
Ontology Support for Web Service Processes

C. Pahl
Dublin City University
School of Computing

Dublin 9, Ireland
cpahl@computing.dcu.ie

M. Casey
Dublin City University
School of Computing

Dublin 9, Ireland
mcasey@computing.dcu.ie

ABSTRACT
Web Services are software services that can be advertised by
providers and deployed by customers using Web technolo-
gies. This concept is currently carried further to address
Web service choreography. Choreography refers to the com-
position of individual services to services processes that can
communicate and interact with another.
We propose a formal ontology framework for these Web

service processes that supports the description, matching,
and composition through logic reasoning techniques. The
Semantic Web, based on a description logic-based knowl-
edge representation and reasoning framework, provides the
foundations. Integrating aspects from modal logics and pro-
cess calculi into this framework will prove essential.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Software/Program Verifi-
cation—Correctness proofs; D.2.12 [Software Engineer-
ing]: Interoperability—Distributed objects

General Terms
Design, Verification

Keywords
Web Services, service choreography, ontologies

1. INTRODUCTION
Much progress has very recently been made in the context

of the Web Services Framework WSF [31]. The framework
itself consists of separate technologies to support the descrip-
tion, discovery and invocation of Web services. Automation
and reasoning are central requirements for the success of the
WSF in a Web envirnoment.
Various notations and protocols have been suggested to

overcome limitations of the core WSF. One aspect building
up upon the WSF is the choreography of Web services. We

use the term service process to denote various forms of con-
trol flow, conversation, and interaction issues related to the
choreography of Web services as they are addressed in flow
and conversation languages such as WSFL [16], WSCL [1]
or ebXML [31]. An application of service choreography is
the development of Web-based business processes.
We extract commonalities of these notations and describe

their semantics in a formal, Semantic Web compliant frame-
work [28]. The Semantic Web is a logic-oriented framework
addressing limitations of the current Web. Even though
being a knowledge representation framework, the Seman-
tic Web and in particular ontologies provide suitable Web
technologies for knowledge-related problems arising in Web-
based distributed and service-based software development.
Semantic Web formalisms guarantee interoperability, accep-
tance, and support in the Web environment. The need for
formality has been recognised for Web services [9, 30], but
has not been investigated for Web service choreography.
We look at description, matching, and interaction of Web

services that are composed to service processes. Covering
the full life cycle of service processes is an essential aspect.
Two ontology-based models will form the backbone of a for-
mal process services framework. A process model addresses
process description and matching, and a interaction model
addresses service matching and interaction.
Our objective is the integration of formalisms necessary

to allow reasoning about service processes into an Seman-
tic Web compliant ontology framework. We start with the
presentation of basic aspects of these service processes in
terms of classical formalisms such as process calculi [25] and
modal logics [15]. The reason for starting off with these
two formalisms will become clear when we exploit links to
description logic, which underlies Semantic Web ontology
languages. For each of these aspects, we will illustrate their
representation in ontologies. Here, we will extend our previ-
ous work [21, 22] from simple services to service processes.
We aim to demonstrate here that an adequate framework
exists to carry work on Web service choreography further
towards an ontology supported semantic Web service pro-
cess approach.
We address three central aspects in this paper: the pro-

cess model, the process life cycle, and the interaction model.
After introducing Web service processes and the Semantic
Web context in Sections 2 and 3, we focus on the process
model by looking at description and matching techniques
(Section 4) and ontology support for these (Section 5). Sec-
tion 6 looks at the life cycle aspects. Section 7 on semantic
service matching and Section 8 on ontology support for this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11310338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

type of matching address the interaction model. We end
with related work and some conclusions.

2. SERVICE PROCESSES
The Web Services framework is based on the description,

discovery, and use of individual services, each consisting of
several operations. However, often more complex tasks are
formulated in form of processes. Business processes based
on individual, interrelated activities are an example. Some
attempts have been made to support the assembly or chore-
ography of services; we summarise these under the term ser-
vice processes. Examples of WSF-based approaches are the
Web Service Flow Language WFSL [16] and the Web Service
Conversation Language WSCL [1].
Two aspects are central in the assembly of services to

service processes in the Web Services context:

• Internal process definition. This addresses the depen-
dencies between the individual activities. Control and
data flow can be constrained.

• Process interactions. Based on the Web Services phi-
losophy, each individual activity can be based on an
interaction with another service.

The WSFL addresses these two aspects in form of two mod-
els. The flow model describes the control flow, i.e. the inter-
nal behaviour of processes. The global model describes the
interaction behaviour between a service process and other
services. Similarly, our investigation will be based on two
models, called the process model and the interaction model.
We will mainly relate our investigation to WSFL. The

WSFL motivation is to enable Web Services as implemen-
tations for activities of business processes. Services can be
composed to service processes. A WSFL process specifica-
tion consists of an import interface that states the inter-
action requirements and an export interface that describes
the operations offered by the process. This process structure
satisfies some major characteristics of a software component
[27, 6]. The component approach is based on the idea of
forming composite reusable software entities based on more
basic ones. This component idea can be applied to service
processes. However, to support component-style develop-
ment, some requirements need to be addressed:

• Support of description, discovery, and matching of ser-
vice processes,

• Support of life cycle aspects including static and dy-
namic composition.

We address these issues of software service development for
the Web and also using the Web in the context of Semantic
Web technologies such as ontology frameworks.

