical feature of apoptosis is the sequential activation of the 

caspases, a family o f proteases whose substrates include large protein precursors of 

degradation enzymes. Endonucleases are an example of one such enzyme and they have 

the ability to degrade DNA. This digestion at internucleosome bridges generates a ladder 

of DNA fragments, which are multiples of 200bp units. This size is characteristic of a 

nucleosome (King, 2000).

There are several steps leading towards DNA cleavage. The first is the 

inactivation of enzymes involved in DNA repair, such as poly ADP-ribose polymerase 

(PARP). Following this, there is inactivation of enzymes, which are involved in cell 

replication. For example, DNA topoisomerase II is essential for DNA repair and 

replication, and it is inactivated by caspases. The third step is the breakdown of 

structural nuclear proteins, such as laminins. The final step is the fragmentation of DNA, 

which can be detected through the isolation of this apoptotic DNA and separating it on an 

agarose gel (http://www.sghms.ac.uk/depts/immunoloiiv/%7Edash/apoDtosis/). This is 

easily achieved using a DNA laddering kit such as the Suicide-Track™ DNA Ladder 

Isolation Kit (Oncogene Research Products).
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3.2 Results

3.2.1 4T1 cell line

The 4T1 cell line, which was chosen for this research, was derived from a murine 

mammary tumour (Aslakson and Miller, 1992). When injected into BALB/c mice, 4T1 

cells spontaneously produce highly metastatic tumours that can metastasize to the lung, 

liver, lymph nodes and brain while the primary tumour is still growing in situ. The 

tumour growth and metastatic spread of 4T1 cells in BALB/c mice very closely mimics 

that of human breast cancer (www.atcc.org, 2002), which was a major factor in choosing 

this cell line for this research. Figure 3.5 shows the typical morphology of the 4T1 cell 

line growing in a tissue culture flask.

Figure 3.5. Inverted phase contrast micrograph of 4T1 cells (lOx).
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3.2.2 Standardisation of the MTS assay

A range of cell numbers, varying from 0 -  2.5*104 cells, was set up each time a 

cytotoxicity assay was set up. Depending on the incubation time, i.e. 1 - 4  days, the 

number of cells plated was either increased or decreased. This allowed the growth of the 

cells to be monitored, ensuring that they always remained in exponential phase of growth 

during the assay. Figure 3.7 depicts a typical standard curve of cells, after four days 

incubation. The absorbance of the cells at 492nm was read after they were treated 

according to the MTS assay protocol (section 2.23.2).

The linear increase in absorbance coincides with increasing cell numbers. The R 

value was close to 1 thus indicating the linearity of the standard curve. By setting up a 

range of cell numbers each time the MTS assay was performed, not only was it possible 

to monitor the exponential growth of the cells, but also the ability to reproduce the assay 

from day to day was confirmed.

Figure 3.6. The absorbance @ 492nm of the formazan product on the y-axis versus cell 

number on the x-axis.
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3.2.3 Cytotoxicity of ethanol

The CLA mixture and the purified isomers were prepared and diluted in 100% 

ethanol. Therefore, each time a cytotoxicity assay (section 2.2.3) was set up, the cells 

were also treated with 1% (v/v) ethanol for the same length of time, i.e. 24, 48, 72 or 

96hrs. In this experiment by allowing untreated cells to represent 100% viability, 

percentage cell death due to 1% (v/v) ethanol could be calculated.

Table 3.1 shows the amount of cell death due to 1% ethanol, for a typical set of 

assays. As can be seen from table 3.1, percentage cell death due to 1% ethanol was 

minimal. Following 24hr incubation with ethanol, there was 0.72% cell death, this 

increased to 0.79% for 48hr, 1.23% for 72hr, and 1.12% for 96hr.

The percentage cell death was very low yet increased for the first three days, and 

on day four (96hr), the cell death due to 1% ethanol decreased somewhat from 1.23% to 

1.12%. It appeared that after this length of time the 4T1 cell line was affected to a lesser 

extent by treatment with ethanol.

Incubation time (hr)

24 48 72 96

Percentage cell D eath (%) 0.72 0.79 1.23 1 .12

Table 3.1. Effect o f 1% ethanol on percentage cell death of the 4T1 cell line for four 

different time periods.
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3.2.4 Cytotoxicity of CLA

In order to study the cytotoxicity o f the CLA mixture and the two individual 

purified isomers, 9c,11/(18:2) and 10/,12c(l 8:2), several concentrations of the fatty acids 

and several treatment times were chosen. The 4T1 cell line was incubated for 1, 2, 3 and 

4 days, while being treated with 0, 5, 10, 15, 20 and 25 p.g/ml of CLA (section 2.2.3). 

Concentrations up to 20 pg/ml o f CLA lie within the physiological range o f the 

9c,11/(18:2) isomer in human phospholipids (Cawood et al, 1983), plasma, bile, and 

duodenal juice (Iverson et al, 1985) and have been previously used in cell culture work 

(Shultz et al, 1992, Miller et al, 2001). The end point of the cytotoxicity assay was 

measured using the MTS assay.

The highest point on the standard curve of cells (2-4* 103 cells per well, depending 

on the time period) was used for the cytotoxicity treatments. Triplicates were always 

performed, and cells treated with ethanol, to a final concentration of 1% (v/v), acted as 

the control. Cell death was calculated as a percentage of the ethanol, where percentage 

cell death due to ethanol was 0%. This calculation is shown below.

1 00-[ { ( O D  o f  sam ple a v e r a g e - O D  o f  b lan k  a v e r a g e ) / ( O D  o f  contro l a v e r a g e - O D  o f  b lank  average)} * 100]

w here  O D  is the  op tical density .

The results for the cytotoxicity assays are shown in figures 3.7-3.10. Each graph 

shows percentage cell death o f the 4T1 cell line versus CLA concentration (p.g/ml). 

Ethanol was taken as 100% cell viability, and percentage cell death following treatments 

calculated accordingly. The assay was carried out in triplicate and on three separate days. 

Standard deviations were calculated using the average of the replicates. Error bars 

represent these values on the graph. T-tests were carried out to determine if the values 

were significant. P values <0.05 were deemed significant.
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3.2.4.1 Cytotoxicity of CLA after 24hr incubation

Following 24hr incubation with the CLA mixture and its individual purified 

isomers, there was significant cell death due to 9c, 11/(18:2) and 10/,12c(18:2) at 

concentrations of 20 and 25(a,g/ml. There was no significant cell death due to the CLA 

mixture at any concentration (figure 3.7).

At the lower concentrations of 5, 10 and 15pg/ml there was minimal cell death 

due to the CLA mixture and its isomers. There was no obvious difference in cytotoxicity 

between either of the individual purified isomers or the CLA mixture for this time point. 

There was a maximum cell death of 10% with 25p,g/ml of the CLA mixture, although 

statistically this was not significant.
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Figure 3.7. Percentage cell death (%) versus concentration of CLA and its purified 

individual isomers (|a.g/ml) after 24hr incubation. The asterisk (*) denotes that the p 

value was <0.05, and therefore significant.
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3.2.4.2 Cytotoxicity of CLA after 48hr incubation

Following 48hr incubation with the CLA mixture and its individual purified 

isomers, there was an overall marked increase in percentage cell death, along with a clear 

indication of increased potency with the 10/,12c(18:2) isomer compared to the 

9c, 11/(18:2) isomer and the CLA mixture (figure 3.8).

The 10/,12c(18:2) isomer caused significant cell death at all concentrations, while 

the 9c, 11/(18:2) isomer caused significant cell death at all concentrations except at 

15jj,g/ml. The 10/,12c(18:2) isomer displayed increased cytotoxicity when compared to 

the 9c, 11/(18:2) isomer and the CLA mixture. This was apparent when we examined 

cytotoxicity at the lower concentration. At 5jag/ml, the 9c, 11 /(18:2) isomer killed 6% of 

cells, while the 10/,12c(18:2) isomer killed 25%, and the CLA mixture killed only 2%.

The CLA mixture, which was made up of 29.5 and 29% of 9c, 11/(18:2) and 

10/,12c(18:2) respectively, caused significant cell death at all concentrations with the 

exceptions of 5 and 15 pg/ml.

For this incubation time, there was a maximum cell death of 46% with 25pg/ml of 

the 10/,12c(18:2) isomer.
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Figure 3.8. Percentage cell death (%) versus concentration of CLA and its purified

individual isomers (pg/ml) after 48hr incubation. The asterisk (*) denotes that the p

value was <0.05, and therefore significant.
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3.2.4.3 Cytotoxicity of CLA after 72hr incubation

Following 72hr incubation with the CLA mixture and its individual purified 

isomers, there was a significant increase in cell death for all treatments except 5(ig/ml of 

the 9c, 11 /(18:2) isomer. Also, at this time point, there was a clear difference in 

cytotoxicity between the individual isomers and the CLA mixture (figure 3.9).

Even though there was an overall increase in significance for all treatments from 

48-72hr incubation, the overall increase in toxicity was not great, especially at the lower 

concentrations. The increase in cytotoxicity was more apparent at concentrations of 20 

and 25(j,g/ml.

