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Two novel polyarginine labelled ruthenium polypyridyl dyes are reported, one 

conjugated to five, (Ru-Ahx-R5), and one to eight arginine residues, (Ru-Ahx-R8).  

Both complexes exhibit long-lived, intense, and oxygen sensitive luminescence.  

(Ru-R8) is passively, efficiently and very rapidly transported across the cell 

membrane into the cytoplasm without requirement for premeablisation of the cell 

membrane.  Such ruthenium polypyridyl peptide conjugates open up the 

possibility for targeted cell delivery for environmentally sensitive intensity and 

lifetime imaging. 

 

Luminescent dye molecules capable of passive cell delivery may be used as molecular 

probes for example in cellular imaging, cell biology, molecular biology, microbiology, and 

flow cytometry applications.   

The majority of probes used in cellular imaging are fluorescent and based on organic, 

typically polyaromatic, chromophores.  The short luminescence lifetimes of such 

species, typically <10 ns, limits their environmental sensitivity, e.g., towards molecular 

oxygen, and their application for fluorescent lifetime imaging (FLIM).1,2  Ruthenium 

polypyridyl complexes have unique photophysical properties which make them 

potentially invaluable as probes for cellular imaging.  They are long lived, exhibit 
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polarised luminescence, have good photostability, red emission wavelengths and large 

stokes shifts and oxygen sensitivity.  However, there has been a longstanding barrier to 

their exploitation in this context because conventional complexes do not typically 

passively diffuse across the cell membrane.3  Therefore, the cells have to be 

permeabilised by electroporation, detergent or treated with some other transfection 

agent. 4  Recent examples include reports by Mycek et al on the O2 sensitivity of 

[Ru(bpy)3]
2+ in permeablised cells,5 PEBBLEs (Probes Encapsulated By Biologically 

Localized Embedding) containing [Ru(dpp(SO4)2)3]
2+ which are incorporated into 

permeablised cells,6 and an immunological based approach reported by Tan et al on 

conjugation of [Ru(bpy)3]
2+doped silica nanoparticles to antibody which permitted 

external labelling of cells rather than direct imaging.7  It should be mentioned that, a very 

recent report on a ruthenium complex conjugated to an estradiol tag has been shown to 

be cell permeable attributed to the lipophilicity of the steroid pendant.8 

 

Herein, we report on the preparation and characterization of a ruthenium polypyridyl 

peptide conjugate with an intense, long-lived emission in aqueous media which 

transports rapidly and passively across the cell membrane into the cell, without the 

requirement for potentially membrane-damaging procedures. The luminescent lifetime is 

sensitive to oxygen and pH and the emission wavelength shifts slightly with pH, making 

this material a potentially useful probe for multiplexed confocal scanning and 

fluorescence lifetime imaging of cells.9  The application of solid phase peptide synthesis 

to ruthenium luminophores creates a highly versatile class of peptide conjugated 

ruthenium complexes which is open to many peptide combinations which may lead to 

targeted probes for fluorescence and fluorescence lifetime cellular imaging, whereas the 

ruthenium centre can be readily modified to target the environmental sensitivity of this 

probe. 

 

Scheme 1 shows the two novel conjugates which are the focus of this investigation.  In 

each case the parent ruthenium complex is [Ru(bpy)2(pic)]2+, where pic is  2-(4-

carboxyphenyl)imidazo[4,5-f][1,10]Phenanthroline and conjugation occurs through the 

terminal carboxy unit.10   Detailed synthesis is described in supplementary materials.  