3. SEMANTIC WEB AND SOFTWARE DE-
VELOPMENT

Making the Web more meaningful and open to manipula-
tion by software applications is the Semantic Web objective
[4]. Information on the Web shall be made more machine
understandable. Annotations shall help software agents to
obtain semantic information about documents.

3.1 Semantic Web and Ontology Languages
Expressing meaning through knowledge representation tech-

niques is the starting point of the Semantic Web initiative
[28, 4]. A logical framework providing inference rules suit-
able for automated reasoning is another key ingredient.
For annotations to be meaningful for both creator and

user of these annotations, a shared understanding of pre-
cisely defined annotations is required. Usually, suitable ter-
minologies and semantical properties are expressed in form
of ontologies [12, 14]. Ontologies consist of hierarchical def-
initions of important concepts in a domain and descrip-
tions of the properties of each concept. Special logics for
knowledge representation and reasoning support ontology
languages.
The Semantic Web bases the formulation of ontologies on

Web technologies for content description – XML and RDF
[28]; i.e. the Semantic Web and Web Services share XML
technology as the basic layer. Web ontologies can be defined
in DAML+OIL – an ontology language rich in description
primitives based on XML and RDF/RDF Schema [8].
Formality in the Semantic Web facilitates machine under-

standing and automated reasoning. DAML+OIL is equiv-
alent to a very expressive description logic [13, 3]. This
fruitful connection provides well-defined semantics and rea-
soning systems. Description logics provide a range of class
constructors to describe concepts. Axioms express subsump-
tion, equivalence and other properties. Decidability and
complexity issues – important for the tractability of the tech-
nique – have been studied intensively in the description logic
community. Moreover, tools for reasoning exist.

3.2 Ontologies for Software Development
Two ontologies are important for the Web component con-

text:

• Application domain ontologies describe the domain of
the software application under development.

• Software ontologies describe the software development
entities such as services.

The need to create a shared understanding for an application
domain is long recognised. Client, user and developer of a
software system need to agree on concepts for the domain
and their properties. Domain modelling is a widely used
requirements engineering technique.
With the emergence of distributed software development

also the need to create a shared understanding of software
entities and development processes arises. We will present
basic elements of a software ontology formalising Web ser-
vices development, in particular providing the crucial match-
ing support for Web service processes.
Some effort has already been made to exploit Semantic

Web and ontology technology for the software domain [24,
10, 23]. DAML-S [9] is a DAML+OIL ontology for describ-
ing properties and capabilities of Web services. DAML-S
represents services as classes (concepts). Knowledge about
a service is divided into two parts. A service profile is a class
that describes what a service requires and what it provides,
i.e. external properties. A service model is a class that de-
scribes properties that concern the service implementation.
DAML-S relies on DAML+OIL subsumption reasoning to
match requested and provided services.

4. SERVICE PROCESS DESCRIPTION AND
MATCHING

Description and matching are design activities. We cap-
ture the foundations of this stage in form of a process model
focussing on the process aspects of service compositions.

4.1 Process Expressions and Interpretation
Languages such as WSFL and WSCL provide means to

define execution constraints between services of a process,
i.e. define control flow and determine the execution order.

Definition 4.1. Service process expressions, or pro-
cesses are inductivley formed based on a set of basic pro-
cess names, named process expressions, and the combina-
tors sequence ; , parallel composition | , non-deterministic
choice + , and iteration ! . A named process expression
P (s1, . . . , sk) is defined by a service process expression on
based services s1, . . . , sk and the combinators, i.e. expres-
sions such as P = s1; s2;Q can be used1. We often use the

notation P
s1;s2−→ Q for this expression to emphasise the state

transition character.

The process definition is recursive. Based on basic processes
(which are Web services), composite services can be defined.
We prefer to use the term process rather than service here.

Example 4.1. We can specify a business process for an
online ordering system2:

Ordering =
Login; !(Catalog + Quote); Purchase

We can assume an iterated non-deterministic choice of ser-
vices as the most general, unconstrained case. Without ex-
plicit constraints, any of the services can be executed repeat-
edly. For a process P based on individual services s1, . . . , sk

we define a default process !(s1 + . . . + sk).
To support matching of requested and provided processes

is our main goal. Import process patterns describe how a
client process expects to use imported services. Export pro-
cess patterns describe how provided processes have to be
used. It can be the case that a client does not need all
elements of a business process that are provided.
Processes are composed of individual services. Each of

these services is a state transition, i.e. transforms a state of
an underlying system into another. The process expressions
shall therefore be interpreted in Kripke transition systems
KTS [15], a form of labelled transition systems.

Definition 4.2. Assume a KTS {S, L, T, I} consisting of
a set of states S, a set of action labels L, a transition re-
lation T on S, and an interpretation I as the semantic
structure.

Services P are interpreted as transition relations P I ∈
T on S×L×S. Sequential composition executes one process
after the other; the choice operator chooses one process non-
deterministically; the iteration iterates the process a non-
deterministically choosen (finite) number of times; and par-
allel composition executes both processes.

1We often drop the list of constituent basic process names.
2The example we use throughout this paper is taken from
[1].

4.2 Data and Process Interaction
The service process expressions defined so far focus on the

control flow, i.e. the execution order. Essential in modelling
business processes is to add data flow, i.e. the transfer of
data between activations of individual services.
Web Services are connected through a network. The net-

work endpoints that represent services are called ports – ser-
vice names will act as port names. Services (and their ports)
can be receivers and senders of data, i.e. read from or write
to communication channels set up between the ports.

