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Abstract—Context: Software systems are increasingly required 

to operate in an open world, characterized by continuous 

changes in the environment and in the prescribed 

requirements. Architecture-centric software evolution (ACSE) 

is considered as an approach to support software adaptation 

at a controllable level of abstraction in order to survive in the 

uncertain environment. This requires evolution in system 

structure and behavior that can be modeled, analyzed and 

evolved in a formal fashion. Existing research and practices 

comprise a wide spectrum of evolution-centric approaches in 

terms of formalisms, methods, processes and frameworks to 

tackle ACSE as well as empirical studies to consolidate 

existing research. However, there is no unified framework 

providing systematic insight into classification and 

comparison of state-of-the-art in ACSE research.  

Objective: We present a taxonomic scheme for a classification 

and comparison of existing ACSE research approaches, 

leading to a reflection on areas of future research.  

Method: We performed a systematic literature review (SLR), 

resulting in 4138 papers searched and 60 peer-reviewed 

papers considered for data collection. We populated the 

taxonomic scheme based on a quantitative and qualitative 

extraction of data items from the included studies.  

Results: We identified five main classification categories: (i) 

type of evolution, (ii) type of specification, (iii) type of 

architectural reasoning, (iv) runtime issues, and (v) tool 

support. The selected studies are compared based on their 

claims and supporting evidences through the scheme.  

Conclusion: The classification scheme provides a critical view 

of different aspects to be considered when addressing specific 

ACSE problems. Besides, the consolidation of the ACSE 

evidences reflects current trends and the needs for future 

research directions.  

Keywords- Architecture-Centric Software Evolution; Evidence-

Based and Empirical Study; Systematic Literature Review 

I. INTRODUCTION 

Modern software systems are increasingly required to 
operate in an open world [27], characterized by frequent 
and unpredictable change in the environment in which they 
are functioning and in the requirements they have to meet. 
Considering existing research [1, 6, 18] and practice [23, 
28], software architectures provide a sound basis to 
smoothly evolve software and dynamically adapt it to 
provide expected services. Architecture-centric software 
evolution [1, 6, 10] allows an appropriate abstraction to 
model, analyze and execute software evolution in a 
controllable and manageable fashion. 

Traditionally, software architecture is considered as an 
appropriate abstraction level in the early stages of software 

development to better understand requirements, 
systematically communicate with the stakeholders and 
objectively reason about qualities. Architecture models also 
help to crystallize design decisions and evaluate the 
tradeoffs among them [1, 4]. This role of software 
architecture also contributes to control the evolution [21] in 
order to avoid degradation as erosion [5], drifts [4] as well 
as architecture pendency [16].  

Software architecture models not only facilitate 
software development, but also extend their lifetime to run-
time to support dynamic software adaptation [30] and 
continuous verification [24]. This promotes dynamic 
architectures as a means to evolve software systems at 
runtime [S44]1. Through reflective middleware, software 
architecture models can be actively connected to the 
running systems by providing facilities to change the 
computation logic of a system.  

We observed that existing studies for evidence-based 
consolidation of ACSE research has focused on surveying 
[6] and characterizing [10] software architecture 
evolvability. They also focus on comparison of the support 
for architecture evolution [17] and classification of 
dynamic aspects of architecture [S32] as well as taxonomic 
frameworks [18]. These studies provide insight in the 
potential use of software architecture in software evolution. 
However, we could not find any evidence to empirically 
synthesize the collective impact of existing literature.  

The objective of this paper is to systematically (i) 
identify the focus of current research and (ii) classify the 
claims made for ACSE and available evidences for these 
claims, and; (iii) provide a holistic comparison to analyze 
the potentials and limitations in current approaches that 
(iv) outline hypotheses for future research. 

To achieve this, we performed a systematic literature 
review. We adopted and tailored an integrated approach 
[11, 26] to extract a coded schema by which we can 
systematically review state-of-the-art of ACSE. Based on 
this, we collected data from selected studies to answer five 
questions: (i) what types of evolutions are supported? (ii) 
which formalisms are required? (iii) how architectural 
reasoning is applied? (iv) which execution environments 
are needed? (v) what tool support is available?.  

Having answered the research questions, we highlight 
areas and hypotheses for future research. We report our 
observations of the synthesis on the extracted data. 
Extended materials that were used for the study comprising 
a protocol, search results, quality assessments and lessons 
learned as well as the extracted data are available at [25].  

                                                                 

1 Please note that notation [SN] refers to the primary studies in Table 5. 
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The rest of the paper is structured as follows: Section II 
compares and contrasts related work to justify the needs 
and scope of this review. Section III outlines the 
methodology we adopted in this SLR. In Section IV we 
explain study planning. The first contribution of this paper, 
a classification framework for ACSE approaches, is 
presented in Section V. This allows us to synthesize the 
data extracted from the primary studies and interpret this 
data answering the research questions in Section VI. 
Section VII identifies future research directions based on 
the results and it also discusses the limitations of our study. 
Finally, Section VII presents the conclusions. 

II. RELATED WORK 

In recent years, evidence-based and empirical research 
in software engineering gained a considerable momentum 
[3]. In the context of ACSE, we observed that existing 
studies have focused on evolvability analysis [6], change 
characterization [10] and classification of approaches 
[S32], as summarized in Table 1. These are discussed 
below in order to justify the needs for this review. 

A. Systematic Reviews on Software Architecture Evolution 

Breivold [6] systematically reviews software 
architecture evolvability analysis research. The objective is 
to obtain an overview of approaches in analyzing and 
improving software evolvability at architectural level, and 
investigate impacts on research and practice. This survey 
presents a synthesis of 82 primary studies. Their focus is on 
evolvability in general and analyzability, architectural 
integrity and changeability in particular. Therefore, they 
synthesize different sets of primary studies; our work 
focuses on the studies which formally specify software 
architecture in order to enable a controllable evolution.  

Bradbury et al. [S32] present a set of classification 
criteria for the comparison of dynamic software 
architectures based on change type, process and 
infrastructure. They synthesize 14 formal specification 
approaches to discover similarities and differences. In 
contrast to our proposal, they dedicatedly compare the 
dynamic reconfigurations and architectural formalisms to 
gain a deeper understanding of run-time software 
architecture evolution, while not focusing on the other 
dimensions such as design-time evolutionary aspects. 

Williams and Carver [10] propose a change 
characterization scheme and systematically classify 
different approaches on how to distinguish and characterize 
software architecture changes and software impact analysis. 
This scheme works as a decision tree providing support for 
developers to assess the impact of a proposed change and 
decide whether it is feasible to implement the change.  

We also conducted an SLR [31] to classify studies 
according to evidences that enable application and 
acquisition of evolution reuse-knowledge in ACSE. We 
summarize the contribution of these studies to better 
position the contribution of this paper in Table 1. 

B. Comparative Studies on Description Languages 

There are several surveys on architecture description 
languages (ADLs) [8, 9, 17]. More recently, Medvidovic et 
al. [12] look at recent developments and other aspects of 

architecture description which should be treated by 
researchers and practitioners. Our paper extends some of 
the findings related to evolution support in ADLs illustrated 
in their work. Mens et al. [1] also note the importance of 
software architecture description to accommodate changes 
when there is a need to evolve critical software systems. 
They highlight key problem areas in ACSE and review the 
existing promising proposals to tackle them which helped 
us in the categorization process in our thematic mappings.  

C. Taxonomies on Software Evolution 

Although not directly related to the ACSE study 
presented in this paper, some taxonomies of software 
change [18, 19] are proposed trying to answer the why, 
how, what, when and where of software evolution.  

