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APPLICATION OF ARTIFICIAL NEURAL NETWORKS AND 

SEMI-EMPIRICAL MODELLING TECHNIQUES TO 

MEMBRANE FILTRATION PROCESSES 

ABSTRACT 

The applicability of artificial neural networks (ANNs) and semi-empirical 

modelling techniques for correlation and prediction of the filtration characteristics 

of microfiltration systems was assessed. 

ANNs were developed to correlate specific cake resistance and steady state flux of 

dried yeast suspensions in dead-end microfiltration for a range of operating 

parameters. Trained networks were used in predicting filtration characteristics of 

previously unseen data, with excellent agreement. Network weights were 

interpreted for both the specific resistance and flux networks with the effective 

contribution of each input parameter showing trends that were as expected.  

A novel neural network technique was developed for the prediction of dynamic 

flux data in batch stirred microfiltration of bentonite (a clay which forms an 

aqueous suspension with non-Newtonian rheology), based on eliminating the use 

of the time series explicitly as an input to the network. This approach reduces the 

size and complexity of network necessary for correlation and prediction of time 

series data, thus reducing processing times required, while achieving excellent R2 

values for prediction of previously unseen data. This novel approach was also 
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used in the correlation and prediction of batch crossflow microfiltration of 

bentonite.  

Drawbacks of the artificial neural network approach include the lack of 

information obtainable about the physical characteristics of a given system, and 

the models obtained in this manner are empirical in nature. Although a legitimate 

approach especially in the modelling of complex systems, the development of 

physical models to describe these systems is a more fundamental chemical 

engineering approach to the problem. The use of physical modelling especially in 

batch systems where the concentration in the system is changing as a function of 

time is an interesting problem and gives more qualitative insight into what is 

happening in the system. Semi-empirical models based on the idea of 

simultaneous particle deposition and cake removal were developed to describe 

stirred microfiltration, batch crossflow and continuous crossflow of bentonite 

suspensions.  

The basic model incorporating a cake removal rate constant k was found to fit 

qualitatively to stirred filtration data, however the predicted specific cake 

resistance was over-estimated when compared with experimentally determined 

values. The basic model was modified by the introduction of two extra terms - a 

critical flux, J*, below which cake removal by shearing does not take place, and 

an instantaneous membrane fouling constant, b.  

The modified model was found to give reasonable approximations to the 

experimentally determined specific cake resistance for the stirred system, 

including accurate prediction of the effect of increasing crossflow velocity leading 



  ix 

to a decrease in specific cake resistance. Reasonable trends in the model 

parameters were seen in some but not all cases for the stirred system. 

On application of this model to batch crossflow filtration data the specific cake 

resistance was largely overestimated, and this and the model parameters were not 

found to follow consistent trends. This finding was attributed in part to changing 

flow regimes in the system due to increases in concentration and crossflow 

velocity. 

The modified model incorporating irreversibility was applied to continuous 

laminar crossflow filtration, and crossflow experiments were extended by flushing 

of the membrane after filtration to investigate the irreversibility of cake formation 

in the system. The model was found to fit well to flux decline data, with sensible 

trends in the specific cake resistance and the model parameters; however, the cake 

removal by the flushing phase was not well represented by the model.  
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NOMENCLATURE 

Symbol Meaning Units 

a Constant in Equation 2-1 - 

A Membrane area m2 

A Constant in Equations 3-4 and 3-5 - 

a,b Constants in Equation 1-16 - 

a,b,c,d,e,f Constants in Equation 3-5 various 

b Instantaneous membrane fouling constant - 

c Mass of solids per unit volume of filtrate g/L 

C Concentration g/L  

C0 Initial Concentration g/L 

D Pipe diameter in Equation 5-29 m 

dp Particle diameter m 

Ff Frictional force N 

FN Normal force N 

Ft Tangential hydrodynamic force N 

g Activation function in Equation 1-12 - 

g,h,i,j,k,l Constants in Equation 3-6 various 

J Filtrate flux m/s 

J
*
 Critical Flux m/s 

J0 Initial Flux m/s 

K Kozeny constant in Equation 1-7 - 

K Fluid consistency index in Equation 5-28 (g/L)n 

k Cake removal rate Chapters 5 and 6 s-1  

k Constant in Hermia Blocking Laws (Equation 1-10) - 

kc Particle compressibility parameter in Equation 1-8 Pa-1 

Lm Membrane thickness in Equation 5-14 m 

m Mass of particles per unit membrane area kg/m2 

n Constant in Hermia Blocking Laws (Equation 1-10) - 

n Compressibility index in Equation 2-1 Pa-1 

n Constant in Equations 3-4 and 3-6 - 

N Impeller rotational speed RPM 

N Number of data points in Equation 3-2 - 
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nh Number of neurons in hidden layer  in Garson Equation - 

nv Number of input variables in Garson Equation - 

Oj Absolute value of the weight from the j
th neuron in hidden 

layer in Garson Equation 
- 

p Constant in Equation 1-9 - 

R Total number of batch runs in Equation 3-8 - 

Rc Cake resistance  m-1 

Rm Membrane resistance m-1 

 Rm0 Initial clean membrane resistance m-1 

RT Total resistance to flow m-1 

s Steepness parameter in Equation 1-13 - 

Sv Mean particle surface area per unit volume in Equation 1-7 m2/m3  

t Time s 

t Constant in Equation 1-13  

u Crossflow velocity or Impeller Tip Speed m/s 

V Filtrate volume m3 

V Volume in Stirred Cell in Figure 5-1 m3 

v Relative effect of input variable  - 

V0 Initial volume m3  

VR Feed reservoir volume m3 

wkj Absolute value of weight from k
th input to the j

th hidden 
neuron  

- 

wvj Absolute value of weight from the input of interest to the jth 
hidden neuron  

- 

xi Data point to be normalised in Equation 1-16 - 

xi
*
 Normalised data value in Equation 1-16 - 

xmax Maximum value of data point - 

xmin Minimum value of data point - 

y Dependent variable in Equation 3-3 - 

y(x) Output from neuron x in Equation 1-12 - 

rŷ  Predicted output in Equation 3-8 - 
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Symbol Meaning Units 

α Specific cake resistance m/kg 

α0 Zero pressure specific cake resistance in Equation 1-8 m/kg 

β Constant in Equation 5-14 - 

δ Cake thickness in Equation 5-15 m 

ε Cake porosity - 

φp Particle volume fraction in cake (Equation 5-18) - 

ηf Coefficient of friction in Equation 5-16 - 

κ Membrane permeability in Equation 5-14 - 

µ Filtrate viscosity Pa s 

∆P Applied pressure Pa 

∆Pc Cake pressure drop Pa 

ρc Particle density kg/m3 

∆Ptm Transmembrane pressure drop Pa 

θ Variables in Equation 3-3 - 

σ Standard deviation - 

τw Wall shear stress Nm-2 

τxi Relative importance of parameter in Equation 3-8 - 
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Abbreviation Meaning 

ANN Artificial Neural Network 

BP Backpropagation 

BSA Bovine Serum Albumin 

CB Complete Blocking in Hermia Blocking Laws 

CF Cake Filtration in Hermia Blocking Laws 

CFMF Crossflow microfiltration 

CFUF Crossflow ultrafiltration 

IB Intermediate Blocking in Hermia Blocking Laws 

IS Ionic strength 

MF Microfiltration 

MSE Maximum squared error  

NF Nanofiltration 

PES Polyethersulphone 

PS Particle size 

RB Radial Basis Network 

RK Runge-Kutta 

RO Reverse Osmosis 

SB Standard Blocking in Hermia Blocking Laws 

SEM Scanning electron microscopy 

UF Ultrafiltration 
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CHAPTER 1: MEMBRANE FILTRATION PROCESSES AND 

MODELLING TECHNIQUES 

1.1 Introduction 

Filtration involves the separation of particles from a particle/fluid mixture. During 

filtration, particles that are larger than the pore size of the membrane deposit to 

form a filter cake on the upstream side of the membrane. Microfiltration refers to 

the separation of particles in the range 0.1 – 10 µm. The driving force for 

microfiltration is a pressure difference across the membrane and its associated 

filter cake, which forces filtrate through the filter cake and membrane. The 

necessary pressure difference is achieved either by applying pressure in a sealed 

environment by a compressed gas, piston or pump on the upstream side of the 

membrane, or by applying a vacuum to the filtrate side of the membrane. 

Microfiltration is characterised by operation at low pressures, (typically less than 

3.5 bar) and by high permeation fluxes. One of the major limitations of 

microfiltration is the fouling of the membrane caused by the deposition and 

adsorption of solute or of suspended particles. The advantages of using membrane 

separation processes such as microfiltration are their operation without phase 

change, relatively low energy consumption, and the ability to operate at ambient 

temperature. Microfiltration may be performed in three main configurations; 

dead-end, stirred and crossflow. 

Some applications of microfiltration include the treatment of wastewaters 

(Cheryan 1986; Kang and Choo 2003); clarification of beverages, for example 

fruit juices (de Barros et al. 2003; Youn et al. 2004); wine and beer (Blanpain et 
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al. 1993; Czekaj et al. 2000a, 2001); continuous product removal and cell recycle 

during fermentation and downstream processing of fermentation broths (Nagata et 

al. 1989; Li et al. 1996) and plasmapheresis (continuous separation of blood from 

plasma cells) (Sakai et al. 1989).. One of the key measures of the performance of 

microfiltration processes is the filtrate (or permeate) flux, defined as filtrate 

flowrate per unit membrane area. Extensive research has shown that this 

parameter is a complex function of operating conditions (pressure, crossflow 

velocity), membrane properties, module geometry and feed properties 

(concentration, pH etc.). While there have been a large number of theoretical 

models developed for the various membrane processes, few of these are accurate 

except for with the simplest of model systems. These models are generally unable 

to predict membrane performance when the feed is a complex (and poorly 

characterised) mixture and when membrane fouling, (as distinct from cake 

formation), is a major contributor to flux decline. 

In this chapter, a brief introduction is first given into the principles of operation of 

dead-end and crossflow microfiltration.  

There is a wealth of published experimental studies examining the behaviour of 

flux decline and filtration characteristics for different systems. The focus of this 

introduction will be on research pertaining to the systems examined in this thesis, 

namely the dead-end microfiltration of microbial suspensions (in this case re-

suspended dried yeast cells), and the stirred and crossflow microfiltration of a 

non-Newtonian colloidal suspension of bentonite clay. The rheology of bentonite 

and its effect on the filtration characteristics is given some consideration. 
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The focus of the second part of this chapter is the application of theoretical and 

empirical models to microfiltration, including an in-depth introduction to artificial 

neural networks (ANNs). ANNs are computational devices that have been little 

applied to filtration problems, and as such will require more introduction than 

traditional modelling techniques based on first principles analyses. 

