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Microbial fuel cells (MFCs) fed with wastewater are currently considered a 

feasible strategy for production of renewable electricity at low cost. 

A membrane-less MFC with biological cathode was built from a compact 

wastewater treatment reactor. When operated with an external resistance of 250 Ohm, 

the MFC produced a long-term power of approximately 70 mW/m2 for ten months. 

Denaturing Gradient Gel Electrophoresis (DGGE) analysis of the cathode biomass 

when the MFC was closed on a 2100 Ohm external resistance showed that the 

sequenced bands were affiliated with Firmicutes, α-Proteobacteria, β-Proteobacteria, 

γ-Proteobacteria, and Bacteroidetes groups. 

When the external resistance was varied between 250 and 2100 Ohm, 

sustainable resistance decreased from 900 to 750 Ohm, while sustainable power output 

decreased from 32 to 28 mW/m2. It is likely that these effects were caused by changes 

in the microbial ecology of anodic and cathodic biomass attached to the electrodes. 

Results suggest that cathodic biomass enrichment in “electroactive” bacteria may 

improve MFCs power output in a similar fashion to what has been already observed for 

anodic biomass. 

 

Keywords: microbial fuel cell, sustainable power, biocathode, PCR-DGGE. 

 

1. Introduction 

In a Microbial Fuel Cell (MFC), microorganisms convert chemical energy to 

electrical energy, via microbial-catalyzed redox reactions. A typical MFC consists of 

anode and cathode compartments separated by a cationic membrane. Microbes in the 

2 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

anode compartment oxidize a soluble electron donor (e.g., glucose, acetate) generating 

electrons and protons. Electrons are then transferred to the anode surface and from there 

to the cathodic compartment through the electrical circuit, while the protons migrate 

through the electrolyte and then through the cationic membrane. Electrons and protons 

are consumed in the cathode compartment reducing a soluble electron acceptor, such as 

oxygen or ferricyanide. Electrical power is harnessed by inserting a load between the 

two electrode compartments (Allen and Bennetto, 1993). 

In early studies, exogenous electrochemicals mediators have been added into the 

MFCs to allow electron transfer from the microbial cells to the electrode, due to the 

non-conductive nature of the cell surface structures (Roller et al., 1984; Park and 

Zeikus, 2003; Logan and Regan, 2006). However, recent evidence (Kim et al., 2004; 

Jang et al., 2004; Gil et al., 2003) showed that complex microbial communities in 

wastewater-fed MFCs produce soluble redox mediators (e.g., pyocyanin; Rabaey et al., 

2004). Furthermore, Geobacter sulfurreducens is known to transfer electrons beyond 

cell surfaces to electrodes through membrane proteins (Bond and Lovley, 2003; 

Chaudhury and Lovley, 2003) or nanowires (Reguera et al., 2005), Shewanella 

oneidensis MR1 was shown to produce both soluble redox mediators (Marsili et al., 

2008) and nanowires (Gorby et al., 2006). 

It has been shown that wastewaters of different origin can be fed to MFCs, thus 

allowing energy production from an abundant and inexpensive source. Most of the 

energy available from the oxidation of the organic load was converted to electricity 

(50÷90 % in term of Coulombic efficiency) while the remaining energy was used for 

microbial growth (Liu et al., 2007; Rabaey et al., 2005a). Integration of MFCs in 

wastewater treatment plants allowed energy recovery and reduction of excess sludge 
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production with little effect on the mineralization of organic load and the rest of the 

process (Rabaey and Verstraete, 2005). Wastewater MFCs are currently being assessed 

as a renewable energy strategy (Logan and Regan, 2006). 

However, in order to make the process economically feasible, it is necessary to: 

a) eliminate the cationic membrane to reduce operating costs due to membrane 

maintenance; b) implement MFCs in existing wastewater treatment plants, to reduce 

capital investment; c) avoid an expensive cathodic catalyst in favour of aerobic biomass 

(He and Angenent, 2006). 

