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Background: The SenseCam, a small camera that is worn on the chest via a lanyard, is 

increasingly being deployed in a health research. However, the SenseCam is not yet in 

widespread use due to a variety of factors. It is proposed that the ubiquitous smartphone can 

provide a more accessible alternative to the SenseCam. 

Purpose: To perform an initial evaluation of the potential of the smartphone to become an 

alternative to the SenseCam. 

Methods: Adults were supplied with a smartphone running lifelogging software which they 

wore on a lanyard. Participants wore the smartphone for up to a day and the resulting lifelog 

data was both manually annotated and automatically analyzed for the presence of visual 

concepts. The results were compared to prior work using the SenseCam. 

Results: In total 166,000 smartphone photos were gathered from 47 individuals, along with 

associated sensor readings. The average time spent wearing the device across all users was 5 

hours and 39 minutes (± 4 hours 11 minutes SD). A subset of 36,698 photos was selected for 

manual annotation by 5 researchers. Software analysis of these photos supports the automatic 

identification of activities to a similar level of accuracy as for SenseCam images in a previous 

study. 

Conclusions: Many aspects of the functionality of a SenseCam can largely be replicated, and 

in some cases enhanced, by the ubiquitous smartphone platform. This makes the smartphone 

a good candidate for a new generation of wearable sensing devices in health research, due to 

its widespread use across many populations. It is envisioned that the smartphone will provide 

a compelling alternative to the dedicated SenseCam hardware for a number of users and 

application areas. This will be achieved by integrating new types of sensor data, leveraging 

the smartphone’s real-time connectivity and rich user interface, and providing support for a 

range of relatively sophisticated applications. 



Introduction 

As highlighted elsewhere in this special issue, the SenseCam1 is being increasingly deployed 

in a preventive medicine context and early results are promising. However, despite its 

potential it is not yet in significant use at the population level. One hurdle to the widespread 

adoption of the SenseCam may be the necessity for users to purchase, maintain and operate a 

dedicated hardware device. While the benefits for some users may make this effort 

worthwhile,2 it is proposed that adoption at scale would be greatly facilitated if the SenseCam 

functionality could largely be integrated with a device that users already own and are 

accustomed to charging and maintaining. An obvious avenue is the increasingly ubiquitous 

smartphone. 

 

Previous research has shown that smartphones can be used as a platform for lifestyle 

monitoring.3,4 However, until recently smartphones have not been able to passively sample a 

broad range of lifestyle health-related behaviors as effectively as SenseCam because of a 

number of issues such as: battery lifetime while capturing photos, limited built-in sensing, 

limited field-of-view and form factor. In particular, using a smartphone for sampling life 

activities naturally poses a challenge for battery usage.5 To be an effective life sampling tool, 

a smartphone needs to operate all day without requiring recharging, in a manner similar to the 

SenseCam. Fortunately, a number of recent explorations of power-efficient sensing and 

communication with smartphones can be leveraged to provide all-day operation. For 

example, the ACQUA (Acquisition Cost-Aware Query Adaption) framework,6 power 

optimized scheduling of data transfer7 and the life sampling tool of Qiu et al.8 

 

There would potentially be several benefits to using a smartphone as a SenseCam 

replacement. Automatic upload of sensed data to a cloud-based server for processing could 



open up a number of possibilities for real-time data analysis and intervention. The 

smartphone’s networking hardware could also be used to record the user’s proximity to WiFi 

networks and other users’ Bluetooth devices throughout the day. Such data could provide 

valuable information on the whereabouts of the wearer and their interactions with other 

people.9 GPS sensing, now commonplace in smartphones, provides additional location 

information that could be utilized.  

 

In this work, a smartphone application was developed that operates in a manner similar to a 

SenseCam and it is shown that the smartphone can capture accurate and meaningful life 

activities over a full day. Data was sampled constantly from the full gamut of built-in 

sensors: accelerometer, compass, camera, GPS, Bluetooth, microphone and WiFi , as well as 

from external sensors via Bluetooth.8 Although some SenseCam sensing modalities such as 

temperature and light level are missing, for many applications the smartphone provides a 

significantly richer sensor set than the SenseCam. It also has the ability to support a larger 

suite of lifestyle and behavior analysis tools. While the SenseCam was especially designed as 

a wearable device, the smartphone is of course primarily a communications device optimised 

for handheld interaction. However, with the gradual size and weight reduction of 

smartphones we believe that in many cases the smartphone can approach the ‘wearability’ of 

SenseCam. Figure 1 shows a comparison between an individual wearing a SenseCam (left) 

and the smartphone (right). 

 

A wearable camera/sensor platform, such as the smartphone implementation that is envisaged 

in this work, must be able to gather data from all on-board sensors continually during the day. 