The overall aim of the work presented in this thesis is to explore the use of more 

empirical, yet accurate, models for membrane processes. While the focus of this 

work is microfiltration processes, the techniques used are applicable to any 

membrane separation process. 

1.2 Classification of Membrane Filtration Techniques 

Microfiltration techniques are generally classified on the basis of the direction of 

the flow of the feed suspension that is being processed. In theory, all components 

in a suspension that are smaller than the pore size of the membrane will pass 

through the membrane, and particles larger than the pores will be retained on the 

upstream side of the membrane. The mode of operation chosen is based on the 

nature of the feed solution. Dead-end filtration systems are usually of a simpler 

configuration than crossflow systems and require less capital outlay and 

maintenance costs, however, filtration performance is often poor in dead-end 

mode due to the high resistance to filtrate flow by rejected material. Thus the 

dead-end configuration is a viable option only when the particle loading in the 

feed is low, for example in the purification of gases or in clarification of filtration 

media. Crossflow filtration is preferred for higher solids loading and when 

performance in dead-end mode is poor. 
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1.2.1 Dead-End Filtration 

In dead-end microfiltration, the feed suspension flows perpendicularly to the 

membrane (Figure 1-1). Any solids in the feed that are larger than the pore size of 

the membrane are deposited on the membrane surface, forming a cake of solids. 

The liquid that passes through the membrane is called the filtrate.  

 

Figure 1-1: Dead-End Microfiltration 

Most dead-end filtration processes are carried out in batch mode and therefore the 

mass of the filter cake grows until all the particles are deposited, or until the 

capacity of the filter has been reached, in which case further filtration is not 

possible. The filtration rate decreases with filtration time due to the hydraulic 

resistance of the filter cake.  

Laboratory scale dead-end filtration is often carried out in a filtration cell which is 

simply a cylindrical vessel, usually made of stainless steel, fitted with a porous 

support onto which is placed the membrane. An exit port is provided for the 

filtrate which is collected and weighed on a digital balance. For accurate 

measurements and efficient data collection, the balance can be connected to a 

personal computer. The flux is calculated by measuring the mass (and hence the 
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volume if the density is known) of filtrate collected in a known time. The pressure 

is kept constant by connecting the cell to a compressed air (or nitrogen) source. 

1.2.2 Stirred Microfiltration 

In stirred microfiltration the filtration is nominally perpendicular to the 

membrane, as in dead-end microfiltration. However the filter cell is equipped with 

a stirrer or impeller. The fluid between the rotating impeller and the membrane 

flows tangential to the membrane and therefore some of the particles in the 

permeating liquid are kept suspended in the bulk liquid and do not deposit on the 

membrane surface (Figure 1-2). Therefore, stirred filtration may be expected to 

have higher permeation fluxes over a longer period of time than dead-end 

filtration, in which all of the solids in the feed deposit on the membrane.  

 

Figure 1-2: Stirred Microfiltration 

However, significant initial permeate flux decline cannot be avoided due to the 

hydraulic resistance of the accumulating particle (cake) layer. Initially, cake 

formation in stirred filtration occurs in a similar manner to dead-end filtration 
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(Tanaka et al. 1993). The observed decline in permeate flux during stirred 

filtration is typically rapid at the start of the filtration process and then gradually 

diminishes until a steady-state (or pseudo-steady state) flux is attained. The 

growth of the cake stops, or approaches pseudo steady state, until such a time as 

the liquid level in the cell drops to levels too low to sustain the steady state flux. 

Stirred microfilters have been used as a method to approximate true crossflow 

systems operating at the same pressure and similar tangential velocity as that of 

the crossflow system (Kim et al. 2001; Nuengjamnong et al. 2005). 

1.2.3 Crossflow Microfiltration 

In crossflow microfiltration, (CFMF), the feed suspension flows tangentially to 

the membrane surface. CFMF is operated with two effluent streams: a permeate 

stream (or filtrate stream) and a retentate stream. Only a part of the feed 

suspension passes through the medium as recovered product (permeate), and the 

other part flows tangentially along the membrane surface (retentate).  

 

Figure 1-3: Crossflow Microfiltration 
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Crossflow microfiltration is usually carried out using stacked sheet, hollow fibre, 

or tubular membrane configurations. Hollow fibre and tubular modules have a 

shell-and-tube type configuration, the differences being that hollow fibre modules 

usually consist of a greater number of tubes with a smaller diameter than the tubes 

used in tubular modules. Stacked sheet modules may have flat sheet or spirally 

wound configurations. Fluid flow in stacked sheet and hollow fibre modules is 

nominally laminar, an issue which becomes of importance when filtering shear-

sensitive cells. However, care must be taken, as the presence of spacer screens in 

these systems can act as turbulence promoters. Flow is usually turbulent in tubular 

flow modules, which can result in improved fluxes but the small membrane area 

per unit volume in these system can offset this advantage. 

In small scale research studies, crossflow systems are usually run with a feed 

pump only and are thus operated without a recycle loop. Experiments are operated 

in either batch or total recycle mode. In batch mode, the retentate only is recycled 

to the feed reservoir, thus causing the feed concentration to increase over time. In 

total recycle mode, the retentate and filtrate are both returned to the feed tank, 

thus simulating a true continuous (single-pass) system. In Chapter 3 of this thesis, 

an atypical experimental set-up is described which is neither truly batch nor truly 

continuous.  

1.2.4 Membranes 

Microfiltration membranes generally have pore sizes in the range 0.1 – 1 µm. 

Membrane structure will depend on the material and method of construction. The 

most common materials used for microfiltration membranes are polymer based 
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materials such as cellulose, polysulphone or polycarbonate; or ceramic 

membranes made from materials such as alumina or zirconia. Microfiltration 

membranes are generally symmetric i.e., they consist of approximately the same 

structure throughout the membrane. In contrast, ultrafiltration membranes are 

normally asymmetric, consisting of a thick porous layer covered with a thin layer 

of low porosity (Bowen 1993).  

The membrane type plays an important role in the rejection of particles from the 

feed particularly at early filtration times. However, in microfiltration operations, 

the deposited cake layer is usually the limiting resistance and the membrane type 

after low filtration times may be of little significance.  

1.2.5 Applications of Microfiltration 

Microfiltration is an attractive separation process when other techniques such as 

centrifugation or sedimentation are unfeasible. This may occur when the particles 

to be separated are small in size or the density difference between particle and 

fluid phases is small.  

Applications of microfiltration are many and varied and include bacterial (Nagata 

et al. 1989; Shimuzu et al. 1993), yeast (Rushton and Khoo 1977; Hughes and 

Field 2006) and mammalian cell harvesting (Maiorella et al. 1991); and separation 

of antibiotics and viral containing solutions (Madaeni et al. 1995). In the food 

industry microfiltration is widely used in the clarification of wine (Czekaj et al. 

2001), beer (Blanpain et al. 1993) and juices (Youn et al. 2004). It is widely used 

in other industries such as filtering of colloidal or latex based paints (Doneva et 

al. 1998), separation of colloidal oxides and hydroxides for metal recovery, in 



  9 

wastewater treatment (Kang and Choo 2003), and in plasma separation from 

blood for therapeutic and commercial uses (Sakai et al. 1989).  

Membrane bioreactors have been the subject of much research and have found 

increased use industrially (especially in wastewater treatment) in recent years. 

Two membrane bioreactor configurations exist: an external/sidestream 

configuration and an internal configuration. In the external configuration, a 

membrane module is attached externally to a reactor or fermenter and the 

suspension is pumped to the filtration module with the retentate being returned to 

the reactor. Fresh medium may be added as the filtrate is removed from the 

system, allowing simultaneous product formation and recovery (Choo and Lee 

1998; Park et al. 1999; Kim et al. 2001; Ognier et al. 2002). In the case of the 

internal configuration (commonly known as a submerged membrane system), the 

membrane is immersed in the reactor (Chang and Fane 2001; Sridang et al. 2008). 

1.3 Flux Decline in Filtration 

Filtration performance is generally expressed in terms of the filtrate flux, J, the 

volume of filtrate that passes through unit membrane area in unit time. The Darcy 

equation describing fluid flow in packed beds is used extensively in filtration 

theory: 

TR

P
J

µ

∆
=         [1-1] 

where RT is the total resistance to flow, ∆P is the applied (trans-membrane) 

pressure and µ is the filtrate viscosity.  
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There are many factors that cause the filtrate flux to decline. The formation of a 

cake layer is usually the cause of the steep decline in filtrate flux, however other 

phenomena such as the plugging of the membrane pores by particles, infiltration 

of fines into the filter cake (Tanaka et al. 1994) or membrane fouling by 

macrosolutes can also contribute to flux decline. These phenomena are referred to 

as fouling, where fouling is any phenomenon, other than pure cake formation, that 

contributes to flux decline.  

1.3.1 Dead-End Microfiltration of Microbial Suspensions 

For dead-end microfiltration, if the cake resistance is dominant and membrane 

fouling can usually be assumed to be negligible, the Darcy Equation (Equation 1-

1) can be written 

( )mR

P
J

m αµ +

∆
=        [1-2] 

where J is the filtrate flux, ∆P is the applied (trans-membrane) pressure, µ is the 

filtrate viscosity,  Rm is the membrane resistance, α is the specific cake resistance 

and m is the cake mass per unit membrane area. In dead-end filtration, m can be 

related to the filtrate volume, V, by the expression 

A

cV
m =         [1-3] 

where A is the membrane area and for microbial filtration, c is the wet mass of 

cells per unit filtrate volume. 
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1.3.1.1 The Specific Cake Resistance 

The specific cake resistance α is a measure of the 'filterability' of the suspension 

because it is the value of this parameter, and its dependence on pressure, that 

determines how quickly a filtration can be performed. In most dead-end filtration 

processes, the resistance of the cake layer is dominant and therefore, it is essential 

that α be measured easily and that the factors affecting α are understood.  

The classic method for determining the specific cake resistance is to measure the 

volume, V, of filtrate as a function of time, t, during a batch filtration at constant 

pressure. In this way, the specific cake resistance can be measured (or process 

performance calculated) from the well-known expression, derived using Equation 

1-1 and Equation 1-2 and valid for constant pressure filtration (Rushton et al. 