Recently, membrane-less wastewater MFCs have been designed and tested (Jang 

et al., 2004; Moon et al., 2006; Ghangrekar and Shinde, 2007). While many studies 

have dealt with anodic compartment (Min and Logan, 2004; You et al., 2006; Liu et al., 

2004), a few studies have been performed both to develop a biocathode capable of 

directly reducing oxygen and to characterize the microbial community responsible for 

the cathode catalysis (Bergel et al., 2005; Chen et al., 2008; Clauwaert et al., 2007; 

Kang et al., 2003, Rabaey et al., 2008). 

In this study, a membrane-less, mediator-less MFC was implemented on a 

compact lab-scale wastewater treatment plant (WWTP), with a simple and economic 

design, to couple wastewater treatment (removal of organic compounds and ammonia 

oxidation) with sustainable electrical power production to avoid the use of expensive 

catalysts for the cathode. The effect of the external load on sustainable power 

production was investigated. Furthermore, the microbial composition of cathodic 

biomass was characterized in order to determine whether the long-term operation of the 

MFC cause an enrichment in electroactive bacteria at the cathode. The results indicate 
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that the electroactivity of cathodic biomass affect the power production in completely 

biological MFCs. 

2. Material and Methods 

2.1 Process and reactor design 

The two-stage process shown in Fig. 1 was adopted for organic substrate 

removal and ammonia nitrification of high strength wastewaters (Malina and Pohland, 

1992; Tchobanoglous et al., 2003). Sedimentation and fermentation of easily degradable 

organic substrate took place in the first anaerobic stage of the process, and the following 

aerobic stage nitrified ammonia and further oxidized organic compounds. 

The bench-scale WWTP was built in PVC, composed of two anaerobic 

compartments arranged in series (ABR, Anaerobic Baffled Reactor), and an aerobic 

chamber and a sludge settler (implementing an activated sludge process), as shown in 

Fig. 1. The volumes of the four compartments were 18 L, 18 L, 22 L, and 5 L, 

respectively. The anaerobic compartments #1 and #2 were connected through an 

overfall. A recycle pump (Watson Marlow 503 S, Wilmington MA, USA) was placed 

between the two anaerobic compartments to evenly distribute the liquid below the 

sludge blanket. Constant temperature in the ABR (35°C) was maintained with a heating 

element (Rena, France) located in compartment #1 and controlled by a temperature 

probe (Tersid, Milano, Italy) in compartment #2. The return activated sludge was 

recycled from the settler #4 to the oxidation chamber #3 (Recycle ratio Rr=2). The 

aerobic compartment #3 was aerated and stirred with an aquarium air pump (Schego, 

Germany), with an air flow rate of approximately 6 L/min. 

2.2 Inoculation and medium 
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Anaerobic compartments #1 and #2 were inoculated with 15.2 L of granular 

sludge from a full-scale Up-flow Anaerobic Sludge Blanket (UASB) reactor treating 

paper factory wastewater (Castelfranco Emilia, Italy). The aerobic compartment #3 was 

inoculated with 6 L of activated sludge from a full-scale domestic wastewater treatment 

plant (Trebbo di Reno, Italy). 

The plant was fed with synthetic wastewater with the following composition (per 

liter of tap water): 168 mg (NH4)2SO4, 60 mg MgSO4·7H2O, 6 mg MnSO4·H2O, 

126 mg NaHCO3, 0.3 mg FeCl3·6H2O, and 6 mg CaCl2·2H2O. Anhydrous glucose was 

used as the organic substrate, at different concentrations as shown in Table 1. The 

synthetic wastewater was buffered at pH 7.3 with 0.7 M K2HPO4 and 0.3 M KH2PO4. 

All chemicals were of reagent grade. Synthetic wastewater was stored and fed to the 

reactor at 4°C and replaced every 3-4 days. 