TABLE 1. SYSTEMATIC REVIEWS ON ACSE 

 

III. RESEARCH METHODOLOGY 

In contrast to a non-structured review process, a 
systematic review [26, 3] reduces bias and follows a precise 
and rigorous sequence of methodological steps. It relies on 
a well-defined and evaluated review protocol [32], outlined 
in Figure 1. More specifically, we adopted the guidelines in 
[17] for SLRs with a three step review process that 
includes: Planning, Conducting and Documenting. The 
review is complemented with an external evaluation for the 
outcome of each step, see Figure 1. We also extend the 
reporting of results so that it provides an explicit 
taxonomical classification of the reviewed studies. To do 
so, we take into account the recommended steps on 
thematic analysis in software engineering [11]. This 
formulates the foundation for a comparative analysis 
among studies based on our defined data items that are also 
subject to external evaluation prior to results reporting [25].  

 

Figure 1. Overview of our research methodology 

A. Literature Extraction and Investigation 

Four researchers were involved in the literature study. 
In review planning (Planning in Figure 1), a review 
protocol [32] was defined including the definition of 
research questions, the search strategy, and initial version 
of the classification scheme. In terms of search strategy, we 
combined automatic with manual search. Automatic search 
was defined as a two-step process for which two categories 
of search strings (cf. Figure 2) were defined. The first 

Study Reference Study Focus Change Time Number 
of Studies 

Years 

Berivold et al. [6] Architecture evolvability analysis Design-Time 82 1992-2010 

Bradbury et al. [S32] Dynamic software architectures Run-Time 14 1992-2002 

Williams et al. [10] Architecture change characterization Both 130 1976-2008 

Ahmad et al. [31] Architecture evolution reuse-knowledge Both 16 2004-2012 

Jamshidi et al. [25] Architecture-centric software evolution Both 60 1995-2011 

 



category selects the studies on architectural constraints 
which have been formally specified, and the second 
category filters the studies on architecture-based evolution. 
For the manual search, inclusion and exclusion criteria 
were defined. The classification framework was 
subsequently defined. The definition of data items was 
based on information derived from literature sources, 
specifically the works of [6, 10, 17, S32, 18], and from 
experience with an earlier review [31]. For some data 
items, additional attributes were introduced during a pilot 
run comprising of 10 papers to iteratively evaluate and 
improve the taxonomical scheme and synchronize 
understanding of concepts between the researchers. The 
protocol was cross-checked by an external reviewer and the 
feedback was used to make small adaptations. 
Subsequently, we conducted the review (Conducting in 
Figure 1). One reviewer was responsible for automated 
search. Manual search was performed by the other 
researchers who checked each paper independently based 
on inclusion/exclusion criteria. Once the primary studies 
were selected, each study was read by one reviewer to 
extract the data structured according to the scheme. 
Collected data items were crosschecked by the other 
reviewers. Finally, data derived from the primary studies 
was synthesized, collated, and classified to answer the 
research questions (Documenting in Figure 1).  

B. Data Validation and Synthesizing.  

When reviewers entered study data into the scheme, 
they provided a short rationale why the paper should be in a 
certain category. This rationale is used for internal 
validation purposes. The external validation was conducted 
by an independent researcher outside the working group to 
provide constructive feedback to the classification scheme 
and initial review data. The syntheses include the 
following: (i) classifying and comparing the primary 
studies, (ii) analyzing of findings and reaching consensus, 
(iii) interpretation of the results and discussing potential 
hypotheses for future.  

C. ACSE Taxonomical Classification 

We utilized a combination of existing ACSE 
classification and thematic analysis to reduce the time 
needed in developing the classification scheme. First, the 
reviewers read abstracts of the 10 selected papers for the 
pilot run and look for segment of text, keywords and 
concepts that reflect the contribution of the papers. When 
this was done, the set of keywords from different papers 
were labeled, overlaps reduced and combined. This helped 
the reviewers to define a set of recurrent keywords 
representative of the underlying population. When abstracts 
are insufficient to allow meaningful keywords to be chosen, 
reviewers studied also introduction or conclusion sections. 
We then clustered the selected set of keywords to create a 
model of higher-order themes.  

IV. AN OVERVIEW OF PLANNING AND CONDUCTING 

In this section, we summarize the key steps and 
outcomes of the planning and conducting phases of the 
SLR as illustrated in Figure 1. 

A. Research Questions 

We formulated the general goal of the study through 
PICOC (Population, Intervention, Comparison, Outcome 
and Context) perspectives [22], summarized in Table 2. 
The central research question translates to five concrete 
questions: 

RQ1: What types of evolution are supported in ACSE? 
The aim is to get insight in what types of evolution are 
proposed by researchers following four perspectives of 
evolution: “what”, “when”, “where”, and “why”.  

RQ2: Which formalisms are required to enable an 
ACSE approach? The aim is to get insight in the usage of 
formal methods by researchers. This aims to assess which 
languages and what levels of expressiveness have been 
used for modeling architectural constraints, verifying 
properties and automation support.  

RQ3: How architectural reasoning is adopted in 
ACSE? The aim is to assess types of constraints and 
architectural reasoning in existing ACSE.  

RQ4: Which execution environments and mechanisms 
are needed to enable run-time aspects of ACSE? The aim is 
to investigate execution environments or dynamic 
reconfiguration functionalities used in ACSE.  

RQ5: What tool supports is available for ACSE? The 
aim is to investigate what automation facilities are utilized 
to provide support for ACSE concerns. 

TABLE 2. PICOC CRITERIA TO DEFINE THE SCOPE AND GOALS OF THIS SLR 

 

B. Scope of the Study 

Once defined the entities and attributes of interest for 
the framework, the literature extraction process was driven 
by the following search terms (Figure 2) structured into a 
logical expression. These search terms are combined by 
using the Boolean OR and AND operators that resulted in 
14*11=154 search strings in total. 

 

Figure 2. A summary of search strings and results 

After applying the 154 search strings on Google 
Scholar, IEEE, ACM DL, Springer Link, Science Direct, 
Wiley Inter-Science, Pro-Quest, and ISI Web of Science, 
we extracted 4138 manuscripts (Figure 2). Because we 
used our search criteria on "title and abstract", the results 
provided a relatively high number of irrelevant studies.  

Once the initial set of publications had been identified, 
duplicate publications were removed. These publications 
were checked against some inclusion and exclusion criteria. 
Irrelevant publications were removed and this resulted in 

Criteria RQ1 RQ2 RQ3 RQ4 RQ5 

Population 
Type of 
Evolution 

Type of 
Specification 

Type of 
Reasoning 

Runtime 
Issues 

Tool Support 

Intervention Taxonomical classification; Internal/external validation; Extracting data and Synthesis 
Comparison A comparison by mapping the primary studies to the classification framework 
Outcome A classification framework; A comparison framework; Hypotheses for future research 
Context A systematic investigation to consolidate the peer-reviewed research 

 

No Name Results 

1 ACM 663 

2 IEEE 1149 

3 Science Direct 194 

4 Web Of Science 480 

5 Springer Link 445 

6 Pro-Quest 231 
7 Google Scholar 460 

8 Wiley 516 
 Total 4138 

 



235 remaining publications. After further filtering by 
reading titles and abstracts, 154 publications were left for 
full text screening to assess their quality [25]. We ranked 
them accordingly by investigating whether content focuses 
on formal architecture description or formal analyses 
related to architectural reasoning. We also checked whether 
the data analysis of the study is rigorous, based on evidence 
or theoretical reasoning instead of non-justified or ad-hoc 
evaluations. Additionally, all references of the 154 studies 
were checked to ensure no relevant paper was overlooked. 
Some authors also reported similar results in multiple 
publications, which we eliminated to avoid bias of the 
results. At the end, 60 studies were selected as primary 
studies with the highest ranks. We explicitly defined some 
general and specific inclusion/exclusion criteria which we 
described in detail in [32]. We describe the key criteria as 
described in Table 3.  