It was clear from the graph that the 10f,12c(18:2) isomer displayed increased 

significant cytotoxicity compared to the other treatments. The 9c, 111{\8:2) isomer and 

the mixture displayed similar toxicity up until this treatment time of 72hr. A maximum 

toxicity o f 61% was seen with 25jj.g/ml o f the 10 / ,12c(l 8 :2 ) isomer.
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Figure 3.9. Percentage cell death (%) versus concentration of CLA and its purified

individual isomers (|j,g/ml) after 72hr incubation. The asterisk (*) denotes that the p

value was <0.05, and therefore significant.
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3.2.4.4 Cytotoxicity of CLA after 96hr incubation

Following 96hr incubation with the CLA mixture and its individual purified 

isomers (figure 3.10), the potency of the 9c, 11/(18:2) isomer approaches that of the 

10/,12c(18:2) isomer for the lower concentrations of 5, 10, 15 and 20jxg/ml, whereby the 

cell death due to the 9c,11/(18:2) isomer was 17, 36, 43 and 52%, and the cell death due 

to the 10/,12c(18:2) isomer was 19, 31, 33 and 58%. After this point, when the 

concentration was increased to 25|4,g/ml, the 10/,12c(18:2) isomer displayed increased 

cytotoxicity once again. A maximum toxicity of 80% was seen with 25 jag/ml of the 

10/,12c(18:2) isomer.

Interestingly, at 96hr an increase in toxicity for the 9c,11/(18:2) isomer compared 

to the CLA mixture was seen. For the other incubation times studied, i.e. 24, 48 and 

72hr, the cytotoxicity of this isomer and the CLA mixture were similar. For example, at 

10(j,g/ml, the cell death due to the 9c,11/(18:2) isomer was 36%, and for the CLA mixture 

it was 14%. This can be compared to the same concentration but for the incubation time 

of 72hr, whereby lOpg/ml resulted in 13% cell death for both the 9c,11/(18:2) isomer and 

the CLA mixture.
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Figure 3.10. Percentage cell death (%) versus concentration of CLA and its purified

individual isomers (fig/ml) after 96.hr incubation. The asterisk (*) denotes that the p

value was <0.05, and therefore significant.
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3.2.5 Treatment of cells for cell cycle and apoptosis analysis

In order to analyse the effect of CLA on the cell cycle of the 4T1 cell line by flow 

cytometry, a CLA concentration and incubation time that would kill -50%  of cells was 

needed. This was required so that treatment with CLA and its individual isomers would 

affect the cell cycle o f the remaining viable cells to an extent that they could be analysed 

(personal communication with Claire Condron, Director o f Flow Cytometry Unit, 

Beaumont Hospital, Dublin).

For the analysis o f DNA laddering due to apoptosis, the same CLA concentration 

and incubation time was used, but this time both the viable (in monolayer) and detached 

cells were analysed. The 4T1 cell line was therefore treated for 24, 48, 72 and 96hr with 

30(ag/ml o f the CLA mixture and its purified individual isomers (figure 3.11) (section 

2.2.4) for both cell cycle and apoptosis analysis.

When the cell line was treated with 30jig/ml of the CLA mixture and its purified 

individual isomers, the incubation period of 24hr was too short to have a sufficient effect 

on cell death. The longer times o f 72 and 96hr had too great an effect on cell death, for 

example, the 10/, 12c( 18:2) isomer killed 85% of cells at 72hr and 94% at 96hr.

After analysis o f the percentage cell death for the different incubation periods, it 

was decided that 48hr incubation was sufficient to have an effect on the cells for cell 

cycle and apoptosis analysis. Longer times than this might be too cytotoxic to the cell 

population, especially as the CLA isomers and CLA mixture have different potencies.
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Figure 3.11. The percentage cell death due to 30jig/ml o f the 9c, 11/(18:2), 10/,12c(18:2), 

isomer, and the CLA mixture. The 4T1 cell line was treated for 24, 48, 72 and 96hr to 

determine which time point would be chosen for cell cycle and apoptosis analysis.

3.2.6 The effect of CLA on the cell cycle

The 4T1 cell line was treated for 48hr with 30(j,g/ml o f the CLA mixture and its 

individual purified isomers. The cells were then analysed on a FACScan flow cytometer 

where the amount o f DNA in any given cell population could be determined, thus 

allowing the stage of the cell cycle in which the cells are in to be determined (section

2.2.4 and 2.2.5). The FL2 lamp histogram plots display peaks which are representative of 

the different stages in the cell cycle. The stages in the cell cycle being analysed were 

G0/G 1, S and G 2/M. The peaks were selected and the percentages o f cells in each peak 

were calculated. A representative profile o f a single experiment is shown and this 

experiment was repeated three times. Results are shown in both histogram and tabular 

form.



Figure 3.12 shows the resultant histogram plot o f cells, which had previously been 

treated with 1% ethanol for two days. The first peak represents 4T1 cells in the Go/Gi 

phase in the cell cycle. While, the second peak represents the G2/M phase. It is possible 

to recognise what each peak represents because cells in the G0/G 1 phase have half the 

amount o f DNA than cells in the G2/M phase. The section of the histogram between the 

peaks represents the S phase. Table 3.2 shows the percentage of cells in each section of 

the histogram. The results indicate that 54.01% of cells were in G0/G 1, 9.35% were in S 

and 17.83% were in G2/M.

Figure 3.13 and Table 3.3 show the percentage of cells in each stage o f the cell 

cycle after the 4T1 cell line was treated with 30pg/ml of the purified isomer, 9c, 11/(18:2) 

for two days. Here we can see a change in the distribution o f the cells within the cell 

cycle. 56.65% o f the cells are in the G0/G 1 phase, compared to 54.01% for the ethanol 

treated samples. There was also a reduction in the number o f cells in the synthesis phase, 

from 9.35% to 6.82%. This indicates that treatment with this isomer caused a block in 

synthesis to occur, resulting in a decrease of cells in S and an increase of cells in G0/G 1.

Figure 3.14 and Table 3.4 show the percentage of cells in each stage of the cell 

cycle after the 4T1 cell line was treated with 30pg/ml of the purified isomer, 

10/,12c(18:2) for two days. Once again, we see a change in the distribution o f the cells 

within the cell cycle, and this time, to an even greater extent. The number o f cells in 

Go/G! increased from 54.01% for the ethanol-treated samples to 61.78% for the 

10/,12c(18:2)-treated samples. Coinciding with this, the percentage of cells in the 

synthesis stage reduced even further than it did for the 9c, 11/(18:2) isomer, from 9.35% 

for the ethanol-treated samples to 5.98% for the 10/,12c(18:2)-treated samples.

Finally, figure 3.15 and Table 3.5 show the percentage o f cells in each stage of the 

cell cycle following treatment o f the 4T1 cell line with 30|j,g/ml o f the CLA mixture for 

two days. There was a clear difference in the percentage o f cells in each stage of the cell 

cycle, although the difference was similar to that of the 9c, 11/(18:2) isomer rather than 

the greater difference of the 10/,12c(18:2) isomer. The percentage of cells in G0/G 1 

increased from 54.01% for the ethanol-treated samples to 59.76% for the CLA mixture- 

treated samples, while the percentage o f cells in S reduced from 9.35% to 6.33%.
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Figure 3.12. The FL2 lamp histogram plot shows the number o f cells, or events, on the y- 

axis versus the DNA content (arbitrary units) o f each cell on the x-axis. Three stages in 

the cell cycle are depicted, G0/G 1, S and G2/M by areas of the plot. This cell population 

has previously been treated with 1% ethanol for 2 days. A representative profile o f a 

single experiment is shown, and this experiment was repeated three times.

Stage in cell cycle % of total cell
population

Gq/G j 54.01
S 09.35
G2/M 17.83

Table 3.2. The percentage o f cells in each stage o f the cell cycle was calculated from the 

histogram plot, figure 3.12. This cell population has previously been treated with 1% 

ethanol for 2 days. A representative profile o f a single experiment is shown, and this 

experiment was repeated three times.
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Figure 3.13. The FL2 lamp histogram plot shows the number o f cells, or events, on the y- 

axis versus the DNA content (arbitrary units) o f each cell on the x-axis. Three stages in 

the cell cycle are depicted, G0/G 1, S and G2/M by areas o f the plot. This cell population 

has previously been treated with 30(j,g/ml o f the purified isomer, 9c, 111(\ 8:2) for 2 days. 

A representative profile o f a single experiment is shown, and this experiment was 

repeated three times.

Stage in cell cycle % of total cell 
population

Go/Gi 56.65
S 06.82
g2/m 19.65

Table 3.3. The percentage o f cells in each stage o f the cell cycle was calculated from the 

histogram plot, figure 3.13. This cell population has previously been treated with 

30pg/ml o f the purified isomer, 9c, 11/(18:2) for 2 days. A representative profile o f a 

single experiment is shown, and this experiment was repeated three times.
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Figure 3.14. The FL2 lamp histogram plot shows the number of cells, or events, on the y- 

axis versus the DNA content (arbitrary units) o f each cell on the x-axis. Three stages in 

the cell cycle are depicted, G0/G 1, S and G2/M by areas o f the plot. This cell population 

has previously been treated with 30fj.g/ml o f the purified isomer, 10/,12c(18:2) for 2  days. 

A representative profile o f  a single experiment is shown, and this experiment was 

repeated three times.