2.3 Chemical analyses 

A pH electrode (Mettler Toledo, OH, USA) was placed in the anaerobic 

compartment #2. Biogas production rate from the two anaerobic compartments was 

monitored through a custom prepared wet tip gas flow meter. Methane content in biogas 

was analyzed with an Ultramat 23 infrared spectrophotometer (Siemens, NY, USA). 

Oxidation-reduction potential (ORP) was measured in both anaerobic (#2) and aerobic 

compartments (#3) with metallic electrodes (Crison model 52-61, Alella, Spain). 

Dissolved oxygen (DO) concentration in compartment #3 was measured with a Cell OX 

325 oxymetric sensor (WTW OXI 340, Weilheim, Germany). Chemical Oxygen 

Demand (COD) and ammonia nitrogen were determined in samples collected from 

compartment #2 and #4, according to the Standard Methods (APHA, 1999). 

2.4 Microbial fuel cell 
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Untreated glassy carbon anode and cathode, with geometrical surface of 160 cm2 

each, were cleaned overnight in 1 M HCl and rinsed with deionized water prior to use, 

then placed in compartment #2 and #3, respectively (Fig. 1). Electrodes were connected 

via an external electric circuit on a load variable between 150 and 2000 Ohm. A 

saturated calomel electrode (SCE, Hanna Instruments, RI, USA), was placed in 

compartment #3 and used as reference to measure anodic and cathodic electrochemical 

potentials. 
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Cell and half cell potentials were measured every hour with a milli-voltmeter 

(Datataker, UK). Current was calculated from the potential through a shunt resistance of 

100 Ohm. Temperature, pH, redox potentials, biogas production and electric measures 

were stored in a Datataker 605 (Datataker, UK). The total applied resistance is reffered 

as the sum of external variable load and shunt resistance (100 Ohm), since the shunt 

was in series with the load on the external circuit. 

Sustainable power measure was performed daily with an in-house built 

programmable variable resistance, as described by Menicucci et al., (2006). In a typical 

experiment, total applied resistance varied between 1800 and 110 Ohm, with a rate of 

400 Ohm/min. This procedure returned the maximum sustainable power (MSP), which 

is the highest electrical power produced at steady state conditions. In addition to 

maximum sustainable power, the minimum sustainable external resistance and the 

maximum sustainable cell potential were determined. 

2.5 MFC Operating conditions 

Following inoculation, the reactor was continuously fed for 14 months. Changes 

in operating conditions during this time period are shown in Table 1. The synthetic 

wastewater was fed to the anaerobic compartment #1 of the MFC, with an organic load 
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(OL) variable between 0 and 16 gCOD/day, maintaining an anaerobic hydraulic residence 

time of 12 days. The anode was never changed during the experiment, while a clean 

cathode was inserted on day 238. 
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2.6 Microbiological analyses 

2.6.1 Sample collection and DNA extraction 

During step #8 suspended activated sludge (about 50 ml) was collected from the 

aerobic chamber and sludge attached on the cathode was removed using a sterile razor 

blade and re-suspended in a sterile phosphate buffer saline solution. Samples were 

stored at - 80°C until use. 

Sludge samples (5 ml) were dispersed overnight with a cation-exchange resin 

(Chelex 100, Biorad, CA, USA) as described by Frølund et al. (1996). Lysis of the cells 

was performed by the lysozyme + SDS technique described by Bourrain et al., (1999). 

Total DNA from microbial cells was obtained by phenol/chloroform extraction and 

isopropanol precipitation methods as previously described (Zhou et al., 1996). 

Purification of crude DNA extracts was performed by the Wizard DNA clean-up system 

(Promega, WI, USA). DNA concentration was determined spectrophotometrically with 

NanoDrop instrument ND-1000 (NanoDrop Technologies Inc., Wilmington, DE, USA). 

