Provided by DCU Online Research Access Service

Metadata, citation and similar papers at core.ac.uk

A High-Speed Router Featuring Minimal Delay Variation

Martin Collier
Research Institute for Networks and Communications Engineering (RINCE)
Dublin City University
Dublin 9 Ireland
collierm@rince.ie

Abstract-This paper describes a technique for implementing
the switch fabric of a high-speed router (with a throughput in
excess of 600 Gb/s based on the current state of the art), with
the following properties. Delay performance is virtually
identical to that of a standard output-buffered switch, and the
switch fabric preserves packet sequence, so that no
resequencing is required for segmented packets. Clock rates are
moderate except at ingress and egress points. This is achieved
by distributing traffic across a number of crossbar switches
operating at a low bit rate. The techniques used to resolve
contention in the crossbar switches are described, and the
bottlenecks limiting the capacity of the switch are discussed.

I. INTRODUCTION

The exponential growth in Internet traffic has led to a
demand for core routers of ever increasing capacity. Meeting
this demand has required innovations to ensure that packets
flow through the router at “wire speed”. One of the major
challenges is to design the switch fabric used in the router to
support ever-increasing bit rates.

A typical switch fabric in today’s routers segments IP
packets into fixed-length cells and routes the cells using a
shared-bus, output-buffered architecture. The choice of
fixed-length cells simplifies the switch fabric design, and
allows the use of switching chip-sets originally designed for
ATM. The architecture does not scale well, and recent high-
speed switching fabrics have utilised an input-buffered
crossbar architecture, featuring Virtual Output Queuing so as
to provide a throughput (as a fraction of link speed) similar
to that of an output-buffered switch [1-2].

Such switches offer an increased throughput (in bits/sec)
compared to the earlier designs because the incoming traffic
is not all multiplexed onto a common bus. However,
scalability is still poor, and the queuing discipline used will
typically increase packet delay variation compared to output
buffered schemes, as well as making it difficult to implement
per-flow queuing for performance guarantees.

An architecture for the switch fabric is presented in this
paper which offers higher capacity than an input-buffered
crossbar switch, whilst featuring negligible buffering at the
inputs. It distributed traffic across a number of switch planes,
but avoids the possibility of packet re-ordering which can
have an adverse impact on network performance [3].

0-7803-6711-1/01/$10.00 (C) 2001 IEEE

312

#1

#m

Fig. 1. The high-speed router.

II. ARCHITECTURE

The switch fabric is shown in Fig. 1. It features N inputs
and outputs, each operating at a bit rate R. Packets are
assumed to be of fixed length. The traffic from each of the
inputs is demultiplexed across m planes of switching. These
planes operate at a slower bit rate of r. The relevant outputs
of each plane are mulfiplexed together to feed the higher-
speed output at rate R. The concept of using multiple switch
planes like this is not new, and is, for example, being
explored in the Fork/Join Router project at Stanford
University [4]. Indeed, the use of such techniques, where
each switch plane operates independently, is straightforward,
but can give rise to performance problems at the transport
layer [3].

The internal details of the input port are shown in Fig. 2. It
features virtual output queuing — a routing tag associated
with each incoming packet is used to demultiplex the packet

onto the relevant virtual output buffer. The task of
determining the routing tag, using a longest prefix match on
the packet address(IP), or looking up a table indexed by a
label (MPLS) or a VCI (ATM), as well as the segmentation
of variable-length packets, is assumed to occur prior to entry
into the switch fabric, and will not be discussed further here.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:38:34 UTC from IEEE Xplore. Restrictions apply.

https://core.ac.uk/display/11309664?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The concentrator contains a route vector, a table of
outputs, indicating from which virtual output buffer each
switch plane should read a packet. Operation of the switch
fabric is slotted, and the route vector is updated before each
time slot. A scheduling algorithm is thus required to
determine how to select the switch planes through which to
route packets.

This paper addresses the practical issues raised when a
central scheduling algorithm is used to assign packets to the
switch planes. Such an algorithm was used by the author in
his path allocation switch, in the context of ATM switching
[5]. Centrally scheduled operation is normally disparaged in
the context of packet switching because of the shorter
periods over which routing decisions must be made.
However, it will be shown that a switch of considerable
capacity can be practical when using such an algorithm.

