
A Framework for Classifying and Comparing Architecture-Centric Software

Evolution Research

Pooyan Jamshidi
 1
, Mohammad Ghafari

2
, Aakash Ahmad

1
, Claus Pahl

1

1
Lero - The Irish Software Engineering Research Centre

School of Computing, Dublin City University, Ireland
2
 DeepSE Group @ DEI - Politecnico di Milano, Italy

1
{pooyan.jamshidi|ahmad.aakash|claus.pahl}@computing.dcu.ie,

2
ghafari@elet.polimi.it

Abstract—Context: Software systems are increasingly required

to operate in an open world, characterized by continuous

changes in the environment and in the prescribed

requirements. Architecture-centric software evolution (ACSE)

is considered as an approach to support software adaptation

at a controllable level of abstraction in order to survive in the

uncertain environment. This requires evolution in system

structure and behavior that can be modeled, analyzed and

evolved in a formal fashion. Existing research and practices

comprise a wide spectrum of evolution-centric approaches in

terms of formalisms, methods, processes and frameworks to

tackle ACSE as well as empirical studies to consolidate

existing research. However, there is no unified framework

providing systematic insight into classification and

comparison of state-of-the-art in ACSE research.

Objective: We present a taxonomic scheme for a classification

and comparison of existing ACSE research approaches,

leading to a reflection on areas of future research.

Method: We performed a systematic literature review (SLR),

resulting in 4138 papers searched and 60 peer-reviewed

papers considered for data collection. We populated the

taxonomic scheme based on a quantitative and qualitative

extraction of data items from the included studies.

Results: We identified five main classification categories: (i)

type of evolution, (ii) type of specification, (iii) type of

architectural reasoning, (iv) runtime issues, and (v) tool

support. The selected studies are compared based on their

claims and supporting evidences through the scheme.

Conclusion: The classification scheme provides a critical view

of different aspects to be considered when addressing specific

ACSE problems. Besides, the consolidation of the ACSE

evidences reflects current trends and the needs for future

research directions.

Keywords- Architecture-Centric Software Evolution; Evidence-

Based and Empirical Study; Systematic Literature Review

I. INTRODUCTION

Modern software systems are increasingly required to
operate in an open world [27], characterized by frequent
and unpredictable change in the environment in which they
are functioning and in the requirements they have to meet.
Considering existing research [1, 6, 18] and practice [23,
28], software architectures provide a sound basis to
smoothly evolve software and dynamically adapt it to
provide expected services. Architecture-centric software
evolution [1, 6, 10] allows an appropriate abstraction to
model, analyze and execute software evolution in a
controllable and manageable fashion.

Traditionally, software architecture is considered as an
appropriate abstraction level in the early stages of software

development to better understand requirements,
systematically communicate with the stakeholders and
objectively reason about qualities. Architecture models also
help to crystallize design decisions and evaluate the
tradeoffs among them [1, 4]. This role of software
architecture also contributes to control the evolution [21] in
order to avoid degradation as erosion [5], drifts [4] as well
as architecture pendency [16].

Software architecture models not only facilitate
software development, but also extend their lifetime to run-
time to support dynamic software adaptation [30] and
continuous verification [24]. This promotes dynamic
architectures as a means to evolve software systems at
runtime [S44]1. Through reflective middleware, software
architecture models can be actively connected to the
running systems by providing facilities to change the
computation logic of a system.

We observed that existing studies for evidence-based
consolidation of ACSE research has focused on surveying
[6] and characterizing [10] software architecture
evolvability. They also focus on comparison of the support
for architecture evolution [17] and classification of
dynamic aspects of architecture [S32] as well as taxonomic
frameworks [18]. These studies provide insight in the
potential use of software architecture in software evolution.
However, we could not find any evidence to empirically
synthesize the collective impact of existing literature.

The objective of this paper is to systematically (i)
identify the focus of current research and (ii) classify the
claims made for ACSE and available evidences for these
claims, and; (iii) provide a holistic comparison to analyze
the potentials and limitations in current approaches that
(iv) outline hypotheses for future research.

To achieve this, we performed a systematic literature
review. We adopted and tailored an integrated approach
[11, 26] to extract a coded schema by which we can
systematically review state-of-the-art of ACSE. Based on
this, we collected data from selected studies to answer five
questions: (i) what types of evolutions are supported? (ii)
which formalisms are required? (iii) how architectural
reasoning is applied? (iv) which execution environments
are needed? (v) what tool support is available?.

Having answered the research questions, we highlight
areas and hypotheses for future research. We report our
observations of the synthesis on the extracted data.
Extended materials that were used for the study comprising
a protocol, search results, quality assessments and lessons
learned as well as the extracted data are available at [25].

1 Please note that notation [SN] refers to the primary studies in Table 5.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11311313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The rest of the paper is structured as follows: Section II
compares and contrasts related work to justify the needs
and scope of this review. Section III outlines the
methodology we adopted in this SLR. In Section IV we
explain study planning. The first contribution of this paper,
a classification framework for ACSE approaches, is
presented in Section V. This allows us to synthesize the
data extracted from the primary studies and interpret this
data answering the research questions in Section VI.
Section VII identifies future research directions based on
the results and it also discusses the limitations of our study.
Finally, Section VII presents the conclusions.

II. RELATED WORK

In recent years, evidence-based and empirical research
in software engineering gained a considerable momentum
[3]. In the context of ACSE, we observed that existing
studies have focused on evolvability analysis [6], change
characterization [10] and classification of approaches
[S32], as summarized in Table 1. These are discussed
below in order to justify the needs for this review.

A. Systematic Reviews on Software Architecture Evolution

Breivold [6] systematically reviews software
architecture evolvability analysis research. The objective is
to obtain an overview of approaches in analyzing and
improving software evolvability at architectural level, and
investigate impacts on research and practice. This survey
presents a synthesis of 82 primary studies. Their focus is on
evolvability in general and analyzability, architectural
integrity and changeability in particular. Therefore, they
synthesize different sets of primary studies; our work
focuses on the studies which formally specify software
architecture in order to enable a controllable evolution.

Bradbury et al. [S32] present a set of classification
criteria for the comparison of dynamic software
architectures based on change type, process and
infrastructure. They synthesize 14 formal specification
approaches to discover similarities and differences. In
contrast to our proposal, they dedicatedly compare the
dynamic reconfigurations and architectural formalisms to
gain a deeper understanding of run-time software
architecture evolution, while not focusing on the other
dimensions such as design-time evolutionary aspects.

Williams and Carver [10] propose a change
characterization scheme and systematically classify
different approaches on how to distinguish and characterize
software architecture changes and software impact analysis.
This scheme works as a decision tree providing support for
developers to assess the impact of a proposed change and
decide whether it is feasible to implement the change.

We also conducted an SLR [31] to classify studies
according to evidences that enable application and
acquisition of evolution reuse-knowledge in ACSE. We
summarize the contribution of these studies to better
position the contribution of this paper in Table 1.

B. Comparative Studies on Description Languages

There are several surveys on architecture description
languages (ADLs) [8, 9, 17]. More recently, Medvidovic et
al. [12] look at recent developments and other aspects of

architecture description which should be treated by
researchers and practitioners. Our paper extends some of
the findings related to evolution support in ADLs illustrated
in their work. Mens et al. [1] also note the importance of
software architecture description to accommodate changes
when there is a need to evolve critical software systems.
They highlight key problem areas in ACSE and review the
existing promising proposals to tackle them which helped
us in the categorization process in our thematic mappings.

C. Taxonomies on Software Evolution

Although not directly related to the ACSE study
presented in this paper, some taxonomies of software
change [18, 19] are proposed trying to answer the why,
how, what, when and where of software evolution.

TABLE 1. SYSTEMATIC REVIEWS ON ACSE

III. RESEARCH METHODOLOGY

In contrast to a non-structured review process, a
systematic review [26, 3] reduces bias and follows a precise
and rigorous sequence of methodological steps. It relies on
a well-defined and evaluated review protocol [32], outlined
in Figure 1. More specifically, we adopted the guidelines in
[17] for SLRs with a three step review process that
includes: Planning, Conducting and Documenting. The
review is complemented with an external evaluation for the
outcome of each step, see Figure 1. We also extend the
reporting of results so that it provides an explicit
taxonomical classification of the reviewed studies. To do
so, we take into account the recommended steps on
thematic analysis in software engineering [11]. This
formulates the foundation for a comparative analysis
among studies based on our defined data items that are also
subject to external evaluation prior to results reporting [25].