2.6.2 DGGE analysis of the V3 region of the 16S rRNA gene 

Two μl (10 to 30ng of DNA) of each sample were subjected to PCR 

amplification of the 16S rRNA gene using Bacteria-specific primers 27F (5’-

GAGAGTTTGATCCTGGCTCAG-3’) and 1495R (5’-CTACGGCTACCTTGTTACG 

A-3’) as described by Di Cello et al., (1997) to produce a 1.450-bp fragment, which was 

then used as a template for nested PCR with two different sets of primers. The first set, 

composed of primers 357F-GC-clamp (5’-
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CGCCCGCCGCGCCCCGCGCCCGGCCCGCCGCCCCCGCCCCCCTACGGGAGG

CAGCAG-3’) and 518R (5’-ATTACCGCGGCTGCTGG-3’), amplified a fragment of 

161 bp (small fragment). The second set, consisted of primer 63F-GC-clamp (5’-

CGCCCGCCGCGCGCGGCGGGCGGGGCGGGGGCACGGGGGGCAGGCCTAAC

ACATGCAAGTC-3’) and the reverse primer 518R described above, was used to 

produce a 495 bp fragment (large fragment). Nested PCRs to obtain the small and the 

large fragments were carried out according to the procedures described by Van der 

Gucht et al., (2005) and by El Fantroussi et al., (1999), respectively, with Taq DNA 

polymerase (Quiagen, Milano, Italy). Fragments were resolved by double gradient 

denaturing gradient gel electrophoresis (DG-DGGE) as described by Cremonesi et al., 

(1997), in a DCode universal mutation detection system (Bio-Rad, CA, USA). A 6 %-

12 % polyacrylamide (acrylamide: N,N-methylenebisacrylamide, 37.5:1) gel with 

denaturing gradient ranging from 30 % to 60 % was used to resolve small fragments, 

whereas a 6 %-12 % polyacrylamide (acrylamide: N,N-methylenebisacrylamide, 37.5:1) 

gel with denaturing gradient ranging from 40 % to 70 % was used to resolve large 

fragments. A 100 % denaturing solution contained 7 M urea and 40 % deionized 

formamide. Approximately 700 ng of purified PCR products were loaded in each well. 

The gels were run for 16 h at 75 mV in 1X TAE buffer at 60°C, stained with 50 µg/ml 

ethidium bromide for 30 min, destained in water and photographed with the UVIpro 

Platinum Gel Documentation System (GAS7500/7510). 

2.6.3 Sequencing of DGGE fragments and phylogenetic analysis 

DGGE-separated fragments were excised with a razor blade and allowed to passively 

diffuse into the water at 4°C overnight. The eluted DNA was reamplified with the same 

primers and PCR conditions described for DGGE analysis. The PCR products were 
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tested by DGGE for purity and identity with the original bands in the community 

profiles and then sequenced. Sequencing reactions were prepared using Applied 

Biosystem Big Dye® Terminator sequencing kit version 3.1, according to the 

manufacturer’s instructions and analyzed using a 3730 DNA Analyzer Applied 

Biosystem apparatus. Each sequence was submitted to the CHECK_CHIMERA 

program of the Ribosomal Database Project (RDP) 

(http://rdp.cme.msu.edu/cgis/chimera.cgi?su=SSU) to detect the presence of possible 

chimeric artifacts. Sequence similarity searches were performed using the BLAST 

network service of the NCBI database and Seqmatch tool of the RDP 

(http://www.ncbi.nlm.nih.gov/BLAST/ and http://rdp.cme.msu.edu/, respectively). For 

phylogenetic analysis, identification of 16S rRNA gene sequences was performed with 

RDP Classification Algorithm (http://rdp.cme.msu.edu/classifier/classifier.jsp). 

Partial 16S rRNA gene sequences obtained in this study have been deposited in 

the NCBI nucleotide database under accession numbers EU492873-76 (small fragment 

bands A-D) and EU597325-31 (large fragment bands F-N). 