A secondary aim is to automatically identify specified daily activities using the passively 



captured image and sensor data. To this end, this article addresses the following two research 

questions: 

1. How much wear-time can be achieved using smartphones intended to mimic 

SenseCam functionality? 

2. Can the automated detection of lifestyle-related activities from smartphones be as 

accurate as that from the SenseCam? 

 

It is expected that the results of this study will be of benefit to researchers who want to 

exploit the ubiquity of smartphones to investigate human behaviour. In particular, we aim to 

enable researchers to leverage smartphones to automatically capture lifestyle behaviours. 

 

 

Methods 

Recruitment of Participants 

To evaluate the potential of the smartphone as a wearable visual lifelogging tool, 47 

participants were recruited in 2012. These users were chosen from a broad spectrum of user 

groups, from students to retired individuals, with varying incomes, age ranges and education 

levels. Each participant gave consent for this study, which was approved by the DCU ethics 

committee. Each participant was asked to wear the smartphone for up to eight hours in a 

given day, so as to capture an entire range of everyday activities. The smartphone was worn 

on a lanyard around the neck, as is the case with a SenseCam (see Figure 1). Participants 

were given the phone with the software already installed and ready to run; the phone was 

returned after the data gathering session was complete. The smartphone was provided in 

addition to the participant’s normal phone and as such it was not used as a phone during the 

experiment.  



 

Data Collection 

The smartphone includes sensors that can capture a rich life-experience archive. Using an 

Android (OS version 2.1) mobile phone, lifelogging software was developed that captured 

photos at a configurable rate along with data gathering from all the available on-board 

sensors. Unlike the SenseCam, automatic analysis of the user context was carried out in real-

time directly on the smartphone. This allows a power-efficient sampling algorithm to be used, 

frequently resulting in a full day’s operation6. Smart upload of content means that a minimal 

representation of a new activity – important image and sensor data – can be streamed to a 

server. The remaining data is uploaded via WiFi to a remote server when charging the device. 

The server contains a database to store references to the image and sensor data. In addition 

the server stores the images, which are then available for view from any PC / TV / mobile 

device. For more details of implementation, please refer to Qiu et al.8  

 

In order to evaluate the effectiveness of the smartphone as a wearable sensing tool for 

lifestyle behaviours, participants were supplied with the smartphone configured to 

automatically capture location-stamped photos every six seconds (around 3-4 times the 

SenseCam rate, but this is configurable). Other sensors were sampled at the following rates: 

accelerometer 5 times per second, compass 10 times per minute, GPS every 20 metres, 

Bluetooth and WiFi every 2 minutes, microphone once per minute and communication/media 

activities as they occurred. 

 

Participants were asked to wear the smartphone for up to eight hours in the day, during 2012, 

and were asked to go about their everyday free-living activities. This period has been used in 



prior accelerometer-based studies10 and is comparable to the usage of SenseCam in many 

cases11. 

 

 

Automated Annotation of Daily Activ it ies 

Certain objects or concepts inherent in smartphone images can be classified automatically by 

visually analyzing the photo streams, with, or without, the mining of additional sensors. In 

this way, it is possible to identify activities that the user is involved in. For example, the 

presence of cups and plates in a photo stream can indicate that the wearer is eating. For this 

experiment, all photos were automatically processed using well-developed computer vision 

techniques based on speeded up robust features (SURF) features12 combined with the raw 

sensor streams (e.g. GPS). The colors of each image (ColorStructure and ScalableColor from 

the MPEG-7 computer vision libraries13) were also extracted and used as input for automatic 

identification of visual objects using an optimised SVMlight implementation of the Support 

Vector Machine14 with cross-fold validation. This image analysis technique is commonly 

used in the image and video search domains.15 

 

Selection and Coding of Visual Concepts  

An exemplar set of 24 visual concepts was selected for initial exploration. These concepts, 

and their frequency of identification by users and in aggregate, is shown in Table 1. For each 

feature, the User Distribution refers to the percentage of users that encountered that visual 

concept and Density refers to the percentage of the image collection that contained that 

concept. Using a subsample of temporally selected photos, each image was annotated for the 

presence of each of the concepts listed in Table 1. To ensure accuracy, each photo was 

annotated by multiple annotators. 



 

Analysis 

Summary statistics on the number of images and total wear time across all users were 

gathered. The software parameter tuning for each lifestyle concept was trained using the 

annotated training images. The performance of concept identification was then evaluated on 

the annotated test collection. For this evaluation, k-fold cross validation was used. This is a 

technique where the training set is split into k disjoint subsets of equal sizes and a model is 

trained for each subset with the overall performance of the classifier being calculated as the 

mean accuracy of each subset. In this way, the optimization the software for a single set of 

training and test data can be avoided. In this work, a value of 5 is chosen for k, which has 

been empirically determined to provide a reasonable balance between processing time 

required to train each model and the accuracy of the validation. In addition, the data was 

subsampled to ensure that the same number of positive and negative examples were used 

when training and evaluating the models, so as to eliminate bias in the training. As this is a 

machine vision classification challenge, standard information retrieval metrics were used: 

precision (a positive predictive value), recall (same as sensitivity) and F1 score, a single 

value that reflects both precision and recall. 