Definition 4.3. Assume a service port s and a data item
x. Then, s(x) is the receive action and s〈x〉 is the send
action.

For example, the expression Quote〈prod〉; Quote(price) asks
a service Quote for a quote for product prod and receives
the price price in the following action. Data flow inter-
nally between services, such as the flow of x in the process
s1(x); s2〈x〉, shall not be specified explicity.

Definition 4.4. An interaction is the activation of a
remote service. Two forms shall be provided:

• request-response: for each service s in a service process
expression P a write-read sequence s〈x〉; s(y) where y
is the returned result from an external service.

• execute-reply: for each service s in a service process
expression P a read-write sequence s(x); s〈f(x)〉 where
f is some internal service functionality.

These interactions are the basic building blocks of the pro-
cess life cycle – see Section 6.
All services names in a process expression need to be

bound to a concrete service that can execute the service
functionality. Finding suitable services that match each in-
dividual service requirements and managing the connections
is part of the interaction model.

4.3 Matching of Service Processes
The specification of service processes describes the order-

ing of observable activities of a process. Process calculi
such as the π-calculus theory [25] introduce the notion of an
experiment to describe observable behaviour of processes.
This notion coincides technically with the notion of process
descriptions. We will use a notion of simulation between
processes to define process matching between requestor and
provider. The requested process is the input process pattern
that the client expects the provider to support.

Definition 4.5. A provider process P matches a reques-
ted process R if there exists a binary relation S over the set
of processes such that if whenever RSP and R

m−→R′ then
there exists P ′ such that P

n−→P ′ and R′SP ′. We also say
that P simulates R3.

The provider needs to be able to simulate the request, i.e.
needs to meet the expected request pattern of the client.
However, this is not a bisimulation – irrelevant elements in
the provider process are not permitted. Dynamic binding
of concrete services to the service names is possible. The

3The form of this definition originates from the simulation
definition of the π-calculus, see e.g. [25].

matching definition is about potential interaction. The def-
inition implies that the association between n and m is not
fixed. For a given requested service, in principle several
different provider services can provide the actual service ex-
ecution during the process execution.

Example 4.2. The provider provides a service process

Login;!(Catalog+Quote);Purchase

and the requestor expects support of the process

!(CatalogBrowse+QuoteProd);ProdPurch

If the pairs Catalog/CatalogBrowse, Quote/QuoteProd, and
Purchase/ProdPurch match based on their individual service
descriptions – we deal with this type of matching later –, then
the provider matches (i.e. simulates) the requested process.

5. AN ONTOLOGY FOR DESCRIPTION AND
MATCHING

5.1 Ontologies for Web Services and Processes
Ontologies are formal frameworks that provide knowledge

description and reasoning techniques.
The starting point in defining an ontology is to decide

what the basic ontology elements (concepts and roles) rep-
resent. Here, the ontology shall formalise a state-transition
based software system and its specification.

Definition 5.1. Concepts are classes of objects with the
same properties. Concepts are interpreted by sets of objects.
Individuals are named objects. Concepts represent soft-
ware system properties in this context.

Systems are dynamic. Descriptions of properties are inher-
ently based on underlying notions of state and state change.

Definition 5.2. Roles in general are relations between
concepts. Here, they shall represent two different kinds of
relations. Transitional roles represent services in form of
accessibility relations on states, i.e. they represent services
resulting in state changes. Descriptional roles represent
properties of a state such as pre- and postconditions or in-
variant descriptions like service name and description.

The roles types will turn out to be essential for the matching
support for the two different models. Transitional roles are
important for process model based matching. Descriptional
roles are important for interaction model based matching.

Definition 5.3. Constructors are part of ontology lan-
guages that allow more complex concepts to be constructed
in form of concept descriptions. Classical constructors
include conjunction � and negation ¬. Hybrid constructors
are based on a concept and a role – we present these in a
description logic notation. The constructor ∀R.C – called
value restriction – is interpreted based on either an acces-
sibility relation R to a new state C for transitional roles, or
on a property R satisfying a constraint C for descriptional
roles. The dual ∃R.C is called existential quantification.

In Fig. 1, the service process ontology is shown. The state
concept shall be introduced as an abstract concept that is de-
scribed in terms of elements of auxilary domains through de-
scriptional roles such as invariant and mutable state proper-
ties (formal conditions, textual descriptions, etc.). The two

essential concepts are pre and post, which denote abstract
pre- and post-states for service/process transitions. preCond
and postCond describe states in terms of conditions. For
example, ∀postCond.valid(id) specifies a postState by as-
sociating a postcondition valid(id). ∃serv.postCond.true
characterises a preState through a transitional role by stat-
ing that there is a service serv that can be executed such
that the postcondition becomes true – which is a termina-
tion statement.
We interpret concepts and roles in Kripke transition sys-

tems. These are semantic structures used to interpret modal
logics that also suffice to interpret description logics.

Definition 5.4. Assume a Kripke transition system (see
Def. 4.2). Concepts are interpreted as sets of states. Tran-
sitional roles are interpreted as accessbility relations. De-
scriptional roles are interpreted as relations involving other
concept domains.