3. Results 

3.1 COD and ammonia removal 

The influent and effluent organic load during phase I to III (see Table 1) are 

shown in Fig. 2, while Table 2 shows the COD removal in anaerobic and aerobic stages 

of the process, as well as methane production in anaerobic stage. During phase I, the 

influent glucose concentration was increased from 1.5 to 5 g/L (steps #1 to #4), 

corresponding to a measured feeding OL of 3.4 to 16.0 gCOD/day. The average COD 

removal in the anaerobic compartment varied between 66 and 91 % (Table 2). The 
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lowest value of COD removal was observed during the initial adaptation of anaerobic 

biomass. 

During phase II (step #5, see Table 2), glucose was removed from the influent 

and the reactor was operated in absence of carbon and energy source. During this phase, 

the COD values in the outlet were lower than 70 mgCOD/L. 

During phase III (step #6 and #7), glucose was added again to the influent, at a 

concentration of 3 g/L, corresponding to a measured OL of approximately 9.1 gCOD/day. 

COD removal in anaerobic compartment rapidly stabilized at 94 % (Table 2). The 

anaerobic COD removal measured in step #3, step #6 and #7 increased, although the 

feeding OL was the same. This was due to the anaerobic biomass growth, consequent to 

the absence of sludge withdrawal during the experimental period. 

Daily methane production (Table 2) increased with OL and the organic substrate 

removed in the ABR chamber (#1 and #2) was almost completely converted into 

methane. The average pH value in the second ABR chamber was 6.9. 

Dissolved oxygen in the aerobic compartment was 6.5±0.3 mgO2/L through all 

the experiment, while ammonia nitrogen in the effluent was always below than 

1 mg NH4-N/L, corresponding to 98 % nitrogen removal. 

3.2 Electrical power production 

Immediately after inoculation, the cell was closed on a total applied resistance of 

250 Ohm for a period of 270 days. The cell potential grew from 50±3 mV at the end of 

the starting phase (step #1), to 411±10 mV at the end of step #3 (Table 3), 

corresponding to an OL of 9.6 gCOD/day (and a substrate concentration in the second 

anaerobic chamber of 420 gCOD/m3, Table 2). Further OL increase from 9.6 to 

16 gCOD/day (815 gCOD/m3 in the second anaerobic chamber, Table 2 step #4) did not 
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change the cell potential. Current and power output showed a similar pattern, reaching a 

plateau of 163±5 mA/m2 and 65.1±3.5 mW/m2 of geometric electrode surface at 

substrate concentration higher than 420 gCOD/m3, indicating that organic substrate 

concentration was not limiting power output. 

When glucose was removed from medium for two weeks (step #5), power 

production dropped rapidly reaching 1.2±0.3 mW/m2, indicating that electricity was 

produced mainly by the catalytic oxidation of organic substrate. During step #6, the 

reactor was operated with an OL of 9.5 gCOD/day and the electrical power production 

reached in 14 days a plateau value of 72.7± 1.6 mW/m2. Specific current, cell potential 

specific power, anodic and cathodic potential throughout the experiment are shown in 

Fig. 3 a, Fig. 3 b, Fig. 3 c and Table 3. 

3.3 Anodic and cathodic potential 

At OL higher than 6.4 gCOD/day (step #2), anode and cathode potential reached a 

plateau of -176± 5 and +234± 5 mV vs. SCE, respectively (Fig. 3 c and Table 3). In the 

absence of organic substrate (step #5), anodic potential increased to +237± 28 mV vs. 

SCE, while cathode potential was less affected, indicating that the cathode was not the 

current-limiting electrode in the cell (i.e. the one of the two electrodes that exhibits the 

slower charge-transfer kinetics). Both specific power output and anode potential were 

restored at nearly 100 % of their maximum values upon reintroduction of substrate in 

the medium (step #6, Fig. 3 b and Fig. 3 c), suggesting that the anodic attached biomass 

maintained its substrate oxidation capability. 