Figure 1. Overview of our research methodology

A. Literature Extraction and Investigation

Four researchers were involved in the literature study.
In review planning (Planning in Figure 1), a review
protocol [32] was defined including the definition of
research questions, the search strategy, and initial version
of the classification scheme. In terms of search strategy, we
combined automatic with manual search. Automatic search
was defined as a two-step process for which two categories
of search strings (cf. Figure 2) were defined. The first

Study Reference Study Focus Change Time Number
of Studies

Years

Berivold et al. [6] Architecture evolvability analysis Design-Time 82 1992-2010

Bradbury et al. [S32] Dynamic software architectures Run-Time 14 1992-2002

Williams et al. [10] Architecture change characterization Both 130 1976-2008

Ahmad et al. [31] Architecture evolution reuse-knowledge Both 16 2004-2012

Jamshidi et al. [25] Architecture-centric software evolution Both 60 1995-2011

category selects the studies on architectural constraints
which have been formally specified, and the second
category filters the studies on architecture-based evolution.
For the manual search, inclusion and exclusion criteria
were defined. The classification framework was
subsequently defined. The definition of data items was
based on information derived from literature sources,
specifically the works of [6, 10, 17, S32, 18], and from
experience with an earlier review [31]. For some data
items, additional attributes were introduced during a pilot
run comprising of 10 papers to iteratively evaluate and
improve the taxonomical scheme and synchronize
understanding of concepts between the researchers. The
protocol was cross-checked by an external reviewer and the
feedback was used to make small adaptations.
Subsequently, we conducted the review (Conducting in
Figure 1). One reviewer was responsible for automated
search. Manual search was performed by the other
researchers who checked each paper independently based
on inclusion/exclusion criteria. Once the primary studies
were selected, each study was read by one reviewer to
extract the data structured according to the scheme.
Collected data items were crosschecked by the other
reviewers. Finally, data derived from the primary studies
was synthesized, collated, and classified to answer the
research questions (Documenting in Figure 1).

B. Data Validation and Synthesizing.

When reviewers entered study data into the scheme,
they provided a short rationale why the paper should be in a
certain category. This rationale is used for internal
validation purposes. The external validation was conducted
by an independent researcher outside the working group to
provide constructive feedback to the classification scheme
and initial review data. The syntheses include the
following: (i) classifying and comparing the primary
studies, (ii) analyzing of findings and reaching consensus,
(iii) interpretation of the results and discussing potential
hypotheses for future.

C. ACSE Taxonomical Classification

We utilized a combination of existing ACSE
classification and thematic analysis to reduce the time
needed in developing the classification scheme. First, the
reviewers read abstracts of the 10 selected papers for the
pilot run and look for segment of text, keywords and
concepts that reflect the contribution of the papers. When
this was done, the set of keywords from different papers
were labeled, overlaps reduced and combined. This helped
the reviewers to define a set of recurrent keywords
representative of the underlying population. When abstracts
are insufficient to allow meaningful keywords to be chosen,
reviewers studied also introduction or conclusion sections.
We then clustered the selected set of keywords to create a
model of higher-order themes.

IV. AN OVERVIEW OF PLANNING AND CONDUCTING

In this section, we summarize the key steps and
outcomes of the planning and conducting phases of the
SLR as illustrated in Figure 1.

A. Research Questions

We formulated the general goal of the study through
PICOC (Population, Intervention, Comparison, Outcome
and Context) perspectives [22], summarized in Table 2.
The central research question translates to five concrete
questions:

RQ1: What types of evolution are supported in ACSE?
The aim is to get insight in what types of evolution are
proposed by researchers following four perspectives of
evolution: “what”, “when”, “where”, and “why”.

RQ2: Which formalisms are required to enable an
ACSE approach? The aim is to get insight in the usage of
formal methods by researchers. This aims to assess which
languages and what levels of expressiveness have been
used for modeling architectural constraints, verifying
properties and automation support.

RQ3: How architectural reasoning is adopted in
ACSE? The aim is to assess types of constraints and
architectural reasoning in existing ACSE.

RQ4: Which execution environments and mechanisms
are needed to enable run-time aspects of ACSE? The aim is
to investigate execution environments or dynamic
reconfiguration functionalities used in ACSE.

RQ5: What tool supports is available for ACSE? The
aim is to investigate what automation facilities are utilized
to provide support for ACSE concerns.

TABLE 2. PICOC CRITERIA TO DEFINE THE SCOPE AND GOALS OF THIS SLR

B. Scope of the Study

Once defined the entities and attributes of interest for
the framework, the literature extraction process was driven
by the following search terms (Figure 2) structured into a
logical expression. These search terms are combined by
using the Boolean OR and AND operators that resulted in
14*11=154 search strings in total.

Figure 2. A summary of search strings and results

After applying the 154 search strings on Google
Scholar, IEEE, ACM DL, Springer Link, Science Direct,
Wiley Inter-Science, Pro-Quest, and ISI Web of Science,
we extracted 4138 manuscripts (Figure 2). Because we
used our search criteria on "title and abstract", the results
provided a relatively high number of irrelevant studies.

Once the initial set of publications had been identified,
duplicate publications were removed. These publications
were checked against some inclusion and exclusion criteria.
Irrelevant publications were removed and this resulted in

Criteria RQ1 RQ2 RQ3 RQ4 RQ5

Population
Type of
Evolution

Type of
Specification

Type of
Reasoning

Runtime
Issues

Tool Support

Intervention Taxonomical classification; Internal/external validation; Extracting data and Synthesis
Comparison A comparison by mapping the primary studies to the classification framework
Outcome A classification framework; A comparison framework; Hypotheses for future research
Context A systematic investigation to consolidate the peer-reviewed research

No Name Results

1 ACM 663

2 IEEE 1149

3 Science Direct 194

4 Web Of Science 480

5 Springer Link 445

6 Pro-Quest 231
7 Google Scholar 460

8 Wiley 516
 Total 4138

235 remaining publications. After further filtering by
reading titles and abstracts, 154 publications were left for
full text screening to assess their quality [25]. We ranked
them accordingly by investigating whether content focuses
on formal architecture description or formal analyses
related to architectural reasoning. We also checked whether
the data analysis of the study is rigorous, based on evidence
or theoretical reasoning instead of non-justified or ad-hoc
evaluations. Additionally, all references of the 154 studies
were checked to ensure no relevant paper was overlooked.
Some authors also reported similar results in multiple
publications, which we eliminated to avoid bias of the
results. At the end, 60 studies were selected as primary
studies with the highest ranks. We explicitly defined some
general and specific inclusion/exclusion criteria which we
described in detail in [32]. We describe the key criteria as
described in Table 3.

TABLE 3. INCLUSION AND EXCLUSION CRITERIA

C. Data Extraction and Synthesis

The data extraction process was carried out by reading
the 60 papers and extracting relevant data, managed
through a bibliographic tool. In order to keep information
consistent, data extraction for the 60 studies was driven by
the framework (Table 6). The included papers have been
initially reviewed and necessary information has been
extracted and the framework populated with the extracted
information by one of the authors and then cross checked
by the other authors. The results of the synthesis will be
described in the Section VI.

TABLE 4. STUDY DISTRIBUTION PER PUBLICATION CHANNEL

D. Publication Channels and Trends

The selected papers are listed in Table 5. As indicated
in Table 4, the majority of these have been published in
leading journals and conferences in software engineering in
general and software architecture and evolution

communities in particular. Column A in Table 5 shows the
counts of sub-criterions which characterize each paper. The
studies by year of publication are shown in Figure 3. The
trend curve shows a steady number of publications from
1995 to 2003 followed by an increase from 2004 to 2008
and this trend soared in 2010. Note, that for 2011, the
review only covers papers until September. While absolute
numbers are relatively low, a recent trend indicates a
significant increase of publications in ACSE area,
especially in 2010 and 2011, which indicates that, as
systems are increasingly required to live in an open world
[27], the crucial role of architecturally enabled evolution is
being recognized [6].

Figure 3. Number of papers by year of publication

TABLE 5. SELECTED PRIMARY STUDIES

Criteria Rationale

In
cl

u
si

o
n

I1: The study must formalize
architecture description as well as
architectural properties.