Description logic as the underlying logic of the Semantic
Web is particularly interesting for the software engineering
context due to a correspondence between description logic
and dynamic logic (a modal logic of programs) [26]. This
correspondence is based on a similarity between quantified
constructors (expressing quantified relations between con-
cepts) and modal constructors (expressing safety and live-
ness properties of programs). Modal logics such as dynamic
and temporal logics have been widely used to specify prop-
erties of dynamic and reactive systems.
The formality of the framework allows various logic-based

inference and analysis methods to be used. In [22], we in-
troduced a notion of consistency addressing reachability of
states for process expressions. We presented criteria for con-
sistency. Deadlock detection techniques can be used to dis-
cover mutual dependencies between processes [5].
In the remainder of this section we illustrate how matching

of services processes can be represented in a description logic
that underlies a Web ontology language.

5.2 A Matching Ontology for Service Processes
We introduced the representation of services in a descrip-

tion logic-based ontology. An ontology that captures service
processes and their matching, however, requires an extension
of classical description logics [3]. So far, roles – that repre-
sent services – are atomic; role constructors to represent
service processes have not been provided.

Definition 5.5. We define the combinators ’;’ , ’!’ , ’|’
and ’+’ as role constructors for sequential composition,
transitive closure (iteration), intersection (parallel compo-
sition without interaction), and union (non-deterministic
choice), respectively4. We also use ◦ for sequential com-
position to emphasise the functional character of roles.

These role constructors allow us to integrate process descrip-
tion and matching into an ontology framework. A descrip-
tion logic expression such as

∀ !(Catalog+Browse);Purchase . postState

is now permitted. We can utilise dynamic logic axioms to
reason about process expressions [15].

4Usually, the constructors R ◦ S, R+, R ∩ S, and R ∪ S are
used instead, see [3].

Service

Cond

Sign inv Sign

Cond

postpre

outSign

postCond

inSign

preCond

servDescrservName
LiteralLiteral

...

Figure 1: Service Process Ontology

Proposition 5.1. The following are axioms for the quan-
tified constructors: (i) ∀R.∀S.C ⇔ R ;S.C , (ii) ∀R.C�D ⇔
∀R.C � ∀R.D , (iii) ∀R S.C ⇔ ∀R.C ∀S.C .

We need to integrate data and process parameters. We
introduce data in form of names. Names stand for individual
data elements. An individual x described by a concept C(x)
is interpreted by an element of an underlying state.

Definition 5.6. We denote a name n by a role n[Name],
interpreted by an identify relation {(nI , nI)} for the inter-
pretation nI of n. A parameterised role is a transitional
role R applied to a name n[Name], i.e. R ◦ n[Name]5.

Example 5.1. For a transitional role Login and a de-
scriptional role postCond, the expression

∀Login ◦(id,passwd).∀postCond. valid(id)
means that by executing Login◦(id,passwd) a post-state can
be reached that is described by a postcondition valid(id).
The term Login ◦(id,passwd) is a composite role expression
in which the identifiers id and passwd are constant roles
(names).

Earlier on, we distinguished input and output actions,
s(x) and s〈x〉, respectively. These are important for the
interactions with actual providers of services. Since match-
ing of processes is here only concerned with control flow
patterns, we ignore this distinction here, i.e. the composite
role s ◦ x abstracts both s(x) and s〈x〉.
The description logic formula from example 5.1 corre-

sponds to a dynamic (modal) logic formula

[Login(id,passwd)][postCond()] valid(id)

The correspondence allows us to integrate modal axioms and
inference rules about processes into description logic.
Subsumption is the central inference technique in descrip-

tion logic.

Definition 5.7. Subsumption C1 � C2 of concepts is
the subset-relationship CI

1 ⊆ CI
2 of the corresponding object

classes. Equally, we define subsumption for roles R1 � R2

as subsets of the corresponding relations RI
1 ⊆ RI

2.

Subsumption reasoning is supported by various axioms.

Proposition 5.2. For concepts C1 and C2 the following
axioms hold: (i) C1 � C2 � C1, (ii) C1 ∧ C2 → C1, (iii)
C2 → C1 implies C2 � C1. Analogously for roles.
5We often drop the [Name]-postfix when it is clear from the
context that a name is referred to.

We will now define service process matching.

Definition 5.8. A process P (n1, .., nk) matches a pro-
cess R(m1, .., ml), if P (n1, .., nk) simulates R(m1, .., ml).

Subsumption on roles is input/output-oriented, whereas the
simulation needs to consider internal states of the composite
role execution. For each request in a process, there needs to
be a corresponding provided service. However, matching is
a sufficient condition for subsumption.

Proposition 5.3. If the process expression P (n1, . . . , nk)
simulates the process R(m1, . . . , ml), then R � P .

6. MATCHING, CONNECTION AND INTER-
ACTION

Description and matching are design activities. Essential
is, however, the support of the full process life cycle. Binding
individual service names to existing services, i.e. composing
a process instance and executing this instance are as impor-
tant as description and matching.
The foundations of these aspects will be given in form of

an interaction model that describes bindings, connections,
and interactions between services. We extend the matching
ontology from Section 5 by life cycle-specific rules.

6.1 Process Life Cycle
Each service port s in our process model is actually a fam-

ily of ports sC , sI , sR that address the needs of the different
life cycle stages. Port sC is a contract port, representing
an interface that captures abstract properties. sI and sR

are connector ports for interaction – sI handles the service
invocation and input and sR handles the service reply.

Definition 6.1. We express the service life cycle in an
annotated process notation – for the requestor:

Req sC〈sI〉.!(Inv sI〈a, sR〉.Res sR(y).0)

with annotations for requesting, invoking, and result. Dual
to the requestor view there is a provider view:

Pro sC(sI).!(Exe sI(a, sR).Rep sR〈f(a)〉.0)
with annotations for providing, executing and replying.