1996), namely 

V
PA

c

PA

R

V

t m

∆
+

∆
=

22

αµµ
      [1-4] 

where A is the membrane area and c is wet cell mass per unit volume of filtrate. 

Therefore, α can be determined from the slope of a plot of t/V versus V. As 

mentioned previously, the value of α determines to a large extent the efficiency of 

a process. However, while filtration equations are simple in form, much 

complexity is concealed because the specific resistance is dependent on many 

other variables. Traditionally, the main factor assumed to affect the specific 

resistance is the pressure drop across the filter cake, ∆Pc, where this quantity is 

defined by the expression 

JRPP mc µ−∆=∆        [1-5] 
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Although α is technically dependent on cake pressure drop, most authors correlate 

dead-end specific resistance data in terms of the total applied pressure, ∆P, an 

approach that is reasonable as long as the cake resistance is dominant throughout 

the filtration. 

The wet cell concentration, c is a difficult parameter to measure, as reporting the 

concentration based on a wet pellet mass from a centrifuged sample is not 

sufficient, as it contains intercellular water.  There are a number of methods that 

have been developed to measure the true wet cell concentration, including 

measurement of the dextran uptake of the void volume of the cell pellet 

(McCarthy et al. 1998b; Chandler and Zydney 2004); measurement of the dry cell 

concentration with an assumption of typical cellular moisture content of 70 % 

(Shimuzu et al. 1993); replacement of interstitial water of a wet filter cake with 

ethanol with subsequent evaporation of the ethanol allowing the cake to be 

weighed to find the wet cell mass (Oolman and Liu 1991) and compression of 

filter cake overnight with subsequent weighing, assuming that the intercellular 

moisture drains from the cake over this period (Okamoto et al. 2001). These 

experimental techniques are not trivial and there is no easy way to measure 

accurately the wet cell concentration. 

Definition of the specific cake resistance on the basis of the dry cell weight has 

been used in previous studies (Hodgson et al. 1993; Ohmori and Glatz 1999) and 

it is this approach that is used in this work due to ease of use.  
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1.3.1.2 The Steady State Method 

A commonly used way of measuring the specific cake resistance over a range of 

pressures in a single experiment is to use the so called steady state method 

(Nakanishi et al. 1987). This involves filtering a volume, V, of suspension of 

known concentration (mass particles per unit volume of suspension), C, at a low 

pressure. The filtrate is collected, returned to the cell and passed through the filter 

cake at the same low pressure as before. The flux is recorded and the pressure 

then increased in a step-wise fashion with the flux monitored continuously. As 

each new pressure is set, the flux will rapidly approach a steady value. The cake 

mass per unit area is the same at all pressures as outlined in Equation 1-2. Thus 

the specific cake resistance can be evaluated at each pressure from the expression 

A
CV

R
J

P
m−∆

=
µ

α        [1-6] 

where J is the steady flux recorded at each pressure. Assuming no membrane 

fouling, the membrane resistance, Rm, can be evaluated by measuring the flux of 

pure water through a clean membrane.  

There is some doubt about the theoretical correctness of this method (Tien and 

Ramarao 2008). These authors regard the steady state method as compression of 

an existing cake rather than cake filtration, and also call into question the fact that 

the concentration profile in the cake is not taken into account. However, for the 

purposes of this research, a more detailed analysis of specific cake resistance is 

unnecessary as the specific resistance values are of interest only as data for 

analysis using Artificial Neural Networks. 
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1.3.1.3 The Carman-Kozeny Equation 

The Carman-Kozeny equation is often used to relate specific cake resistance to 

particle size and may be written 

3

2 1

ε

ε

ρ
α

−
=

c

vKS
       [1-7] 

where K is the Kozeny constant, ρc is the particle density, Sv
2 is the mean particle 

surface area per unit volume and ε is the cake porosity.  

If all of the particles in the suspension are spherical and of the same diameter, dp, 

this expression may be simplified to 

32

136

ε

ε

ρ
α

−
=

pcd

K
       [1-7b] 

The dp
-2 dependence of α has been shown to be quite accurate experimentally 

(McCarthy 2001) however the use of this equation for predicting the specific cake 

resistance is limited as it requires the measurement of the cake porosity. 

Furthermore, it is necessary to assign a value to the Kozeny constant, which varies 

with the type of suspension (McCarthy et al. 1998b). 

Particle size and size distribution effects have been shown to affect microfiltration 

resistances. For the case of inorganic suspensions, increasing particle size has 

been shown to cause a reduction in the resistance to filtrate flow for filtration of 

spherical latex particles (Ogden and Davis 1990) and glass and silica particles 

(Chellam and Weisner 1998). For yeast cells, it has been shown that specific cake 

resistance is increased when particle size is reduced by cell breakage (Shimuzu et 
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al. 1994) and for microbial suspensions, increasing the surface area per unit 

volume Sv (i.e. reduction in particle size) was shown to lead to an increase in 

specific cake resistance (Nakanishi et al. 1987). The size distribution of the 

suspension also affects the filtration characteristics, as smaller particles fill the 

gaps in the cake between larger particles, thus reducing cake voidage and 

increasing the specific cake resistance (Wakeman 1975; Free et al. 1998). 

1.3.1.4 Experimental Observations 

Experimental investigations into dead-end microfiltration have not been widely 

published, and most studies in fact form the initial investigations leading into 

crossflow studies.  

Flux decline in dead-end filtration of microbial cells such as yeasts has been 

shown to be affected by many different cell and suspension properties. 

Increasing the applied pressure generally increases the filtrate flux as it is the 

transmembrane pressure that is the driving force for filtration. Cell-based filter 

cakes are usually compressible. A linear relationship rather than the standard 

power law equation used to correlate specific resistance and applied pressure has 

been shown to be more applicable in microfiltration of microbial suspensions 

(McCarthy et al. 1998a). A number of correlations have been developed based on 

this linear relationship for different cell suspensions (Reismeier et al. 1989; 

Rushton et al. 1995; Tanaka et al. 1997)  and for resuspended dried yeast cells of 

the type employed in this work, the following equation has been used to correlate 

specific cake resistances over a wide range of pressures (McCarthy et al. 1998a; 

1998b; 1999; 2002a): 
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( )cc Pk ∆+= 10αα        [1-8] 

Where α0 is the zero pressure specific cake resistance and kc is a parameter 

reflecting the particle compressibility.  

An increase in suspension concentration leads to a corresponding decrease in 

filtrate flux. Scant evidence has been reported of the specific resistance of yeast 

suspensions increasing with suspension concentration (Mota et al. 2004), a 

finding that is supported in recent work on the ultrafiltration of silica suspensions 

(Zaidi and Kumar 2005). These findings are atypical as most authors would 

consider the specific resistance to be independent of concentration. 

Cell morphology has been shown to play a part in the specific cake resistance, 

with rod-like cells tending to have a greater compressibility than ellipsoidal cells 

(McCarthy et al. 1998b; 2002a). Specific resistances for microbial cells have also 

been shown to be dependent on the cell surface properties such as the extracellular 

matrix (Hodgson et al. 1993; Ohmori and Glatz 2000). Extracellular matrices on 

the surface of cells have been shown to lead to a large increase in the specific 

resistance of C. glutamicum grown in a complex medium (Ohmori and Glatz 

2000). 

Liquid properties such as pH and ionic strength have been shown to play a role in 

the specific resistance of microbial suspensions. Increase in specific resistance 

with increasing pH has been shown to be due to increased cell surface charge 

leading to a more resistant cake with fewer macropores due to cell aggregation for 

cakes of S. griseus (Shirato and Esumi 1963) and C. glutamicum (Ohmori and 
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Glatz 1999). Decline in specific resistance with increasing ionic strength at fixed 

pH has been observed for C. glutamicum (Ohmori and Glatz 1999). 

Medium components have also been shown to influence the specific cake 

resistances of microbial suspensions. Amino acid addition leading to aggregation 

of cells and increased specific resistance has been observed (Ohmori and Iritani 

2004a) while addition of ammonium chloride has been seen to lead to decreased 

specific resistance, tying in with the effects of ionic strength observed above 

(Ohmori et al. 2004). Addition of protein (BSA) to suspensions of C. glutamicum 

has been shown to increase the specific resistance in ultrafiltration due to 

increased aggregation of cells by BSA and formation of a gel layer of BSA on the 

membrane surface (Ohmori and Iritani 2004b).  

Although cake formation is usually the dominant resistance in dead-end 

microfiltration of microbial suspensions, membrane fouling effects have been 

found to have an influence in many cases. Fouling may be caused by macrosolutes 

absorbing or depositing within the membrane pores or on the membrane surface, 

or by plugging of the membrane pores by particles in the feed suspension (Tracey 

and Davis 1994). In the filtration of biological suspensions, proteins, 

polysaccharides or lipids may all contribute to membrane fouling, and fouling can 

be affected by many factors such as the pH, ionic strength, protein structure, 

degree of hydration of the protein, membrane surface chemistry, membrane 

surface charge and applied pressure (Bowen 1993; Bowen and Cao 1998). 
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1.3.2 Crossflow Filtration of Colloids 

In CFMF, some of the particles in the permeating liquid may be carried away by 

the tangential flow (crossflow) and thus will not deposit on the membrane surface. 

Therefore, crossflow filtration may be expected to have higher permeation fluxes 

over a longer period of time than dead-end filtration, in which all of the solids in 

the feed deposit on the membrane. However, significant initial permeate flux 

decline cannot be avoided due to the hydraulic resistance of the accumulating 

particle (cake) layer. The observed decline in permeate flux during crossflow 

filtration is typically rapid at the start of the filtration process and then gradually 

diminishes until a steady-state (or pseudo-steady state) flux is attained. Although 

the thickness of the filter cake can be limited in crossflow filtration and, in theory, 

filtration performance should be superior to that in dead-end filtration, the 

properties of the cake layer can be substantially different to that in dead-end 

filtration. Average specific cake resistances have been shown in some cases to be 

greater than that in dead-end filtration (Foley 1994). 

Crossflow filtration has been shown to be advantageous in the separation of 

dispersions of colloids and fine particles as many of these suspensions are 

compressible, have a density close to that of the liquid phase, have a high 

viscosity, or are gelatinous (Bowen and Jenner 1995). 

1.3.2.1 Experimental Observations 

Experimental investigations have shown that many factors affect filtration 

performance in crossflow filtration, including the feed concentration, 

transmembrane pressure drop, crossflow velocity and feed suspension properties. 
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In practice, the cake mass is generally seen to increase with the transmembrane 

pressure, feed particle concentration and membrane pore size, and to decrease 

with crossflow velocity (McCarthy et al. 2002b).  