We might have included studies which employ formal
methods, but do not actually employ them particularly
for evolution.

I2: The study must provide some
evaluation evidences or theoretical
reasoning.

We might have included studies which are in their
initial stages and mostly are based on trial examples.

Ex
cl

u
si

o
n

E1: A study that is an editorial,
abstract or a short paper.

These studies do not provide a reasonable amount of
information.

E2: A study that focuses on formal
methods themselves, rather than on
the use of formal methods for ACSE.

These studies do not provide information regarding the
research questions.

E3: A study that is a review paper. These studies do not propose any specific approach.

Publication Channel Count

Non-Pioneering Software Engineering Journals and Conferences 16

Journal of Systems and Software (JSS) 8

Working IEEE/IFIP Conference on Software Architecture (WICSA) 4

Workshop on Engineering of Computer-Based Systems (ECBS) 4

International Conference on Software Engineering (ICSE) 3

IEEE Transactions on Software Engineering (TSE) 3

Lecture Notes in Computer Science (LNCS) 3

Journal of Information and Software Technology (IST) 3

Software and System Modeling Journal (SOSYM) 2

Electronic Notes in Theoretical Computer Science (ENTCS) 2

Workshop on Sharing and Reusing Architectural Knowledge (SHARK) 2

IEEE International Conference on Software Maintenance (ICSM) 1

International Conference on Quality Software (QSIC) 1

Wiley Journal of Software: Practice and Experience (SPE) 1

European Conference on Software Architecture (ECSA) 1

Springer Software Quality Journal (SQJ) 1

Journal of Visual Languages & Computing (JVLC) 1

Workshop on Self-Managed Systems (WOSS) 1

Workshop on Component-Oriented Programming (CompArch- WCOP) 1

IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE) 1

Future of Software Engineering (FOSE) 1

Total 60

0

2

4

6

8

10

12

19
9

5

19
9

6

19
9

7

19
9

8

19
9

9

20
0

0

20
0

1

20
0

2

20
0

3

20
0

4

20
0

5

20
0

6

20
0

7

20
0

8

20
0

9

20
1

0

20
1

1

Id Study Title, Corresponding Author Year A

S1 XSLT-based evolutions and analyses of design patterns, Dong et al. 2009 17

S2 Behavior-preserving refinement relations between dynamic software architectures, Heckel et al. 2005 18

S3 Combining formal methods and aspects for specifying and enforcing architectural invariants, Kallel et al. 2007 18

S4 Evaluating pattern conformance of UML models a divide-and-conquer approach and case studies, Kim et al. 2008 16

S5 Formal analysis of architectural patterns, Caporuscio et al. 2004 20

S6 Modeling and enforcing invariants of dynamic software architectures, Kallel et al. 2010 19

S7 Style-based modeling and refinement of service-oriented architectures, Baresi et al. 2006 16

S8 A case study in re-engineering to enforce architectural control flow and data sharing, Abi-Antoun et al. 2007 16

S9 A catalog of architectural primitives for modeling architectural patterns, Zdun et al. 2008 17

S10 Automated adaptations to dynamic software architectures by using autonomous agents, Wenpin et al. 2004 17

S11 A family of languages for architecture constraint specification, Tibermacine et al. 2010 20

S12 Architecture compliance checking at run-time, Ganesan et al. 2008 17

S13
A type-centric framework for specifying heterogeneous, large-scale, component-oriented, architectures, Jung
et al.

2010 12

S14 Analyzing architectural styles, Kim et al. 2010 12

S15 Changing attitudes towards the generation of architectural models, Castro et al. 2011 12

S16 Classifying architectural constraints as a basis for software quality assessment, Giesecke et al. 2007 4

S17 A rule-based method to match software patterns against UML models, Ballis et al. 2007 17

S18 Deriving detailed design models from an aspect-oriented ADL using MDD, Pinto et al. 2011 12

S19 Formal specification of the variants and behavioral features of design patterns, Bayley et al. 2010 12

S20 Model-driven development for early aspects, Sánchez et al. 2010 14

S21 Pattern-based design evolution using graph transformation, Zhao et al. 2007 16

S22 PS-CoM building correct by design Publish Subscribe architectural styles with safe reconfiguration, Loulou e al. 2010 14

S23 Understanding the relevance of micro-structures for design patterns detection, Arcelli et al. 2011 9

S24 Using aspects for enforcing formal architectural invariants, Kallel et al. 2008 14

S25 Evolution styles to the rescue of architectural evolution knowledge, Le Goaer et al. 2008 16

S26 A model transformation approach for design pattern evolutions, Dong et al. 2006 13

S27 A scalable approach to multi-style architectural modeling and verification, Wong et al. 2008 10

S28 A UML rule-based approach for describing and checking dynamic software architectures, Miladi et al. 2008 14

S29 Correct architecture refinement, Moriconi et al. 1995 12

S30
Preserving Architectural Choices throughout the Component-based Software Development Process,
Tibermacine et al.

2005 15

S31 Style-based refinement of dynamic software architectures, Baresi et al. 2004 17

S32 A survey of self-management in dynamic software architecture specifications, Bradbury et al. 2004 20

S33 A contract place where architectural design and code meet together, Ubayashi et al. 2010 14

S34 Design pattern solutions as explicit entities in component-based software development, Stepan et al. 2011 11

S35 Modeling architectural patterns using architectural primitives, Zdun et al. 2005 15

S36 Simplifying transformation of software architecture constraints, Tibermacine et al. 2006 14

S37
A constraint architectural description approach to self-organizing component-based software systems,
Waewsawangwong et al.

2004 16

S38 A constraint-oriented approach to software architecture design, Van den Berg et al. 2009 8

S39 A framework to specify incremental software architecture transformations, Barais et al. 2005 17

S40
An approach based on biographical reactive systems to check architectural instance conforming to its style,
Chang et al.

2007 16

S41
An automated refactoring approach to design pattern-based program transformations in Java programs, Jeon
et al.

2002 14

S42 Analyzing and comparing architectural styles, Levy et al. 1999 14

S43 Architecting as Decision Making with Patterns and Primitives, Zdun et al. 2008 17

S44 Architecture-based runtime software evolution, Oreizy et al. 1998 12

S45 Capturing interactions in architectural patterns, Yadav et al. 2010 14

S46 Describing evolving dependable systems using co-operative software architectures, de Lemos et al. 2001 18

S47 Describing software architecture styles using graph grammars, Le Metayer et al. 1998 15

S48 Design pattern evolution and verification using graph transformation, Zhao et al. 2007 18

S49 Evaluation of accuracy in design pattern occurrence detection, Pettersson et al. 2010 12

S50 Evolution styles foundations and tool support for software architecture evolution, Garlan et al. 2006 17

S51 Focus: a light-weight, incremental approach to software architecture recovery and evolution, Ding et al. 2001 14

S52 Formal specification of design patterns and their instances, Taibi et al. 2006 14

S53 Guiding architectural restructuring through architectural styles, Tamzalit et al. 2010 17

S54 Safe integration of new concerns in a software architecture, Barais et al. 2006 16

S55 Scenario-based architectural design decisions documentation and evolution, Che et al. 2011 13

S56 Self-managed systems an architectural challenge, Kramer et al. 2007 13

S57 Style-based reuse for software architectures, Monroe et al. 1996 11

S58 Synthesizing approach for perspective based architecture design, Liang et al. 2003 10

S59 Towards a formal model for reconfigurable software architectures by bi-graphs, Chang et al. 2008 15

S60 Using UML2.0 and GG for describing the dynamic of software architectures, Kacem et al. 2005 18

V. THE CLASSIFICATION FRAMEWORK

In this section, we propose a model consisting of 21
analysis dimensions to characterize ACSE approaches.
This model constitutes a foundation for evaluating ACSE
approaches that leads to a classification and comparison of
selected studies comprising those approaches. For each of
the analysis dimensions (18 technical and 3 non-technical),
the model considers a set of standardized characterization
options. These options resulted from combining
classification attributes from recognized sources with those
found in the set of papers that we selected. For instance, the
set of options for the “Need for Evolution” was identified
using the ISO/IEC 14764 Standard for Software
Maintenance and, on the other hand, “Type of Formalism”
and “Description Language” were both mainly identified
using [S32] and [17] respectively. They, however, have
been improved over time by considering the new options in
the selected studies. As a driver for the selection of the
model parameters, Section A provides a rationale for the
proposed classification, while Section B outlines the details
of various entities and attributes as a fine granular
representation of the classification framework.