Stage in cell cycle % of total cell
population

G0/G, 61.78
S 05.98
g 2/m 18.88

Table 3.4. The percentage o f cells in each stage of the cell cycle was calculated from the 

histogram plot, figure 3.14. This cell population has previously been treated with 

30(ig/ml o f the purified isomer, 1 Or, 12c( 18:2) for 2 days. A representative profile o f a 

single experiment is shown, and this experiment was repeated three times.



Figure 3.15. The FL2 lamp histogram plot shows the number o f cells, or events, on the y- 

axis versus the DNA content (arbitrary units) o f each cell on the x-axis. Three stages in 

the cell cycle are depicted, G0/Gi, S and G2/M by areas o f the plot. This cell population 

has previously been treated with 30pg/ml o f the CLA mixture for 2 days. A 

representative profile o f a single experiment is shown, and this experiment was repeated 

three times.

S tage  in  c e l l  c y c le % o f  to ta l c e ll  
p op u la tion

Go/G! 59.76
S 06.33
g 2/m 19.30

Table 3.5. The percentage o f cells in each stage o f the cell cycle was calculated from the 

histogram plot, figure 3.15. This cell population has previously been treated with 

30 fog/ml o f the CLA mixture for 2 days. A representative profile o f a single experiment 

is shown, and this experiment was repeated three times.



3.2.7 Examination of 4T1 cell line for apoptosis

The 4T1 cell line was treated for 2 days with either 1% (v/v) ethanol or 30(j,g/ml 

o f the CLA mixture and the purified individual isomers. Following this, both the cells 

attached to the flask in the monolayer and the detached cells floating in medium were 

analysed for DNA laddering using the Suicide-Track™ DNA Ladder Isolation Kit 

(Oncogene Research Products). Eight samples were examined in total, and ran on an 

agarose gel where they could then be stained and photographed. The details of the 

procedure can be found in section 2 .2 .6 .

Examination of the eight samples for apoptosis (figure 3.16) revealed that, as 

expected, there was no DNA laddering to be found in the monolayer cells (lane 2, 3, 4 

and 5), regardless o f the treatment. As these cells were still attached to the tissue culture 

flask, they were most likely still viable and, therefore, were not expected to contain any 

apoptotic DNA. The kit was designed to isolate just low molecular weight apoptotic 

DNA, and not high molecular weight chromosomal DNA.

A positive control, which contained apoptotic cells (HL60 cells previously treated 

with Actinomycin D), was provided with the kit. This was treated in the same way as the 

samples were. When DNA isolated from the control was ran on the gel (lane 12), there 

appeared to be a smear in the lane and not discrete bands as expected.

The apoptotic DNA isolated from the detached cells displayed varying degrees of 

staining, although, similar to the positive control discrete bands were not present. 

Interestingly, both isomers 9c, 11/(18:2) [lane 8] and 10/,12c(18:2) [lane 9] resulted in 

increased isolated DNA compared to the CLA mixture [lane 10].

Although the Suicide-Track™ DNA Ladder Isolation Kit should only isolate low 

molecular weight apoptotic DNA, it was expected that a laddering effect would be seen 

with discrete bands representing multiples of 200bp units. This was not seen for either 

the positive control provided with the kit or the CLA-treated samples. Through 

examination of the gel in figure 3.16, it was decided that the results for the analysis of 

apoptosis were inconclusive. Therefore, it was not possible to determine conclusively if 

apoptosis had taken place.
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Lane: 1 2 3 4 5 6 7 8 9 10 11 12

Figure 3.16. Samples were run on a 1.5% agarose gels in TAE, stained with ethidium 

bromide, and photographed.

• Cells in monolayer (viable) following treatment with: 9 c ,l i t  (18:2) [lane 2]; 10t,12c 

(18:2) [lane 3]; CLA mixture [lane 4]; and ethanol [lane 5].

• Detached cells (non-viable) following treatment with: 9 c ,l i t  (18:2) [lane 8]; 10t,12c 

(18:2) [lane 9]; CLA mixture [lane 10]; and ethanol [lane 11].

Lane 1 and lane 7 contain molecular weight markers, lane 6 contains H2O and lane 12 

contains the positive control provided with the Suicide-Track™ DNA Ladder Isolation
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3.3 Discussion

The anti-carcinogenic properties of CLA have been firmly established by several 

investigators through animal experiments, which mostly involve rat and mouse models. 

Many of these have previously been discussed in detail in section 1.4.2.1 (Ip et al, 1997, 

Cesano et al 1998, Ip et al, 1999a, Hilakivi-Clarke et al, 1999, Banni et al, 1999, 

Hubbard et al, 2000, Futakuchi et al, 2002, Masso-Welch et al, 2002). The anti­

proliferative properties of CLA in several cell lines, of numerous origins, have also been 

extensively studied and some of these are discussed in section 1.4.2.3 (Durgam and 

Fernandes, 1997, Park et al, 2000, Igarashi and Miyazawa, 2001, Urquhart et al, 2002 

and Kim et al, 2002).

Breast cancer deaths comprised 2% of all deaths and 8.5% of all cancer deaths in 

Ireland in 1997. Since all these cases in this study occurred in women, this number 

constitutes 4.2% of all deaths in women and 18.1% of all cancer deaths in women (Codd 

et al, 1999). The 4T1 cell line has been described as very closely mimicking that of 

human breast cancer (www.atcc.org, 2 0 0 2 ), which was a major factor in choosing it for 

this research.

A review of the literature reveals that to date, there have been no studies 

examining the effect of CLA on the 4T1 cell line. In addition, there have only been a few 

studies published looking at the cytotoxicity o f the individual purified CLA isomers 

9c, 11/(18:2) and 10/,12c(18:2). The exact mechanism of action o f CLA is still unknown 

although there are several proposed theories (section 1.4.2 .2 ), which will be dealt with, 

further in this section. The present study was designed to examine the effect of a CLA 

mixture and two of its predominant individual purified isomers on the proliferation and 

metastasis o f the 4T1 murine mammary cancer cell line.

One o f the earliest anti-cancer studies involving CLA was published by Ha et al 

(1987). In this study, the authors applied a synthetic mixture of CLA to the dorsal area of 

mouse skin prior to initiation of cancer using the carcinogen, DMBA, and its promotion 

with 12-0-tetradecanoylphorbal-13- acetate (TPA). Sixteen weeks after treatment, CLA- 

treated mice consistently exhibited fewer papillomas and a lower tumour incidence than 

control or LA-treated cells.

In the present study, the anti-proliferative effect o f a CLA mixture and its 

individual purified isomers on the 4T1 cell line was established. The cell line was treated 

with varying concentrations of a commercially available CLA mixture [29.5% 

9c, 11/(18:2) and 29% 10/,12c(18:2) CLA] and two individual purified isomers,

http://www.atcc.org


9c, 11/(18:2) [99.9% pure] and 10/,12c(18:2) [99.9% pure] for varying times. 

Cytotoxicity o f CLA was studied using an MTS cytotoxicity assay. It can be seen from 

the results (figures 3.7-3.10) that there was a clear difference in the potency of the 

different individual isomers and the CLA mixture. For example, after 48hr incubation 

with 5(ig/ml, the 10/,12c(18:2) isomer displayed greater toxicity (25%) than the 

9c, 11/(18:2) isomer (6 %) and the CLA mixture (2%).

The effect of CLA on the mammary cell line, MCF-7, has been extensively 

studied. O ’Shea et al (1999) observed a dose dependent decrease in cell numbers and 

increase in lipid peroxidation, as determined by TBARS in MCF-7 and SW480 (colon, in 

origin) cell lines following incubation with a CLA mixture. Maximum growth 

suppression occurred in both cell lines following supplementation with 15-30ppm 

(pg/ml) CLA for 8-10 days. O ’Shea el al (1999) concluded that the CLA-induced anti­

oxidant enzymes (super oxide dismutase [SOD] and glutathione peroxidase [GPx]) failed 

to protect these cells from cytotoxic lipid peroxidation products.

A study carried out by Park et al (2000) on the same breast cancer cell line, MCF- 

7, found that LA stimulated the growth of the cells while CLA resulted in an inhibition. 

They concluded that growth inhibition by CLA was not mediated through phospholipase- 

C (PLC)-, protein kinase-C (PKC)- or Prostaglandin E2 (PGE2)-dependent signal 

transduction pathways.

The antiproliferative effects o f two commercial preparations o f CLA and their 

constituent purified isomers, 9c, 11/(18:2), 9c,llc(18:2) and 10/,12c(18:2) were 

determined in vitro by Palombo et al (2002). Human colorectal (HT-29, MIP-101) and 

prostate (PC-3) carcinoma cell lines were studied. They found that the 10/, 12c(l 8:2) 

isomer exhibited the greatest potency against colorectal cancer proliferation, and the 

9c,llc-18:2  and 10/, 12c-l8:2 isomers were moderately effective against the prostate 

cancer. The 10/, 12c-18:2 isomer also resulted in caspase-dependent apoptosis occurring 

in the MIP-101 and PC-3 cell lines.