III. THE SCHEDULING ALGORITHM.

The algorithm is a version of that presented in [5],
modified to reduce the amount of hardware required. The
scheduling engine comprises an array of NxXm processors,
each of which processes three quantities, viz. Kj;, the number
of packets from input port i requesting output port j, Aj, a
binary quantity indicating if a packet has been scheduled
from input port i via plane p and B, which similarly
indicates whether plane p has been assigned a packet
intended for output port j. In the typical case (as dictated by
practical constraints) where N>m, each processor must
iterate N times through an algorithm whereby it decrements
K and resets A and B if AB=1 (otherwise leaving all
quantities unchanged), then passes the K and B values to
neighbouring processors, whilst retaining A. At the
conclusion of the algorithm, each processor will have
scheduled a packet from at most one virtual output queue.

Fig. 3 shows the internal structure of the processor. An
example of a 4 x 4 scheduling engine is shown in Fig. 4. The
arrows indicate the direction in which the updated K and B
values are passed after each iteration. The array will require
an additional (N-m)xm delay elements for correct operation
when N>m. The two busses shown in Fig. 3 are used to
initialise the array and to extract the routing vectors when
the algorithm has concluded. Details of their operation will
be given at the end of Section IV.

IV. MAXIMUM CAPACITY

Practical considerations will limit the size of router which
can be constructed using the above architecture. It is not
scaleable in the sense of allowing an arbitrarily large-scale

switch fabric to be constructed, although it is large-scale.
The two primary constraints to consider are the following.

o The peak aggregate bit rate which can be supported
on a parallel data bus, denoted T.

e The peak clock rate of circuitry internal to the switch
fabric, denoted C.

Note that the peak throughput achievable with a shared-
bus switch is essentially T assuming the use of dual-ported
memory.

The implications of -these constraints on the size of the
switch fabric shall now be determined.

In reading data from the input ports to the virtual output
buffers, we require
R<T.
In writing data from the virtual output buffers to the
switch planes, we require

rm<T.

R
to scheduling engine
Fig. 2. Input port detail.
stip off
activity bit \
K —3 K} @Z’r Ko
B;, Bou

Destination
counter K Bus

Initial K
register

Value to write ‘Write enable

Fzmuing I
vector entry
—_

R Bus

Fig. 3. Processor internals

In writing data from the switch planes to the output ports,
we require
R<T.

We cannot proceed further without some rationale for
dimensioning the switch fabric. For the moment, we shall

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:38:34 UTC from IEEE Xplore. Restrictions apply.

simply assume that the aggregate capacity of the switch
planes must be double the switch capacity. We shall revisit
this topic in Section VL.

This assumption gives us the additional constraint

Nrm 22NR
or
rm 22R.

Combining these inequalities gives us the constraint
T=zrmz=2R.

Since our goal is to maximise the switch throughput, we
choose the largest possible value for R. Hence

R=T/2. M

We next consider the number of switch planes required.
Each switch plane comprises an unbuffered crossbar switch.
Such a switch can be built with a higher switching capacity
than a shared-bus switch. Let us assume that the maximum
capacity of such a switch is o7 where o>1. Then each switch
plane has capacity

rN=oT
so that
r=cd/N. 2

(Note that, in the case where N<a, r would exceed T. The
switch fabric discussed here is inappropriate in such a case,
and a single input-buffered crossbar should be used.)

Since we require rm>2R, it follows that m is given by
m2=2R/r = TN/oT

or (choosing the minimum value for m)

-~ 6)

It remains to determine the maximum number of switch
ports N. This is based on the constraints imposed by the
operation of the scheduling engine.

The scheduling engine runs for N iterations (assuming
N>m). Let us denote the number of clock cycles required by
each iteration as 1. The value of I depends on how the
processor is implemented. The critical path through the
processor is that where the K value is decremented. A bit-
serial implementation will typically require 1+|—10g2 N_]

cycles. A bit-parallel implementation requires just 1 cycle. A

serial bit-slice approach requires an intermediate number of
clock cycles.

The execution time of the algorithm is thus T, = NI/C
seconds. The duration of a time slot must be no less than the
execution time of the scheduling algorithm'. For maximum
capacity, we will set the two to be equal. Thus the number of
bits which can be transmitted on an internal link of the
switch during one time slot is

ol
FL Vel I-)
We regard these bits as a packet comprising a frame of F
cells, each with a fixed length of L bits. All the cells in a
frame are routed to the same output port. Ideally F = 1.

Note that FL is independent of N for bit-parallel
implementations of the engine.