Figure 4. The conceptual framework

A. Rationale for the Classification

A causally connected architecture model, which is
denoted by S, conceptually represents a running software
system A embedded in an execution environment. Now let
D be the domain assumptions that are consistent with the S
(Figure 4). Then it should be proved that they hold the
requirements R. This can be formally expressed as
 , where F is a function that maps the
architecture specification into a semantic model. Software
evolution deals with the violation of correctness criteria
after A is embedded in the environment and starts to
operate [24]. The violation may occur as a result of the
divergence of (i) the system A from specification S, (ii) the
environment behavior from specification D, (iii) the system
goals from requirements R. Usually, a software system is

taken down to apply a patch offline during maintenance
[17]. However, this scenario cannot satisfy the
requirements of a specific class of software systems (e.g.
mission-critical or safety-critical or business-critical) in
which the system must operate continuously and remain
capable of on-the-fly changes to the running system as a
result of the violation [S32]. Based on the
classification in the context of Figure 4, we are interested in
the approaches which deal with reasoning about
evolutionary aspects enabled by formal methods. Software
architecture models therefore provide the required
abstraction and facilitate the reasoning about the evolution
of a system expressed by a formal model (e.g. Markov
model) [33]. We consider ACSE as a collection of
operational and analytical activities to evolve a software
system from an older version to a newer version, enabled
by architecture changes. Among approaches which use
architecture description to operationalize evolution [1], we
are interested in approaches which utilize formal theory to
enable analytical reasoning to verify the system properties.

B. The Framework Entities and Attributes

Based on that discussion we understand that ACSE has
different dimensions. As conceptually outlined in Figure 4,
the architecture of the system needs to be specified (Type
of Specification). For analytical purposes, the properties of
systems are also specified as a part of the architecture
description as a number of constraints (Type of
Reasoning). An evolution mechanism (Type of Evolution)
can analyze consequences and apply changes either at
design-time or runtime (Run-time Issues). For scalability,
performance and economic issues, these activities require
automation (Tool Support). As far as the mentioned goals
are concerned, we propose the classification scheme as
presented in Table 6.

TABLE 6. THE ACSE CLASSIFICATION FRAMEWORK

The groupings and their dimensions are shown in Table
6. Note that the proposed framework is used for the
comparison of ACSE approaches based on our focus which
was discussed in the previous section and should not be
adopted without a justification or verification. Firstly, we
deliberately did not include all aspects of software

Taxonomical
Classification

(Higher-Order Theme)

Sub-
classifications

(Sub-themes)

Coded Attributes
(Domain Knowledge, Standards, Keywords)

Type of
Evolution

Need for Evolution ISO/IEC 14764 typology of change: Corrective, Perfective, Adaptive, Preventive, All applicable

Means of Evolution
Static: Transformation, Refactoring, Refinement, Restructuring, Pattern change; Dynamic:
Reconfiguration, Adaptation

Time of Evolution Design-Time, Run-Time

Support Activity
Change impact: Consistency checking, Impact analysis, Propagation; Change history: Evolution
analysis, Versioning

Stage of Evolution SDLC: Analysis/Design, Implementation, Integration/provisioning, Deployment, Evolution

Type of
Specification

Level of Formalism Lightweight, Formal

Type of Formalism

Modeling language: ADL, Programming lang., Domain-specific lang., Type systems, Archface,
Model-based; Formal models: Graph theory, Petri-net, Ontology, State machine, Constraint
automata, CHAM; Process algebra: FSP, CSP, π-calculus; Logic (Constraint language): OCL, CCL,
FOL, Grammars, Temporal logics, Rules, Description logic, Z, Alloy, Larch

Description Language
Process algebra: Darwin, Wright, LEDA, PiLar; Standards: UML, Ex.-UML, SysML, AADL; Others:
ACME, Aesop, C2, MetaH, Rapide, SADL, UniCon, Weaves, Koala, xADL, ADML, AO-ADL, xAcme

UML Specification Static: Class, Component, Object; Dynamic: Activity, State, Sequence, Transition, Communication

Description Aspect Structural, Behavioral, Semantic

Type of
Reasoning

Architectural
Constraint

Structural: Pattern, Architectural style, Primitive, Metaphore, Micro-structure, Crosscutting
concern, Clue; Invariant: Component-level invariant, Cross-component invariant, Pre-/Post-
condition, Temporal invariant; Relational constraints: Coding rules, Cardinality, Coordination,
Meta-model, Variability

Intent of Reasoning Specify, Preserve, Change, Enforce, Match, Discover, Analyze

Type of Analysis Consistency checking, Model checking, Pattern conformance, Graph refinement, Enforcement

Run-Time
Issue

Runtime Environment
Component model: Fractal, KOALA, SOFA 2.0, CCM, OpenCOM, KobrA, Middleware: SIENA, OSGi,
.NET, MS-COM, EJB, JavaBeans, SOA middleware, Coordination model: Reo, Linda, MANIFOLD

Mechanism of
Runtime Evolution

Reflection mechanisms: Introspection, Constraint injection, Intercession, Reification, Causal
connection, Evolution enablers: Safe stopping, Runtime binding, State transfer

Tool
Support

Need for Tool Support Architecture life-cycle: Business case, Creating architecture, Documenting, Analyzing, Evolving

Analysis
Usage of Tool Support

Simulation, Dependence analysis, Model checking, Conformance testing, Interface consistency,
Inspection and review-based

Level of Automation Fully automated, Partially automated, Manual

Research
Method

Research Motivation
A particular problem/challenge, Overview or Survey, Formalism for constraint specification,
Formalism for architectural analysis, Formalism for arch. evolution, Formalism for code generation

Application Domain
Development paradigm: SPL, OO, SOA, CBS; Traditional: Embedded, Real-time, Process-aware,
Distributed, Event-based, Concurrent, Mechatronic, Mobile, Robotic, Grid computing; Emerging:
Cloud computing, Smart-*, Autonomic computing, *-critical, Ubiquitous

Evaluation Method Case study, Mathematical proof, Example application, Industrial validation

architecture evolution. For example, the who question,
which identifies the stakeholders involved in software
architecture change, is not covered in the current
classification because it reflects human aspects of evolution
and our focus of rigorous formal theory, analytical
reasoning based on architectural constraints and runtime
issues aims to lessen human intervention. The where
question is also excluded because it has been thoroughly
covered in [17] for specification-time evolution and in
[S32] for runtime reconfiguration. Secondly, the proposed
framework provides only one of the many ways in which
ACSE can be characterized. Most importantly, the
framework is subject to continuous improvements, since
the comparison attributes continue to mature due to
scientific and technological advances. A list of
improvement suggestions can be found in the protocol [32].

VI. RESULTS AND COMPARATIVE ANALYSIS

We compare ACSE approaches along the dimensions
summarized in Table 6. The results of this analysis process
are summarized in Tables 7-12 below. Table 7-11 presents
the technical characterization of selected approaches based
on the model proposed in Section V. Table 12 classifies the
studies based on their research method. Column P shows
the percentage of studies classified in each sub-criterion.
The last column shows the percentage of frequencies in
three yearly disjoint categories (1995-2005, 2006-2008, and
2009-2011) for attributes that characterize 10 or more
approaches.

A synthesized analysis of the studies is discussed in
each section and the investigated approaches are critically
summarized in subsequent tables. Mapping the studies to
the common scheme provides us with a unified framework
to group contributory artifacts of similar approaches. These
categories provide a means to compare ACSE approaches.
Moreover, the analysis of evidence based on a considerable
amount of research or lack of focus on specific attributes,
differentiated by the count column in the subsequent tables,
are the critical discussions of the next subsections -
structured by the sub-criteria. Each study may be
represented by multiple attributes in case of non-disjunct
attributes. Due to the limited amount of data, a statistical
analysis was not feasible. Thus, we limit the discussions to
results based on the table content, deriving future directions
in each area using quantitative summaries of the data. This
approach usually characterizes systematic mapping studies
[11]. At the same time, whilst addressing the reliability of
the included studies, the research and evaluation method of
the approaches were also synthesized. This comparison
based on a common scheme reveals that e.g. a majority of
studies focuses on specific aspects of evolution or there is a
lack of studies that point out gaps.