In the requestor view, Req sC〈sI〉 is an annotated output
action of service s. A process or service can request Req
a service using contract port sC . Connector port references
sI and sR are subsequently sent for further interactions.

Port types capture properties of a service. If matching
between a requestor port type and a provider port type is
successful, then a requestor can interact with the provided
service repeatedly, expressed using iteration, i.e. it would
invoke Inv the service at port sI and receive a result Res at
port sR. The annotations characterise the role of the ports
in the life cycle. Each of the individual services of a process
goes through the three-port cycle.
Matching and composition activities are captured in a

standard life cycle form, which represents a composition and
interaction protocol. Clients C are parameterised by their
required services. Requests have to be satisfied before any
interaction can happen. Once a connection is established, a
service can be used several times. All service requests need
to be satisfied – expressed by a parallel composition | of
individual ports:

C(m1, . . . , ml)
def
=

Req m1
C〈m1

I〉.!(Inv m1
I〈a1, m1

R〉.Res m1
R(y

1).0)
| . . . |
Req ml

C〈ml
I〉.!(Inv ml

I〈al, ml
R〉.Res ml

R(y
l).0)

Service providers P need to be replicated (!) in order to deal
with several clients at the same time:

P (n1, . . . , nk)
def
=

!(Pro n1
C(n

1
I).!(Exe n1

I(y
1, n1

R).Rep n1
R〈b〉.0)

+ . . . +

Pro nk
C(n

k
I).!(Exe nk

I (y
k, nk

R).Rep nk
R〈b〉.0))

Providers do not need to engage in interactions with all their
ports – modelled by using the choice operator + instead of
the parallel composition | of client services.
Clients and servers are composed in parallel to form a sys-

tem. A process is often both client and provider of services.
Requirements Req mi

C〈mi
I〉 (i = 1, .., l) have to be satisfied

and connectors have to be established, before any service
Pro nj

C(n
j
I) (j = 1, .., k) can be provided.

6.2 Service Connection and Interaction
Composition consists of two activities: matching and con-

nection. Successful matching can result in a connection be-
tween services. So far, we have been looking at matching
of abstract process descriptions, resulting in a support tech-
nique formalised as a matching ontology. We now focus on
the computational side of compositions. The connection of
matching services shall now be formalised using an opera-
tional semantics.
In the composition process we can distinguish a contract

phase where both process instances try to form a contract
based on abstract descriptions. The connection phase es-
tablishes a connector channel for interaction between the
services. We will capture contract and connector establish-
ment in form of transition rules – Fig. 2.
For a composition mC〈mI〉.C|nC(nI).P of a client and a

provider, both processes commit themselves to a communi-
cation along the channel between ports mC and nC , if their
specifications match. A contract rule formalises the process
of matching and commitment, see Fig. 26. We will explain

6The contract rule differs from the π-calculus reaction rule
which requires channel names to be the same [25]. We only
require a subtype relationship between ports. Type systems
for the π-calculus usually constrain data that is sent; we
constrain reaction, i.e. the interaction between agents.

the details of the type-notion in the next section. The arrows
→ denote state transitions of the individual processes, either
through observable actions x〈y〉 and x(y) or through silent,
non-observable interactions τ . We define a composition C�P
by νc({c/mI}C|{c/nI}P)7 where c represents a private channel
– the connector, that replaces the port names for the inter-
action. The composition yields a proper process – based on
two service processes composed in parallel. The synchroni-
sation and interaction between the processes is guarded by
type-based matching constraints.

Example 6.1. The user requires a service (annotation
Req) through port QuoteC and the server provides a service
(annotation Pro) through port QuoteProdC :

Req
def
= Req QuoteC〈QuoteI〉.Req′

Pro
def
= Pro QuoteProdC(QuoteProdI).Pro

′

A connector is created if a client requesting mI invokes a
service nI at the server side, described by the connector rule,
see Fig. 2. Parameter data a and a reply channel mR are
sent to the provider. The types typeC(mI) and typeC(nI)
represent the connector activation types.

Example 6.2. The composition of Pro’ and Req’ cre-
ates a connector that allows the client to use a service, e.g.
QuoteProd, provided by the server.

Req′
def
= Inv QuoteI〈pid〉.Req′′

Pro′
def
= Exe QuoteProdI(x).Pro

′′

The requestor can invoke (Inv) a service through the inter-
action port QuoteI , which will trigger the execution (Exe)
of QuoteProdI with parameter pid by the server.

6.3 Ontology Support for Interaction
We have formulated the operational semantics of inter-

action in form of process calculus-style reaction rules. In
terms of the ontology, services were so far described as tran-
sitional roles and we considered system states that describe
service (and process) properties such as pre- and postStates
to define input/output behaviour.
We will now formalise composition and interaction in the

ontology through inference rules. In order to address inter-
action in the ontological framework, we need to look at a
special kind of a parallel composition transition. This tran-
sition is based on the synchronisation of concurrent services
through data exchange. Usually, a special form of transition
– here denoted by τ – is used to denote this synchronisation.
We can characterise properties of these interactions be-

tween two services, here a reformulation of the contract rule
without annotations and matching constraints,

mC〈mI〉.pmC

mC〈mI〉−→ pmC nC(nI).pnC

nC(nI)−→ pnC

mC〈mI〉.pnC +M1|nC(nI).pnC +M2
τ−→ pmC�pnC

in terms of the ontology language by an inference rule:

∀ mC ◦ mI . postmC ∀nC ◦ nI . postnC

∀ mC ◦ mI |nC ◦ nI . postmC �postnC

This inference rule complements other process constructor
specific axioms and rules that we can derive from dynamic
logic and process calculi, see Prop. 5.1 and Def. 5.8 These

7The substitution {b/a}P means that b replaces a in P .