Briefly, the Rn oligopeptides (n = 5 or 8) were obtained via Merrifield’s solid phase 

peptide synthesis, according to the Fmoc/t-Bu strategy. A hexamethylene spacer, Ahx, is 

inserted between the ruthenium luminophore and the polypeptide to avoid any unwanted 
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interaction between the peptide and ruthenium centre that could lead to quenching of the 

emission properties.  This aliphatic linker is introduced after elongation of the peptide 

sequence, by N-terminal conjugation of 6-aminohexanoic acid which is 

fluorenylmethoxycarbonyl (Fmoc) protected.  Finally, after Fmoc deprotection, the 

ruthenium complex, [Ru(bpy)2(pic)]2+, is attached to the resin immobilized peptide via 

amide bond formation through the terminal carboxyl functionality on the ruthenium 

complex, by PyBOP/HOBt/DIEA (Benzotriazole-1-yl-oxy-tris-pyrrolidino-phosphonium 

hexafluorophosphate N-Hydroxybenzotriazole/N,N'-Diisopropylethylamine) coupling 

chemistry.  After cleavage and deprotection by treatment with trifluoracetic acid, the 

ruthenium labelled peptide, was purified by reverse phase HPLC and its strcuture 

confirmed by MALDI-TOF mass spectrometry.  

 

In this protocol, the coupling efficiency of the dye to the peptide exceeded 85%.11  Such 

coupling efficiency is a significant improvement on more typical conjugation of organic 

fluorophores.  We ascribe this efficiency to the reactivity of the aryl acid pendant on the 

ruthenium centre.  The ruthenium dyes are functionalised through a single, reactive 

unequivocal group, through reaction with nucleophilic functions on peptides.  They do 

not contain isomers or competing functional groups which can lower the synthetic yields 

of the labelling step and/or require their protection.12 

 

The photophysical properties of the conjugates Ru-Ahx-R5 and Ru-Ahx-R8 have been 

investigated in phosphate buffered saline (PBS) at pH 6.7, which resembles the pH and 

ion concentration found in living cells. The arginine modification has very little influence 

on the electronic structure of the Ru-complex, and therefore, the photophysical 

properties of the argenine derivatives are very similar to that of the parent complex 

[Ru(bpy)2(picH)]2+.9 The photophysical properties of Ru-Ahx-R5 and Ru-Ahx-R8 are 

essentially indistinguishable.  As for the parent complex [Ru(bpy)2(picH)]2+, the electronic 

absorption spectra of the two arginine derivatives show an absorption band at 460 nm 

(ε~16.9*103 Lmol-1cm-1) which can be assigned to a metal to ligand charge transfer 

(MLCT) transition.  An intense emission is observed at 607 nm with a quantum yield of 

0.06, which is slightly lower than that of the parent [Ru(bpy)2(picH)]2+ complex (Ф= 

0.067), but still approximately 30% higher than the quantum yield of the well known  

[Ru(bpy)3]
2+ complex.  The luminescence lies in the red, well away from possible 

autofluorescence of biological material and the high quantum yield permit easy 
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detection, even at low dye concentration.  The presence of the Ahx-R8 moiety slightly 

reduces the luminescence lifetime from 872 ±4 ns in the parent complex (degassed 

aqueous solution) to 775 ±4 ns in Ru-Ahx-R8.  This long-lived luminescence may be well 

suited to explore some of the longer lived, microsecond biodynamical processes, e.g. 

membrane diffusion, protein rotation or folding.  The luminescence lifetime is furthermore 

oxygen sensitive.  In air saturated aqueous solutions the lifetime of the excited state of 

Ru-Ahx-R8. drops to τ = 480 ns., which marks a good dynamic range for probing the 

concentration of dissolved oxygen.. 

 

Cellular uptake of Ru-Ahx-R5, Ru-Ahx-R8 and the parent complex, [Ru(bpy)2(picH)]2+, at 

20oC were investigated for myeloma cells as examples of mammalian cells, and human 

blood platelets using confocal laser scanning microscopy exciting in the metal-to-ligand 

charge transfer (MLCT) band of the Ru complex at 458 nm and recording the dye 

fluorescence around 610 nm.  In a typical protocol 3µL of an aqueous solution of the Ru-

complex ([Ru(bpy)2(picH)]2+, or Ru-Ahx-R8 (1.2 x10-3 M)) were added to 100 µl of the cell 

suspension to give a final dye concentration of 3.5 x10-5 M.  Figure 1 compares the 

ability of the plain Ru complex and the octo-arginine derivative to transport across a 