A. Type of Evolution

This category compares the included studies in terms of
a general taxonomy which focuses on the factors that
characterize and position these mechanisms into a general
purpose classification. The studies are further classified
into five sub-categories explained below, summarized in
Table 7.

(i) Need for evolution. According to the ISO/IEC
14764 standard for software maintenance and Lehman’s
law of software evolution [34], the reason for evolution
(purpose of change) can be categorized into four types:
corrective, perfective, adaptive and preventive. Most
approaches are applicable for all purposes, but among them
adaptive changes in the context of runtime evolution [S44]
was explicitly mentioned in considerable number of
studies. (ii) Means of evolution. Among the different types
of evolution, transformation, reconfiguration, and pattern-
based evolution gained significant attention. Refinement,
restructuring, adaptation and architectural decision
evolution were explicitly adopted as a promising
mechanism for enabling evolution in the studies. (iii) Time
of evolution. Specification-time software architecture
evolution has been more popular than runtime evolution.
The relative lack of contributions on runtime evolution
results from a recent adoption of reflective component
models that provide architecture information to the
mechanisms that enable the dynamic reconfiguration.
However, dynamic evolution recently gained a momentum.
(iv) Support activities. ACSE related activities contain
analytic work to check relevant properties of architectures
after the evolution takes place. For instance, consistency
checking aims to check whether the system architecture is
consistent after the requested changes. Consistency
checking is a popular architecture analysis, but other
context-based analyses were also utilized. (v) Stage of
evolution. The focal stage of the software lifecycle was
considered. Both early and late stages of the lifecycle were
key areas of attention in comparison. Design and
maintenance stages were the two stages in which evolution
mechanisms were active.

TABLE 7. COMPARATIVE ANALYSIS BASED ON “TYPE OF EVOLUTION”

As a concluding remark, the recent boost in autonomic
computing [7] and specifically self-adaptive applications
[29] also reflects that reliable evolution of running software
has become a major challenge. This trend which is enabled
mostly by architecture-based runtime software evolution
[S44] is expected to get more attention based on the current
publication trend on runtime evolution. Software systems in
open worlds [27] necessitate enabling run-time adaptability
for systems to cope with environmental uncertainties,
changing requirements, and failures.

Sub-
Criteria

Attributes Approaches P% N
Distribution %

95-
05

06-
08

09-
11

Need for
Evolution

Corrective [50]

52

1

Perfective [12] 1

Adaptive [1,9,40,42,46,50,53,56,59,60] 10 30 50 20

Preventive [45,46,52] 3

All applicable [2,3,5,6,8,10,11,17,37,39,41,44,47,48,49,51,54,55] 18 50 28 22

Means of
Evolution

Transformation [1,2,6,7,8,21,26,28,29,31,33,36,39,40,50,58]

83

16 31 50 19

Refactoring [8,41,51] 3

Refinement [2,7,13,22,29,31,43,51,58] 9

Restructuring [8,13,50,53] 4

Adaptation [4,6,10,44,46,56] 6

Reconfiguration [2,3,4,5,6,7,22,24,28,31,32,37,54,59,60] 15 40 47 13

Pattern-based [1,9,17,21,26,34,35,41,42,45,48,49,52] 13 23 46 31

Arch. decision [11,12,25,47,55,57] 6

Change operation [4, 28] 2

Time of
Evolution

Design-Time [1,2,4,7,9,11,13,14,15,17,18-23,25-30,33-36,39,41-43,45-55,57,58]
95

43 27 35 37

Run-Time [2,3,5-10,12,24,31,32,37,40,44,54,56,59,60] 19 42 53 5

Support
Activity

Consistency checking [2,11,33,43,48,60]

18

6

Evolution analysis [5,7] 2

Change propagation [3,6] 2

Versioning [50] 1

Impact analysis 0

Stage of
Evolution

Analysis and Design
[1,4,6,8,9,13-16,18-20,22,25,26,27,29,30,33-
36,38,39,42,43,45,47,48,52,57,58]

92

32 25 34 31

Implementation [3,6,8,24,33,34] 6

Evolution [3,5,6,10,12,17,21,23,28,31,37,40,41,44,46,49,50,51,53,54,56,59,60] 23 39 44 17

Integration and provisioning, Deployment 0

B. Degree of Formalism and Expressiveness

This category compares the included studies in terms of
the degree of expressiveness and analyzability employed in
ACSE approaches. The design of languages and formalisms
involves a trade-off between expressive power and
analyzability. The more formalism can express, the harder
it becomes to understand what instances of the formalism
say [12]. The degree of formalism is due to the ACSE
nature that requires utilizing analytical power of description
languages, e.g., to check consistency or integrity after
evolution or derive impact of primary changes or
quantitatively verify runtime changes for dynamic
adaptations. The language aspect has been exhaustively
investigated in a comprehensive framework [17].
Therefore, we briefly review our observation in terms of
the attention of ACSE studies to the language aspect. Based
on this theme, the studies are further classified into five
sub-categories explained below, summarized in Table 8.

TABLE 8. COMPARATIVE ANALYSIS BASED ON “TYPE OF SPECIFICATION”

(i) Level of formalism. The main observation, which is
biased because of our inclusion/exclusion criteria, is that
formal approaches dominate the ACSE area. (ii) Type of
formalism. Traditional modeling languages such as graph
and model-based languages are the most popular. The
majority of studies formulate the architectural constraints
corresponding to some properties of interest in OCL or a
variation of logic as constraint specification language. We
observed that the majority of the studies either formulate
the properties of interest in the modeling language or they
utilize a logic combined with a modeling language.
Recently, the creation of new languages has declined and
researchers tend to combine or extend existing languages
for their own purposes. (iii) Description language. UML
extensions [12], especially component and class diagrams
((iv) UML specification), are widely adopted by ACSE
approaches. Although UML has restricted architectural
analysis support, its wide adoption is based on its support
for different domains and business contexts [12] and its
standardization. Other description languages such as
ACME, Darwin or SafArchie are approximately equally

distributed. (v) Description aspect. We observed that both
structural and behavioral aspects have been addressed.
However, semantic aspects have been neglected.

We observed advances in the fundamentals of
architecture modeling, but a unifying formalism that
provides the basis for all architecture analysis requirements
is unlikely [12]. Constraint specification languages are
growing due to the need to specify architectural properties
that need to be verified against a system model (Figure 4).
The coverage of topics points out a gap regarding
formalisms addressing architecture-centric evolution
augmented with more semantic enabled reasoning. This is
particularly challenging for specifying the system model
and reasoning based on a richer semantic model at runtime.
Therefore, description languages need more integration
with underlying formal theories to enable specification of
emerging architectural properties.

C. Type of Architectural Reasoning

This category compares the included studies in terms of
constraints [S16] on architecture description to enable
automated reasoning. Architectural constraints are an
inherent part of ACSE approaches since they facilitate
evaluating system properties. The studies are classified into
three sub-categories, see Table 9.

TABLE 9. COMPARATIVE ANALYSIS BASED ON “TYPE OF REASONING”

(i) Means of constraint. Architectural styles, patterns,
component-level invariants, cross component invariants,
pre- and post-conditions which have an explicit description
separable from the architecture of a system under
consideration, are determinants of some characteristics of
the system [13]. (ii) Intent of constraint. Specification,
preservation and enforcement of constraints are the main
reasons behind constraints in the approaches. (iii) Analysis
of constraint. Most approaches are accompanied or
enabled by analytical mechanisms such as consistency
checking, model checking, and conformance checking.

We observed a trend towards quantitative verification
of system properties based on constraints for correct
adaptations, especially in self-adaptive systems which
operate in uncertain environments that promote the use of
probabilistic modeling of systems.