Flux dynamics during microfiltration have been described by Belfort et al. (1994) 

as following the sequence: (i) Fast internal sorption of macromolecules, in which 

the macromolecules such as proteins adsorb onto the membrane surface or pores; 

and (ii) the build-up of sublayers and layers of particles on the membrane.  If the 

module is being operated in batch mode, the crossflow fluid can become so 

viscous that previously turbulent flow may become laminar leading to a further 

reduction in flux (Pritchard et al. 1995). 

Numerous experimental observations of crossflow microfiltration of colloidal 

suspensions have shown that the flux declines rapidly as a layer of rejected 

particles deposit on the membrane surface. Increased concentration has shown to 

lead to a greater flux decline (Bowen and Jenner 1995; Chen et al. 1997). This 

period of initial flux decline is followed by a more gradual flux decline followed 

by the establishment of a pseudo steady state flux (Hong et al. 1997).  

The transmembrane pressure is the driving force for microfiltration, and hence an 

increase in ∆Ptm should increase filtrate fluxes. However, this also increases the 

cake layer thickness, causing an increase in cake resistance. The issue of filter 

cake compressibility, which is affected by ∆Ptm, will also have an effect on the 

filtration characteristics. An increase in the transmembrane pressure will result in 

higher initial fluxes, however it will also lead to a more rapid flux decline (Field 

et al. 1995). In many cases for highly compressible colloidal cakes such as those 

formed with bentonite suspensions, the applied pressure is shown to have a small 
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effect on the flux after early filtration times (Fordham and Ladva 1989; 1992). For 

suspensions of incompressible particles such as silica, increase in the applied 

pressure is shown to lead to increased fluxes (Hong et al. 1997). 

The temperature of the feed suspension affects the viscosity, and hence the 

filtration characteristics. The temperature will also affect the retentate viscosity, 

which can affect the cake formation by affecting shear forces acting on the cake. 

The effect of temperature is complex as the effect of viscosity is complex. The 

Darcy equation predicts that reducing the filtrate viscosity (by increasing the 

temperature) should lead to an increase in flux. However, the increase in flux 

leads to a greater deposition of particles – i.e. the m in the Darcy equation 

increases as the viscosity is decreased. An increase in feed suspension viscosity 

leads to an increase in wall shear stress τw, leading to a tendency for the cake mass 

to decrease (Pritchard et al. 1995), as the increased shear stress can result in 

increased particle removal from the cake. This results in the cake thickness being 

limited, and the filtrate flux is normally increased.  

A power law relationship is generally used in relating the crossflow velocity to the 

filtrate flux (Porter 1990): 

p
uJ ∝         [1-9]    

where u is the crossflow velocity, and p is a constant that depends on the process 

parameters and the crossflow module used.  

At the initial stages of colloid crossflow filtration, the permeate flux has been 

shown to be independent of crossflow velocity (Hong et al. 1997) and flux decline 

mimics that of dead-end filtration (Fordham and Ladva 1989). 
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Smaller particles sizes have been shown to lead to more rapid initial flux decline 

(Hong et al. 1997) and the slope of the initial flux decline rate has been shown to 

be inversely proportional to the square of the particle radius, which ties in with the 

dp
-2 dependence of specific resistance reported for dead-end filtration (McCarthy 

2001). 

Fouling of the membrane causes a decrease in filtration efficiency and can result 

in loss of product. Fouling may be caused by plugging of membrane pores by 

particles in the feed suspension, or by adsorption of macromolecules within the 

pores of the membrane. Fouling is influenced by the suspension properties, such 

as pH and ionic strength, and also on the membrane properties (material of 

construction, charge) as well as on the pore size (Bowen and Cao 1998). 

Much research has been devoted to the reduction of flux decline phenomena in 

crossflow microfiltration, in order to render the process more industrially viable 

and less costly. Several practical approaches have been used, including modifying 

the surface chemistry of the membrane to increase the repulsive forces between 

the membrane and the solute, and methods focused on increasing the back-

transport of solutes away from the membrane. Modifications to the basic filter 

configurations have also been used in an attempt to improve filtrate flux, by 

improving mass transfer at the membrane surface and the back migration of 

retained species away from the membrane-solution interface. Physical methods 

have also been employed, such as the addition of seed particles to attract dissolved 

macromolecules away from the membrane, and the use of electric fields to move 

charged molecules away from the membrane. 
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The surface chemistry of the membrane may be modified in order to reduce the 

attractive forces or increase the repulsive forces between the membrane and the 

solute. A range of techniques have been employed experimentally to this end, 

including adsorption of hydrophilic polymers (Kim et al. 1988), irradiation 

methods (Nyström and Jarvinen 1991) and low temperature plasma activation 

(Kramer et al. 1989).  

Modules have been designed to include turbulent flow and enhanced mixing to 

improve filtrate flux. Baffles may be inserted in the filtration modules to generate 

turbulence and lessen the rate of flux decline (Field et al. 1995). Membranes may 

be pleated or curved (Moulin et al. 1996). Composite modules which incorporate 

both dead-end and crossflow filtration have been used (Bai and Leow 2002).  

Many techniques focus on reducing the cake layer thickness, such as when the 

direction of tangential flow is periodically reversed (Howell et al. 1993) or the 

direction of filtrate flow may be reversed, known as backflushing, or backpulsing 

(Tanaka et al. 1995; Redkar et al. 1996). Other hydrodynamic modifications have 

been used to improve filtrate flux such as pulsation of the feed stream and the 

production of centrifugal instabilities such as Dean and Taylor vortices (Moulin et 

al. 1996; Kluge et al. 1999; Moll et al. 2007). Vibrating modules have been used 

(Al Akoum et al. 2002) and shear enhancement using vibrations has been found to 

cause an increase in the permeate flux. Infrasonic pulsing has been investigated as 

a method of removing foulant and improving filtrate flux (Czekaj et al. 2000b). 

Much research has focused on the manipulation of the suspension properties in 

order to reduce fouling and improve the filtrate flux. On the basis of the idea that 

a particle size that is too small will plug the pores of a membrane, and that a 
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particle size that is too large will block the lumen of a hollow fibre filtration 

module, Wickramasinghe et al. (2002) investigated the effect of molecular weight 

and charge density of cationic polyelectrolytes on the permeate flux of bakers 

yeast cell suspension. These polyelectrolytes serve as flocculants, which led to an 

improvement in the permeate flux.  

Constant flux filtration is a mode of operation which has been used in research 

into fouling reduction (Foley et al. 1995a). In constant flux filtration, the 

transmembrane pressure increases during normal operation to keep the flux 

constant, thus overcoming any fouling resistance that builds up on the membrane. 

It has been shown that a low initial transmembrane pressure followed by a gentle 

increase, leads to a low rate of fouling and reduced the degree of irreversible 

fouling (Field et al. 1995). For constant flux filtration, the transmembrane 

pressure is monitored as a function of time for a constant filtrate flux, in order to 

characterise the filtration performance.  

1.3.3 Bentonite 

Bentonite is a clay consisting predominantly of sodium montmorillonite. 

Montmorillonite is a di-octahedral smectite mineral with a layered crystal 

structure with negative surface electrical charges arising from isomorphic 

substitutions of magnesium for aluminium in the crystal sheets. The clay swells in 

water by taking up inter-layer water, eventually leading to complete dispersion. 

The size of a montmorillonite particle is thus not very well-defined, but they may 

be regarded as flat plate-like particles of lateral dimensions of order 1 µm and 

thickness of the order of 10 nm (Fordham and Ladva 1989).  
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1.3.3.1 Bentonite Rheology and Filtration Characteristics 

Bentonite clays have been reported as generally having complex rheological 

characteristics (Benna et al. 1999; Güngör 2000; Mahto and Sharma 2004). In an 

aqueous dispersion, water can penetrate into the interlayer space and cause 

swelling of bentonite. Bentonite exists as small plates as described previously, 

which, when hydrated, separate to form a colloidal suspension with enormous 

surface area made up of small platelets separated by a layer of water molecules. 

Plate surfaces are positively charged, while platelet edges are negatively charged. 

Swelling indices of bentonite are generally in the range 3 – 4 (Mahto and Sharma 

2004). Measurement of the swelling index is described by Mishra et al. (1985). 

During hydration, the charged platelets repel each and move apart, and so 

swelling begins. Water molecules partially neutralise the exposed surfaces holding 

them apart, thus exposing the large reactive surfaces (Figure 1-4). 
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Figure 1-4: Structure of Aqueous Bentonite Suspensions (Zoecklein 1988) 

Aqueous suspensions of bentonite have been shown to exhibit Bingham Plastic 

properties for dilute (Alemdar et al. 2005) and concentrated (Güngör 2000) 

suspensions. At low shear rates, systems exhibit non-Newtonian flow, which is 

characterized by a progressive decline in viscosity as shear rate increases. Above 

a certain value of shear rate, the flow curve becomes linear. According to the 

Bingham model, the slope of the linear part of the flow curve is referred to as the 
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plastic viscosity, the intercept of the linear portion of the curve with the stress axis 

is referred to as the Bingham yield (stress) value. 

The rheology of bentonite suspensions has been found to be time-dependent 

(Benna et al. 1999). Experimental analysis of the suspensions used in this research 

found them to be mildly thixotropic (i.e., at a constant shear rate, apparent 

viscosity values dropped over time). However over the time course of interest in 

this research, thixotropic effects can be considered negligible up to a 

concentration of 10 g/L.  

The suspension pH has been found to have a strong affect on the rheological 

properties of purified sodium bentonite suspensions (Benna et al. 1999). It was 

found that when the pH values became more basic, the yield stress decreased. 

This reached a minimum before increasing sharply, for a very basic medium. In 

an acidic suspension, the yield stress increased and reached a maximum for pH in 

a weakly acidic suspension before decreasing again at lower pHs. It is probable 

that in a very acidic medium the structure of the clay itself is attacked, leading to 

the decrease in yield stress. 