We can now determine the number of packets which are
received by the input port at peak transmission rate in one
time slot. Clearly this is given by

{24
FL ol 200

The remaining constraints on the scheduling engine are its
overall size (already discussed) and the bit rates required for
input and output. Transmission of initialisation data to and
results from the engine must take place within one time slot

so as to avoid a pipeline stall. The request vector from each
input port comprises P(1+ |—log2 N —]) bits. These are the

routing tags including an activity bit for each of the possible
P packets received. The route vector comprises
m(1+|—log2 N_l) bits, indicating for each of the m planes,

which virtual output buffer to read. Multiplying these values
by 1/T; gives the required clock speed. Thus the clock rates
required are C;, and C,, where

C = PC(+[log, N))
IN
and
c.. = mC(U+[log, N ©)
IN

! Otherwise the throughput of the system is compromised.
However, it is acceptable for the latency of the scheduling
engine (including the time taken to initialise the array via the
request vectors and to delivery the route vectors to the input
ports) to exceed one time slot, since this introduces only a
constant latency in the virtual output buffers.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:38:34 UTC from IEEE Xplore. Restrictions apply.

For a bit-serial implementation these simplify to PC/N and
mCiN respectively.

There is no simple formula for determining the maximum
number of switch ports. We shall consider this problem by
reference to a particular example.

V. ANEXAMPLE.

Consider the constraints T = 10 Gb/s, a=4 and C = 100
MHz, which are representative of today’s state of the art. We
will attempt to design a switch fabric with 64 inputs and
outputs.

It follows that R = 5 Gb/s, r = 625 Mb/s, m = 16, P = 8
and FL = 2800 bits (for a bit-serial implementation) or 400
bits (bit parallel). Also Cj, and Cy are 12.5 (87.5) Mhz and
25 (175) MHz respectively for serial (parallel)
implementation of the scheduling engine.

(In practice, the incoming rate R would be implemented
by multiplexing together two STM-16 streams.)

Why resort to a bit-parallel implementation? It allows the
router to elegantly switch ATM cells. Supporting ATM
requires a minimum L of 424 bits. This requires a frame of 7
cells to be assembled into each packet to meet the 2800 bit
minimum for a bit-serial implementation. This complicates
the design of the input port (since it must accumulate ATM
cells in the virtual output buffers prior to transmission
through the switch fabric) and reduces throughput (if cells
are transmitted in partially filled frames).

The cost of a bit-parallel implementation is that more
gates are required to implement the decrement function, and
that, since C,,, exceeds C, a 2-bit bus is required to transmit
the route vectors internally in the scheduling engine.

The scheduling engine requires 64 inputs and outputs,
3072 1-bit delays (comprising 64 48-bit shift registers) and
1024 processors. Each processor requires less than two
hundred gates [6] even when implemented in bit-parallel
form and each is essentially identical; only the initialisation
of the destination counter in Fig. 4 varies among processors.
An engine of such a scale should prove feasible to
implement with today’s technology.

The resulting switch has been simulated with a 100%
offered load at each input, balanced across all output ports,
assuming that successive packets have uncorrelated
destinations. The throughput obtained was 100%, as
expected, with a mean delay in the virtual output buffer of
just 9.0 x 10 time slots. Thus the vast majority of packets
experience no queuing delay at the input port, indicating that
the switch offers virtually the same performance as a true

315

output-buffered switch. Packet sequence preservation is
guaranteed since the switch planes are unbuffered.

Since there is a low probability that a packet will be
delayed at the input side of the switch, and since no
buffering occurs in the.crossbars, the switch offers virtually
the same performance as an output-buffered switch, and
hence features minimal delay variation.

VI. INCREASING THE CAPACITY, AND REDUCING THE
COST.

The switch considered in Section V has a capacity of 320
Gb/s. This can be doubled without breaching the constraint
on T by building two copies of the switch fabric, and
multiplexing their outputs together. In Fig. 1, this would
mean that the first two stages would be replicated, but the
output multiplexors would merge packets from 2m rather
than m crossbars. This is permissible since the output
multiplexors in Fig. 1 operate at half the permitted rate.
However, the switch is now asymmetric, with 256 STM-16
inputs and 64 STM-64 outputs. Modifying the switch to
feature 64 STM-64 inputs requires demultiplexing each
STM-64 stream onto two input ports operating at 5 Gb/s.