D. Run-time Issues

This category compares the studies in terms of
underlying environment and mechanism to enable dynamic
reconfiguration. It identifies the prerequisites for what is

Sub-Criteria Attributes Approaches P% N
Distribution %

95-
05

06-
08

09-
11

Level of
Formalism

Lightweight [1,8,9,12,13,15,18,20,23,25,26,33-35,36,38,55]
88

17 8 46 46

Formal [2-7,10,11,14,17,19,21,22,24,27-32,37,39-43,45-48,50,52-54,59,60] 36 38 42 20

Type of
Formalism

Graph [2,6,7,21,22,31,32,40,47,48,53,59,60]

83

13 38 39 23

Petri-net [3,12,24] 3

Model-based [1,2,4,5,6,7,9,11,13,15,18,19,20,26,28,35,55,56,60] 19 21 32 47

Description logic [29,32,41,52] 4

π-calculus [10,45] 2

Prog. language [8,3,17,41] 4

Alloy [14,27,37] 3

OCL [2,4,6,7,9,11,25,28,30,31,35,36,43,60] 14 36 50 14

CCL [11,36] 2

State machine [5] 1

Z [3,6,22,24,28] 5

C. Automata [39,46] 2

Process algebra [32,42] 2

Temporal logics [5,19,50,52] 4

Archface [33] 1

Ontology, Domain-Specific, Larch, Grammars, Type, FSP, CSP, CHAM, FOL, Rules 0

Description
Language

ACME [8,14,15,25,30,36,46,50]

58

7

xAcme [30,36] 2

UML [1,5,17-21,26,30,31,33, 48,51,53,56,60] 16 31 31 38

Extended UML [2,4,6,7,9,11,25,28,35,39,43] 11 27 55 18

AO-ADL [18] 1

Darwin [37,56] 2

SafArchie [39,54] 2
Aesop, SADL, Koala, xADL, ADML, AO-ADL, UniCon, Weaves, Wright, C2, Rapide, MetaH, AADL 0

UML
Specification

Activity [2,28,43,53]

55

4

State [2,5] 2

Sequence [5,7,18,19,20,51] 6

Class [1,4,7,8,9,11,17,19,21,25,26,31,33,35,39,48,51,52,60] 19 26 53 21

Component [2,6,7,8,18,20,28,30,35,43,46,50,51,53,54,57,60] 17 41 35 24

Object [2] 1

Communication [31,33] 2

Transition [2,3] 2

Description
Aspect

Structural [1-4,6-15,17,19-22,24-30,32-34,36,37,39-57,59,60]

93

52 28 42 30

Behavioral [2,3,5,7,9,10,12,19,20,22,24,27,29,31-35,39-42,44-46,49-57] 34 41 32 27

Semantic [43,58] 2

Sub-
Criteria

Attributes Approaches P% N
Distribution %

95-
05

06-
08

09-
11

Architectural
Constraint

Pattern [1,5,11,16,17,19,21,23,26,34,35,39,41-43,45,48,49,52,57]

85

20 30 35 35

Architectural style [7,10,12,25,36,37,38,40,42,43,44,46,47,50,51,53,57-60] 20 50 40 10

Primitive [1,9,26,35,39,41,43,54] 8
Component-level invariant [30,39,60] 3
Cross-component invariant [2,3,9,20,25,30,36,39,42,44,50,56,58,60] 14 50 43 7

Crosscutting concern [18,39] 2

Meta-model [4,7,9,43] 4

Pre-/Post-condition [2,3,4,6,7,22,24,25,31,39,46,55,56,60] 14 36 43 21

Coordination constraint [3,24] 2

Coding rules [11] 1

Cardinality, Metaphore, Micro-structure, Clue, Variability, Temporal 0

Intent
of

Reasoning

Specify [5,9,11,13,14,15,24,25,27,28,35-37,39,43,45,47,50-56,58-60]

97

27 30 44 26

Preserve [1,2,6-11,18-22,25,26,29-31,35,36,40,41,44,47,48,50,51,53-60] 35 37 37 26

Change [11,39,40,41,46,51,60] 7

Enforce [3,6,8,11,13,24,33,34,46,50] 10 10 40 50

Match [4,12,17,40,42,49,50] 7

Discover [17,23,38,49] 4

Analyze [3,5,6,11,14] 5

Type of
Analysis

Consistency checking [1,6,9,10,11,12,21,23,30,39,40,46,48,60]

55

14 36 36 28

Model checking [2,3,5,22,24,27,29,31,32,37] 10 60 30 10

Pattern conformance [4,17,41,54] 4

Graph-based refinement [7,53] 2

Constraint enforcement [8,25,59] 5

needed to implement and utilize the often complex and
hypothetical conceptual contributions in the context of
reliable runtime infrastructures. The studies are classified
into two sub-categories (Table 10).

(i) Environment of runtime evolution. A variety of
execution environments has been proposed, ranging from
traditional platforms such as CORBA Component Model
(CCM) to the reflective and flexible Fractal and OpenCOM
to a new SOA and Cloud based platforms. (ii) Mean of
runtime evolution. To enable runtime evolution, these
environments need to expose functions to provide the
current state of a system at a specific time during its
execution and a causal connection between the running
system and architectural information. Ideally, they provide
facilities to change architectural descriptions at runtime.

TABLE 10. COMPARATIVE ANALYSIS BASED ON “RUNTIME ISSUES”

There is a lack of approaches for runtime environments

and evolution. We suppose this is because implementations
of evolution mechanisms on top of these technologies are
not feasible in research domains and researchers prefer to
rather provide evidence or theoretically prove their
contributions. Recent efforts identified an extensive list of
run-time concerns – mainly by autonomic computing
communities [29]. Disciplined engineering approaches to
support decentralization and making contextual system
models accessible and machine process-able at runtime
[14] are still relevant concerns [29].

E. Tool Support

This category compares the included studies in terms of
infrastructure which support automation of ACSE. This
theme provides a narrow view of automation for ACSE.
Based on this, the studies are classified into three sub-
categories (Table 11).

TABLE 11. COMPARATIVE ANALYSIS BASED ON “TOOL SUPPORT”

(i) Need for tool support. Although most of the studies
use tools for architectural evolution, the trend shows that
employing tools for analysis purposes is gaining significant
attention. (ii) Analysis usage of tool support. The studies
that use tools employ them mostly for model checking.
(iii)Level of automation. Most of the studies are either
fully automated for both architecture evolution and analysis

or partially automated in either of them. Thus,
unsurprisingly, the majority of studies use tool support
either for proof of concept or automated analysis purposes.

F. Research methodology of the studies

This category differs from the other 5 purely technical

aspects and only reflects general aspects (Table 12).

TABLE 12. COMPARATIVE ANALYSIS BASED ON “RESEARCH METHOD”

(i) Motivation. The main focus of research is on
formalisms with attention to enabling evolution in software
systems and enabling automated mechanisms to support
evolution. (ii) Application domain. The dominant
application domain is component software, accounting for
more than 50% of applications. This portion is increasing.
Services have also gained attention recently. These two
domains require dynamic reconfiguration. In particular,
dynamic components and service reconfiguration are active
areas of research, with particular attention for rigorous
approaches to support challenges in self-adaptive systems
and dynamic selection and composition of elements.
Furthermore, dynamic domains such as robotics and smart
cities have gained little attention. (iii) Evaluation method.
Although most approaches included some formal proofs as
part of the evaluation, evidence is often obtained from
applying the approach to small case studies and examples.
Only a few empirical studies have been undertaken; no
industrial evidence is reported. Lack of rigorous validation
and attention to application domains were major concerns
that we found in the included studies. These concerns and
domains offer areas for future research on ACSE.

VII.FUTURE RESEARCH DIRECTIONS AND LIMITATIONS

Based on the taxonomical classification and holistic
comparison, we summarize research implications and
future directions. We also discuss possible limitations as
well as threats to validity of this SLR.

A. Research Implications

This classification and comparison framework has
implications for researchers and practitioners as
summarized with the ACSE dimensions in Table 12. For
researchers, the classification framework provides a
comprehensive view of different aspects to be considered
when addressing an ACSE problem. The comparison of
existing work highlighted several areas where extensive
support is provided or gaps are pointed out, see Table 13.