The non-Newtonian rheological nature of bentonite suspensions can be expected 

to have a pronounced effect on the filtration characteristics. Tying in with the 

Bingham plastic model, shear thinning behaviour may be expected at lower shear 

rates while at higher shear rates rheological behaviour should approach 

Newtonian characteristics. This is supported by the work of Doneva et al. (1997) 

in crossflow filtration of aqueous bentonite suspensions. Benna et al. (2001) 

investigated the effect of clay content on the static (dead-end) filtration of purified 

sodium bentonite clay suspensions at two different pressures (1.5x105 and 5.7x105 
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Pa). They found that as the concentration increases, the thickness of the obtained 

cake increases, leading to the decrease of filtrate flux. This effect was found to be 

more marked at lower applied pressures. Hamachi et al. (1999) investigated the 

cake characteristics in crossflow microfiltration of bentonite suspensions as a 

function of the operating conditions. In a previous paper (Hamachi and Mietton 

Peuchot 1996) they designed a method of measuring the deposit thickness on the 

membrane using a He-Ne laser beam and a photomultiplier. This analysis was 

extended by investigating the cross-flow microfiltration of bentonite suspensions, 

analysing the deposit thickness as a means of explaining filtration behaviour 

(Hamachi and Mietton Peuchot 2002). They found that at the start of filtration, the 

crossflow velocity has little effect on the deposit build-up and that an increase in 

transmembrane pressure offsets the deposit growth for the same permeate flux. 

They conclude that for the filtration of compressible cakes such as bentonite, 

improvement of the filtrate flux must be addressed by manipulation of the 

crossflow velocity rather than the transmembrane pressure.  

1.4 Theoretical and Empirical Modelling of Filtration Processes 

A focus of the work in this thesis is the development of correlations based on 

experimental data. A number of approaches are used, including non-linear 

regression, artificial neural networks and semi-empirical modelling. 

In this section, theoretical analyses of microfiltration are outlined followed by a 

summary of empirical modelling techniques. The following section is a 

comprehensive introduction to artificial neural networks and their application to 

membrane filtration problems. 
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1.4.1 Resistance Models 

Hermia (1982) developed four distinct models based on the Darcy equation 

(Equation 1-1) to describe dead-end filtration behaviour. These models form the 

basis of many attempts at modelling filtration processes. The relationships 

described were the complete blocking model, which assumes that each particle 

that deposits on the membrane will seal a membrane pore; the intermediate 

blocking model which assumes that only a portion of the deposited particles will 

seal a pore; the standard blocking model, which assumes that the pore volume will 

decrease proportionally to the filtrate volume by deposition of solids on the pore 

walls; and the cake filtration model, which assumes that the cake resistance is 

proportional to the filtrate volume. Resistance models were developed for dead-

end microfiltration and must be adapted for application to crossflow filtration, and 

in general, differ on the basis of the mechanism of fouling, whether internal or 

external.  

The constant pressure filtration law from which these models were derived may 

be written as follows: 

n

dV

dt
k

dV
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







=

2

2

       [1-10] 

The values of k and n depend on the blocking model applicable. For the complete 

blocking model n = 2; for intermediate blocking n = 1; for standard blocking n = 

3/2; and for cake filtration n = 0.  
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Integration of Equation 1-10 incorporating these values of n leads to the Hermia 

models summarised in Table 1-1, where J0 is the initial flux.  

Table 1-1: Hermia Blocking Laws 

Law Equation Description 

Complete Blocking ( )tk

CB

CBe
k

J
V

−−= 10

 

Particles do not accumulate on each 
other and particles arriving at the 
membrane will seal pores (dparticle = 
dpore) 

Intermediate 
Blocking ( )tk

k

J
V IB

IB

+= 1ln0

 

Particles do accumulate on each other 
and seal membrane pores (dparticle = 
dpore) 

Standard Blocking 
t

J

k

JV

t SB

00

1
+=  

Particles deposit on the pore walls, 
decreasing the internal pore diameter 
(dparticle << dpore) 

Cake Filtration 

0
2
0

1

4 J
V

J

k

V

t CF +=  
Particles are retained due to sieving 
and form a cake on the membrane 
surface (dparticle >> dpore) 

 

In the standard blocking model, it is assumed that only internal fouling occurs – 

i.e. that the pore volume decreases proportionally to the filtrate volume. When the 

standard blocking model holds for a system, a plot of t/V against t is linear, where 

t is time and V is permeate volume.  

The cake formation model assumes that only external fouling of the membrane 

occurs, with particles building up in a cake on the surface of the membrane. 

Permeate flux decreases as the cake thickness increases. For the cake formation 

model, a plot of t/V versus V is linear.  

Leading on from the constant flux work of Field et al. (1995), the critical flux 

concept was introduced. The critical flux hypothesis is that on start-up of a 

crossflow filtration run, there exists a flux below which a decline of flux with time 
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does not occur. A manipulation of the blocking laws of Hermia (1982) led to a 

unifying equation for CFMF: 

( )*2
JJkJ

dt

dJ n −=− −       [1-11] 

where J is the permeate flux, and n and k are constants depending on the 

mechanism of fouling in the same manner as the original Hermia laws. For cake 

filtration, n = 0, for complete blocking n = 2 and for intermediate blocking n = 1. 

J
* in all cases can be considered to be a critical flux which should not be exceeded 

if fouling is to be avoided.  

Different mechanisms based on transport along or away from the membrane have 

been proposed based on the failure of the simple ultrafiltration concentration 

polarisation theory to account for the behaviour of crossflow microfiltration of 

colloidal suspensions, known as the flux paradox (Green and Belfort 1980).  

Particle back-transport models have been developed to describe the deposition of 

particles being balanced by the diffusion of particles away from the cake. This 

type of model includes those governed by Brownian diffusion (Einstein 1956), 

inertial lift (Forstrom et al. 1975) and shear induced diffusion (Zydney and Colton 

1986). Brownian diffusion coefficients caused under-prediction of the flux by one 

to two orders of magnitude, with the higher than expected fluxes attributed to 

shear forces caused by the tangential flow. Thus the shear-induced models were 

developed, using experimentally determined shear-induced diffusion coefficients 

to predict cake formation and flux behaviour, with shear-induced diffusion 

coefficients being a function of shear rate, particle concentration and particle size 

(Leighton and Acrivos 1987). However studies incorporating in-situ observation 
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of the behaviour of particles in such systems have not found evidence of diffusion 

away from the membrane or cake surface (Mackley and Sherman 1992; Wakeman 

1994; Li et al. 1998) and particle polydispersity effects have been shown to be 

inadequately described by models of this type (Chellam and Weisner 1998).  

With flowing cake or convective models, the deposition of particles on the 

membrane is balanced by the flow of particles tangential to the membrane (Davis 

and Birdsell 1987) and the flowing cake theory (Leonard and Vassilieff 1984) 

assumes that particles carried to the membrane or cake surface roll or slide along 

the surface due to the crossflow.  

This type of model has been combined with the resistance in series model to 

develop relationships describing the thickness and resistance of the cake 

(Dharmappa et al. 1992; Piron et al. 1995; Vyas et al. 2001).  

Force balance models have been developed which analyse the forces exerted on 

an isolated particle depositing on the filter cake (Wang et al. 1995; Vyas et al. 

2001; Cheng et al. 2008). Particles will stop depositing on the cake layer when the 

tangential forces are sufficient to overcome the normal drag forces caused by the 

permeate flow. Therefore, larger particles are more likely to escape in the 

retentate due to their larger tangential forces. Models of this kind can be used to 

describe preferential deposition of smaller particles found in polydisperse 

suspensions (Foley et al. 1995b). 

Empirical models are generally based on the Darcy Equation where the cake 

resistance is related to process parameters by some empirical correlation 

(Riesmeier et al. 1989; Knoell et al. 1999). The predictive capabilities of 
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empirical models are limited to the suspensions and system configurations studied 

and cannot shed any light on the fundamental mechanisms of crossflow 

microfiltration.  

Many complexities exist due to the interaction of various parameters that affect 

filtration performance, (such as particle properties like size, shape and charge, 

solution properties such as ionic strength and pH, and membrane properties), and 

as yet, no generalized model or method for modelling crossflow microfiltration 

has been developed. The use of this models previously developed are restricted by 

constraints such as assumptions of no irreversible fouling, or pore blocking, and 

that the particles should not aggregate. Thus attention has turned to alternative 

methods, such as the use of artificial neural networks. 

1.5 Artificial Neural Networks 

An artificial neural network (ANN) is an assembly of interconnected simple 

processing elements known as units or ‘nodes’, the operation of which is loosely 

based on the brain. The ability of a neural net to map data and make predictions is 

based on the inter-unit connection strengths, known as ‘weights’, which are 

obtained through a set of training data by a process of adaptation called 

‘supervised learning’ (Callan 1999). The advantages of the use of ANNs over 

traditional first principles modelling or other empirical approaches are that the 

ANN can be highly non-linear, the structure can be more complex (and hence 

more representative of the system), the structure does not have to be pre-specified, 

and the models are quite flexible (Demuth and Beale 2004).  
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The artificial neural network operates on a similar principle to that of a biological 

neural network where each node represents a biological neuron. The incoming 

synapse of a biological neuron has a weight associated with it. The weight of each 

synapse, times its input, is summed for all incoming synapses and the neuron then 

fires, sending a value to another neuron in the network. This same principle is 

applied in an ANN. Each node in the ANN has a set of input lines (analogous to 

the synapses in a biological neuron). Each node also has an ‘activation function’, 

or ‘transfer function’, which tells the node when to send a value to another node in 

the network.  

A single neuron may be represented mathematically as  

( ) 







= ∑

=

n

i

ii xwgxy
0

       [1-12] 

where x is a neuron with n inputs and one output y(x), and wi are weights 

determining how much each input should be weighted. g is an activation function 

that weights how powerful the output (if any) should be from the neuron, based on 

the sum of the input. 

In order to introduce non-linearity to the neural network, the appropriate transfer 

or activation function must be chosen. Activation functions range from simple 

threshold functions to sigmoid or hyperbolic tangent functions. It is necessary to 

introduce non-linearity to the ANN as this is what gives the network its 

computational power – without non-linearity, the network becomes a basic matrix 

multiplication operation. It is common to introduce non-linearity by using the 

sigmoid transfer function on the hidden layer neurons while simplifying the 
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network by using a linear transfer function on the output neurons. However a 

complex system will require the use of non-linear transfer functions on all neurons 

in order to accurately capture the system relationships. 

The sigmoid transfer function takes the input, which may have any value between 

plus and minus infinity, and gives an output in the range 0 to 1. The form of the 

sigmoid function may be written as: 
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=        [1-13] 

where t is the value that pushes the centre of the activation function away from 

zero and s is a steepness parameter.  

This transfer function is commonly used in backpropagation networks of the type 

used in this study due to its differentiability (Bowen et al. 1998).  

The t parameter, along with the weights, is adjusted as the neuron learns. In order 

to lead to a less complicated system; with only one parameter being adjusted (the 

weights) a bias term is introduced.  The bias neuron lies in one layer, is connected 

to all of the neurons in the next layer, but none in the previous layer, and always 

emits 1. Since the bias neuron emits 1, the weights, connected to the bias neuron, 

are added directly to the combined sum of the other weights, just like the t value 

in an activation function. The equation for a neuron incorporating a bias term may 

be written as 
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where the weight for the bias neuron is represented as wn+1. 