3.4 Role of cathodic biomass 

Cathodic potential dropped rapidly to -214± 1.4 mV vs. SCE when a clean 

glassy carbon cathode was inserted in the aerobic compartment (step #7). However, 
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residual electrical power was 10.5±0.1 mW/m2, suggesting that suspended biomass and 

soluble redox mediators had a role in the cathodic process (Fig. 3 c and Fig. 3 b). 

Although thermodynamically feasible, direct oxygen reduction at the glassy carbon 

electrode is not possible at the measured potential, as it was also shown during the 

acclimation of cathodic biomass (step #1) The clean cathode was quickly colonized by 

aerobic biomass, and after 5 days cell potential and power production resumed to 100 

± 10% and 100 ± 3.3% of their values measured at the end of step #4, respectively 

(Table 3 and Fig. 3 b). 
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To investigate the composition of the microbial community suspended in the aerobic 

chamber and attached on the cathode, a partial domains profile of eubacterial 16S rRNA 

gene was performed by DGGE. This was done after PCR amplification of the 16S 

rDNA genes from total DNA of the two samples with the two sets of primers described 

in Materials and Methods. Fig. 4 a and Fig. 4 b shows the DGGE patterns of the small 

and large 16S rDNA fragments. There are fewer bands in the DGGE profiles of the 

small fragment than in the DGGE patterns of the large fragment. However, suspended 

aerobic biomass and the cathode attached biomass showed high fingerprint similarity as 

most of the bands obtained were present in both samples (Fig. 4 a and Fig. 4 b). 

Separated DGGE bands were excised from the gels, purified to determine the sequence, 

and assigned to a specific group on the basis of a combination of Blast searches and 

phylogenetic analysis. Table 4 shows the percentage of similarity between sequences of 

excised bands and the closest relatives (NCBI Database). The nucleotide sequences of 

the small fragment bands were referred to uncultured bacteria or DGGE clones of the 

Firmicutes, β-Proteobacteria, and Bacteroidetes groups (Table 5), whereas most of the 

sequences of the large fragment bands were affiliated with α-Proteobacteria and γ-

13 



Proteobacteria groups. A band (E) was identified as a putative chimeric artefact based 

on result from CHECK_CHIMERA analyses. Moreover, two large fragment bands (G 

and H) were distantly affiliated with unclassified bacterial sequences retrieved from a 

river sediment sample (EF667579), from a commercial nitrifying inoculum 

(AJ786605.1) and from a biocathode chamber in a microbial fuel cell (EU 426928.1), 

(Table 4). 
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3.5 Sustainable resistance measure 

Sustainable resistance was measured at four different values of total applied 

resistance, 250, 430, 1100, and 2100 Ohm, for at least 30 days. When the total applied 

resistance was changed, the average value of sustainable resistance changed as shown in 

Fig. 5 a. Specifically, at low total applied resistance (250 Ohm), the sustainable 

resistance decrease rapidly with time, while at high total applied resistance (2100 Ohm), 

the sustainable resistance value did not change appreciably with time (data not shown). 

Sustainable power slightly increased when total resistance decreased (Fig. 5 a). 

3.6 Factor limiting power production 

3.6.1 Current-limiting electrode 

The sustainable resistance was determined through an external resistance scan. 

Anode and cathode potentials were measured at each external resistance value. The 

electrode whose potential changes more during the scan is the current-limiting electrode 

(Menicucci et al., 2006; Fuel cells handbook, 2004). Fig. 5 b and Fig. 5 c show a typical 

external resistance scan between 110 and 1800 Ohm. The cathodic potential was nearly 

constant at each external resistance value, showing that the current production was 

limited by the anode. 

3.6.2 Limiting step in electron transfer 
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Current did not show a maximum during the resistance scan, while power 

reached a maximum at low value of external resistance (Fig. 5 c). A recent model 

proved that these trends are typical of a MFC in which diffusion processes limits power 

output (Shimotori et al., 2007). Because of these limitations, the sustainable power is 

less than half the maximum power (Fig. 5 a). Diffusion limitations to electron transfer 

are predominant in the range of total applied resistance explored in this study, which is 

between 250 and 2100 Ohms. 