Implications for future research. Based on the
systematic consolidation, we identified a number of areas
that lack a more rigorous research as emerging trends in
ACSE. The list (Table 13) is not exhaustive, but reflects

Sub-Criteria Attributes Approaches P% N

Environment of
Run-Time Evolution

Fractal [30]

10

1

OSGi [12] 1

CCM [11] 1

PKUAS [10] 1

SOA middleware [7] 1

SIENA [5] 1

KOALA, MS COM, SOFA 2.0, EJB, JavaBeans,
OpenCOM, KobrA, .NET, Reo, Linda, MANIFOLD

0

Mechanism of
Run-Time Evolution

Reflection [10]

8

1

Causal connection [5,9,11] 3

Runtime binding [7] 1

Introspection, Constraint injection, State transfer,
Intercession, Reification, Safe stopping

0

Sub-Criteria Attributes Approaches P% N
Distribution %

95-
05

06-
08

09-
11

Need for
Tool Support

Creating [15,20,22,27,29,30,34,38,45]

95

9

Documenting [1,3,8,9,11,35,36,43,52,55,57] 11 18 55 27

Analyzing [1-3,5,6,8,12-14,17,23,33,38,49] 14 14 29 57

Evolving
[3-7,9-11,18,21,24,25,28,31-33,36,37,39-42,44,
46-48,50,51,53-56,58-60]

35 40 43 17

Business case 0

Analysis
Usage of

Tool Support

Simulation [7,31]

30

2

Dependence analysis [5,11] 2

Model checking [2,3,5,6,7,14,31,33,43,46] 10 40 30 30

Conformance [4,10,12,15,40,47] 6

Inspection [20] 1

Interface consistency 0

Level of
Automation

Full [4,21,30,41,54]

100

5

Partial [1-3,5-12,14,17,18,20,22,24,26-29,31,33,39,40,
43,44,48,49,50,51,53,57,58]

34 29 41 30

Manual [13,15,16,19,23,25,32,34-38,42,45-47,52,55,56,59,60] 21 33 29 38

Sub-
Criteria

Attributes Approaches P% N
Distribution %

95-
05

06-
08

09-
11

Motivation

Problem or Challenge [2,3,6,7,15,18,20,25,38,42,49,50,52,54,56-58]

98

17 24 41 35

Overview or Survey [8,16,32,38,49] 5

Unambiguous description [4,9,11,14,19,22,26,27,30,35,45,47,52] 13 23 38 39

Analysis [4,5,9,12,14,17,23,28,33,35,40,49,55] 13 15 46 39

Evolution
[1,6,10,13,18,20-22,24,26,28,29,31,33,34,36,37,39-41,44, 46-
48,50,51,53,55,59,60]

30 37 30 33

A formalism to enable code generation 0

Application
Domain

SOA [1,2,7,31,43]

78

5

OO [1,3,8,17,21,26,41,42,48,49,51,57] 12 33 50 17

Distributed system [3,24,46,60] 4

Event-based system [5,22,44] 3

Component-based [6,10-13,22,24,25,28,30-37, 39,40,43,45-47,50,53-60] 32 38 34 28

SPL, Embedded, Ubiquitous, Mission-critical, Real-time, Process-aware, Concurrent, Mechatronic,
Mobile, Robotic, Cloud computing, Smart-*, Autonomic computing, Grid computing

0

Evaluation
Method

Case study [1,4-9,12,14,15,18-20,22,24,29,35,37,38,40,43,46,47,51, 53,55,60]

87

27 29 30 41

Mathematical proof [1-3,5,17,19,21,22,29,47,54] 11 36 36 28

Example application [3,11,13,14,21,25,27-31,33,34,36,37,39,41,42,44,45,48-50,52,54,59] 26 31 42 27

Experience report 0

key challenges identified in the consolidation and
corresponds to the classification in Section VI.

 (i) Evolution: In the context of more classical
Lehman’s law [34], we observe ever growing needs for
adaptive evolution with primary focus on run-time
architectural adaptation. An interesting observation is the
emergence of ‘adaptation pattern’ [31] to support reuse in
evolution for dynamic adaptive software architecture.
Mining software repositories to empirically analyze
changes and fostering them for reuse is also getting more
attention. Researchers look at long running, large
applications such as Eclipse SDK [15] in order to further
this domain by learning from past recurring evolutions.

(iii) Architectural reasoning: A considerable number
of approaches address probabilistic modeling of systems
and their environments which they operate and also explicit
specification of architectural constraints. Analytic
techniques verify specific properties or preserve the initial
constraints. However, these techniques that are normally
conceived as design-time activities must extend their scope
to runtime and comply with the time constraints of runtime
environment. We observe that the need for runtime
verification and validation to detect violations and plan
self-reactions demands for efficient analytical and
syntactical “@runtime” techniques [2, 24].

(iv) Run-Time evolution: In a considerable number of
approaches, formal specifications are applied during
development activities for verification and validation,
rather than the system itself at runtime. More importantly,
those approaches that utilize formal specification at runtime
use it for mainly modeling and analysis rather than other
ACSE activities. We observe an improvement of adaptive
middleware based on reflection mechanisms. However,
decentralized evolution and @runtime notions are still
relevant concerns for further research in ACSE.

(vi) Evaluation evidence: An important issue that we
observed and is asserted by work by Barnes at NASA JPL
regarding space systems architectural evolution is the lack
of rigorous validation [21]. Previous work tended to make
heavy use of trial examples and unrealistic assumptions and
has not been well supported by real-world scenarios. We
came across this when excluding a large number of studies
that had been retrieved based on our search, but violated an
inclusion criterion (I2 in Table 3). To stimulate ACSE
community to produce empirical real-world case studies,
such efforts need recognition at established conferences [7].

Implications for practitioners. The data [25] collected
may help practitioners in searching for relevant approaches
before adopting and tailoring them by examining the
context of their own software development, and comparing
with characteristics of relevant approaches. However, [28]
provides an overview of various approaches evaluated
based on real-world industrial scenarios concerning
evolution of sustainable industrial systems. We believe that
this document can suitably assist practitioners because it is
more general based on a growing number of experience
reports which might not necessarily be peer-reviewed.

Practical application of the collected database. Since
this classification framework and its accompanying
templates contain more than 160 attributes, it provides a

large amount of information. For instance, for the 60
papers, it makes a collection with 160*60=9600 data points
which are quite significant. As a result, the user can, for
example, query the database to find case studies on
industrial applications of petri-net based approaches for
runtime evolution. Moreover, this database can grow and be
used as a knowledge-base for ACSE researchers, such as
[28] for practitioners.

TABLE 13. RESEARCH DIMENSIONS AND FUTURE IMPLICATIONS FOR ACSE

Limitations. To validate our model, we analyzed 60
peer-reviewed studies. The model was useful for
characterizing the approaches since the average number of
dimensions characterizing approaches is 15 according to
column A, Table 5. However, we believe that neither the
model nor the comparison is unchangeable. We restricted
ourselves to a limited number of high quality approaches
with highest rank as it mentioned in Section IV, indicating
that our comparison is not comprehensive enough, though
it is reliable to cover a variety of studies. We are currently
working on a more comprehensive comparison, including
studies with lower ranks among the 154 ones ranked.

B. Threats to Validity

In general, the external validity and construct validity
are strong for systematic reviews [22, 26, 3]. The main
threats to validity of this review are biased by our selection
of studies to be included, data extraction and data synthesis.
(i) To be able to identify relevant studies and ensure that
the process of selection was unbiased, a research protocol
was developed. However, systematic reviews are per
definition limited by search period, databases and
terminologies. ACSE research is related to different
communities including software architecture, software
evolution and self-adaptive software which use different
terminologies. Therefore, to cover all and avoid bias, we
searched for common terms and combined them in our
search string. While this approach decreases the bias, it also
significantly increases the search work. (ii) To ensure
correctness in data extraction, we defined a comprehensive
data extraction Excel sheet [25] to obtain consistent and
also relevant data. In addition, we performed quality
assessment on the studies to ensure that the identified
findings and implications came from credible sources. (iii)
Another challenge of systematic reviews is addressing the
reliability threats. The reliability is mitigated as far as
possible by involving several researchers, and having a
unified scheme, and several steps where the scheme and
process were piloted and externally evaluated. If the study
is replicated by another set of researchers, it is highly likely
that some included papers are changed. However, it is
highly unlikely that random differences based on personal
judgments would change findings. It may only change the

Research
Needs

Dimensions
Evolution Formalism

Architectural
Reasoning

Run-Time
Issues

Evaluation

Research Trend
Self-adaptive
systems

Emerging
properties

Quantitative
verification

Decentralized
evolution

Rigorous
validation

Active Topics
Change patterns,
Repository
mining

Formal
theory

Explicit constraints,
Probabilistic
modelling

Model@run-
time, Reflective
environment

Empirical
studies

Targets
Self-reaction to
violations of
constraints

Semantic
models

Constraint
preservation,
property verification

Efficiency and
Reliability in
evolution

Real-world
evidences

Focus Run-time Design-time Run-time Run-time Both

actual count numbers to some extent. Therefore, in general
we believe that the validity of the study is high, given the
use of a systematic procedure and the involvement and
discussion among four researchers and also external
evaluations. The openness of our review by exposing our
data in [25] allows other researchers to judge the
trustworthiness of the results more objectively. This
initiative is suggested by the evidence-based software
engineering community http://www.dur.ac.uk/ebse/. It is
followed by some researchers as [7].