 

Results 

1. How much wear-time can be achieved using smartphones that mimic SenseCam 

functionality? 

In total 166,000 photos were gathered from the 47 individuals, along with the associated GPS 

readings during the experiment in 2012. The average time spent wearing the device across all 

users was 5 hours and 39 minutes (± 4 hours 11 minutes SD), ranging from 11 minutes to 

over 18½ hours. The higher end of the scale of time spent wearing the device clearly shows 



that under the right conditions the smartphone can last for a whole day on a single charge. 

This is discussed further in the next section. 

 

2. Can the automated detection of lifestyle related activities from smartphones be as 

accurate as that from the SenseCam? 

A subset of 36,698 photos were selected for manual annotation by 5 researchers in 2012. A 

total of 873,552 annotation judgments were carried out on this subset. The results from the 

annotation process are shown in Table 1. Thereafter the subset of photos were automatically 

processed using state-of-the-art computer vision techniques, producing the set of life activity 

detection accuracy figures. 

 

Discussion 

This experiment has shown that it is possible to replicate the functionality of a passive image 

capture device (such as the SenseCam) on a smartphone and that the smartphone provides an 

effective platform for implementing wearable camera technology. This study has found that 

across 47 participants, the average time to wear the device was 5 hours 39 minutes, which is 

less than that observed in other SenseCam related studies (e.g. 8 hours 45 minutes in Doherty 

et al.11). The large standard deviation of ± 4 hours 11 minutes appears to be due to both user 

and technical issues. Some participants may have recharged their device in the middle of the 

day, therefore in future studies a more strict protocol would need to be developed. In addition 

there are variations in power consumption which occur as a result of the real-time sensor data 

processing. For example, the power-hungry GPS sensor is only used if other sensors such as 

WiFi and Bluetooth are unable to detect location. It is expected that disabling location 

sensing would reduce this variation substantially and result in consistently longer operating 

times. In this study, the smartphones were configured to capture an image every 5 seconds, in 



contrast to the rate of once every 15-20 seconds for the SenseCam1. Setting a lower capture 

rate would further increase battery lifetime.  

 

The automated machine vision technique used to analyse the images were able to identify a 

range of lifestyle concepts with an average F1 score of 0.67. While on a slightly different set 

of visual concepts, the results of this Android-based smartphone study are very similar to 

previously reported identification of SenseCam images. Using SenseCam images a mean F1 

score of 0.65 was calculated on the basis of a set of 95,000 manually annotated images11. 

This shows a comparable performance between both devices as wearable camera platforms. 

 

It is concluded that the Smartphone is a suitable lifestyle and behavioral concept monitoring 

device for the following reasons: 

• All-day operation is possible if images and other sensor logging is not done too 

aggressively. 

• The presence of a full suite of on-board sensors such as the accelerometer, compass, 

camera, GPS, Bluetooth, microphone, WiFi and communication/media activity 

sensors, as well as the ability to sense from external sensors via Bluetooth can be 

useful for many applications.  

• The ubiquity, cost and familiarity of the smartphone are better when compared with a 

SenseCam.  

• The smartphone can support real-time analysis of sampled life experiences, enabling 

applications requiring immediate intervention or prospective memory cues. 

• The ability to act as both the data gathering device, as well as the data display and 

feedback device, allowing for ubiquitous access to the sampled life activities, are an 

essential aspect of supporting real-time health behavior interventions. 



• The ability to update the software to support new methods of sampling or interaction 

in a proven and easy to achieve manner is valuable. 

 

Limitations 

This work has highlighted some limitations associated with using a smartphone for visual 

lifelogging. One slight drawback is that some current smartphones are slightly bulkier than 

the SenseCam, which may have ergonomic implications. Also typical smartphones are not 

equipped with a fish-eye (wide-angle) lens to capture a wide field of view, while a SenseCam 

does have such a lens. For activities which typically happen in front of the individual, this 

should not pose a problem, though for more general lifelogging applications, a narrower 

(conventional) field of view is not ideal. However it is possible to buy and fit a fisheye lens 

onto a smartphone to offset this limitation. The orientation of the smartphone camera 

typically results in a portrait view, though the addition of a fish-eye lens will help to offset 

any negative impact of this narrower view. Figure 2 provides a comparison of the fisheye 

lens on a SenseCam (left) with the normal field-of-view lens of a smartphone (right). 