TABLE 3. INCLUSION AND EXCLUSION CRITERIA 

 

C. Data Extraction and Synthesis 

The data extraction process was carried out by reading 
the 60 papers and extracting relevant data, managed 
through a bibliographic tool. In order to keep information 
consistent, data extraction for the 60 studies was driven by 
the framework (Table 6). The included papers have been 
initially reviewed and necessary information has been 
extracted and the framework populated with the extracted 
information by one of the authors and then cross checked 
by the other authors. The results of the synthesis will be 
described in the Section VI. 

TABLE 4. STUDY DISTRIBUTION PER PUBLICATION CHANNEL 

 

D. Publication Channels and Trends 

The selected papers are listed in Table 5. As indicated 
in Table 4, the majority of these have been published in 
leading journals and conferences in software engineering in 
general and software architecture and evolution 

communities in particular. Column A in Table 5 shows the 
counts of sub-criterions which characterize each paper. The 
studies by year of publication are shown in Figure 3. The 
trend curve shows a steady number of publications from 
1995 to 2003 followed by an increase from 2004 to 2008 
and this trend soared in 2010. Note, that for 2011, the 
review only covers papers until September. While absolute 
numbers are relatively low, a recent trend indicates a 
significant increase of publications in ACSE area, 
especially in 2010 and 2011, which indicates that, as 
systems are increasingly required to live in an open world 
[27], the crucial role of architecturally enabled evolution is 
being recognized [6]. 

 
Figure 3. Number of papers by year of publication 

TABLE 5. SELECTED PRIMARY STUDIES 

 

Criteria Rationale 

In
cl

u
si

o
n

 

I1: The study must formalize 
architecture description as well as 
architectural properties. 

We might have included studies which employ formal 
methods, but do not actually employ them particularly 
for evolution. 

I2: The study must provide some 
evaluation evidences or theoretical 
reasoning. 

We might have included studies which are in their 
initial stages and mostly are based on trial examples. 

Ex
cl

u
si

o
n

 

E1: A study that is an editorial, 
abstract or a short paper. 

These studies do not provide a reasonable amount of 
information. 

E2: A study that focuses on formal 
methods themselves, rather than on 
the use of formal methods for ACSE. 

These studies do not provide information regarding the 
research questions. 

E3: A study that is a review paper. These studies do not propose any specific approach. 

 

Publication Channel Count 

Non-Pioneering Software Engineering Journals and Conferences 16 

Journal of Systems and Software (JSS) 8 

Working IEEE/IFIP Conference on Software Architecture (WICSA) 4 

Workshop on Engineering of Computer-Based Systems (ECBS) 4 

International Conference on Software Engineering (ICSE) 3 

IEEE Transactions on Software Engineering (TSE) 3 

Lecture Notes in Computer Science (LNCS) 3 

Journal of Information and Software Technology (IST) 3 

Software and System Modeling Journal (SOSYM) 2 

Electronic Notes in Theoretical Computer Science (ENTCS) 2 

Workshop on Sharing and Reusing Architectural Knowledge (SHARK) 2 

IEEE International Conference on Software Maintenance (ICSM) 1 

International Conference on Quality Software (QSIC) 1 

Wiley Journal of Software: Practice and Experience (SPE) 1 

European Conference on Software Architecture (ECSA) 1 

Springer Software Quality Journal (SQJ) 1 

Journal of Visual Languages & Computing (JVLC) 1 

Workshop on Self-Managed Systems (WOSS) 1 

Workshop on Component-Oriented Programming (CompArch- WCOP) 1 

IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE) 1 

Future of Software Engineering (FOSE) 1 

Total 60 
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Id Study Title, Corresponding Author Year A 

S1 XSLT-based evolutions and analyses of design patterns, Dong et al. 2009 17 

S2 Behavior-preserving refinement relations between dynamic software architectures, Heckel et al. 2005 18 

S3 Combining formal methods and aspects for specifying and enforcing architectural invariants, Kallel et al. 2007 18 

S4 Evaluating pattern conformance of UML models a divide-and-conquer approach and case studies, Kim et al. 2008 16 

S5 Formal analysis of architectural patterns, Caporuscio et al. 2004 20 

S6 Modeling and enforcing invariants of dynamic software architectures, Kallel et al. 2010 19 

S7 Style-based modeling and refinement of service-oriented architectures, Baresi et al. 2006 16 

S8 A case study in re-engineering to enforce architectural control flow and data sharing, Abi-Antoun et al. 2007 16 

S9 A catalog of architectural primitives for modeling architectural patterns, Zdun et al. 2008 17 

S10 Automated adaptations to dynamic software architectures by using autonomous agents, Wenpin et al. 2004 17 

S11 A family of languages for architecture constraint specification, Tibermacine et al. 2010 20 

S12 Architecture compliance checking at run-time, Ganesan et al. 2008 17 

S13 
A type-centric framework for specifying heterogeneous, large-scale, component-oriented, architectures, Jung 
et al. 

2010 12 

S14 Analyzing architectural styles, Kim et al. 2010 12 

S15 Changing attitudes towards the generation of architectural models, Castro et al. 2011 12 

S16 Classifying architectural constraints as a basis for software quality assessment, Giesecke et al. 2007 4 

S17 A rule-based method to match software patterns against UML models, Ballis et al. 2007 17 

S18 Deriving detailed design models from an aspect-oriented ADL using MDD, Pinto et al. 2011 12 

S19 Formal specification of the variants and behavioral features of design patterns, Bayley et al. 2010 12 

S20 Model-driven development for early aspects, Sánchez et al. 2010 14 

S21 Pattern-based design evolution using graph transformation, Zhao et al. 2007 16 

S22 PS-CoM building correct by design Publish Subscribe architectural styles with safe reconfiguration, Loulou e al. 2010 14 

S23 Understanding the relevance of micro-structures for design patterns detection, Arcelli et al. 2011 9 

S24 Using aspects for enforcing formal architectural invariants, Kallel et al. 2008 14 

S25 Evolution styles to the rescue of architectural evolution knowledge, Le Goaer et al. 2008 16 

S26 A model transformation approach for design pattern evolutions, Dong et al. 2006 13 

S27 A scalable approach to multi-style architectural modeling and verification, Wong et al. 2008 10 

S28 A UML rule-based approach for describing and checking dynamic software architectures, Miladi et al. 2008 14 

S29 Correct architecture refinement, Moriconi et al. 1995 12 

S30 
Preserving Architectural Choices throughout the Component-based Software Development Process, 
Tibermacine et al. 

2005 15 

S31 Style-based refinement of dynamic software architectures, Baresi et al. 2004 17 

S32 A survey of self-management in dynamic software architecture specifications, Bradbury et al. 2004 20 

S33 A contract place where architectural design and code meet together, Ubayashi et al. 2010 14 

S34 Design pattern solutions as explicit entities in component-based software development, Stepan et al. 2011 11 

S35 Modeling architectural patterns using architectural primitives, Zdun et al. 2005 15 

S36 Simplifying transformation of software architecture constraints, Tibermacine et al. 2006 14 

S37 
A constraint architectural description approach to self-organizing component-based software systems, 
Waewsawangwong et al. 

2004 16 

S38 A constraint-oriented approach to software architecture design, Van den Berg et al. 2009 8 

S39 A framework to specify incremental software architecture transformations, Barais et al. 2005 17 

S40 
An approach based on biographical reactive systems to check architectural instance conforming to its style, 
Chang et al. 

2007 16 

S41 
An automated refactoring approach to design pattern-based program transformations in Java programs, Jeon 
et al. 