Research carried out by Kim et al (2002) also compared the potencies of 

individual CLA isomers, 10/,12c(18:2) and 9c,11/(18:2). The colon cancer cell line, 

Caco-2, was treated with the isomers and the researchers found that the 10/,12c(18:2) 

isomer dose dependently decreased viable cell number (55% reduction at 96hr following 

the addition o f 5|oM of the isomer). This same isomer induced apoptosis and decreased 

DNA synthesis. In, this paper, the 9c,11/(18:2) isomer was reported as having no 

significant effect.



Contrary to the research carried out by Kim et al (2002), a study carried out by 

Liu et al (2002) on a gastric adenocarcinoma cell line, SGC-7901, concluded that the 

9c, 11/(18:2) isomer inhibited cell growth and proliferation (after 8 days, 6 % inhibition 

was found with 25pM [7|a,g/ml], and 82% with 200(iM [56p,g/ml]) through blockage of 

the cell cycle. It must be said, though, that Liu et al (2002) only reported results for the 

9c, 11/(18:2) isomer.

Following the cytotoxicity assays, it was decided to look at the effect o f CLA and 

its individual isomers on the cell cycle of the 4T1 cell line. Using the cytotoxicity data to 

establish optimum treatment conditions, a suitable CLA concentration and incubation 

period was chosen. After analysis o f the flow cytometry FL2 lamp histogram plots for the 

ethanol and CLA-treated samples (figures 3.12-3.15 and tables 3.2-3.5), it was apparent 

that treatment o f the 4T1 cell line with the CLA mixture, the 9c, 11/(18:2) and the 

10/,12c(l 8:2) isomer caused both a reduction in the number of cells in the S phase along 

with an increase in the number of cells in the Go/Gi stage. Using figures 3.2 and 3.3 it 

was possible to conclude that the cytotoxic effect exerted by CLA and its isomers was 

due to a disruption in the Gi checkpoint. Anticancer drugs, which may be targeted 

towards this checkpoint result in a gradual build-up of cells in the Go/Gi stage and a 

reduction of cells in the S stage.

The 10/, 12c(l 8:2) CLA isomer caused the greatest reduction of cells in S, along 

with an increase, or arrest, o f cells in Go/Gi. This isomer also caused increased 

cytotoxicity to this cell line, in comparison to the 9c, 11 /(18:2) isomer and the CLA 

mixture, especially for shorter incubation times. In conclusion, flow cytometric analysis 

revealed deregulation of the cell cycle correlating with the observed cytotoxic effects of 

CLA, especially with the 10/, 12c(18:2) CLA isomer.

In a study carried out by Durgam and Fernandes (1997), CLA was found to 

selectively inhibit proliferation of ER-positive MCF-7 cells compared with ER-negative 

MDA-MB-231 cells. Cell cycle analysis indicated that a higher percentage of CLA- 

treated MCF-7 cells remained in the Go/Gi phase as compared to the control and those 

treated with LA, and thus did not progress to the S or G2/M phase of the cell cycle. 

These results demonstrated that CLA might inhibit MCF-7 cell growth by interfering 

with the hormone regulated mitogenic pathway. Other researchers (Liu et al, 2002, Kim 

et al, 2 0 0 2 ) have also reported a disruption of the cell cycle following treatment with 

CLA, and/or its individual isomers.
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The overall effect on cancer cell proliferation appears to be dependent upon the 

concentration and type o f CLA isomer used, and the type of cancer cells targeted. 

Palombo et al (2002) found that the 10/, 12c(l 8:2) CLA isomer exhibited the greatest 

potency against colorectal cancer cell (HT-29) proliferation, while the 10/,12c(18:2) and 

9c,11/(18:2) isomers were both moderately effective against prostate cancer, PC-3. In 

this study, the 10/,12c(18:2) isomer also induced caspase-dependent apoptosis in the 

colorectal cell line, MIP-101, and in the PC-3 cells.

The underlying mechanisms by which CLA down regulates tumourigenesis and 

cancer proliferation are not well understood, and because CLA has pleiotropic metabolic 

effects, individual CLA isomers may compete as ligands for multiple pathways of signal 

transduction (Liu et al, 1997, Banni et al, 1999). Belury et al (2002) found that CLA 

might serve as a ligand for the nuclear hormone receptor, peroxisome proliferator- 

activated receptors (PPAR). PPAR activation initiates transcription of multiple genes 

that modulate lipid and carbohydrate metabolism (Palombo et al, 2002). Activation of 

PPARy in certain cell lines may induce cell differentiation and growth arrest (Kitamura et 

al, 1999).

Also, CLA may down regulate cancer growth by interfering with the metabolism 

of AA (Liu and Belury, 1998, Banni et al, 1999, Urquhart et al, 2002). Competition 

between LA (precursor to AA) and CLA for the same desaturase system would decrease 

production of AA and alter eicosanoid biosynthesis. Section 1.3.2 and figure 1.4 expand 

on this metabolic pathway. Other proposed theories to CLA’s anti-cancer properties are: 

CLA-induced lipid peroxidation (O’Shea et al, 1999); change in fatty acid metabolism 

(Igarashi & Miyazawa, 2001); and CLA’s relationship to hormone response elements 

(Durgam and Fernandes, 1997).

Up to this point, it had been established that CLA had significant anticancer 

effects on the 4T1 cell line through its cytotoxic effects and its disruption of the cell 

cycle. Following this, apoptotic DNA was isolated from CLA- and ethanol-treated cells, 

and was separated on an agarose gel (figure 3.16) to see if cell death caused by CLA was 

occurring by means of an apoptotic pathway. It has been reported by several researchers 

that either a CLA mixture or individual CLA isomers induced apoptosis in tumour cells 

(Ip et al, 1999b, Ip et al, 2000, Kim et al, 2002).

Through examination of the gel in figure 3.16, it was possible to observe smears 

in several lanes, although discrete bands, representing multiples of 2 0 0 bp units, were not
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present. It was decided that these results were inconclusive, and therefore, it was not 

possible to say that apoptosis had taken place.

Programmed cell death, or apoptosis, can be examined by several methods, such 

as the TUNEL assay. Flow cytometry may also be used to examine a population of 

labelled cells for apoptosis. When apoptosis has taken place within a population of cells, 

the apoptotic cells will appear as a sub-Go/Gi peak on an FL2 lamp histogram plot. 

Figure 3.17 shows a histogram plot o f cells that were previously treated with the 

apoptosis-inducing drug, SN-38 by Ueno et al (2002). There is an apparent sub-Go/Gi 

peak that the researchers report as indicating that apoptosis has taken place. The 

researchers also carry out a TUNEL assay to confirm that apoptosis has occurred 

following treatment with the drug.

Careful examination o f the FL2 histogram plots (figures 3.12-3.15) revealed that 

treatment o f the 4T1 cell line with the CLA mixture, and its individual purified isomers 

caused a disruption in the cell cycle. This resulted in a reduction of the number of cells 

in S phase coinciding with an increase of the number of cells in Go/Gi phase. It was also 

apparent from these figures that CLA and its individual isomers did not cause apoptosis 

to occur, as there was no apparent sub- Gq/Gi peak.

Figure 3.17. A histogram plot, whereby the y-axis represents cell number, and the x-axis 

represents the amount of DNA per cell. A sub-Go/Gi peak (A), indicates that apoptosis 

had taken place, can clearly be seen.



CHAPTER 4



4.1 Introduction

4.1.1 The extracellular matrix (ECM)

The ECM is a complex and dynamic meshwork that is assembled outside cells 

from the specialised glycoproteins and proteoglycans secreted by them. The major 

constituents of the ECM include collagens, non-collagenous glycoproteins, and 

proteoglycans. As well as providing structural support the ECM also plays an important 

role in many biological processes during proliferation, migration and differentiation. A 

balanced interaction between cells and the ECM is essential for these processes 

(Boudreau and Jones, 1999).

The quality and quantity of the ECM depends not only on structural components 

but also on the regulated expression of ECM-degrading proteinases and their inhibitors. 

These proteinases and their inhibitors have, for the most part, been studied in the context 

of their possible role in tumour invasion and metastasis (McCawley and Matrisian, 2000).

4.1.2 Cancer cell metastasis

Metastasis (the ability to form tumours at a distant site) is a characteristic of 

malignancy, and is considered to be the most lethal aspect of cancer, having poor clinical 

outcome (McCawley and Matrisian, 2000). Novel anti-cancer drugs are often aimed at 

steps in the metastatic process, and failure to pass any step will result in tumour cells 

being unable to reach a target organ. Cancer metastasis is composed o f a number of 

steps, which a tumour must complete in order to successfully establish a distant 

metastasis. This is known as the metastatic cascade and is shown in figure 4.1 

(McCawley and Matrician, 2000).

Cancer cell initiation occurs when a single cell becomes modified to exhibit a 

growth advantage over the surrounding tissue, which, at some point, requires 

neovascularisation to supply nutrients for further growth. As the tumour becomes 

malignant, it aquires the ability to invade the surrounding normal tissue. Intravasation 

occurs when tumour cells cross the basement membrane and enter the circulation. 

Following the tumour cells survival in the circulation, extravasation occurs when the 

tumour cells leave the circulation and penetrate the host tissue. Metastasis occurs if  the 

tumour cells can establish and grow at this secondary site (figure 4.1) (McCawley and 

Matrician, 2000).
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1
Survival o f  tum our cells in circulation and avoidance of 

immunological attack
I

Extravasation o f tum our cells from vasculature into secondary 
organ tissue

I
Survival and proliferation within organ parenchyma

Figure 4.1. Steps involved in the metastatic cascade.