VIII. CONCLUSIONS

The objective of this study was to consolidate existing
research on architecture-centric software evolution
regarding the claimed benefits and the provided evidences
of evolution. The main contribution of this study is a
classification framework for ACSE and a comparison of
systematically selected studies through the framework to
point out existing research gaps. We identified unexplored
areas by synthesizing collected data, reflecting on areas of
future research. The results of classification and
comparison are presented as structure tables – as a means to
transfer knowledge among ACSE researchers and
practitioners about a collective impact of existing research.

We observed an inclination towards runtime adaptation
to serve self-adaptive applications. We also observed vast
interests towards probabilistic modeling and quantitative
verification of system properties. Reflective environments
and Models@run-time are identified as the key drivers to
enable adaptations. However, evidences of rigorous
validation were lacking in existing evidences in ACSE.

ACKNOWLEDGMENTS

The authors would like to thank the following persons
for their feedback and thoughtful suggestions regarding the
methodology, data and the final report: Jim Buckely,
Jeffrey M. Barnes, Fereidoon Shams, Mehdi Fahmideh and
Frank Fowley. This work was supported, in part, by
Science Foundation Ireland grant 10/CE/I1855 to Lero - the
Irish Software Engineering Research Centre (www.lero.ie).

REFRENCES

[1] Mens, T., Magee, J., and Rumpe, B. 2010. Evolving software
architecture descriptions of critical systems. Computer, 43(5): 42–48.

[2] Tamura, G., at al. 2012. Towards practical runtime verification and

validation of self-adaptive software systems. Springer.

[3] Zhang, H., Babar, M.A. 2012. Systematic Reviews in Software

Engineering: An Empirical Investigation, IST.

[4] Taylor, R. N., Medvidovic, N., and Dashofy, E. M. 2009. Software
architecture: Foundations, theory, and practice. John Wiley & Sons.

[5] Silva, L., and Balasubramaniam, D. 2012. Controlling software

architecture erosion: A survey, JSS, vol. 85, no. 1, pp. 132–151.

[6] Breivold, H. P., Crnkovic, I., Larsson, M. 2011. A systematic review

of software architecture evolution research, IST, 54(1), 16-40.

[7] Weyns, D., Iftikhar, M., Iglesia, D., Ahmad, T. 2012. A Survey on
Formal Methods in Self-Adaptive Systems. FMSAS.

[8] Vestal, S. 1993. A Cursory Overview and Comparison of Four

Architecture Description Languages. Honeywell Technology Centre.

[9] Clements, P. 1996. A survey of architecture description languages,

Eighth International Workshop Software Specification and Design.

[10] Williams, B. J., Carver, J. C. 2010. Characterizing software

architecture changes: A systematic review. IST 52(1): 31-51.

[11] Cruzes, D.S, and Dyba, T. 2011. Recommended Steps for Thematic

Synthesis in Software Engineering, ESEM.

[12] Medvidovic, N., Dashofy, E. M., and Taylor, R. N. 2007. Moving

architectural description from under the technology lamppost. IST, 49.

[13] Pahl, C., Giesecke, S., and Hasselbring, W. 2007. An ontology-based

approach for modelling architectural styles, ECSA.

[14] Bencomo, N. 2009. On the Use of Software Models during Software
Execution. ICSE Workshop on Modeling in Software Engineering. IEEE.

[15] Wermelinger, M., Yu, Y., Lozano, A., Capiluppi, A. 2011. Assessing

architectural evolution: a case study. Empirical Software Engineering,

16(5), pp. 623–666.

[16] Zhang, H. 2010. A multi-dimensional architecture description
language for forward and reverse evolution of component-based software,

PhD Dissertation.

[17] Medvidovic, N., Taylor, R. N. 2000. A Classification and

Comparison Framework for Software Architecture Description

Languages. IEEE Trans. Software Eng. 26(1): 70-93.

[18] Buckley, J., Mens, T. Zenger, M., Rashid, A., Kniesel, G. 2005.

Towards a taxonomy of software change. JSS 17(5): 309-332.

[19] Chapin, N., Hale, J. E., Kham, K. M., Ramil, J. F. and Tan, W.G.

2001. Types of software evolution and software maintenance. JSM 13(1).

[20] Zhang, P., Muccini, H., Li, B. 2010. A classification and comparison
of model checking software architecture techniques. JSS 83(5), 723–744.

[21] Jeffrey M. Barnes. 2012. NASA’s Advanced Multi-mission

Operations System: A case study in software architecture evolution. ACM
SIGSOFT Conference on the Quality of Software Architectures.

[22] Petticrew M, Roberts H. 2006. Systematic reviews in the social

sciences: a practical guide. Oxford: Blackwell.

[23] ISO/IEC/IEEE 42010:2011, Systems and software engineering-

Architecture description, http://www.iso-architecture.org/ieee-1471/.

[24] Calinescu, R. Ghezzi, C., Kwiatkowska, M., Mirandola R. 2012. Self-

Adaptive Software Needs Quantitative Verification at Runtime.

[25] Jamshidi, P., Ghafari, M., Aakash, A., Pahl, C. A Framework for

Classifying and Comparing Architecture-Centric Software Evolution

Research [Online: Auxiliary Review Material],
http://www.computing.dcu.ie/~pjamshidi/SLR-ACSE.html.

[26] Brereton, P., Kitchenham, B., Budgen, D., Turner, M., Khalil M.

2007. Lessons from applying the systematic literature review process

within the software engineering domain, JSS 80.

[27] Baresi, L., Di Nitto, E., Ghezzi, C. 2006. Toward open-world
software: Issue and challenges. Comput. 39(10), 36–43.

[28] Stammel, J., Durdik, Z., Krogmann, K., Weiss, R. and Koziolek, H.

2011. Software Evolution for Industrial Automation Systems: Literature

Overview, Karlsruhe Reports in Informatics.

[29] Weyns, D., Andersson, J., Malek, S., Schmerl, B. 2012. Introduction
to the special issue on state of the art in engineering self-adaptive systems,

JSS.

[30] Baresi, L., Ghezzi, C. 2010. The disappearing boundary between

development-time and run-time. FSE/SDP workshop, 17-22.

[31] Aakash, A., Jamshidi, P., Pahl, C. A Classification and Comparison
of Software Architecture Evolution Reuse-Knowledge [Online: Auxiliary

Material], http://www.computing.dcu.ie/~pjamshidi/SLR/SLR-ERK.html.

[32] Jamshidi, P., Ghafari, M., Aakash, A., Pahl, C. 2012. A protocol for

systematic literature review on Architecture-Centric Software Evolution
Research, Technical Report.

[33] Ardagna, D., Ghezzi, C., Mirandola, R. 2008. Rethinking the use of

models in software architecture. Quality of Software Architectures, 1-27.

[34] Lehman, M. 1996. Laws of software evolution revisited. Software

process technology, 108-124.

http://www.dur.ac.uk/ebse/about.php
http://www.lero.ie/
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/w/Williams:Byron_J=.html
http://www.informatik.uni-trier.de/~ley/db/journals/infsof/infsof52.html#WilliamsC10
http://www.informatik.uni-trier.de/~ley/db/journals/tse/tse26.html#MedvidovicT00
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/b/Buckley:Jim.html
http://www.informatik.uni-trier.de/~ley/db/journals/smr/smr17.html#BuckleyMZRK05
http://www.cs.cmu.edu/~jmbarnes/papers/qosa12.html
http://www.cs.cmu.edu/~jmbarnes/papers/qosa12.html
http://www.iso-architecture.org/ieee-1471/
http://www.computing.dcu.ie/~pjamshidi/SLR-ACSE.html
http://acme.able.cs.cmu.edu/pubs/show.php?author=Bradley_Schmerl
http://www.computing.dcu.ie/~pjamshidi/SLR/SLR-ERK.html