myeloma cell membrane.  As expected, no luminescence could be observed from within 

the cell when incubating the cells with the parent complex Ru(bpy)2(picH)]+ (Figure 1c), 

indicating that the dye cannot penetrate the cell membrane and enter the cell, even after 

extensive incubation.  In contrast, Ru-Ahx-R8 transports passively through cell’s 

membrane and accumulates and preconcentrates inside the cell.  Transport is rapid, and 

the migration of the dye into the cell is complete within about 12 minutes yielding intense 

well contrasted cellular images as can be seen in Figure 1a and b. The first 5 minutes of 

the passive transmembrane transport of Ru-Ahx-R8 into myeloma cells is shown in the 

accompanying video.13  During the first two to three minutes, the dye concentrates in the 

cell-membrane.  From the membrane, the dye distributes into and throughout the cell. 

The distribution of the dye inside the cell is not homogenous, resulting in brighter and 

darker areas, according to the different cellular compartments.  After about ten to fifteen 

minutes the process is complete and no further changes in the dye distribution within the 

cell are observed.  In contrast, [Ru(bpy)2(picH)]2+, could only be incorporated into the cell 

through permeablisation of the cell membrane, in this case, on exposure to detergent 

(Triton) as is shown in Figure 1d.   
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The effect of polyarginine chain length (R5 and R8) is demonstrated in Figure 2 with 

human blood platelets.  Figure 2a and c show the white light images of platelets which 

have been incubated for 20 minutes each with Ru-Ahx-R5 and Ru-Ahx-R8 respectively.  

Figure 2b and d show the confocal scanning laser luminescence microscopy images of 

the same platelets excited at 458 nm and detecting the emission at 610 nm.  While the 

platelets incubated with the octo-arginine derivative of the Ru complex show a bright 

luminescence from the cytoplasm (Fig. 2d), the platelets incubated with the penta-

arginine derivative do not show any fluorescence from inside.  This confirms that Ru-

Ahx-R8 can passively preconcentrate into the platelets, where it distributes in the 

cytoplasm.  However, in contrast Ru-Ahx-R5 cannot.  The cell penetrating ability of 

polyarginines is well known and generally thought to arise through endocytosis.  This 

ability is polyargenine chain length dependent with R6 to R11 showing best endocytosis.14  

Consistent with endocytosis we found the dye delivery in to the cell to be temperature 

dependent.16  Thus, the inability of Ru-Ahx-R5 to penetrate the cell membrane in this 

instant is consistent with other peptide studies indicating the peptide is indeed 

responsible for cell penetration.15 

A drawback of conventional organic chromophores for laser scanning microscopy is their 

propensity to photobleach, which limits their use over extended periods and therefore in 

dynamic investigations of cellular processes.  We investigated the photostability of  Ru-

Ahx-R8 under continuous irradiation typically used in human blood platelet.16  Under 

conventional imaging conditions, exciting at 458 nm, after 20 minutes continuous 

irradiation the dye bleached to less than 50% of its initial intensity.  Such stability can 

permit the dynamics of cellular processes to be studied timescales which are useful to 

the microscopist/microbiologist in obtaining detailed or dynamic cellular information. 

 

A key advantage of ruthenium polypyridyl complexes as imaging dyes are their long 

lived excited states.  This property renders such complexes far more sensitive to their 

environment, e.g., dissolved oxygen concentration, pH, dielectric constant and potential.  

For example, conventional fluorescent imaging dyes are frequently relatively insensitive 

to O2 because O2 diffusion does not occur to any great extent on the short timescale of 

the dye’s luminescent lifetime.  Significantly, the fluorescence lifetime is independent of 

luminophore concentration, the optical path of the microscope, the local excitation light 

intensity as well as the luminescence detection efficiency.  This makes the luminescence 

lifetime an ideal parameter to measure in biological systems where the exact 
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concentration of dye after cellular uptake is difficult to determine and replicate 

accurately.  As described above, the luminescence of Ru-Ahx-R8 exhibits significant 

oxygen dependence with a lifetime of 480 ns in air saturated phosphate buffered water 