2002 14 

S42 Analyzing and comparing architectural styles, Levy et al. 1999 14 

S43 Architecting as Decision Making with Patterns and Primitives, Zdun et al. 2008 17 

S44 Architecture-based runtime software evolution, Oreizy et al. 1998 12 

S45 Capturing interactions in architectural patterns, Yadav et al. 2010 14 

S46 Describing evolving dependable systems using co-operative software architectures, de Lemos et al. 2001 18 

S47 Describing software architecture styles using graph grammars, Le Metayer et al. 1998 15 

S48 Design pattern evolution and verification using graph transformation, Zhao et al. 2007 18 

S49 Evaluation of accuracy in design pattern occurrence detection, Pettersson et al. 2010 12 

S50 Evolution styles foundations and tool support for software architecture evolution, Garlan et al. 2006 17 

S51 Focus: a light-weight, incremental approach to software architecture recovery and evolution,  Ding et al. 2001 14 

S52 Formal specification of design patterns and their instances, Taibi et al. 2006 14 

S53 Guiding architectural restructuring through architectural styles, Tamzalit et al. 2010 17 

S54 Safe integration of new concerns in a software architecture, Barais et al. 2006 16 

S55 Scenario-based architectural design decisions documentation and evolution, Che et al. 2011 13 

S56 Self-managed systems an architectural challenge, Kramer et al. 2007 13 

S57 Style-based reuse for software architectures, Monroe et al. 1996 11 

S58 Synthesizing approach for perspective based architecture design, Liang et al. 2003 10 

S59 Towards a formal model for reconfigurable software architectures by bi-graphs, Chang et al. 2008 15 

S60 Using UML2.0 and GG for describing the dynamic of software architectures, Kacem et al. 2005 18 

 



V. THE CLASSIFICATION FRAMEWORK 

In this section, we propose a model consisting of 21 
analysis dimensions to characterize ACSE approaches. 
This model constitutes a foundation for evaluating ACSE 
approaches that leads to a classification and comparison of 
selected studies comprising those approaches. For each of 
the analysis dimensions (18 technical and 3 non-technical), 
the model considers a set of standardized characterization 
options. These options resulted from combining 
classification attributes from recognized sources with those 
found in the set of papers that we selected. For instance, the 
set of options for the “Need for Evolution” was identified 
using the ISO/IEC 14764 Standard for Software 
Maintenance and, on the other hand, “Type of Formalism” 
and “Description Language” were both mainly identified 
using [S32] and [17] respectively. They, however, have 
been improved over time by considering the new options in 
the selected studies. As a driver for the selection of the 
model parameters, Section A provides a rationale for the 
proposed classification, while Section B outlines the details 
of various entities and attributes as a fine granular 
representation of the classification framework. 

 

Figure 4. The conceptual framework  

A. Rationale for the Classification 

A causally connected architecture model, which is 
denoted by S, conceptually represents a running software 
system A embedded in an execution environment. Now let 
D be the domain assumptions that are consistent with the S 
(Figure 4). Then it should be proved that they hold the 
requirements R. This can be formally expressed as 
        , where F is a function that maps the 
architecture specification into a semantic model. Software 
evolution deals with the violation of correctness criteria 
after A is embedded in the environment and starts to 
operate [24]. The violation may occur as a result of the 
divergence of (i) the system A from specification S, (ii) the 
environment behavior from specification D, (iii) the system 
goals from requirements R. Usually, a software system is 

taken down to apply a patch offline during maintenance 
[17]. However, this scenario cannot satisfy the 
requirements of a specific class of software systems (e.g. 
mission-critical or safety-critical or business-critical) in 
which the system must operate continuously and remain 
capable of on-the-fly changes to the running system as a 
result of the violation          [S32]. Based on the 
classification in the context of Figure 4, we are interested in 
the approaches which deal with reasoning about 
evolutionary aspects enabled by formal methods. Software 
architecture models therefore provide the required 
abstraction and facilitate the reasoning about the evolution 
of a system expressed by a formal model (e.g. Markov 
model) [33]. We consider ACSE as a collection of 
operational and analytical activities to evolve a software 
system from an older version to a newer version, enabled 
by architecture changes. Among approaches which use 
architecture description to operationalize evolution [1], we 
are interested in approaches which utilize formal theory to 
enable analytical reasoning to verify the system properties. 

B. The Framework Entities and Attributes 

Based on that discussion we understand that ACSE has 
different dimensions. As conceptually outlined in Figure 4, 
the architecture of the system needs to be specified (Type 
of Specification). For analytical purposes, the properties of 
systems are also specified as a part of the architecture 
description as a number of constraints (Type of 
Reasoning). An evolution mechanism (Type of Evolution) 
can analyze consequences and apply changes either at 
design-time or runtime (Run-time Issues). For scalability, 
performance and economic issues, these activities require 
automation (Tool Support). As far as the mentioned goals 
are concerned, we propose the classification scheme as 
presented in Table 6. 

TABLE 6. THE ACSE CLASSIFICATION FRAMEWORK 

 

The groupings and their dimensions are shown in Table 
6. Note that the proposed framework is used for the 
comparison of ACSE approaches based on our focus which 
was discussed in the previous section and should not be 
adopted without a justification or verification. Firstly, we 
deliberately did not include all aspects of software 

Taxonomical 
Classification 

(Higher-Order Theme) 

Sub-
classifications 

(Sub-themes) 

Coded Attributes 
(Domain Knowledge, Standards, Keywords) 

Type of 
Evolution 

Need for Evolution ISO/IEC 14764 typology of change: Corrective, Perfective, Adaptive, Preventive, All applicable 

Means of Evolution 
Static: Transformation, Refactoring, Refinement, Restructuring, Pattern change; Dynamic: 
Reconfiguration, Adaptation 

Time of Evolution Design-Time, Run-Time 

Support Activity 
Change impact: Consistency checking, Impact analysis, Propagation; Change history: Evolution 
analysis, Versioning 

Stage of Evolution SDLC: Analysis/Design, Implementation, Integration/provisioning, Deployment, Evolution 

Type of 
Specification 

Level of Formalism Lightweight, Formal 

Type of Formalism 

Modeling language: ADL, Programming lang., Domain-specific lang., Type systems, Archface, 
Model-based; Formal models: Graph theory, Petri-net, Ontology, State machine, Constraint 
automata, CHAM; Process algebra: FSP, CSP, π-calculus; Logic (Constraint language): OCL, CCL, 
FOL, Grammars, Temporal logics, Rules, Description logic, Z, Alloy, Larch 

Description Language 
Process algebra: Darwin, Wright, LEDA, PiLar; Standards: UML, Ex.-UML, SysML, AADL; Others: 
ACME, Aesop, C2, MetaH, Rapide, SADL, UniCon, Weaves, Koala, xADL, ADML, AO-ADL, xAcme 

UML Specification Static: Class, Component, Object; Dynamic: Activity, State, Sequence, Transition, Communication 

Description Aspect Structural, Behavioral, Semantic 

Type of 
Reasoning 

Architectural 
Constraint 

Structural: Pattern, Architectural style, Primitive, Metaphore, Micro-structure, Crosscutting 
concern, Clue; Invariant: Component-level invariant, Cross-component invariant, Pre-/Post-
condition, Temporal invariant; Relational constraints: Coding rules, Cardinality, Coordination, 
Meta-model, Variability 

Intent of Reasoning Specify, Preserve, Change, Enforce, Match, Discover, Analyze 

Type of Analysis Consistency checking, Model checking, Pattern conformance, Graph refinement, Enforcement 

Run-Time 
Issue 

Runtime Environment  
Component model: Fractal, KOALA, SOFA 2.0, CCM, OpenCOM, KobrA, Middleware: SIENA, OSGi, 
.NET, MS-COM, EJB, JavaBeans, SOA middleware, Coordination model: Reo, Linda, MANIFOLD 

Mechanism of 
Runtime Evolution 

Reflection mechanisms: Introspection, Constraint injection, Intercession, Reification, Causal 
connection, Evolution enablers: Safe stopping, Runtime binding, State transfer 

Tool 
Support 

Need for Tool Support Architecture life-cycle: Business case, Creating architecture, Documenting, Analyzing, Evolving 