It is not immediately apparent that packet sequence
preservation is still guaranteed in this case, since two
successive packets on an STM-64 stream may be presented
simultaneously to the switch fabric. However, we can use
standard techniques to ensure FCFS operation of the two
adjacent VOQ buffers, and, because of the highly structured
way in which the routing algorithm operates, no additional
hardware is required to ensure FCFS arrival at the output
buffer when two successive packets are launched into the
crossbars in the same time slot.

Reducing the number of switch planes obviously reduces
cost. To see whether this can be done, the rationale for
dimensioning the switch must be considered. This is based
on a general formula for blocking in multi-rate three-stage
switches presented by the author in Section 2.1 of [7]. This
formula can be applied to the switch in Fig. 1 to show that
that the number of switch planes required to ensure 100%
throughput is upper bounded by 2P+1. The formula is
applied to the case of a multi-rate switch (of internal rate r)
where each input module has P inputs, which is a valid
interpretation of Fig. 1 from the perspective of the middle
stage. The requirement on m is then

m> 2max[rp_uJ

O<u<r| r—uy

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:38:34 UTC from IEEE Xplore. Restrictions apply.

which reduces to m>2P, which is similar to, but not identical
to Clos’ classical result . Dimensioning on the basis of
double the bandwidth in the centre stage gave

20

and

which reduces to m=2P or m=2P+1 depending on
rounding.

The nonblocking condition assumes worst-case routing.
The routing algorithm used here is quite efficient so the
amount of hardware can be reduced by reducing m.
Alternatively, reducing the number of iterations performed
by the scheduling algorithm (so that an exhaustive search is
no longer performed) results in less efficient routing (since a
packet may not be routed even though a crossbar is available
for the purpose.) but enables a larger switch to be built or the
bit rate requirements in the scheduling engine to be reduced.
Fig. 5 shows how the delay in the switch considered in
Section V increases. As the number of scheduling algorithm
iterations is reduced. The switch throughput falls below
100% if the number of iterations is less than fifty five.
Above this figure, we can trade off an approximate 20%
variation in the clock speed required in the scheduling
engine against the buffering requirements in the virtual
output buffers.

The clock speed requirements in the scheduling engine
can be further reduced by precomputing a schedule, and
using a small number of iterations of the algorithm to ‘fill in
the gaps’ in the precomputed schedule. A full treatment of
this approach will be the topic of a future paper.

Fig. 4. The scheduling engine.

VII. CONCLUSIONS

A method for constructing a high-speed router using many
switching planes of relatively low bit rate has been
presented. The use of a centralised scheduling algorithm has
been advocated, because it allows a switch fabric to be built
whose delay performance is comparable to that of a shared-
bus switch. The resulting architecture features a scheduling
engine with a relatively high gate count. However, the
complexity of the switching planes is greatly reduced, since
they do not perform contention resolution, and a switch of
less complexity would need to compromise on delay
performance.

REFERENCES

[1] Adisak Mekkittikul, and Nick McKeown, “A Practical
Scheduling Algorithm to Achieve 100% Throughput in
Input-Queued Switches,” IEEE Infocom 98, Vol 2, pp.
792-799, San Francisco, April 1998.

[2] M. Marsan et al., “Scheduling in input-queued cell-based
packet switches,”, IEEE Globecom 99, pp. 1227-1235.
[3] Jon C. R. Bennett, Craig Partridge and Nicholas
Shectman, “Packet reordering is not pathological
network behavior,” IEEE/ACM Trans. on Networking,

Vol. 7, No. 6, pp. 789 — 798, Dec. 1999.

[4] “Fork/Join Router Project,” http://klamath.stan-
ford.edu/fjr/.

[5] Martin Collier, "A Three-Stage ATM Switch with Cell-
Level Path Allocation", IEEE Trans. Commun., vol. 45,
no. 6, pp. 701-709, June 1997.

[6] Tarek Khadir and Velentin Muresan, “VHDL Modeling
of a three stage ATM switch,” presented at AI 2001, the
International Conference on Applied Informatics,
February 19-22, 2001 Innsbruck, Austria.

[7] Martin Collier and Tommy Curran, "The strictly non-
blocking condition for three-stage networks",
Proceedings of the 14th International Teletraffic
Congress (ITC 14), Antibes (France), June 6-10, 1994,

pp. 635-644.

0.06
0.04

0.02

Delay (time slots)

0+ T T T d
56 58 60 62 64

Iterations

Fig. 5. Delay in virtual output buffers versus

number of scheduling engine iterations.

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on July 19,2010 at 09:38:34 UTC from IEEE Xplore. Restrictions apply.