4.1.3. The MMP family

The MMPs are a family o f highly conserved zinc dependent endopeptidases, 

which collectively are capable of degrading the components of the basement membrane 

and ECM (DeClerck, 2000). They are a continually growing family o f enzymes, which 

currently consist o f at least 23 well-defined members. Well characterised members of the 

MMP family are shown in table 4.1. The MMPs can be defined by the following 

characteristics:

1 . they share common amino acid sequences;

2 . their proteolytic activity can be inhibited by tissue inhibitors of metalloproteinases 

(TIMPs);

3. they are either secreted or exist as transmembrane pro-enzymes that require activation 

to exert their matrix degrading activity;

4. the active site contains a zinc ion and requires a second metal cofactor such as 

calcium;

5. enzyme activity is optimal in the physiological pH range 

(Nagase and Woessner, 1999).
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MMP Common Name MW Substrates

Minimal Domain MMP 
MMP-7 Matrilysin 28 PG, LM, FN, gel, Coll IV

Hemopexin Domain MMPs 
MMP-1 Interstitial Collagenase 55 Fibrillar Collagen
MMP-3 Stromelysin-1 57 Gelatin, Coll III, IV, PG, FN
MMP-8 Neutrophil collagenase 75 Fibrillar Collagen
MMP-10 Stromelysin-2 57 Coll III, IV, Gelatin, PG,FN
MMP-11 Stromel/sin-3 51 Laminin, FN
MMP-12 Metalloelastase 53 Elastin, Coll IV, FN
MMP-13 Collagenase3 65 Fibrillar Collagen
Fibronectin Domain MMPs 
MMP-2 Gelatinase A 72 Gelatins, Collagen IV
MMP-9 Gelatinase B 92 Gelatins, Collagen IV
Transmembrane Domain MMPs 
MMP-14 MT1-MMP 63 Gelatinase A, PG, Coll
MMP-15 MT2-MMP 72 N.D.
MMP-16 MT3-MMP 64 Gelatinase A
MMP-17 MT4-MMP 70 N.D.
MMP-24 MT5-MMP 60
Miscellaneous 
MMP-19 RASH Gelatins
MMP-20 Enamelysin 54 Amelogenin
MMP-26 Endometase/matrilysiR2 59 Casein

Table 4.1. Properties o f the well characterised members o f the MMP family. FN- 

fibronectin, LM-laminin, Gel-gelatin, Col-collagen, PG-proteoglycans, MW-molecular 

weight (kDa), N.D.-not determined, MT-membrane type.

4.1.3.1 MMPs and cancer

MMPs are believed to promote tumour progression by initiating carcinogenesis, 

enhancing tumour angiogenesis (the formation o f new blood vessels is essential for the 

secondary tumour to grow beyond minimal size), disrupting local tissue architecture to 

allow tumour growth, and breaking down basement membrane barriers for metastatic 

spread. While some MMPs are expressed by tumours cells themselves, MMPs are 

predominantly produced by surrounding host stromal and inflammatory cells in response 

to factors released by tumours (Shapiro, 1998, DeClerck, 2000).
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4.1.3.2 The relationship between MMPs, PUFAs and cancer metastasis

ECM degradation and invasion by cancer cells represent one of the key events in 

the metastatic cascade (Ahmad and Hart, 1997). After tumour cells have first adhered to 

the ECM, proteolytic enzymes bound to the tumour cell membrane or from other sources 

will degrade the matrix to clear the way for tumour cells to migrate. Key proteolytic 

enzymes involved in this matrix degradation are the MMPs (collagenases and 

stromelysins). The balance of these MMPs is maintained by the participation of TIMPs.

There is now substantial in vitro and in vivo evidence linking MMP expression 

levels with the ability o f tumours to metastasise. Thus, the malignant potential of in vitro 

cultured tumour cells has been correlated with the activity o f MMPs. These proteolytic 

enzymes and their inhibitors are regulated by PUFAs. For example, EPA, GLA and AA 

have been shown to inhibit the production of the proteinase, collagenase IV (Jiang et al, 

1998a). It has been reported that LA stimulated tumour cell invasion and MMP-9 

production in vitro; GLA however inhibited invasion and did not induce activity of the 

proteolytic enzyme (Liu et al, 1996, Begin et al, 1989).

Before degradation o f the basement membrane and the ECM can take place the 

cancer cell must first adhere to components within them. It has been demonstrated that 

EPA and GLA resulted in a time and concentration dependent enhancement o f E- 

cadherin, an adhesion molecule associated with metastatic suppression, in a range of 

cancer cells. This was also associated with a reduction in invasion. GLA, EPA, DHA 

and LA have all also been associated with a reduction of tumour adhesion to a range of 

matrix components (Jiang et al, 1998a).

PUFAs also regulate immune cells and host immune response to tumour cells in 

order to minimise the motile and invasive behaviour of cancer cells, to influence tumour 

cell survival in the circulation, and to form mechanisms in the tissues to combat cancer 

cells. It has been demonstrated that many PUFAs, including LA, play an important role 

in several steps o f the metastatic process. The use of PUFAs in preventing metastasis 

may be a novel route in breast cancer research, which should be followed.
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4.1.4 In vitro adhesion, migration and invasion

4.1.4.1 The role played by cell adhesion during metastasis

Invasion is an absolute pre-requisite o f metastasis and cannot occur while tumour 

cells are strongly adherent to neighbouring cells within the primary tumour. Therefore 

for the metastatic process to begin, downregulation of intercellular adhesion must occur. 

Although adhesion mechanisms must be disrupted to increase the motility of the tumour 

cells, reattachment of these cells, or increased adhesion, to metastatic sites must also be 

possible (Ahmad and Hart, 1997). An example of this type of cell interaction is the 

adhesion of tumour cells to the sub-endothelial basement membrane matrix underlying 

endothelial cells, which occurs during metastasis formation (Johanning, 1996).

Cell adhesion molecules (CAMs) are vital throughout the step-by-step process of 

metastasis. They are divided into four categories: cadherins; integrins; selectins and 

members of the immunoglobulin (Ig) superfamily. Adhesion molecules mediate the 

process o f cell adhesion through either cell-substrate or cell-cell interactions (Johanning, 

1996). They also act as key mediators in a variety o f processes such as cell motility, 

tissue integrity and the maintenance of tissue differentiation (Mason et al, 2002).

A large family of proteins, known as integrins, mediates adhesion of cells to a 

variety o f ECM components. Integrins are transmembrane proteins, whereby the 

extracellular domain has binding sites that interact with matrix components. The 

intracellular domain has binding sites for a range of molecules that will co-ordinate 

intracellular events (Mason et al, 2002).

A review carried out by Johanning (1996) on unsaturated fatty acids and breast 

cancer cell adhesion concluded that unsaturated fatty acids influence the ability of 

cultured human breast cancer cells to bind to protein components of the basement 

membrane. The author also showed that unsaturated fatty acids primarily affected the 

binding o f breast cancer cells to type IV collagen, and modulated adhesion differently in 

tumourigenic and non-tumourigenic cell lines.
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4.1.4.2 In vitro migration using cell culture inserts

Becton Dickenson Labware/Falcon® products offers a broad line o f cell culture 

inserts incorporating polyethylene terephthalate (PET) track-etched membranes. 

Perfectly transparent, low pore density PET membranes provide a durable substrate for 

light microscopy. The membranes are strong and can be easily removed for staining, 

fixing and other procedures, such as mounting on slides. The membrane has 

symmetrical, cylindrical pores; both sides o f it are tissue culture treated and therefore 

suitable for cell growth (Becton Dickenson specification sheet, www.bdbiosciences.com).

4.1.4.3 BD Biocoat™ Matrigel™ Invasion Chambers

The BD Biocoat™ Matrigel™ Invasion Chambers (figure 4.2) provided an in 

vitro system for the study of cell invasion through a basement membrane matrix. It 

consisted o f BD Falcon™ Cell Culture Inserts containing an 8 jam pore-size PET 

membrane coated with a uniform layer of BD Matrigel™ Basement Membrane Matrix. 

This method was discriminating, reproducible and provided an authentic model of in vivo 

basement membrane. Only invasive cells digested the matrix and moved through the 

insert membrane (Becton Dickenson specification sheet, www.bdbiosciences.com). The 

method used enabled the study of the metastatic potential of tumour cells and the 

expression of MMPs on the surface of invasive tumour cells.
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8 (am pore-size 
membrane (may 
be coated with 
matrigel*)

/ / / a /  ' ' /

Inner Chamber 
(DMEM, 0% serum)

Outer Chamber 
(DMEM, 20% serum)

Invading cells (image taken from 
this viewpoint)

* For the migration assay there is no Matrigel™

Figure 4.2. Diagrammatic representation o f the in vitro migration and invasion assay. 

The cells above the membrane migrate through the 8pm pores due to the serum gradient. 