4. Discussion 

4.1 Power production 

The cell was initially operated with a total applied resistance of 250 Ohm. After 

58 days of biomass growth and with non-limiting OL, cathode and anode potential 

reached a stable plateau of 234±5 mV and -176±5 mV vs. SCE, respectively (Fig. 3 c). 

Both anodic and cathodic biomass established slowly and a plateau in current 

and power production was reached only after 70 days (i.e. after about 3.3 times the total 

Hydraulic Retention Time, HRT). Anodic attached biomass maintained its catalytic 

activity over two weeks of feeding without glucose (step #5). When a new cathode was 

inserted in the cell (step #7) suspended biomass adhered to the electrode in 5 days fully 

restoring the catalytic reducing activity and the half cell potentials. 

The potential of the biocathode, about 230 mV vs. SCE (474 mV vs. SHE), was 

closed to that (~ 463 mV vs. SHE) observed for oxygen abiotic reduction at 

conventional Pt-coated electrodes in cathode chamber (Oh et al., 2004). Therefore, 

biocathode proved to be an efficient catalyst for oxygen reduction, and a feasible 

alternative to abiotic systems in wastewater-fed MFCs. 
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Concerns arose in the past over non-catalytic power production in wastewater 

fed MFC. Several media used for bacterial growth contained significant amount of 

redox mediators, such as cysteine, and high strength wastewater contained reduced 

sulfur species, which can work as abiotic electron donor and increase power production 

in short term experiments. In this study, minimal salt media was used, therefore electron 

donors other than glucose or redox mediators could be only by products of glucose 

anaerobic degradation or microbially produced electron shuttles (Rabaey et al., 2004, 

pyocyanine). In fact, when glucose was removed from the artificial wastewater fed to 

the MFC (step#5), the power dropped, indicating a discharge to the anode of the 

electrons stored in the attached biomass (e.g., in the protein membranes) and the 

reoxidation of most of the reduced species in solution. 

The MFC was initially run under demanding conditions for current production 

(low external resistance). During this phase, glucose concentration in the wastewater 

and OL were increased until non-limiting conditions were achieved. Since further 

experiments were run using higher external resistance, it is assumed that non-limiting 

conditions with respect to glucose concentration were maintained. With a non limiting 

organic substrate concentration of 434±77 gCOD/m3 in the second ABR chamber, the 

specific current increased in an exponential fashion and then stabilized at 

159 ± 1 mA/m2, while power reached a plateau at 60.6 ± 1 mW/m2 (Fig. 3 a and Fig. 

3 b). 

Organic substrate removed in the ABR was converted almost completely into 

methane, as shown in Table 2. This results was expected due to the low ratio of 

electrode surface to the volume of anodic compartment 

(Selectrode/Vanode compartment = 0.4 m2/m3). In other studies, different electrode material 
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configurations were adopted in order to maximize power output such as, granular 

graphite (Rabaey et al., 2005b), or high specific surface electrodes (Logan et al., 2006; 

Gil et al., 2003; Chaudhury and Lovley, 2003). In such systems (Rabaey et al., 2005c), 

an average COD to current efficiency of 59± 4 % was obtained and no methane 

production was observed. 

4.2 Electron transfer mechanism 

When attached cathodic biomass was removed (step #7), power production 

dropped to 13 % of the maximum power formerly measured. As discussed above, this 

observation suggested that microbially produced redox mediators facilitated electron 

transfer from the suspended and attached biomass to the anode. Microbially produced 

redox mediators were identified in at leas two cases (Rabaey et al., 2004; Marsili et al., 

2008). It is not clear from our results whether the increase in cathodic potential and 

power production following electrode colonization is due to the concentration of such 

microbial redox mediators in the attached biomass, or if direct electron transfer modes 

are possible, as shown for dissimilatory metal-reducing bacteria (Reguera et al., 2005; 

Gorby et al., 2006). However, the residual power measured seems to indicate the co-

presence of mediated and direct electron transfer mechanisms. 