Analysis 
Usage of Tool Support 

Simulation, Dependence analysis, Model checking, Conformance testing, Interface consistency, 
Inspection and review-based 

Level of Automation Fully automated, Partially automated, Manual 

Research 
Method 

Research Motivation 
A particular problem/challenge, Overview or Survey, Formalism for constraint specification, 
Formalism for architectural analysis, Formalism for arch. evolution, Formalism for code generation 

Application Domain 
Development paradigm: SPL, OO, SOA, CBS; Traditional: Embedded, Real-time, Process-aware, 
Distributed, Event-based, Concurrent, Mechatronic, Mobile, Robotic, Grid computing; Emerging: 
Cloud computing, Smart-*, Autonomic computing, *-critical, Ubiquitous 

Evaluation Method Case study, Mathematical proof, Example application, Industrial validation 
 



architecture evolution. For example, the who question, 
which identifies the stakeholders involved in software 
architecture change, is not covered in the current 
classification because it reflects human aspects of evolution 
and our focus of rigorous formal theory, analytical 
reasoning based on architectural constraints and runtime 
issues aims to lessen human intervention. The where 
question is also excluded because it has been thoroughly 
covered in [17] for specification-time evolution and in 
[S32] for runtime reconfiguration. Secondly, the proposed 
framework provides only one of the many ways in which 
ACSE can be characterized. Most importantly, the 
framework is subject to continuous improvements, since 
the comparison attributes continue to mature due to 
scientific and technological advances. A list of 
improvement suggestions can be found in the protocol [32]. 

VI. RESULTS AND COMPARATIVE ANALYSIS 

We compare ACSE approaches along the dimensions 
summarized in Table 6. The results of this analysis process 
are summarized in Tables 7-12 below. Table 7-11 presents 
the technical characterization of selected approaches based 
on the model proposed in Section V. Table 12 classifies the 
studies based on their research method. Column P shows 
the percentage of studies classified in each sub-criterion. 
The last column shows the percentage of frequencies in 
three yearly disjoint categories (1995-2005, 2006-2008, and 
2009-2011) for attributes that characterize 10 or more 
approaches. 

A synthesized analysis of the studies is discussed in 
each section and the investigated approaches are critically 
summarized in subsequent tables. Mapping the studies to 
the common scheme provides us with a unified framework 
to group contributory artifacts of similar approaches. These 
categories provide a means to compare ACSE approaches. 
Moreover, the analysis of evidence based on a considerable 
amount of research or lack of focus on specific attributes, 
differentiated by the count column in the subsequent tables, 
are the critical discussions of the next subsections - 
structured by the sub-criteria. Each study may be 
represented by multiple attributes in case of non-disjunct 
attributes. Due to the limited amount of data, a statistical 
analysis was not feasible. Thus, we limit the discussions to 
results based on the table content, deriving future directions 
in each area using quantitative summaries of the data. This 
approach usually characterizes systematic mapping studies 
[11]. At the same time, whilst addressing the reliability of 
the included studies, the research and evaluation method of 
the approaches were also synthesized. This comparison 
based on a common scheme reveals that e.g. a majority of 
studies focuses on specific aspects of evolution or there is a 
lack of studies that point out gaps. 

A. Type of Evolution 

This category compares the included studies in terms of 
a general taxonomy which focuses on the factors that 
characterize and position these mechanisms into a general 
purpose classification. The studies are further classified 
into five sub-categories explained below, summarized in 
Table 7.  

(i) Need for evolution. According to the ISO/IEC 
14764 standard for software maintenance and Lehman’s 
law of software evolution [34], the reason for evolution 
(purpose of change) can be categorized into four types: 
corrective, perfective, adaptive and preventive. Most 
approaches are applicable for all purposes, but among them 
adaptive changes in the context of runtime evolution [S44] 
was explicitly mentioned in considerable number of 
studies. (ii) Means of evolution. Among the different types 
of evolution, transformation, reconfiguration, and pattern-
based evolution gained significant attention. Refinement, 
restructuring, adaptation and architectural decision 
evolution were explicitly adopted as a promising 
mechanism for enabling evolution in the studies. (iii) Time 
of evolution. Specification-time software architecture 
evolution has been more popular than runtime evolution. 
The relative lack of contributions on runtime evolution 
results from a recent adoption of reflective component 
models that provide architecture information to the 
mechanisms that enable the dynamic reconfiguration. 
However, dynamic evolution recently gained a momentum. 
(iv) Support activities. ACSE related activities contain 
analytic work to check relevant properties of architectures 
after the evolution takes place. For instance, consistency 
checking aims to check whether the system architecture is 
consistent after the requested changes. Consistency 
checking is a popular architecture analysis, but other 
context-based analyses were also utilized. (v) Stage of 
evolution. The focal stage of the software lifecycle was 
considered. Both early and late stages of the lifecycle were 
key areas of attention in comparison. Design and 
maintenance stages were the two stages in which evolution 
mechanisms were active.  

TABLE 7. COMPARATIVE ANALYSIS BASED ON “TYPE OF EVOLUTION” 

 

As a concluding remark, the recent boost in autonomic 
computing [7] and specifically self-adaptive applications 
[29] also reflects that reliable evolution of running software 
has become a major challenge. This trend which is enabled 
mostly by architecture-based runtime software evolution 
[S44] is expected to get more attention based on the current 
publication trend on runtime evolution. Software systems in 
open worlds [27] necessitate enabling run-time adaptability 
for systems to cope with environmental uncertainties, 
changing requirements, and failures. 

Sub-
Criteria 

Attributes Approaches P% N 
Distribution % 

95-
05 

06-
08 

09-
11 

Need for 
Evolution 

Corrective [50] 

52 

1    

Perfective [12] 1    

Adaptive [1,9,40,42,46,50,53,56,59,60] 10 30 50 20 

Preventive [45,46,52] 3    

All applicable [2,3,5,6,8,10,11,17,37,39,41,44,47,48,49,51,54,55] 18 50 28 22 

Means of 
Evolution 

Transformation [1,2,6,7,8,21,26,28,29,31,33,36,39,40,50,58] 

83 

16 31 50 19 

Refactoring [8,41,51] 3    

Refinement [2,7,13,22,29,31,43,51,58] 9    

Restructuring [8,13,50,53] 4    

Adaptation [4,6,10,44,46,56] 6    

Reconfiguration [2,3,4,5,6,7,22,24,28,31,32,37,54,59,60] 15 40 47 13 

Pattern-based  [1,9,17,21,26,34,35,41,42,45,48,49,52] 13 23 46 31 

Arch. decision [11,12,25,47,55,57] 6    

Change operation [4, 28] 2    

Time of 
Evolution 

Design-Time [1,2,4,7,9,11,13,14,15,17,18-23,25-30,33-36,39,41-43,45-55,57,58] 
95 

43 27 35 37 

Run-Time [2,3,5-10,12,24,31,32,37,40,44,54,56,59,60] 19 42 53 5 

Support 
Activity 

Consistency checking [2,11,33,43,48,60] 

18 

6    

Evolution analysis [5,7] 2    

Change propagation [3,6] 2    

Versioning [50] 1    

Impact analysis  0    

Stage of 
Evolution 

Analysis and Design 
[1,4,6,8,9,13-16,18-20,22,25,26,27,29,30,33-
36,38,39,42,43,45,47,48,52,57,58] 

92 

32 25 34 31 

Implementation  [3,6,8,24,33,34] 6    

Evolution [3,5,6,10,12,17,21,23,28,31,37,40,41,44,46,49,50,51,53,54,56,59,60] 23 39 44 17 

Integration and provisioning, Deployment 0    

 



B. Degree of Formalism and Expressiveness  

This category compares the included studies in terms of 
the degree of expressiveness and analyzability employed in 
ACSE approaches. The design of languages and formalisms 
involves a trade-off between expressive power and 
analyzability. The more formalism can express, the harder 
it becomes to understand what instances of the formalism 
say [12]. The degree of formalism is due to the ACSE 
nature that requires utilizing analytical power of description 
languages, e.g., to check consistency or integrity after 
evolution or derive impact of primary changes or 
quantitatively verify runtime changes for dynamic 
adaptations. The language aspect has been exhaustively 
investigated in a comprehensive framework [17]. 
Therefore, we briefly review our observation in terms of 
the attention of ACSE studies to the language aspect. Based 
on this theme, the studies are further classified into five 
sub-categories explained below, summarized in Table 8. 