After a given time, they may be stained, viewed and counted. Depending on whether 

migration or invasion is being studied, the membrane may be previously coated with 

Matrigel ™.
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4.2 Results

4.2.1 The effect of CLA on the in vitro attachment of the 4T1 cell line

The 4T1 cell line was treated with 15|_ig/ml o f the CLA mixture, its individual 

purified isomers, 9c, 11/(18:2) and 10/,12c(18:2), and 1% ethanol for 24hr (section

2.2.11). This treatment had previously been shown to have minimal toxicity to the cells 

(section 3.2.4.1). Following this, the cells were trypsinised, counted and diluted to a 

concentration of 105cells/ml. These cells were then added to a 96-well plate in triplicate, 

and allowed to attach to the plastic for 30, 60 and 90min.

Following this time period, unattached cells were ‘flicked’ from the plate, the 

plate was spun to bring down media on the side of the wells, and this media was then 

aspirated, The MTS assay used in Section 3.2 for cytotoxicity analysis was used here to 

assess the attachment of the cells to the plastic. MTS (20|il) was added to each well 

along with DMEM (lOOja.1). At this stage, 100|_il of the original untreated cell suspension 

was added to the plate in triplicate, along with 20p.l of MTS. The formazon product, 

which is formed only in the presence of viable cells, was allowed to develop. After 1 Vi - 

2 V2 hours, the absorbance o f the coloured product was read at 492nm.

The absorbance o f the original untreated cell suspension was taken as 100%. The 

percentage adhesion of the CLA- and ethanol-treated cells was thus calculated as a 

percentage of the total number of untreated cells plated. The assay was carried out three 

times in triplicate, and p values of <0.05 were deemed significant. Standard deviations 

(+/-) were calculated and are shown following the value in table 4.2.

Figures 4.3, 4.4 and 4.5 illustrate the percentage adhesion of the 4T1 cells 

following treatment for three different adhesion times. Initially, the assay looked at the 

adhesion of the 4T1 cells after 90min (figure 4.3). It can be seen that following this 

adhesion time, 64% of ethanol-treated cells had adhered to the plastic, while 34, 36 and 

36% of cells previously treated with the 9c,11/(18:2) isomer, the 10/,12c(18:2) isomer 

and the CLA mixture had attached. There was clearly a reduction in adhesion of the 

CLA-treated samples by almost 50% when compared to the control, although there was 

no apparent difference between the CLA mixture and its individual isomers.

Following this, it was decided to carry out the same assay but with one change,

the adhesion time was reduced to 60min and then to 30min. By shortening the adhesion

time, the conditions became more stringent. It was hoped that a differential effect by

either isomer would be seen. When the cells were allowed to adhere for 60min (figure
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4.4), no great difference was seen between the CLA mixture and its individual purified 

isomers, although there was a significant difference for cells treated with the 9c,11/(18:2) 

isomer (30%) and the CLA mixture (46%). When the adhesion time was reduced to 

30min, there was no difference between the CLA mixture (32%), the 10/,12c(l 8:2) 

isomer (35%) or the 9c,11/(18:2) isomer (32%).

A ttachm ent Time 
(m in)

Percentage Adhesion (%)

Ethanol 9:11 10:12 Mix

30 45 +/-5 32 +1-2 35 +/-3 32 +1-2
60 65 +1-1 30 +1-2 55 +1-6 46 +/- 3
90 64 +/-4 34 +/-1 36 +1-2 36 +/-1

Table 4.2. The 4T1 cell line was treated for 24hr with 15pg/ml o f the CLA mixture, its 

individual purified isomers and 1% ethanol. The cells were allowed to adhere to plastic 

for 30, 60 and 90 min, and the percentage adhesion was calculated.
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Figure 4.3. Percentage adhesion o f the CLA- and ethanol-treated samples from table 4.2 

is shown here for the adhesion time of 90min. P values <0.05 are significant and are 

denoted by the asterisk (*).
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Figure 4.4. Percentage adhesion of the CLA- and ethanol-treated samples from table 4.2 

is shown here for the adhesion time o f 60min. P values <0.05 are significant and are 

denoted by the asterisk (*).
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Figure 4.5. Percentage adhesion of the CLA- and ethanol-treated samples from table 4.2 

is shown here for the adhesion time o f 30min. P values <0.05 are significant and are 

denoted by the asterisk (*).
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4.2.2 The effect of CLA on the in vitro migration of the 4T1 cell line.

The 4T1 cell line was treated with 15 [4g/ml o f the CLA mixture, its individual 

purified isomers, 9c, 11/(18:2) and 10/,12c(18:2), and 1% (v/v) ethanol for 24hr (section

2.2.12). Following this, the cells were trypsinised, counted and diluted to a concentration 

of 105cells/ml in DMEM/So- These cells were then added to the BD Falcon® cell culture 

inserts along with 15(j.g/ml of the CLA mixture, its individual purified isomers, 

9c, 11^(18:2) and 10/,12c(18:2), and 1% ethanol. Each of the inserts contained 8 |am pore- 

size membranes through which the cells could migrate towards the chemoattractant 

(DMEM/S20). After 24hr, the membrane was cut from its housing and the cells on the 

underside of the membrane were fixed, stained, viewed and counted. In total, five 

random fields were counted under 10X magnification. In general, fields that were too 

close to the edge of the filter were not counted.

The percentage migration of the CLA-treated cells was calculated using the 

ethanol control as 100% migration. The assay was carried out three times in duplicate 

and a similar trend was observed for each assay. Multiple cell counts were performed, 

and p values o f <0.05 were deemed significant.

Treatment with the CLA mixture and its individual purified isomers resulted in a 

reduced percentage migration of the cells (table 4.3 and figure 4.6) when compared to the 

ethanol control, which was assigned a value o f 100%. Cells treated with the 

1 Or, 12c( 18:2) isomer had a reduced percentage migration of 67%, which was not 

significant, while those treated with the 9c, 11/(18:2) isomer and the CLA mixture had a 

significantly reduced percentage migration o f 38% and 37%, respectively.
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Treatment Percentage migration

9:11 CLA 38 +/- 5
10:12 CLA 67+/- 12
Mix CLA 37 +/- 6
Ethanol 100 +/- 8

Table 4.3. The 4T1 cell line was treated for 24hr with 15pg/ml of the CLA mixture, its 

individual purified isomers, 9c,11/(18:2) and 10/,12c(18:2), and 1% ethanol. Following 

this, the percentage migration o f the cells was determined using an in vitro migration 

assay.
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Figure 4.6. The 4T1 cell line was treated for 24hr with 15(ig/ml o f the CLA mixture, its 

individual purified isomers and 1% ethanol. Following this, the percentage migration of 

the cells was determined. The plot represents the migratory ability (%) versus the type of 

treatment. P values are deemed significant if  <0.05 and are denoted by the asterisks (*).
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Figure 4.7. The effect o f a CLA mixture and its individual purified isomers on the 

percentage migration o f the 4T1 cell line. Membranes were stained and mounted on 

slides, they were viewed under 10X magnification and five fields o f view were counted. 

The green arrows point at stained cells and the blue arrows point at pores in the 

membrane.
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4.2.3 The effect of CLA on the in vitro invasion of the 4T1 cell line

The 4T1 cell line was treated with 15jig/ml of the CLA mixture, its individual 

purified isomers, 9c, 11/(18:2) and 10/,12c(18:2), and 1% ethanol for 24hr (section

2.2.13). Following this, the cells were trypsinised, counted and diluted to a concentration 

o f 105cells/ml. These cells were then added to the BD Biocoat™ Matrigel™ Invasion 

Chambers along with 15|ag/ml of the CLA mixture, its individual purified isomers, 

9c,11/(18:2) and 10/,12c(18:2), and 1% ethanol. Only invasive cells could pass through 

the Matrigel™ and, therefore, the pores in the membrane, where they could then be fixed, 

stained, viewed and counted. In total, five random fields were counted under 10X 

magnification. In general, fields that were too close to the edge o f the filter were not 

counted.

Following treatment, the percentage invasion of the CLA-treated cells, when 

compared to the ethanol control, was calculated. The assay was carried out three times 

and a similar trend was observed for all assays. Multiple cell counts were performed, and 

p values o f <0.05 were deemed significant.

The percentage invasion of the cells was calculated. These values are shown in 

table 4.4, and are in graphical form in figure 4.8. The in vitro invasive activity of the 4T1 

cell line was reduced after treatment with the CLA mixture and its individual isomers, 

9c, 11/(18:2) and 10/,12c(18:2), to 74, 48 and 90%, respectively, although only the value 

for the 9c, 11/(18:2) isomer was deemed significant. Images were taken of the stained 

cells, and are shown in figure 4.9, whereby the difference in the invasive ability of the 

treated cells can be clearly seen.
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Type of treatment Percentage invasion
(%)

9:11 CLA 48 +/- 3
10:12 CLA 90 +/-14
Mix CLA 74 +/- 4
Ethanol 100 +/-10

Table 4.4. The 4T1 cell line was treated for 24hr with 15jag/ml o f the CLA mixture, its 

individual purified isomers, 9c, 11/(18:2) and 10/,12c(l 8:2), and 1% ethanol. Following 

this, the percentage invasion of the cells was determined using an in vitro invasion assay.
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Figure 4.8. The 4T1 cell line was treated for 24hr with 15p.g/ml o f the CLA mixture, its 

individual purified isomers, 9c,11/(18:2) and 10/,12c(18:2), and 1% ethanol. Following 

this, the invasive ability o f the cells was determined using an in vitro invasion assay. The 

plot represents the invasive ability (%) versus the type o f treatment. P values are deemed 

significant if  <0.05 and are denoted by the asterisks (*).
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Figure 4.9. The effect of a CLA mixture and its individual purified isomers on the 

percentage invasion of the 4T1 cell line. Membranes were stained and mounted on 

slides, they were viewed under 10X magnification and counted. The yellow arrows point 

at cells and the blue arrows point at pores in the membrane.
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4.2.4 Protein (BCA) assay

Four flasks o f the 4T1 cell line were incubated in serum-free DMEM (DMEM/So) 

overnight, at 37°C. The following day, fresh DMEM/So was added and the flasks were 

supplemented with either: 15pg/ml of the CLA mixture; 9c,11/(18:2) isomer; 

10/, 12c( 18:2) isomer or 1% ethanol (section 2.2.7). This sub-lethal treatment time and 

dose did not cause significant cell death to the 4T1 cell line and so was suitable for this 

assay. The cells were then returned to the incubator for 24hr, after which media was 

collected from each tissue culture flask for protein determination by the BCA assay 

(section 2.2.8) followed by MMP expression analysis by gelatin zymography.