Addition of the bias neuron allows the removal of the t term from the activation 

function. The sigmoid activation function may then be written 

( )
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1

1
       [1-15] 

where the 2s is absorbed into the weight term. Thus only the weights need to be 

adjusted during training of the ANN (Drakos and Moore 1993). 

In an ANN the nodes are arranged in layers. Each of the nodes in a given layer is 

connected to nodes in another layer. Typically, there are three types of layers to an 

ANN – an input layer, one or more hidden layers, and an output layer. Figure 1-5 

shows a 3-4-1 network, where there are three inputs, four neurons in the hidden 

layer, and one output. Thus training of this network consists of specifying a total 

of [(3 + 1) x 4 + 5 = 21] weights.  

 

Figure 1-5: Neural Network Architecture 

The hidden units are so called because they do not take direct input from the 

environment or send information directly out into the environment. The input 

layer is where the data vector is fed into the network. This feeds into the hidden 
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layer, which in turn feeds into the output layer. The processing of the network 

occurs in the nodes of the hidden layer and the output layer.  

The weights and the biases in the neural network are initialised to small random 

values between +0.1 and -0.1 at the start of the training phase. The training 

process involves feeding the ANN known inputs and outputs which gradually 

modify the connection weights. The back-propagation learning algorithm is 

implemented to modify estimates of the values of the weights and establish the 

network structure (Demuth and Beale 2004). The weights eventually converge to 

values which allow them to be used in predicting an unknown output.  

1.5.1 Training, Validation and Testing 

In order to use a neural network as a predictive tool, the available data is divided 

into three subsets, for training, validation and testing (Bowen et al. 1998b). To 

avoid over fitting (where the network is unable to generalise due to being over 

trained) an early stopping mechanism is incorporated into the ANN. As the 

weights and biases of the network are updated continuously to minimise the MSE 

(Mean Squared Error) of the training data, the error of the validation data is also 

calculated, and if the MSE of the validation data starts to increase, training is 

stopped. This is known as ‘cross-validation’ (Maier and Dandy 2000). After the 

training phase, the ANN is used to simulate the output of a set of test data. If the 

ANN returns values of the output for the test data within an acceptable margin, 

then the ANN can be said to be successfully trained, and may be used as a 

predictive tool. It has been shown that the size of the validation dataset may be 

very small compared to the training and test datasets (Amari et al. 1997). 



  36 

1.5.2 The BackPropagation Neural Network 

The back-propagation neural network (Rumelhart et al. 1986) is the most 

representative learning model for the ANN (Aydiner et al. 2005). Back-

propagation involves working backward from the output layer to adjust the 

weights accordingly, and reduce the average error across all layers. This process is 

repeated until the weights reach their optimal values and the error in the output is 

minimised. The basic backpropagation algorithm adjusts the weights in the 

steepest descent direction. This is the direction in which the performance function 

is decreasing most rapidly.  

The network training consists of three stages: (i) feed-forward of the input training 

pattern; (ii) calculation and back-propagation of the associated error; and (iii) the 

adjustment of the weights (Chellam 2005). The ANN output corresponding to the 

input patterns is then compared with the target values and the weights were 

adjusted to reduce the maximum squared error. For a back-propagation artificial 

neural network (BP-ANN) using the sigmoid transfer function, the output is a real 

number in the range [0, 1]. Although it is possible for the input data to take any 

values between minus and plus infinity, convergence is more readily achieved 

through normalisation of the input and output data (Fu et al. 2005). This is due to 

the fact that the normalisation of the data minimises the chances of convergence 

to a local minimum on the error surface. The linear normalisation method is 

employed in this study, i.e.  
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where xi’ is the normalised value, xi the original data point, xmax and xmin, 

respectively, the maximum and minimum values for x, and a and b are the 

positive constants allowing to fix the limits of the interval for the scale values. In 

many cases, a and b are set as 0.6 and 0.2, thus the range of the data after 

normalisation is [0.2, 0.8]. The scale of the sigmoid transfer function is [0, 1], so 

training the network in the range 0.2 – 0.8 allows a margin for extrapolation 

outside the range of the training data.  

Two different ANN programs were used in this study, Matlab (© The Mathworks) 

and Trajan (© Statsoft). The Matlab software used initially was an excellent 

package for use initially as it required an in-depth knowledge of the workings of 

neural networks. Also as Matlab requires coding of the network particulars, 

greater flexibility is possible in network design and operation. However, Trajan 

software was found to be more user friendly, and enabled the weight matrices to 

be saved as a file in order to use the trained network as a predictive tool. Trajan 

software did not require pre-normalisation of the input data, incorporating this 

step into the software, whereas Matlab required the user to normalise the inputs 

before use. 

Performance criteria for ANNs generally include one or more of the following: 

prediction accuracy, training speed and the time delay between the presentation of 

inputs and the reception of outputs for a trained network (Maier and Dandy 2000).  

1.5.3 Neural Networks and ‘Black Box’ Models 

The use of ANNs as a modelling or predictive tool has been called a ‘black box’ 

approach previously, a view that stems from the fact that the contribution of the 
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input variables to the final output variables is difficult to elucidate from the 

network (Piron et al. 1997). This view stems from the fact that the contribution of 

the input variables in predicting the value of the output is difficult to establish. 

Consequently, input variables are often entered into the network and an output 

value is generated without gaining any understanding of the inter-relationships 

between the variables, and therefore, providing no explanatory insight into the 

underlying mechanisms being modelled by the network (Olden and Jackson 

2002). The ‘black box’ nature of ANNs is viewed as a major weakness compared 

to traditional statistical approaches that can readily quantify the influence of the 

independent variables in the modelling process. 

The size of the training datasets necessary for meaningful predictions from an 

ANN must be determined by a trial and error procedure and is system specific. 

There is also a level of uncertainty associated with the network weights once they 

have been determined, as there may be a tendency for a trained network to 

converge to a local minimum rather than the global minimum for the system. The 

use of principle component analysis on the network inputs may be useful in 

identifying the relevant inputs for a network.  

Despite the ‘black-box model’ theory, some techniques have been established that 

allow for examination of the network weights and structure in order to elucidate 

some information about the relative contributions of the input variables on the 

network output, including a weight partitioning method referred to here as the 

Garson Equation (Garson 1991) used for crossflow microfiltration previously by 

Chellam (2005) and for prediction of microbial grown (Hajmeer et al. 1997), fish 

abundance (Mastrorillo et al. 1997; Brosse et al. 1999; Gozlan et al. 1999) and 
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ammonia emissions (Lim et al. 2007). A technique for assessing the individual 

and interactive effects of the input variables in the network prediction process was 

also developed by Olden and Jackson (2002) by use of randomisation protocols to 

partition the importance of the network weights. Cheng et al. (2008) develop a 

method of evaluating the contribution of input parameters based on the change in 

the output (the flux) around the time points along the flux-time curve for CFMF of 

colloidal suspensions. They use the following equation: 

( ) ∑
=

∆=
∂

∂
=

R

r

i

i

r
x PPSpHISx

x

y

R
t

i

1

,,,,
ˆ1

τ     [1-17] 

where τxi is the relative importance and the operating parameters of interest are the 

ionic strength (IS), pH, particle size (PS) and transmembrane pressure ∆P, and R 

is the total number of batch microfiltration runs. ( rŷ is the predicted output for the 

run being evaluated, in this case the flux). This equation must be computed by 

evaluating the effect of each individual operating condition while the other 

variables are kept constant. While this approach is valid, the computational effort 

involved is large as each input variable must be evaluated separately and must be 

evaluated for each data point in the system. 

An excellent review of the issues associated with analysis of the effect of the 

inputs to a network on the outputs is given by Sarle (1997).  

1.5.4 Application of ANNs to Membrane Filtration Processes 

Artificial neural networks have been used successfully in modelling and 

prediction of various different membrane filtration processes.  
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In ultrafiltration, ANNs have been applied to processing of proteins (Bowen et al. 

1998a; Curcio et al. 2005), milk (Razavi et al. 2003a; 2003b), colloids (Bowen et 

al. 1998b), juices (Rai et al. 2005) and in drinking water production (Delgrange et 

al. 1998; Delgrange-Vincent et al. 2000).  

In the case of other membrane processes, ANNs have been used in correlation and 

prediction of nanofiltration data regarding salt rejection, membrane fouling and 

contaminant removal (Bowen et al. 2000; Shetty and Chellam 2003; Shetty et al. 

2003).   

In microfiltration, ANNs have been applied to modelling flux decline for many 

suspension types, including phosphates (Aydiner et al. 2005), bentonite (Hamachi 

et al. 1999) and yeast (Piron et al. 1997). 

Application of ANNs to dynamic filtration data is discussed in further detail in 

Chapter 3, where a novel network architecture is developed.  

1.6 Conclusions 

In this chapter experimental observations and modelling techniques in dead-end 

and crossflow microfiltration of microbial and colloidal suspensions are 

discussed. However limited applicability of theoretical and empirical models 

describing flux decline in filtration systems has meant that no general model 

describing dead-end or crossflow microfiltration has been developed. 

In Chapter 2, the dead-end microfiltration of resuspended dried yeast cells is 

investigated and the specific resistance data correlated using an artificial neural 

network. A weight partitioning method based on analysis of the network weights 
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is used to elucidate the relative importance of process parameters on the specific 

resistance.  

Chapters 3 and 4 deal with stirred and batch crossflow microfiltration of aqueous 

bentonite suspensions. A novel artificial neural network architecture is developed 

allowing the evaluation of the evolution of the relative importance of the input 

parameters as filtration time progresses.  