TABLE 8. COMPARATIVE ANALYSIS BASED ON “TYPE OF SPECIFICATION” 

 

(i) Level of formalism. The main observation, which is 
biased because of our inclusion/exclusion criteria, is that 
formal approaches dominate the ACSE area. (ii) Type of 
formalism. Traditional modeling languages such as graph 
and model-based languages are the most popular. The 
majority of studies formulate the architectural constraints 
corresponding to some properties of interest in OCL or a 
variation of logic as constraint specification language. We 
observed that the majority of the studies either formulate 
the properties of interest in the modeling language or they 
utilize a logic combined with a modeling language. 
Recently, the creation of new languages has declined and 
researchers tend to combine or extend existing languages 
for their own purposes. (iii) Description language. UML 
extensions [12], especially component and class diagrams 
((iv) UML specification), are widely adopted by ACSE 
approaches. Although UML has restricted architectural 
analysis support, its wide adoption is based on its support 
for different domains and business contexts [12] and its 
standardization. Other description languages such as 
ACME, Darwin or SafArchie are approximately equally 

distributed. (v) Description aspect. We observed that both 
structural and behavioral aspects have been addressed. 
However, semantic aspects have been neglected. 

We observed advances in the fundamentals of 
architecture modeling, but a unifying formalism that 
provides the basis for all architecture analysis requirements 
is unlikely [12]. Constraint specification languages are 
growing due to the need to specify architectural properties 
that need to be verified against a system model (Figure 4). 
The coverage of topics points out a gap regarding 
formalisms addressing architecture-centric evolution 
augmented with more semantic enabled reasoning. This is 
particularly challenging for specifying the system model 
and reasoning based on a richer semantic model at runtime. 
Therefore, description languages need more integration 
with underlying formal theories to enable specification of 
emerging architectural properties. 

C. Type of Architectural Reasoning 

This category compares the included studies in terms of 
constraints [S16] on architecture description to enable 
automated reasoning. Architectural constraints are an 
inherent part of ACSE approaches since they facilitate 
evaluating system properties. The studies are classified into 
three sub-categories, see Table 9. 

TABLE 9. COMPARATIVE ANALYSIS BASED ON “TYPE OF REASONING” 

 

(i) Means of constraint. Architectural styles, patterns, 
component-level invariants, cross component invariants, 
pre- and post-conditions which have an explicit description 
separable from the architecture of a system under 
consideration, are determinants of some characteristics of 
the system [13]. (ii) Intent of constraint. Specification, 
preservation and enforcement of constraints are the main 
reasons behind constraints in the approaches. (iii) Analysis 
of constraint. Most approaches are accompanied or 
enabled by analytical mechanisms such as consistency 
checking, model checking, and conformance checking. 

We observed a trend towards quantitative verification 
of system properties based on constraints for correct 
adaptations, especially in self-adaptive systems which 
operate in uncertain environments that promote the use of 
probabilistic modeling of systems. 

D. Run-time Issues 

This category compares the studies in terms of 
underlying environment and mechanism to enable dynamic 
reconfiguration. It identifies the prerequisites for what is 

Sub-Criteria Attributes Approaches P% N 
Distribution % 

95-
05 

06-
08 

09-
11 

Level of 
Formalism 

Lightweight [1,8,9,12,13,15,18,20,23,25,26,33-35,36,38,55] 
88 

17 8 46 46 

Formal [2-7,10,11,14,17,19,21,22,24,27-32,37,39-43,45-48,50,52-54,59,60] 36 38 42 20 

Type of 
Formalism 

Graph [2,6,7,21,22,31,32,40,47,48,53,59,60] 

83 

13 38 39 23 

Petri-net [3,12,24] 3    

Model-based [1,2,4,5,6,7,9,11,13,15,18,19,20,26,28,35,55,56,60] 19 21 32 47 

Description logic [29,32,41,52] 4    

π-calculus [10,45] 2    

Prog. language [8,3,17,41] 4    

Alloy [14,27,37] 3    

OCL [2,4,6,7,9,11,25,28,30,31,35,36,43,60] 14 36 50 14 

CCL [11,36] 2    

State machine [5] 1    

Z [3,6,22,24,28] 5    

C. Automata [39,46] 2    

Process algebra [32,42] 2    

Temporal logics [5,19,50,52] 4    

Archface [33] 1    

Ontology, Domain-Specific, Larch, Grammars, Type, FSP, CSP, CHAM, FOL, Rules 0    

Description 
Language 

ACME [8,14,15,25,30,36,46,50] 

58 

7    

xAcme [30,36] 2    

UML [1,5,17-21,26,30,31,33, 48,51,53,56,60] 16 31 31 38 

Extended UML [2,4,6,7,9,11,25,28,35,39,43] 11 27 55 18 

AO-ADL [18] 1    

Darwin [37,56] 2    

SafArchie [39,54] 2    
Aesop, SADL, Koala, xADL, ADML, AO-ADL, UniCon, Weaves, Wright, C2, Rapide, MetaH, AADL 0    

UML 
Specification 

Activity [2,28,43,53] 

55 

4    

State [2,5] 2    

Sequence [5,7,18,19,20,51] 6    

Class [1,4,7,8,9,11,17,19,21,25,26,31,33,35,39,48,51,52,60] 19 26 53 21 

Component [2,6,7,8,18,20,28,30,35,43,46,50,51,53,54,57,60] 17 41 35 24 

Object [2] 1    

Communication [31,33] 2    

Transition [2,3] 2    

Description 
Aspect 

Structural [1-4,6-15,17,19-22,24-30,32-34,36,37,39-57,59,60] 

93 

52 28 42 30 

Behavioral [2,3,5,7,9,10,12,19,20,22,24,27,29,31-35,39-42,44-46,49-57] 34 41 32 27 

Semantic [43,58] 2    

 

Sub- 
Criteria 

Attributes Approaches P% N 
Distribution % 

95-
05 

06-
08 

09-
11 

Architectural 
Constraint 

Pattern [1,5,11,16,17,19,21,23,26,34,35,39,41-43,45,48,49,52,57] 

85 

20 30 35 35 

Architectural style  [7,10,12,25,36,37,38,40,42,43,44,46,47,50,51,53,57-60] 20 50 40 10 

Primitive [1,9,26,35,39,41,43,54] 8    
Component-level invariant [30,39,60] 3    
Cross-component invariant [2,3,9,20,25,30,36,39,42,44,50,56,58,60] 14 50 43 7 

Crosscutting concern [18,39] 2    

Meta-model [4,7,9,43] 4    

Pre-/Post-condition [2,3,4,6,7,22,24,25,31,39,46,55,56,60] 14 36 43 21 

Coordination constraint [3,24] 2    

Coding rules [11] 1    

Cardinality, Metaphore, Micro-structure, Clue, Variability, Temporal  0    

Intent  
of 

Reasoning 

Specify [5,9,11,13,14,15,24,25,27,28,35-37,39,43,45,47,50-56,58-60] 

97 

27 30 44 26 

Preserve  [1,2,6-11,18-22,25,26,29-31,35,36,40,41,44,47,48,50,51,53-60] 35 37 37 26 

Change [11,39,40,41,46,51,60] 7    

Enforce [3,6,8,11,13,24,33,34,46,50] 10 10 40 50 

Match [4,12,17,40,42,49,50] 7    

Discover [17,23,38,49] 4    

Analyze [3,5,6,11,14] 5    

Type of 
Analysis 

 

Consistency checking [1,6,9,10,11,12,21,23,30,39,40,46,48,60] 

55 

14 36 36 28 

Model checking [2,3,5,22,24,27,29,31,32,37] 10 60 30 10 

Pattern conformance [4,17,41,54] 4    

Graph-based refinement [7,53] 2    

Constraint enforcement [8,25,59] 5    

 



needed to implement and utilize the often complex and 
hypothetical conceptual contributions in the context of 
reliable runtime infrastructures. The studies are classified 
into two sub-categories (Table 10). 