It was necessary to carry out a protein assay as the protein concentration of the 

samples may differ if  there was an unequal number o f cells seeded into the flask 

originally. By determining the protein concentration, it was possible to load equal 

amounts o f protein onto the zymography gel, and thus if  there was a difference in the 

amount o f MMP released from the cell, it can be accepted as a true difference.

The purple-coloured reaction product of the BCA assay is formed by chelation of 

two molecules of BCA with one cuprous ion. This water-soluble complex exhibits a 

strong absorbance between 560-620nm that is nearly linear with increasing protein 

concentrations over a broad working range (2 0 - 2 ,0 0 0  pg/ml).

Each time the BCA assay was performed, a protein standard curve was also set up 

using bovine serum albumin (BSA) as the standard (figure 4.10). For a standard curve to 

be acceptable, the R2 value was always taken into account, and had to be >0.9. Using the 

equation o f the line from the BSA standard curve, the concentration o f the CLA- and 

ethanol-treated samples could be calculated (table 4.5), as follows

X  = (Y  +/- C)/M

Where Y is the absorbance of the sample, C is the intercept, M is the slope, and X is the 

resultant concentration of the sample (mg/ml).

The protein concentrations for the different treatments were very similar. This is 

an excellent indication that the treatment conditions, i.e. incubation time and 

concentration, did not cause cell death to occur to any great degree.
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Figure 4.10. The plot shows increasing absorbance read at 620nm on the y-axis versus 

increasing concentration of the BSA standard (mg/ml) on the x-axis.

Protein
Sample concentration (mg/ml)

A 0.6
B 0.7
C 0.6
D 0.7

Table 4.5. Protein analysis was carried out on the 4T1 samples (A-the CLA mixture, B- 

9c, 11/(18:2) isomer, C-10/,12c(18:2) isomer and D-ethanol). The absorbance was read at 

680nm. These values were then put into the equation o f the line from figure 4.11 to give 

the protein concentration o f the samples.



4.2.5 The effect of CLA on MMP release from the 4T1 cell line

The 4T1 cell line was treated with 15|_ig/ml o f the CLA mixture, its individual 

purified isomers, 9c,11/(18:2) and 10/,12c(18:2), and 1% ethanol for 24hr. Following 

this, media was collected from each tissue culture flask. A BCA protein assay (section 

2 .2 .8) was carried out on the samples, and equal protein was loaded onto a substrate 

(gelatin) zymography gel (section 2.2.9). This was to ascertain whether the 4T1 cell line 

expressed and released any gelatin-degrading MMPs. This experiment was repeated 

three times on three separate occasions. The zymograph shown in figure 4.11 is a 

representative gel. Similar results were seen on the other gels.

From figure 4.11, it can be seen that the 4T1 cell line expressed significant 

quantities of murine gelatinase B, or MMP-9. Previous researchers have also found 

murine MMP-9 to have a higher molecular weight (105kDa) than human MMP-9 

(92kDa) (Canete Soler et al, 1995). As a control, medium was collected from a flask of 

BHK-92 cells (baby hamster kidney cell line, which constitutively expresses MMP-2, and 

was transfected with the gene for human MMP-9).

MMP-9, like other members o f the MMP family, is secreted as a proenzyme, 

requires zinc for activity, and can be inhibited by naturally occurring inhibitors called 

tissue inhibitors o f metalloproteinases (TIMPs) (McCawley and Matrisian, 2000). MMP- 

9 contains a fibronectin-like domain (DeClerck, 2000) that confers gelatin-binding 

properties, hence the use of gelatin as the substrate in the zymography gel. Although the 

MMP-9 gene is strongly conserved in many species, murine MMP-9 contains additional 

amino acid inserts in exons 9 and 13 resulting in the higher molecular weight o f 105kDa 

(Canete Soler et al, 1995).

To determine the relative amount o f MMP-9, densitometry analysis (section 

2.2.9.1) o f the gel was carried out for each white band against a blue background, and 

these values are plotted in figure 4.12. It can be seen from the plot that there was no 

decrease in the amount o f MMP-9 released from the 4T1 cell line following treatment. 

Table 4.5 shows these values again in percentage form, whereby, ethanol was taken as 

100%, and the other treatments (CLA and its individual isomers) are calculated as a 

percentage of it, i.e.

100



There was a slight, non-significant, increase in the amount o f MMP-9 released 

from the cells by 21, 12, 13% after treatment with the 9c, 11/(18:2) isomer, the 

10/,12c(18:2) isomer and the CLA mixture, respectively.

Murine 
MMP-9 
105kDa

Human
MMP-9
92kDa

Human
MMP-2
72kDa

Figure 4.11. Gelatin zymograph o f 4T1 cells following treatment with the CLA mixture, 

its individual purified isomers, and 1% ethanol. Lane 1 is the molecular marker, lane 2 is 

H2O, lane 3 is 9c,11/(18:2), lane 4 is 10/,12c(18:2), lane 5 is the CLA mixture, lane 6 is 

ethanol and lane 7 contains no sample. The positive control (lane 8 ), which is medium 

collected from the cell line BHK-92, expresses significant quantities o f human MMP-2 

and MMP-9.
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09:11 10:12 Mix Ethanol

Figure 4.12. Densitometry analysis was carried out on the gel in figure 4.11. The x-axis 

displays the type o f treatment (CLA mixture, its individual purified isomers, 9c, 1 li(18:2) 

and 10i,12c(18:2), or 1% ethanol), while the y-axis displays arbitrary densitometric 

values.

Treatment
Densitometry 

Values (%)
9:11 CLA 121
10:12 CLA 112
Mix CLA 113
Ethanol 100

Table 4.$. Densitometry analysis was carried out on the gel in figure 4.11, and these 

arbitrary values given for each CLA treatment are shown here as a percentage o f ethanol 

( 100%).

79



4.3 Discussion

The aim o f the research carried out in this chapter was to examine the effect of 

sub-lethal CLA treatments on the in vitro migration and invasion of the 4T1 cell line. For 

invasion and metastasis to begin, downregulation o f intercellular adhesion must occur, 

and increased adhesion to metastatic sites must also be possible (Ahmad and Hart, 1997). 

The in vitro adhesion assay carried out in this research enabled the ability of the 4T1 cells 

to adhere to plastic to be studied. The multiwell plates, used in this research, had 

previously been treated by the manufacturers so that they encouraged the attachment and 

growth of cancer cell lines. By treating the 4T1 cell line with the CLA mixture and its 

individual purified isomers, it was possible to see if  the treatment had any effect on the 

adhesive ability o f the cells.

Figures 4.3, 4.4 and 4.5 illustrate the percentage adhesion of the 4T1 cell line after 

30, 60 and 90min, respectively. There did not appear to be any difference in the ability of 

the cells to adhere in the presence o f either the CLA mixture and its individual purified 

isomers, 9c,lli(18:2) and 10/,12/c(18:2), although after 90min all treatments resulted in 

-50%  reduction in adhesion compared to the ethanol control.

One hypothesis as to CLA’s anti-cancer properties is its ability to alter the lipid 

composition o f cell membranes. It is widely agreed that dietary unsaturated fatty acids 

added to the media o f cultured cells or to the diet of animals and humans are capable of 

modifying the lipid composition of cell membranes after they have been incorporated into 

the phospholipid fraction (Spector and Yorek, 1985). Changes in phospholipid 

composition would also be expected to alter interactions among various cell adhesion 

molecules in the cell membrane, for example, the binding affinity o f these molecules 

might be altered (Johanning, 1996).

Previous researchers have found that co-6  PUFAs influenced the adhesive ability 

and metastasis o f breast cancer cell lines. Jiang et al (1995) found that y-linoleic acid 

(GLA) increased expression of E-cadherin, while LA reduced expression of this cell-to- 

cell adhesion molecule. Since E-cadherin is a tumour/metastasis suppressor, its up- 

regulation by relatively low concentrations o f GLA suggests that this PUFA may be 

useful in adjuvant therapy for cancer patients.

There has been no published research to date on the effect of CLA on the in vitro 

adhesive ability o f the 4T1 cell line, although other cell lines have been studied. 