(a)
Req mC〈mI〉.C mC〈mI〉−→ C Pro nC(nI).P

nC(nI)−→ P

Req mC〈mI〉.C+M1|Pro nC(nI).P+M2
τ−→ C�P

〈 type(nC)≤ type(mC)

(b)
Inv mI〈a, mR〉.C mI〈a,mR〉−→ C Exe nI(x, nR).P

nI (x,nR)−→ P

Inv mI〈a, mR〉.C +M1|Exe nI(x, nR).P +M2
τ−→C�{a/x}P

〈 type(nI) ≤ type(mI)

Figure 2: Contract Rule (a) and Connector Rule (b)

axioms and inference rules form an application-specific ex-
tension of description logic that allow us to infer more prop-
erties about service processes and their interactions.

7. SEMANTIC SERVICE MATCHING
The remaining issue is matching of individual services for

service-level interactions, which we will capture in the in-
teraction model. The description of services should include
behavioural aspects (e.g. pre- and postconditions), but also
non-functional descriptions such as the author or a descrip-
tion – see Fig. 1. We focus on abstract behaviour here.
DAML-S [9] is an example of an ontological framework

that supports matching of semantically described services.
Our approach, however, is different from DAML-S. We dis-
cuss this difference in more detail in Section 8. We present
an integrated and coherent framework that includes service
process description and matching. Based on the correspon-
dence with dynamic logic, our reasoning about services and
processes is improved.

7.1 Semantic Service Description
The basic WSF building blocks are ports, which represent

services. WSF port types define services based on input and
output messages. Services, however, should be described by
various properties – functional and non-functional – such
as author, signatures, and abstract behaviour. We extend
the WSF port type specification by contractual information
capturing service semantics.

Definition 7.1. Port types describe the expected capac-
ity (the kind of entities that can be sent): type(sC) is a
contract type for a contract port including a pre- and a post-
condition8, type(sI) of connector port sI is a function type
consisting of parameter types for data and reply channel.

We use pre- and postconditions as abstractions for ports
[29], enabling the design-by-contract approach [18]. Dy-
namic logic is a suitable logical framework that subsumes
pre- and postcondition specification [15]. This is one of the
reasons why the connection between description logic and
modal logic is so important in this context.

Example 7.1. A requirements specification of a service
user for a Login service:

service Login(id:ID,passwd:Pass)

pre syntaxOK(id)

post valid(id) ∨ invalid(id) ∨ unknown()

8More aspects, e.g. signatures or invariants, would need
to be considered in a complete and comprehensive treat-
ment. Signatures, for example, could determine the struc-
tural compatibility of port types.

A service provider specification for a UserLogin service:

service UserLogin(id:ID,passwd:Pass)

pre true

post valid(id) ∨ invalid(id)

We have used a simple contract idea here to illustrate
the technique; in practice a more advanced variant might
be used [32]. Preconditions constitute provision declara-
tions rather than requirements for the client. Consequently,
clients often do not specify them in their strongest form.

7.2 Matching of Interacting Services
We can express service contracts in dynamic logic, e.g.

syntaxOK(id) → [Login(id,passwd)] valid(id), using the
modal box operator for this safety condition. If the pre-
condition syntaxOK(id) holds, then Login can be executed
such that a postState satisfying valid(id) can be reached.

Definition 7.2. Two services described by pre- and post-
conditions and represented by contract ports nC and mC

match, expressed typec(nC) ≤ typec(mC), if the precon-
dition is weakened and the postcondition strengthened.

This definition is derived from an inference rule of the dy-
namic logic – the consequence rule CONS – which expresses
refinement of programs [15, 32].

Example 7.2. The provided service UserLogin matches
the requirements of Login in Example 7.1. UserLogin has
a weaker, less restricted precondition (syntaxOK(id) im-
plies true) and a stronger postcondition (the disjunction
valid(id)∨invalid(id) implies valid(id)∨invalid(id)∨
unknown(). This means that the provided service satisfies
the requirements; it is even better than requested.

Another reason to choose dynamic logic as the framework
for functional properties is to exploit the logic’s expressive
power to specify both safety and liveness properties of pro-
cesses and their interactions. Dynamic logic is a rich frame-
work – we have used only one simple rule here.

Example 7.3. We can express that after executing the
login service, a product will eventually be purchased,

[Login(id,passwd)]〈Purchase(prod)〉 true
combining safety ([. . .]φ) and liveness (〈. . .〉ψ) properties.

7.3 Ontologies
A service is functionally specified through pre- and post-

conditions. Matching of services has been defined in terms of
implications on pre- and postconditions, and has been rep-
resented as a subtype relation between the contract ports.

Subsumption � is the central reasoning concept in de-
scription logics, i.e. we need to integrate reasoning about
services matching into this approach. Subsumption is here
interpreted as a subset relationship on sets of states that sat-
isfy pre- or postState descriptions. We present an inference
rule for subsumption of transitional roles that can be proved
correct through a subset relationships on sets of states.