compared with 775 ns in deaerated media, which provides a good dynamic range for 

probing the oxygen concentration inside living cells. Figure 3a shows a fluorescence 

intensity image of myeloma cells incubated with Ru-Ahx-R8, indicating again that the dye 

has penetrated the cells.  Figure 3b shows the false colour fluorescent lifetime image of 

the same cells.  As can be seen as a first estimate from the false colour coding the 

lifetime of the dye varies across the various compartments of the cells.  The dye residing 

in the membrane of the cell exhibits the shortest lifetime, which is in agreement with a 

higher solubility of O2 in the membrane.  

The lifetime of the residual dye in the external buffered solution monoexponential, 

however, the lifetimes of selected compartments within the cells are typically 

biexponential.  The false colour image reflects the average lifetime of the probe. 

 

In conclusion, we have presented two novel ruthenium polypeptide conjugates which are 

produced in high yield from solid phase synthesis.  We demonstrated that an 

octoarginine labelled ruthenium complex Ru-Ahx-R8, is an oxygen sensitive luminophore 

that transports rapidly and passively across the cell membrane to preconcentrate inside 

the cell.  This behaviour was demonstrated for myeloma and for human platelets.  The 

Ru centre is resistant to photobleaching, is long-lived and intense, and has appropriate 

absorption and emission characteristics to suit most conventional confocal laser 

systems.  Its long lifetime, makes it quantitatively sensitive to oxygen concentration and 

the counter ligands can be readily altered to permit sensitivity to pH, water content and 

the rigidity of the microenvironment.  Labelling of peptides assembled by solid phase 

synthesis can also be applied to sequences used as targeting devices and to bioactive 

sequences with inherent membrane translocation ability or conjugated to cell penetrating 

peptides.17,18,19 

These ruthenium polypyridyl peptide conjugates open up the possibility for targeted cell 

delivery and dynamic lifetime imaging studies of the cellular environment. 

 

This material is based upon work supported by the Science Foundation Ireland under 

the Biomedical Diagnostics Institute (Award No. 05/CE3/B754) and SFI investigator 
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programme (Award No. 05/IN.1/B30).  Prof. Richard O Kennedy and Dr Marie LeBeurre 

are gratefully acknowledged for supplying the Myeloma cell culture. 
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Scheme I, Structures of Ru-Ahx-R5 and Ru-Ahx-R8, the parent complex, 
[Ru(bpy)2(picH2)]2+, the aryl amide pendant on the imidazole ring is replaced by an aryl 
acid. 
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Figure 1 (a) Myeloma cell incubated at 20oC with Ru-Ahx-R8, for 3 min in 100 µL of an 
PBS buffered solution of Ru-Ahx-R8 3.5 x10-5 M (b) The same cell after 5 min, (c) 
Myeloma cell incubated with the parent complex [Ru(bpy)2picH]2+ (3.5 x10-5 M) at 20oC in 
PBS for 26 min. (d) Myeloma cell in PBS which has been permeablized with triton 
1mmol prior to 5 min incubation with parent complex [Ru(bpy)2picH]2+. 
 
 
 
 

 

(a) (b) 

(c) (d) 
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Figure 2.  (a) & (c) White light image of human blood platelets following 20 minutes 
incubation with 3 x10-5 M Ru-Ahx-L5 and Ru-Ahx-L8 respectively in PBS buffer, (b) 
Confocal luminescence image (λex 458 nm, λem 610 nm) of platelets on incubation for 20 
minutes with Ru-Ahx-L5 (d) Confocal luminescence image (λex 458 nm, λem 610 nm) of 
platelets on incubation for 20 minutes with Ru-Ahx-L8.  
 
 

 
 

(c) (d) 

(a) 

(b) 

(b) 
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Figure 3  a) Fluorescence intensity image of myeloma cells after incubation for 
15 minutes with Ru-Ahx-R8, 3.5 x10-5 M in aqueous PBS buffer  b) False colour 
fluorescence lifetime image of the same cell (fast FLIM) 
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