Although ANNs are shown to be used with good accuracy in prediction of 

microfiltration data in Chapters 2 – 4, a semi-empirical modelling approach based 

on the concept of simultaneous particle deposition and cake removal is developed 

in Chapters 5 and 6 for stirred, batch and continuous crossflow microfiltration of 

bentonite suspensions, in order to attempt to gain a more fundamental 

understanding of the physical mechanisms governing filtration of bentonite. Using 

force balance concepts, irreversible cake formation and membrane fouling are 

also incorporated into the basic model.  
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CHAPTER 2: DEAD END MICROFILTRATION OF YEAST 

SUSPENSIONS: MODELLING OF SPECIFIC CAKE 

RESISTANCE AND STEADY STATE FLUX USING ARTIFICIAL 

NEURAL NETWORKS  

 

2.1 Introduction  

Dead-end filtration is a useful tool employed in the separation of cells from a 

fermentation broth, a critical step in the recovery of many chemicals of biological 

origin as described in Chapter 1. Despite its relative maturity, many aspects of the 

fundamental mechanisms of dead-end filtration remain poorly understood. Dead-

end filtration of microbial suspensions has not received a great deal of attention in 

the literature. Indeed, much dead-end filtration data is to be found as preliminary 

work in papers devoted to crossflow filtration. The equations used to correlate 

specific resistance data are varied but most authors use the classic power-law 

equation (Nakanishi et al. 1987; Oolman and Liu 1991; Shimuzu et al. 1993) 

n
Pa∆=α         [2-1] 

where a is a constant and n is the referred to as the compressibility index. A value 

of zero for n represents an incompressible filter cake and increasing values of n 

represents increasing filter cake compressibility. In the filtration studies of non-

microbial suspensions, Equation 2-1 has generally been found to accurately 

represent the pressure dependence of the specific resistance at high pressures 

(Rushton et al. 1996). The use of Equation 2-1 in microbial filtration has proved 

to be more problematic and in some cases a linear relationship between specific 
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resistance and pressure is employed (Reismeier et al. 1989; Tanaka et al. 1997; 

McCarthy et al. 1998a; McCarthy et al. 2002a). 

The specific cake resistance is dependent on many parameters other than pressure.  

A comprehensive review of the factors affecting specific resistance in dead-end 

microfiltration of microbial suspensions is given by Foley (2006). The combined 

effects of ionic strength and pH are well known to influence specific resistance in 

a complex manner that is very system specific (Shirato and Esumi 1963; Ohmori 

and Glatz 1999; Ohmori et al. 2004). In addition to the effects of pH and ionic 

strength, microbial filtration is complicated by subtleties that arise due to the 

biological nature of the suspensions. Hodgson et al. (1993) demonstrated the 

importance of cell surface properties on filtration behaviour. Very often these 

properties are affected by, and related to, conditions such as the type of growth 

medium used to produce the cells (Ohmori and Glatz 2000; Ohmori and Iritani 

2004a), the stage of the growth cycle at which the cells are harvested for filtration 

and the possibility of cell aging between halting the fermentation and performing 

the filtration (Okamoto et al. 2001; Meireles et al. 2003).  

As well as causing changes in cell surface properties, medium components may 

also provide additional resistance to flow. Solid medium components may cause 

cake clogging (Tanaka et al. 1994) while concentration polarisation of soluble 

components may also be significant if solute rejection occurs (Ohmori and Iritani 

2004b). Both of these phenomena may increase the effective specific cake 

resistance.  

Further complications have been suggested by Mota et al. (2004), who have found 

evidence that the specific resistance of yeast suspensions increases with increasing 
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suspension concentration, a finding that is supported in recent work on the 

ultrafiltration of silica suspensions (Zaidi and Kumar 2005). These findings are 

atypical as most authors would consider the specific resistance to be independent 

of concentration. 

Given the number of factors affecting the specific cake resistance, prediction of 

this parameter becomes problematic. While conventional non-linear regression 

approaches could be used to derive experimental correlations, the complexity of 

the problem, especially the dependence of specific resistance on pH and ionic 

strength, makes such an approach difficult and likely to lead to very complex and 

unwieldy empirical equations. In this context, artificial neural networks (ANNs) 

may provide a promising avenue of research. The aim of an approach based on 

ANNs is not unlike that of conventional non-linear regression in that experimental 

data can be used to develop computational algorithms that will allow a given 

quantity to be predicted for any set of process variables within the range of the 

original experimental data (Fu et al. 2005). While the network architecture must 

be chosen after some numerical experimentation, no assumptions about the 

functional relationship between the independent (input) variables and the 

dependent variables (output) are required. Furthermore, even quite simple 

network architectures can reproduce highly complex non-linear behaviour.  

The aim of this chapter is to develop artificial neural networks for use as a 

predictive tool for the specific resistance and steady flux through cakes formed by 

bakers yeast suspensions over a range of pressures, pHs, ionic strengths, cell 

concentrations and membrane resistances. ANNs are constructed, trained and 

validated and found to perform well in the correlation and prediction of specific 
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resistance and filtrate flux. Furthermore, an attempt is made to interpret the 

relative effects of the network inputs on the network output using a weight 

partitioning method.  

2.2 Materials and Methods 

2.2.1 Yeast Suspensions 

Experiments were conducted with suspensions of dried ‘Fermipan’ bakers yeast 

(DSM Bakeries, Holland) resuspended in distilled water and freshly prepared 

before use. Suspensions were washed twice with a 0.5 M NaOH solution and then 

3 times with distilled water. The washing step involved suspension of 1.5 g of 

cells in 15 ml of either NaOH or distilled water, followed by centrifugation for 3 

minutes at 3500 rpm, and the supernatant removed. Cells were washed in caustic 

solution because washing in pure water alone resulted in protein that had leached 

from the cells remaining in the suspension. It is well established that proteins can 

cause fouling of microfiltration membranes and the presence of this protein would 

have affected the specific cake resistance measurements. The dry mass of cells 

after the washing steps was found to be 50 % of the unwashed dry mass and it is 

this dry mass concentration that is reported throughout. The pH of each solution 

was adjusted to the desired value by adding either 0.5 M HCl or 0.5 M NaOH. 

The salt concentration (and therefore the ionic strength) was adjusted by adding 

NaCl. 
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2.2.2 Membranes 

Experiments were performed using the following hydrophilic polyethersulphone 

membrane discs (47 mm diameter): (i) a Supor®-450 membrane filter from Pall 

Corporation with a nominal pore size of 0.45 µm and a thickness of 140 µm, and 

(ii) a Supor®-200 membrane filter from the same supplier with a nominal pore 

size of 0.2 µm and a thickness of 145 µm. The 0.45 µm membrane had a mean 

resistance to flow of 1.78x1010 m-1, and the 0.2 µm membrane had a mean 

resistance to flow of 3.81x1010 m-1. Slight variability (in the order of 10 % - 15 %) 

in the membrane resistances was noted. A clean membrane was used for each run, 

and the membrane resistance was experimentally determined before each run. The 

membranes were supported in the filtration cell with circumferential supports of 

width 1 mm and the effective filtration area was 1.59x10-3 m2.  

2.2.3 Filter Cell 

Microfiltration experiments were carried out using a 150 ml, 47 mm diameter 

stainless steel dead-end filtration cell from Pall Corporation. 

 

Figure 2-1: Dead-End Filtration Equipment 
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The cell was pressurised using compressed air and the pressure controlled using a 

regulator. All experiments were carried out at room temperature. Fresh yeast 

suspension and a new membrane were loaded into the apparatus for each 

experiment. The filtrate was collected in a reservoir placed on an electronic 

balance (Mettler Toledo BS3001) interfaced to a computer using Winwedge® 

software (TAL Technologies, Inc., PA, USA) to collect and record time and 

filtrate mass data at one second intervals. After each run, the apparatus was 

thoroughly cleaned using Teepol detergent, followed by a rinse of distilled water.  

2.2.4 Filtration Method 

2.2.4.1 Membrane Resistance Rm  

The membrane resistances were determined by measuring the filtrate flux of 

distilled water through the membrane at a fixed pressure and applying Equation 1-

2 with m = 0.  

2.2.4.2 The Steady State Method 

The steady state method (Nakanishi et al. 1987) described in Chapter 1 was 

employed to determine the specific resistance of the filter cake. Although this 

method for measuring specific resistance may be incorrect (Tien and Ramarao 

2008), the purpose of this experimental study is the generation of data for use in 

evaluation of modelling using ANNs rather than an in-depth analysis into the 

specific resistance of cakes of yeast cells, and as such the steady state method is 

deemed accurate enough. 
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In this method, a given volume of yeast suspension (typically 100 mL), containing 

a known dry mass of yeast, was filtered at a pressure of 0.2 bar. Once the initial 

(dynamic) filtration was complete, the pressure was released. The filtrate was 

carefully returned to the filtration module, ensuring that the cake of cells was not 

disturbed. The cell was re-pressurised to the pressure employed to form the filter 

cake (0.2 bar) and filtration recommenced. The filtrate flux was allowed to reach 

steady state before the transmembrane pressure was incremented to the next 

pressure, and recorded at 5 different pressures between 0.2 and 2 bar. The filtrate 

mass was monitored continuously through the experiment and the steady state 

flux was determined from this measurement for each pressure. The specific 

resistance α was then calculated by applying Equation 1-2. It should be noted that 

it is generally found that the specific resistance of a microbial cake at a given 

pressure is independent of whether or not the cake has been exposed previously to 

different pressures (McCarthy et al. 1999) and hence the approach of 

incrementing the pressures in the way described above is valid. 

2.2.4.3 Membrane Fouling 

The membrane was examined for evidence of irreversible fouling after each 

experiment. This was achieved by washing the membrane with distilled water and 

then measuring the flux of distilled water through the washed membrane. 

Although there was some evidence of membrane fouling, the membrane 

resistance before and after filtration was of the order of 1010 m-1, whereas the cake 

resistance ranges between 1012 m-1 and 1013  m-1. Therefore, the increase in 

membrane resistance due to fouling does not affect the filtration characteristics 

and the cake resistance is the limiting resistance.  



  49 

2.3 Experimental Observations 

2.3.1 Filtration Behaviour 

Preliminary experiments were carried out in order to characterise the filtration 

behaviour of the yeast cell suspension system, and to identify the key operating 

parameters prior to designing a set of experiments for use with an ANN to 

describe the steady filtrate flux and the specific cake resistance in terms of the 

operating parameters which affect them. In the absence of membrane fouling 

and/or cake clogging a plot of t/V versus V in dead-end filtration should lead a 

straight line with a slope that is proportional to the specific cake resistance. In 

experiments over a wide range of conditions, all t/V versus V plots obtained 

during the initial cake formation step were found to be linear suggesting that the 

performance of the filtration system employed in this study is dominated by the 

cake resistance (Figure 2-2). 
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Figure 2-2: Ruth Plots (
t
/(V/A) versus 

V
/A) 

A – Yeast Concentration = 7g/L, pH 8, Salt Concentration 2g/L, Pore Size 0.2µm; 
B – Yeast Concentration = 3g/L, pH 2, Salt Concentration 5g/L, Pore Size 0.2µm; 

C – Yeast Concentration = 0.75g/L, pH 4, Salt Concentration 4g/L, Pore Size 0.45µm; 
D – Yeast Concentration = 11g/L, pH 9, Salt Concentration 1g/L, Pore Size 0.2µm 
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The process parameters that were identified for investigation in determining the 

specific cake resistance and filtrate flux were the applied pressure ∆P, yeast 

concentration C, pH, salt concentration and membrane resistance Rm.  