Definition 7.3. We define the matching inference rule

∀preCond.preP � ∀P.∀postState.postP

∀preCond.preR � ∀R.∀postState.postR
〈 preP � preR,

postR � postP

for transitional roles9 P and R.

The modal CONS-rule, used in dynamic logic to express
refinement of programs, serves here to derive this rule.

Proposition 7.1. The matching rule for services defined
in Definition 7.3 is sound.

Matching implies subsumption, but is not the same. Match-
ing of services is a sufficient criterion for subsumption.

Proposition 7.2. If service P matches R, then P � R.

If pre- and postconditions represent application domain-
specific formulas, e.g. valid(doc), then an underlying domain-
specific theory, which could be provided by an application
domain ontology, is needed. Even though description logics
can form the core of a matching ontology, in our context
description logic reasoning might need to be combined with
reasoning in other formal theories.

8. RELATED WORK
Some frameworks for advanced services architectures on

the Web have already been proposed. Fensel and Bussler
[11] present a framework for Web-based services, called Web
Services Modelling Framework (WSMF). The development
of the framework focussing on the integration of semantic
Web technology is in progress. The issue of composed Web
services is addressed in WSFL [16]. Business processes and
interactions are the two types of processes that result in the
composition of services. We took this language as the start-
ing point to integrate formal foundations into the Web Ser-
vices context. DAML-S [9] provides to some extend for Web
services what we aim at for Web service processes. However,
the form of reasoning and ontology support that we provide
here is not possible in DAML-S, since services are modelled
as concepts and not rules in the DAML-S ontology. Only
considering services as roles makes modal reasoning about
process behaviour possible in a description logic framework.
[19] investigates the composition of Web services within the
DAML-S context. Composite processes descriptions are in-
tegrated into PSL – the Process Specification Language – an
ontology for process specifications formalised in the situation
calculus, which is used to represent dynamically changing
worlds.
Software architecture addresses problems that arise when

systems are constructed from components. Components are
identified as primary points of computation and connectors
define interactions between the compoments. Darwin [17]
is a structural configuration language that allows to specify

9Descriptional roles are treated in the usual style.

the architecture of distributed and interacting component-
based systems. The language Wright [2] addresses similar
problems. This coincides with our aim to support process
composition and interaction. A basic component model un-
derlies the WSF [7]. The authors state that strengthening
the component aspect in WSF will improve the framework
– our composable service processes are a first step in this
direction.
A formally defined model for Web service processes is es-

sential if analysis and reasoning services based on semantic
descriptions shall be provided. In [21, 22], we have presented
a formal framework for component composition based on a
typed process calculus targeting a component model similar
to that of basic services. Typed process models to formalise
interaction have also been used elsewhere. Nierstrasz [20]
develops a formal type-theoretic framework for objects. Ob-
jects are characerised as regular processes that interact with
each other. Similar to our two models, a two-layered type
system distinguishes services types (contracts) and regular
types (protocols). Two subtype notions – based on services
types and regular types – define a notion of satisfiability
between client and provider. The orthogonality of the two
forms of types is emphasised.

9. CONCLUSIONS
A developer of services and service processes needs com-

position techniques, i.e. needs support to discover, match,
and integrate existing services and processes into a service
process under development. We have presented composi-
tion techniques for semantic Web service processes that are
interoperable with current Semantic Web technology. Our
matching and connection techniques are based on rigorous
foundations that provide precise semantics and allow reason-
ing about properties of service processes. We can summarise
our results as a two-layered approach:

• An upper, abstract layer supports matching techniques.
Our central achievement is the integration of descrip-
tion and matching techniques – addressing process prop-
erties and interaction patterns – into a description
logic-based ontology, utilising a correspondence between
description logics and dynamic logic to encode pro-
gram logic principles in description logic.

• A lower layer describes full details of the life cycle
stages and interactions of process instances. It con-
sists of observable behaviour of services, abstracted by
dynamic logic , which is incorporated into the onto-
logical framework through inference rules. This is an
essential foundation for structural configuration tasks
in a Web middleware architecture.

We have developed an ontological framework for Web ser-
vice processes based on classical formalisms such as process
calculi and modal logics. We have exploited links and sim-
ilarities between them and description logic, which allowed
us to integrate results from these rich areas into the service
process ontology.
The example we used here is taken from [1]. We feel that

it illustrates the support that our framework can provide for
describing, matching, and composing service processes.
An important characteristics is the adherence toWeb stan-

dards, which provides interoperability with Web techniques
and tools, and increases the acceptance. The combination

of a software ontology with application domain ontologies
makes this even necessary. Another important aspect is the
need for a high degree of formality. The Semantic Web will
incorporate logic and reasoning, aiming at automation and
unambiguous shared understanding.
Some questions have remained unanswered. We have used

a very expressive description logic – which requires more in-
vestigations into decidability and complexity. Besides these
fundamental questions, practical aspects such as broker ar-
chitectures and tools need to be addressed.

10. REFERENCES
[1] A. Banerji et.al. Web Services Conversation Language.

http://www.w3.org/TR/wscl10/, 2003.

[2] R. Allen and D. Garlan. A Formal Basis for
Architectural Connection. ACM Trans. on Software
Engineering and Methodology, 6(3):213–249, 1997.

[3] F. Baader, D. McGuiness, D. Nardi, and P.P.
Schneider, editors. The Description Logic Handbook.
Cambridge University Press, 2003.