(i) Environment of runtime evolution. A variety of 
execution environments has been proposed, ranging from 
traditional platforms such as CORBA Component Model 
(CCM) to the reflective and flexible Fractal and OpenCOM 
to a new SOA and Cloud based platforms. (ii) Mean of 
runtime evolution. To enable runtime evolution, these 
environments need to expose functions to provide the 
current state of a system at a specific time during its 
execution and a causal connection between the running 
system and architectural information. Ideally, they provide 
facilities to change architectural descriptions at runtime.  

TABLE 10. COMPARATIVE ANALYSIS BASED ON “RUNTIME ISSUES” 

  
There is a lack of approaches for runtime environments 

and evolution. We suppose this is because implementations 
of evolution mechanisms on top of these technologies are 
not feasible in research domains and researchers prefer to 
rather provide evidence or theoretically prove their 
contributions. Recent efforts identified an extensive list of 
run-time concerns – mainly by autonomic computing 
communities [29]. Disciplined engineering approaches to 
support decentralization and making contextual system 
models accessible and machine process-able at runtime 
[14] are still relevant concerns [29]. 

E. Tool Support  

This category compares the included studies in terms of 
infrastructure which support automation of ACSE. This 
theme provides a narrow view of automation for ACSE. 
Based on this, the studies are classified into three sub-
categories (Table 11).  

TABLE 11. COMPARATIVE ANALYSIS BASED ON “TOOL SUPPORT” 

 

(i) Need for tool support. Although most of the studies 
use tools for architectural evolution, the trend shows that 
employing tools for analysis purposes is gaining significant 
attention. (ii) Analysis usage of tool support. The studies 
that use tools employ them mostly for model checking. 
(iii)Level of automation. Most of the studies are either 
fully automated for both architecture evolution and analysis 

or partially automated in either of them. Thus, 
unsurprisingly, the majority of studies use tool support 
either for proof of concept or automated analysis purposes. 

F. Research methodology of the studies 

This category differs from the other 5 purely technical 

aspects and only reflects general aspects (Table 12). 

TABLE 12. COMPARATIVE ANALYSIS BASED ON “RESEARCH METHOD” 

 

(i) Motivation. The main focus of research is on 
formalisms with attention to enabling evolution in software 
systems and enabling automated mechanisms to support 
evolution. (ii) Application domain. The dominant 
application domain is component software, accounting for 
more than 50% of applications. This portion is increasing. 
Services have also gained attention recently. These two 
domains require dynamic reconfiguration. In particular, 
dynamic components and service reconfiguration are active 
areas of research, with particular attention for rigorous 
approaches to support challenges in self-adaptive systems 
and dynamic selection and composition of elements. 
Furthermore, dynamic domains such as robotics and smart 
cities have gained little attention. (iii) Evaluation method. 
Although most approaches included some formal proofs as 
part of the evaluation, evidence is often obtained from 
applying the approach to small case studies and examples. 
Only a few empirical studies have been undertaken; no 
industrial evidence is reported. Lack of rigorous validation 
and attention to application domains were major concerns 
that we found in the included studies. These concerns and 
domains offer areas for future research on ACSE.  

VII.FUTURE RESEARCH DIRECTIONS AND LIMITATIONS 

Based on the taxonomical classification and holistic 
comparison, we summarize research implications and 
future directions. We also discuss possible limitations as 
well as threats to validity of this SLR.  

A. Research Implications 

This classification and comparison framework has 
implications for researchers and practitioners as 
summarized with the ACSE dimensions in Table 12. For 
researchers, the classification framework provides a 
comprehensive view of different aspects to be considered 
when addressing an ACSE problem. The comparison of 
existing work highlighted several areas where extensive 
support is provided or gaps are pointed out, see Table 13.  

Implications for future research. Based on the 
systematic consolidation, we identified a number of areas 
that lack a more rigorous research as emerging trends in 
ACSE. The list (Table 13) is not exhaustive, but reflects 

Sub-Criteria Attributes Approaches P% N 

Environment of  
Run-Time Evolution 

Fractal [30] 

10 

1 

OSGi [12] 1 

CCM [11] 1 

PKUAS [10] 1 

SOA middleware [7] 1 

SIENA [5] 1 

KOALA, MS COM, SOFA 2.0, EJB, JavaBeans, 
OpenCOM, KobrA, .NET, Reo, Linda, MANIFOLD 

0 

Mechanism of  
Run-Time Evolution 

Reflection [10] 

8 

1 

Causal connection  [5,9,11] 3 

Runtime binding [7] 1 

Introspection, Constraint injection, State transfer, 
Intercession, Reification, Safe stopping 

0 

 

Sub-Criteria Attributes Approaches P% N 
Distribution % 

95-
05 

06-
08 

09-
11 

Need for 
Tool Support 

Creating [15,20,22,27,29,30,34,38,45] 

95 

9    

Documenting [1,3,8,9,11,35,36,43,52,55,57] 11 18 55 27 

Analyzing [1-3,5,6,8,12-14,17,23,33,38,49] 14 14 29 57 

Evolving 
[3-7,9-11,18,21,24,25,28,31-33,36,37,39-42,44, 
46-48,50,51,53-56,58-60] 

35 40 43 17 

Business case 0    

Analysis 
Usage of 

Tool Support 

Simulation [7,31] 

30 

2    

Dependence analysis [5,11] 2    

Model checking [2,3,5,6,7,14,31,33,43,46] 10 40 30 30 

Conformance  [4,10,12,15,40,47] 6    

Inspection  [20] 1    

Interface consistency 0    

Level of 
Automation 

Full  [4,21,30,41,54] 

100 

5    

Partial [1-3,5-12,14,17,18,20,22,24,26-29,31,33,39,40, 
43,44,48,49,50,51,53,57,58] 

34 29 41 30 

Manual [13,15,16,19,23,25,32,34-38,42,45-47,52,55,56,59,60] 21 33 29 38 

 

 

Sub-
Criteria 

Attributes Approaches P% N 
Distribution % 

95-
05 

06-
08 

09-
11 

Motivation 

Problem or Challenge [2,3,6,7,15,18,20,25,38,42,49,50,52,54,56-58] 

98 

17 24 41 35 

Overview or Survey [8,16,32,38,49] 5    

Unambiguous description  [4,9,11,14,19,22,26,27,30,35,45,47,52] 13 23 38 39 

Analysis [4,5,9,12,14,17,23,28,33,35,40,49,55] 13 15 46 39 

Evolution 
[1,6,10,13,18,20-22,24,26,28,29,31,33,34,36,37,39-41,44, 46-
48,50,51,53,55,59,60] 

30 37 30 33 

A formalism to enable code generation 0    

Application  
Domain 

SOA [1,2,7,31,43] 

78 

5    

OO [1,3,8,17,21,26,41,42,48,49,51,57] 12 33 50 17 

Distributed system [3,24,46,60] 4    

Event-based system [5,22,44] 3    

Component-based [6,10-13,22,24,25,28,30-37, 39,40,43,45-47,50,53-60] 32 38 34 28 

SPL, Embedded, Ubiquitous, Mission-critical, Real-time, Process-aware, Concurrent, Mechatronic, 
Mobile, Robotic, Cloud computing, Smart-*, Autonomic computing, Grid computing 

0    

Evaluation  
Method 

Case study [1,4-9,12,14,15,18-20,22,24,29,35,37,38,40,43,46,47,51, 53,55,60] 

87 

27 29 30 41 

Mathematical proof [1-3,5,17,19,21,22,29,47,54] 11 36 36 28 

Example application [3,11,13,14,21,25,27-31,33,34,36,37,39,41,42,44,45,48-50,52,54,59] 26 31 42 27 

Experience report 0    



key challenges identified in the consolidation and 
corresponds to the classification in Section VI. 