4.3 Factors limiting power production 

The current-limiting electrode was determined through the sustainable power 

measures. In a typical external resistance scan, between 1800 and 110 Ohm, cathodic 

potential decrease by 20 % while the anodic potential increase by 70 % (Fig. 5 b). Once 

the cathodic biomass had developed, the anode was the current-limiting electrode. 

Sustainable power determination also provided insight over the processes which limit 

long-term power. When an MFC is limited by diffusion, the current measured during a 
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sustainable resistance scan always increases as external resistance decreases, although 

with a rate lower than that calculated from Ohm’s law, since the cell potential is not 

constant (Menicucci et al., 2006). However, in MFCs with membrane electrode 

assembly (MEA) (Liang et al., 2007), power production is less affected by diffusion, 

and is rather limited by the amount of the immobilized biomass and its catalytic activity 

(Marsili et al., 2008; Shimotori et al., 2007). Sustainable power increases as long-term 

external resistance decreases, and sustainable resistance decreases as long-term external 

resistance decreases. Since decreased external resistance corresponds to higher electron 

flow at the attached biomass/electrode interfaces, it is likely that such conditions favor 

species with faster electron transfer rate. At higher external resistance, electroactive 

bacteria are no longer favored and biomass nor efficient in substrate utilization is likely 

selected. 

DGGE of cathodic biomass using two different set of primers provided an 

analytical tool to study the diversity of the microbial community suspended and 

attached on the cathode. Use of the primers set P357F-GC clamp and 518R revealed a 

high fingerprint similarity between the two samples. However, it is often not easy to 

assign short partial sequences accurately, especially if the sequences lack close relatives 

in the database (Kuske et al., 1997). Because of this reason and to overcome PCR bias 

that often has been reported in DGGE experiments, (Hansen et al., 1998), we used the 

second set of primer (p63F-GC clamp-518R). The DGGE profiles obtained by this 

different set, that generated a larger 495-bp fragment, again revealed that the genomic 

fingerprintings of the two samples are very similar. Moreover, the use of both primer 

sets allowed a more accurate discrimination of different taxonomic groups inside the 

samples. In related studies that examined the microbial community present at the 
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biocathode, a similar breadth of phylogenetic diversity was detected (α, β, γ 

Protobacteria, Bacteroidetes) (Clauwert et al., 2007; Chen et al., 2008; Rabaey et al., 

2008), whereas members of the Firmicutes group were detected for the first time. The 

presence of this bacterial taxon  in the cathodic compartment could be related to the fact 

that the system was fed with glucose. 
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Conclusions 

Further studies are needed to better understand the effect of external resistance 

on microbial composition. It is possible that increased power production corresponds to 

increased organization in electron transfer network in attached biomass. Also shift in 

electron transfer strategies (e.g., from mediated to direct electron transfer) may play a 

role in the change of sustainable resistance and sustainable power with time. 

Based on the results from this study, we can conclude that with simple 

modifications, a common wastewater treatment plant can produce electrical power, 

without changes in COD removal and ammonia nitrification. The power produced was 

limited by diffusion phenomena, rather than from catalytic activity of electrode 

biomass. Sustainable power measures indicated that at lower external resistance 

electroactive bacteria are favored. 

Biocathode is proved to be an efficient catalyst for oxygen reduction, and a 

feasible alternative to expensive Pt-based catalysts in wastewater-fed MFCs. A 

taxonomic characterization performed on both suspended and attacched cathodic 

biomass showed that the sequenced DGGE bands were affiliated with Firmicutes, α-

Proteobacteria, β-Proteobacteria, γ-Proteobacteria, and Bacteroidetes groups. 
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