Johanning and Lin (1995) found that LA increased human breast cancer (MDA-MB-231) 

cell adhesion to extracellular matrix components by activating lipoxygnease and/or



protein kinase C pathways. This study used Matrigel™, which was used in the invasion 

assays from section 4.2.3. The use of ECM components in vitro represents more closely 

what is happening in vivo.

Previous work by other researchers such as Hubbard et al (2000) found reduced 

murine mammary tumour metastasis in vivo after rodents were fed diets containing CLA. 

These effects were seen at concentrations as low as 0.1% of the diet. These researchers 

used a CLA mixture in the diet. There have been no in vivo studies to date using 

individual CLA isomers in the diet.

In the attempt to mimic an in vivo system, this present study used in vitro 

migration and invasion assays to study the effect o f CLA on the 4T1 cell line. Following 

treatment with 15|_ig/ml of CLA and its individual isomers for 24hr, there was a 

significant decrease in percentage migration o f the cells treated with the 9c, 11/(18:2) 

isomer (38%) and the CLA mixture (37%), while there was also an observed decrease 

with the 10/,12/c(18:2) isomer (67%). There was also a decrease following the same 

treatment conditions in the percentage invasion of this cell line. There was a significant 

decrease in percentage invasion of cells treated with the 9c, 1l i ( l 8:2) isomer (48%), while 

there was also an observed decrease with the 10/,12c(18:2) isomer (90%) and the CLA 

mixture (74%), which was not significant.

It has been proposed that CLA’s anti-cancer properties are the result o f CLA’s 

ability to reduce the production of eicosanoids (Urquhart et al, 2002), which are 

associated with tumour progression, i.e. CLA may act as a COX inhibitor. Attiga et al 

(2000) showed a reduction in both in vitro invasion and in MMP levels in two prostatic 

cell lines, DU-145 and PC-3, after treatment with various COX inhibitors. These results 

indicated a potential role for COX in cancer metastasis, and also provided evidence of a 

possible link between CLA and MMPs.

Results from the in vitro invasion assay (section 4.2.3) indicated that at least one 

isomer of CLA [9c,1 U(18:2)] reduced the percentage invasion of the 4T1 cell line. 

Following this, it was desirable to see if this alteration of invasion in vitro was due to 

changes in MMP activity o f the 4T1 cell line. To date, there have been no publications 

indicating that the 4T1 cell line expressed high levels of any particular MMP. For this 

reason, substrate zymographs were set up to study if the cell line did express high levels 

o f MMPs. Gelatin zymographs were used as these allowed potentially MMP-2 and 

MMP-9 (both gelatinases) to be studied. It was found that the 4T1 cell line did express
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significant quantities o f murine MMP-9 (105kDa) and that treatment with CLA and its 

individual isomers had no effect on the expression of this MMP.

Harris et al (2001) looked at the effect o f diets containing different levels o f CLA, 

DHA and co-3 fatty acids in pregnant rodents. They found that CLA significantly 

depressed prostaglandin (PG) F2a synthesis in placenta, uterus and liver o f pregnant rats 

by 50% when the co-6:co-3 ratio was 7:1. They also found that CLA and DHA depressed 

active MMP-2 and serum MMP-9 levels. They suggested supplementation o f the 

maternal diet with CLA and DHA may be effective in the prevention o f premature 

delivery. This was one of the first studies to directly link CLA and MMP activity.

There are many factors involved in cancer cell invasion and ECM degradation, 

which may result in tumour cell metastasis. TIMPs, the predominant regulators of 

MMPs, may also be studied in this cell line to see if  the reduction in invasion of the 

9c, 1 li(18:2)-treated cells is related to a possible increase in TIMP levels and, therefore, a 

stricter regulation o f MMP-9 expression. Integrins are a family of transmembrane linker 

proteins, which provide anchorage for cells to the ECM and are involved in cell adhesion, 

invasion and motility o f cells (Curran and Murray, 2000). Integrins have been reported to 

affect the transcription o f MMP genes (Jones and Walker, 1997 Kossakowska et al, 

1999). Each of these avenues may be explored in the elucidation of the mechanism of 

action of CLA’s anti-metastatic properties.
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CHAPTER 5



5.1 Conclusions

The 4T1 cell line, which was chosen for this research, was derived from a murine 

mammary tumour (Aslakson and Miller, 1992). When injected into BALB/c mice, 4T1 

cells spontaneously produce highly metastatic tumours that can metastasize to the lung, 

liver, lymph nodes and brain while the primary tumour is still growing in situ. The 

tumour growth and metastatic spread o f 4T1 cells in BALB/c mice very closely mimics 

that o f human breast cancer (www.atcc.org, 2 0 0 2 ).

A review of the literature reveals that to date, there have been no studies 

examining the effect of CLA on the 4T1 cell line. In addition, there have only been a few 

studies published looking at the cytotoxicity of the individual purified CLA isomers, 

9c,lli(18:2) and 10/,12c(l8:2).

Following treatment with CLA and its individual isomers, viability was examined. 

It was found that CLA had an isomer-specific cytotoxic effect on the 4T1 cell line. It can 

be seen from the results (figures 3.7-3.10) that there was a clear difference in the potency 

of the individual isomers and the CLA mixture. The 10i,12c(18:2) isomer was shown to 

be the most potent, especially at lower concentrations.

The cell cycle was examined following treatment with CLA and its individual 

isomers, whereby both a reduction in the number o f cells in the S phase along with an 

increase in the number of cells in the Go/Gi phase was observed for the CLA treated 

samples. These results indicated that the cytotoxic effect exerted by CLA and its isomers 

was due to a disruption in the Gi checkpoint. The 10/,12c(l 8:2) CLA isomer caused the 

greatest reduction o f cells in S, along with an increase o f cells in Go/Gi. This isomer also 

caused increased cytotoxicity to this cell line. In conclusion, flow cytometric analysis 

revealed deregulation o f the cell cycle correlating with the observed cytotoxic effects of 

CLA, especially with the 10/,12c(l 8:2) CLA isomer.

DNA was extracted from the 4T1 cell line and was examined for DNA laddering, 

which is an indication o f apoptosis. The results from this experiment (section 3.2.7) were 

inconclusive. Even so, the flow cytometry histogram plots can also be used to determine 

whether apoptosis had taken place. It was concluded that CLA and its individual isomers 

did not cause apoptosis to occur, as there was no apparent sub-Go/Gi peak, which is 

indicative of apoptosis.

Isomer-specific results were also seen for the in vitro migration and invasion 

assays. It was found that the 9c, 11/(18:2) isomer and the CLA mixture significantly

http://www.atcc.org


reduced the migration and the invasion of the cells. The 10i,12c(l 8:2) isomer had no 

effect on invasion although it did result in an observed reduction of the migration o f the 

cells.

The expression of MMP was studied as part o f this research. It was shown that 

the 4T1 cell line expressed significant quantities of murine MMP-9. Following treatment 

with CLA and its individual isomers, there was no apparent reduction in the amount of 

MMP-9 released from the cells.

There are many directions in which this research could be taken. The next step in 

the in vitro work would be the elucidation of the mechanisms behind CLA’s anticancer 

properties. It has been shown in this research that specific CLA isomers reduced the in 

vitro migratory and invasive ability o f the 4T1 cell line. Following the examination of 

MMP release from the cells it was found that although CLA reduced the invasion of the 

cell line, it did not effect MMP release. MMPs are only one of many factors involved in 

cell migration and invasion. The expression o f TIMPs, Integrins and CAMs could also be 

investigated. Integrins and TIMPs are important factors in the regulation of MMP 

expression.

In vivo work is the natural progression from in vitro studies. Using tail vein 

injections o f the 4T1 cells into mice, experimental metastasis could be examined. In 

addition, injection into the mammary fat pad would allow spontaneous metastasis to also 

be investigated. The effect o f injecting 4T1 cells into mice, which had previously been 

fed CLA-containing diets could be examined. The effect that CLA had on metastasis, 

latency, tumour size and tumour numbers could be looked at. The control diet should 

contain LA in place o f the CLA.

The mechanisms by which CLA down regulates tumourigenesis and cancer 

proliferation are not well understood, and because CLA has pleiotropic metabolic effects, 

individual CLA isomers may compete as ligands for multiple pathways of signal 

transduction. It has also been suggested that CLA may down-regulate cancer growth by 

interfering with the metabolism of AA. Other proposed theories to CLA’s anti-cancer 

properties are: CLA-induced lipid peroxidation; change in fatty acid metabolism; and 

CLA’s relationship to hormone response elements.

It is widely agreed that CLA inhibits tumourigenesis and proliferation of cancer 

cell lines. However, a better understanding of the anti-carcinogenic properties of CLA 

preparations and their constituent isomers is required before establishment of intervention 

trials. It is hoped that this research will contribute to the understanding o f the actual



mechanisms by which CLA and its individual isomers function. In vivo work, using this 

fatty acid and this cell line to induce experimental metastasis, should be the next step in 

the investigation o f CLA and its individual purified isomers. It is hoped that a clearer 

understanding o f CLA’s anti-cancer properties will result in the use o f CLA as a 

therapeutic agent for primary and metastatic breast cancer. Also, the potential use of 

CLA in the prevention of primary and recurrent breast cancer is a novel route, which 

should be explored.
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