[4] T. Berners-Lee, J. Hendler, and O. Lassila. The
Semantic Web. Scientific American, 284(5), May 2001.

[5] A. Brogi, E. Pimentel, and A.M. Roldán.
Compatibility of Linda-based Component Interfaces.
In A. Brogi and E. Pimentel, editors, Proc. ICALP
Workshop on Formal Methods and Component
Interaction. Elsevier Electronic Notes in Theoretical
Computer Science, 2002.

[6] I. Crnkovic and M. Larsson, editors. Building Reliable
Component-based Software Systems. Artech House
Publishers, 2002.

[7] F. Curbera, N. Mukhi, and S. Weerawarana. On the
Emergence of a Web Services Component Model. In
Proc. 6th Workshop on Component-Oriented
Programming WCOP’01. 2001.

[8] DAML Initiative. DAML+OIL Ontology Markup.
http://www.daml.org, 2001.

[9] DAML-S Coalition. DAML-S: Web Services
Description for the Semantic Web. In I. Horrocks and
J. Hendler, editors, Proc. First International Semantic
Web Conference ISWC 2002, LNCS 2342, pages
279–291. Springer-Verlag, 2002.

[10] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker.
Semantic Configuration Web Services in the
CAWICOMS Project. In I. Horrocks and J. Hendler,
editors, Proc. First International Semantic Web
Conference ISWC 2002, LNCS 2342, pages 279–291.
Springer-Verlag, 2002.

[11] D. Fensel and C. Bussler. The Web Services Modeling
Framework. Technical report, Vrije Universiteit
Amsterdam, 2002.

[12] M. Gruninger and J. Lee. Ontology – Applications
and Design. Communications of the ACM,
45(2):39–41, Feb 2002.

[13] I. Horrocks, D. McGuiness, and C. Welty. Digital
Libraries and Web-based Information Systems. In
F. Baader, D. McGuiness, D. Nardi, and P.P.
Schneider, editors, The Description Logic Handbook.
Cambridge University Press, 2003.

[14] H. Kim. Predicting How Ontologies for the Semantic
Web Will Evolve. Communications of the ACM,
45(2):48–54, Feb 2002.

[15] Dexter Kozen and Jerzy Tiuryn. Logics of programs.
In J. van Leeuwen, editor, Handbook of Theoretical
Computer Science, Vol. B, pages 789–840. Elsevier
Science Publishers, 1990.

[16] F. Leymann. Web Services Flow Language (WSFL
1.0), 2001. http://www-4.ibm.com/software/
solutions/webservices/pdf/WSFL.pdf.

[17] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer.
Specifying Distributed Software Architectures. In
W. Schäfer and P. Botella, editors, Proc. 5th European
Software Engineering Conf. (ESEC 95), volume 989,
pages 137–153. Springer-Verlag, 1995.

[18] Bertrand Meyer. Applying Design by Contract.
Computer, pages 40–51, October 1992.

[19] S. Narayanan and S.A. McIlraith. Simulation,
Verification and Automated Composition of Web
Services. In Proc. World-Wide Web Conference
WWW’2002. ACM, 2002.

[20] Oscar Nierstrasz. Regular types for active objects. In
Proceedings OOPSLA ’93, ACM SIGPLAN Notices,
pages 1–15, October 1993.

[21] C. Pahl. A Formal Composition and Interaction
Model for a Web Component Platform. In A. Brogi
and E. Pimentel, editors, Proc. ICALP Workshop on
Formal Methods and Component Interaction. Elsevier
Electronic Notes in Theor. Computer Science, 2002.

[22] C. Pahl. An Ontology for Software Component
Matching. In Proc. Fundamental Approaches to
Software Engineering FASE’2003. Springer-Verlag,
LNCS Series, 2003.

[23] M. Paolucci, T. Kawamura, T.R. Payne, and
K. Sycara. Semantic Matching of Web Services
Capabilities. In I. Horrocks and J. Hendler, editors,
Proc. 1st Int. Semantic Web Conference ISWC 2002,
LNCS 2342, pages 279–291. Springer, 2002.

[24] J. Peer. Bringing Together Semantic Web and Web
Services. In I. Horrocks and J. Hendler, editors, Proc.
First International Semantic Web Conference ISWC
2002, LNCS 2342, pages 279–291. Springer, 2002.

[25] D. Sangiorgi and D. Walker. The π-calculus - A
Theory of Mobile Processes. Cambridge University
Press, 2001.

[26] K. Schild. A Correspondence Theory for
Terminological Logics: Preliminary Report. In Proc.
12th Joint Conference on Artificial Intelligence. 1991.

[27] C. Szyperski. Component Software: Beyond
Object-Oriented Programming – 2nd Ed.
Addison-Wesley, 2002.

[28] W3C Semantic Web Activity. Semantic Web Activity
Statement, 2002. http://www.w3.org/sw.

[29] J.B. Warmer and A.G. Kleppe. The Object Constraint
Language – Precise Modeling With UML.
Addison-Wesley, 1998.

[30] World-Wide Web Conference WWW’2003. Semantic
Web Services Panel. ACM, 2003.

[31] World Wide Web Consortium. Web Services
Framework. http://www.w3.org/2002/ws, 2003.

[32] A. Moorman Zaremski and J.M. Wing. Specification
Matching of Software Components. ACM Trans. on
Software Eng. and Meth. 6(4):333–369. 1997.