 

It was chosen to limit the study to a single day for each participant because it was felt that 

this would generate suitably representative data for an initial analysis. Having validated the 

basic principle of a worn smartphone as a SenseCam replacement, we would like to refine 

our understanding of the relative merits of the two technologies through further studies – 

gathering evidence across a wider range of activities by way of more users and longer periods 

of use. In addition, the sample of volunteer users had to carry an additional smartphone at all 

times and in future studies we would like to move to a single-smartphone solution in order to 

evaluate any issues which this introduces; it is felt that this is the most realistic scenario for a 

long-term, real-world, deployment.  



 

The 24 exemplar visual concepts selected for analysis in this article do not necessarily reflect 

an optimum selection of health-related behaviours. They were selected in part on the basis of 

saliency for robust analysis. While they were appropriate for the purposes of an exploratory 

study to investigate if our method can be a tool for behavioural scientists, we plan to develop 

an improved set in future work. The learning process for any newly selected concepts is the 

same as for the 24 we use in this exploration.  

 

Conclusion  

We believe that wearable cameras can provide invaluable information relating to the behavior 

of an individual throughout the course of the day. We hope that this work demonstrates to 

others working in the field that smartphones can now be considered as an alternative platform 

to dedicated devices such as the SenseCam for future studies. Although smartphones have 

some drawbacks, they also exhibit a number of advantages when compared to SenseCam. We 

think this will be beneficial for a number of researchers working in this domain. In particular, 

future preventive medicine research, both observation and intervention, may leverage visual 

lifelogging using the smartphone. In the longer term, platforms like the smartphone will make 

it more feasible to use lifelogging technologies in a wider range of populations.  
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Figure Legends 

Figure 1. An individual wearing a SenseCam (left) and a smartphone (right) 

 

Figure 2. Comparing a SenseCam with fisheye lens (left) and a smartphone with a 

conventional lens (right). Note the absence of the individual on the right from the smartphone 

photo.  



Table 1. Distribution and density of daily activities with the accuracy of performance of 

concept detectors.  

Daily	
  

activities	
  

User	
  

distributio

n	
  

Densit

y	
  

Precisio

n	
   Recall	
   	
  	
   Daily	
  activities	
  

User	
  

distribution	
   Density	
  

Precisio

n	
   Recall	
  

Bar	
  (interior)	
  	
   26%	
   2.5%	
   0.90	
   0.70	
   	
  	
   Outdoor	
   83%	
   19.3%	
   0.83	
   0.86	
  

Bottle	
  	
   64%	
   1.2%	
   0.74	
   0.59	
   	
  	
   Person	
   85%	
   6.6%	
   0.66	
   0.65	
  

Bus	
  (exterior)	
  	
   57%	
   0.4%	
   0.64	
   0.61	
   	
  	
   Road/path	
   81%	
   10.7%	
   0.82	
   0.86	
  

Bus	
  (interior)	
  	
   19%	
   1.2%	
   0.69	
   0.55	
   	
  	
   Shop	
  (Interior)	
   62%	
   4.2%	
   0.83	
   0.86	
  

Cafe/Restaur

ant	
  (interior)	
  	
   17%	
   1.7%	
   0.60	
   0.33	
   	
  	
  

Shopping	
  centre	
  

(Interior)	
   36%	
   0.7%	
   0.72	
   0.73	
  

Car	
  (interior)	
  	
   55%	
   16.9%	
   0.88	
   0.83	
   	
  	
  

Small/mobile	
  digital	
  

screen	
  (hand-­‐held)	
   38%	
   0.5%	
   0.66	
   0.53	
  

Crowd	
  	
   11%	
   0.3%	
   0.68	
   0.49	
   	
  	
   Stage	
   9%	
   0.4%	
   0.76	
   0.74	
  

Cup	
  	
   30%	
   0.4%	
   0.77	
   0.42	
   	
  	
   Steering	
  Wheel	
  	
   40%	
   8.0%	
   0.86	
   0.79	
  

Food	
   32%	
   0.4%	
   0.78	
   0.50	
   	
  	
   Train	
  (interior)	
   9%	
   0.5%	
   0.92	
   0.52	
  

Glass	
   43%	
   1.7%	
   0.70	
   0.43	
   	
  	
   TV/Computer	
  Screen	
   47%	
   5.4%	
   0.81	
   0.41	
  

Hand	
   81%	
   7.7%	
   0.67	
   0.38	
   	
  	
  

Written	
  Media	
  

(Book/Mag/Newspaper)	
   47%	
   0.8%	
   0.81	
   0.68	
  

Indoor	
   81%	
   37.8%	
   0.87	
   0.82	
   	
  	
   Eating/Snacking	
   47%	
   1.8%	
   0.68	
   0.61	
  

For each visually identifiable concept associated with an activity, the User Distribution refers 

to the percentage of users that encountered that activity and Density refers to the percentage 

of the image collection that contained that concept. Precision and Recall are generally 

accepted measures of accuracy. 