 (i) Evolution: In the context of more classical 
Lehman’s law [34], we observe ever growing needs for 
adaptive evolution with primary focus on run-time 
architectural adaptation. An interesting observation is the 
emergence of ‘adaptation pattern’ [31] to support reuse in 
evolution for dynamic adaptive software architecture. 
Mining software repositories to empirically analyze 
changes and fostering them for reuse is also getting more 
attention. Researchers look at long running, large 
applications such as Eclipse SDK [15] in order to further 
this domain by learning from past recurring evolutions. 

(iii) Architectural reasoning: A considerable number 
of approaches address probabilistic modeling of systems 
and their environments which they operate and also explicit 
specification of architectural constraints. Analytic 
techniques verify specific properties or preserve the initial 
constraints. However, these techniques that are normally 
conceived as design-time activities must extend their scope 
to runtime and comply with the time constraints of runtime 
environment. We observe that the need for runtime 
verification and validation to detect violations and plan 
self-reactions demands for efficient analytical and 
syntactical “@runtime” techniques [2, 24]. 

(iv) Run-Time evolution: In a considerable number of 
approaches, formal specifications are applied during 
development activities for verification and validation, 
rather than the system itself at runtime. More importantly, 
those approaches that utilize formal specification at runtime 
use it for mainly modeling and analysis rather than other 
ACSE activities. We observe an improvement of adaptive 
middleware based on reflection mechanisms. However, 
decentralized evolution and @runtime notions are still 
relevant concerns for further research in ACSE. 

(vi) Evaluation evidence: An important issue that we 
observed and is asserted by work by Barnes at NASA JPL 
regarding space systems architectural evolution is the lack 
of rigorous validation [21]. Previous work tended to make 
heavy use of trial examples and unrealistic assumptions and 
has not been well supported by real-world scenarios. We 
came across this when excluding a large number of studies 
that had been retrieved based on our search, but violated an 
inclusion criterion (I2 in Table 3). To stimulate ACSE 
community to produce empirical real-world case studies, 
such efforts need recognition at established conferences [7].  

Implications for practitioners. The data [25] collected 
may help practitioners in searching for relevant approaches 
before adopting and tailoring them by examining the 
context of their own software development, and comparing 
with characteristics of relevant approaches. However, [28] 
provides an overview of various approaches evaluated 
based on real-world industrial scenarios concerning 
evolution of sustainable industrial systems. We believe that 
this document can suitably assist practitioners because it is 
more general based on a growing number of experience 
reports which might not necessarily be peer-reviewed. 

Practical application of the collected database. Since 
this classification framework and its accompanying 
templates contain more than 160 attributes, it provides a 

large amount of information. For instance, for the 60 
papers, it makes a collection with 160*60=9600 data points 
which are quite significant. As a result, the user can, for 
example, query the database to find case studies on 
industrial applications of petri-net based approaches for 
runtime evolution. Moreover, this database can grow and be 
used as a knowledge-base for ACSE researchers, such as 
[28] for practitioners.  

TABLE 13. RESEARCH DIMENSIONS AND FUTURE IMPLICATIONS FOR ACSE 

 

Limitations. To validate our model, we analyzed 60 
peer-reviewed studies. The model was useful for 
characterizing the approaches since the average number of 
dimensions characterizing approaches is 15 according to 
column A, Table 5. However, we believe that neither the 
model nor the comparison is unchangeable. We restricted 
ourselves to a limited number of high quality approaches 
with highest rank as it mentioned in Section IV, indicating 
that our comparison is not comprehensive enough, though 
it is reliable to cover a variety of studies. We are currently 
working on a more comprehensive comparison, including 
studies with lower ranks among the 154 ones ranked.  

B. Threats to Validity 

In general, the external validity and construct validity 
are strong for systematic reviews [22, 26, 3]. The main 
threats to validity of this review are biased by our selection 
of studies to be included, data extraction and data synthesis. 
(i) To be able to identify relevant studies and ensure that 
the process of selection was unbiased, a research protocol 
was developed. However, systematic reviews are per 
definition limited by search period, databases and 
terminologies. ACSE research is related to different 
communities including software architecture, software 
evolution and self-adaptive software which use different 
terminologies. Therefore, to cover all and avoid bias, we 
searched for common terms and combined them in our 
search string. While this approach decreases the bias, it also 
significantly increases the search work. (ii) To ensure 
correctness in data extraction, we defined a comprehensive 
data extraction Excel sheet [25] to obtain consistent and 
also relevant data. In addition, we performed quality 
assessment on the studies to ensure that the identified 
findings and implications came from credible sources. (iii) 
Another challenge of systematic reviews is addressing the 
reliability threats. The reliability is mitigated as far as 
possible by involving several researchers, and having a 
unified scheme, and several steps where the scheme and 
process were piloted and externally evaluated. If the study 
is replicated by another set of researchers, it is highly likely 
that some included papers are changed. However, it is 
highly unlikely that random differences based on personal 
judgments would change findings. It may only change the 

Research  
Needs 

Dimensions 
Evolution Formalism 

Architectural 
Reasoning 

Run-Time 
Issues 

Evaluation 

Research Trend 
Self-adaptive 
systems 

Emerging 
properties 

Quantitative 
verification 

Decentralized 
evolution 

Rigorous 
validation 

Active Topics 
Change patterns, 
Repository 
mining 

Formal 
theory 

Explicit constraints, 
Probabilistic 
modelling 

Model@run-
time, Reflective 
environment 

Empirical 
studies 

Targets 
Self-reaction to 
violations of 
constraints 

Semantic 
models 

Constraint 
preservation, 
property verification 

Efficiency and 
Reliability in 
evolution 

Real-world 
evidences 

Focus Run-time Design-time Run-time Run-time Both 

 



actual count numbers to some extent. Therefore, in general 
we believe that the validity of the study is high, given the 
use of a systematic procedure and the involvement and 
discussion among four researchers and also external 
evaluations. The openness of our review by exposing our 
data in [25] allows other researchers to judge the 
trustworthiness of the results more objectively. This 
initiative is suggested by the evidence-based software 
engineering community http://www.dur.ac.uk/ebse/. It is 
followed by some researchers as [7]. 

VIII. CONCLUSIONS 

The objective of this study was to consolidate existing 
research on architecture-centric software evolution 
regarding the claimed benefits and the provided evidences 
of evolution. The main contribution of this study is a 
classification framework for ACSE and a comparison of 
systematically selected studies through the framework to 
point out existing research gaps. We identified unexplored 
areas by synthesizing collected data, reflecting on areas of 
future research. The results of classification and 
comparison are presented as structure tables – as a means to 
transfer knowledge among ACSE researchers and 
practitioners about a collective impact of existing research. 

We observed an inclination towards runtime adaptation 
to serve self-adaptive applications. We also observed vast 
interests towards probabilistic modeling and quantitative 
verification of system properties. Reflective environments 
and Models@run-time are identified as the key drivers to 
enable adaptations. However, evidences of rigorous 
validation were lacking in existing evidences in ACSE.  
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