2.3.1.1 Applied Pressure ∆∆∆∆P 

Figure 2-3 shows plots of specific cake resistance, measured by the steady state 

method, as a function of pressure, at various pHs. The magnitudes of the specific 

resistance values are in agreement with other workers (Rushton and Khoo 1977; 

Piron et al. 1995), but higher than those of Nakanishi et al. (1987) and McCarthy 

et al. (1999). This is probably due to variations in the types of dried yeast 

employed in each study as well as differences in the various cell washing 

regimens used. It should be noted also that differences in specific resistance 

values can occur depending on the whether this parameter is defined in terms of a 

dry cell mass or a wet cell mass. In general, the specific resistance based on a dry 

cell mass will be larger than its wet cell equivalent. 

In Figure 2-3, the dependence of specific resistance on pressure is shown to be 

linear in agreement with other workers (Tanaka et al. 1997; McCarthy et al. 

1998b; McCarthy et al. 2002a) and there is a strong and complex dependence on 

pH of both the specific resistance at a given pressure and of the cake 

compressibility, where the latter is proportional to the slope of the α versus ∆P 

plot (McCarthy et al. 1998a). An increase in the applied transmembrane pressure 

serves to increase the steady filtrate flux (Figure 2-4).  
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Figure 2-3: Effect of pressure and pH on αααα for = 5g/L and membrane pore size 0.45µµµµm 

2.3.1.2 Yeast Concentration C 

The effect of increasing the yeast concentration was to decrease the steady flux 

attained (Figure 2-4, pH 9, Salt Concentration 4g/L and Pore Size 0.2 µm). This is 

as expected as the mass of cake on the membrane increases with increasing yeast 

concentration, thus increasing the resistance to flow and decreasing the steady 

state filtrate flux.  
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Figure 2-4: Effect of ∆∆∆∆P and C on Steady State Flux  



  52 

In the case of the specific resistance, the expectation would normally be that the 

effect of concentration should be negligible; however some studies show that the 

specific cake resistance may show a dependence on suspension concentration. 

Mota et al. (2004) found that the specific resistance increased with increasing 

concentration of yeast cells, while Zaidi and Kumar (2005) found a similar effect 

with silica suspensions. In the work of Mota et al. (2004), the specific resistance 

approximately doubled as the dry weight cell concentration increased from about 

4 g/L to 40 g/L, at pressures of 40 kPa and 80 kPa. Zaidi and Kumar (2005) found 

that the specific resistance of silica suspensions increased by a factor of 

approximately three as the concentration increased from about 3 g/L to 28 g/L. 

These results were obtained at pressures of 135 kPa, 270 kPa and 405 kPa. 

However, using linear regression on the data in this study, it was found that the 

slopes of plots of specific resistance versus yeast concentration were 

insignificantly different from zero at the 95 % confidence level and thus it can be 

concluded that concentration has no apparent effect on specific resistance (Figure 

2-5, pH 9, Salt concentration 4 g/L, Membrane Pore Size 0.45 µm).  
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Figure 2-5: Effect of concentration on αααα at various pressures  
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2.3.1.3 pH and Salt Concentration 

The effect of pH and Salt Concentration on the steady state flux and the specific 

resistance proved complex. The ionic character of the suspension was varied by 

the addition of NaCl and the pH was varied by addition of NaOH or HCl. There 

was a non-linear relationship between pH and α as may be seen from Figure 2-3 

and Figure 2-6. There may also be an interaction between the effects of the salt 

concentration and the pH as these would be linked in the ionic character of the 

suspension (Figure 2-6 and Figure 2-7, at yeast concentration 5 g/L and 

membrane pore size 0.45 µm). The apparent complexity of the behaviour means 

that a conventional non-linear regression approach to developing a correlation of 

specific resistance will prove problematic because in that approach some 

functional relationship between specific resistance and the various parameters 

affecting it must be assumed. This relationship is likely to be quite complicated 

and unwieldy in form. These complex interactions make modelling of this process 

in physical terms very difficult, supporting the use of ANNs to model the system.  
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Figure 2-6: Effect of salt concentration on αααα at various pressures and pHs  

Closed Symbols 2 g/L NaCl, Open Symbols 6 g/L NaCl. 
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Figure 2-7: Effect of pH and Salt Concentration at a range of pressures on Steady State Flux 

Closed Symbols 2 g/L NaCl, Open Symbols 6 g/L NaCl 

2.3.2 Experimental Design 

The experimental data in this chapter was collected for the purpose of developing 

a neural-network based correlation for the specific resistance and filtrate flux in 

dead-end microfiltration. As described in Section 2.3, the process parameters that 

are assumed to affect the filtrate flux were the applied transmembrane pressure 

∆P, the yeast concentration C, the pH, the ionic strength and the membrane 

resistance Rm. One would expect the effect of membrane resistance on the flux to 

be small, as the membrane resistance is much smaller than the resistance to flow 

provided by the cake of cells. Furthermore, the effect of Rm on α should be small 

as Rm affects α indirectly through its effect on cake pressure drop ∆Pc. When the 

cake resistance is dominant, the cake pressure drop is essentially independent of 

Rm. However it was decided to include the cell concentration and membrane 

resistance in the neural network work, in order to ascertain whether the 

predictions of the Garson equation (Equation 2-3), which attempts to give some 
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insight into the underlying physical phenomena in the system using a weight 

partitioning method, agree with these findings. 

The experimental population was devised using a range of possible combinations 

of the process parameters that were deemed of importance in the dead-end 

filtration of the yeast suspensions employed in this study. These were set to the 

values outlined in Table 2-1. 

Table 2-1: Possible Parameter values in Dead End Microfiltration of Yeast Cells 

Yeast Conc. (g/L) pH NaCl Conc. (g/L) Pore Size (µµµµm) ∆∆∆∆P (bar) 

3 2 0 0.45 0.2 

5 3 1 0.2 0.5 

7 4 2  1.0 

9 5 3  1.5 

11 6 4  2.0 

13 7 5   

15 8 6   

 

All of the possible combinations of the values of the parameters of the first four 

columns of Table 2-1 were numbered and using a random number generator (in 

Excel), 30 experiments were chosen at random. The reason for choosing a random 

sample of experiments is to illustrate the applicability of the neural network 

approach to a process in which interactions between parameters are not 

necessarily understood. This lack of understanding would make impossible the 

use of a partial factorial design, for example. Choosing the experiments randomly 

needs no prior knowledge of the effect of the process parameters or their 

interactions on the experimental outcome.  
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Each combination of process parameters was performed at 5 different pressures, 

so a sample of 150 experiments was thus performed from all of the possible 

combinations of the process parameters. The specific resistance and steady state 

flux were experimentally determined for each parameter combination selected. 

Table 2-2: Experimental Combinations and Choice of Training, Validation and Testing Data 

 

Yeast Conc. 

(g/L)
pH

Salt Conc. 

(g/L)
Pore Size (mm)

Training (T), 

Validation (V), 

Test (X)
a

3 2 7 0.2 T,T,T,T,T
3 2 2 0.2 T,V,T,T,T
3 7 2 0.45 T,V,T,T,T
3 9 4 0.2 T,X,T,T,X
5 4 0 0.45 T,T,T,X,X
5 5 5 0.45 T,V,T,T,T
5 9 4 0.2 T,X,V,X,X
7 2 1 0.45 T,V,T,T,T
7 2 5 0.45 T,T,T,T,X
7 4 0 0.2 T,T,T,T,X
7 4 1 0.45 T,T,X,T,T
7 8 2 0.2 T,T,X,T,X
7 8 6 0.2 T,T,T,X,T
7 9 4 0.2 T,X,T,X,X
9 5 3 0.2 T,T,T,T,V
9 5 4 0.2 T,T,T,X,T
9 9 0 0.2 V,T,T,T,T
9 9 3 0.45 T,V,T,T,X
9 9 4 0.2 T,T,T,T,X
11 4 3 0.2 T,V,T,T,X
11 6 6 0.2 V,T,T,T,T
11 8 3 0.45 T,V,X,T,X
11 9 1 0.2 T,V,T,X,X
11 9 2 0.45 T,T,X,X,X
13 4 3 0.45 T,T,T,T,T
13 8 2 0.2 T,T,T,X,X
13 8 3 0.45 T,V,T,T,T
15 5 0 0.45 T,T,T,T,X
15 5 1 0.45 T,T,T,T,X
15 6 3 0.45 T,T,X,X,T

a Letters correspond to experimental pressures of 0.2, 0.5, 1, 1.5 and 2 bar respectively
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2.4 Artificial Neural Networks 

The principles of artificial neural networks and their application to membrane 

processes have been described in detail previously in Chapter 1 and here only the 

key features of the implementation of this approach are given. A feed-forward 

ANN employing the sigmoid transfer function and the Levenberg-Marquardt 

algorithm for training was constructed with the MATLAB 7.0 Neural Networks 

Toolbox (The MathWorks Ltd., UK). All network weights were assigned random 

initial values in the range [-0.1, +0.1], training was conducted in batch mode and 

the training rate was set at the Matlab default value. Input data were normalised in 

Excel prior to use according to Equation 2-2 used by Fu et al. (2005)  

* min

max min

i
i

x x
x a b

x x

−
= +

−
      [2-2] 

where xi
* is the normalised value, xi the original data point, xmax and xmin, 

respectively, the maximum and minimum values for x, and a and b are the 

positive constants allowing the limits of the interval for the scaled values to be 

fixed. In this study, a and b are set as 0.6 and 0.2, thus the range of the data after 

normalisation is [0.2, 0.8]. The scale of the sigmoid transfer function is [0, 1], so 

training the network in the range 0.2 – 0.8 allows a margin for extrapolation 

outside the range of the training data.  

The data in this study was divided into three sub-sets; a training set, a validation 

set and a test set as described previously (Bowen et al. 1998a). Using a technique 

known as cross-validation, the validation set prevents over-training of the network 
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by stopping training early once the maximum error (MSE) in the validation set 

begins to increase (Maier and Dandy 2000). The number of training points was 

chosen arbitrarily to be 104 and training points were selected to ensure that 

extreme values of the output (specific cake resistance) were included in the 

training set, as shown later in Figure 2-10. The number of validation points was 

13 and the number of test points was 33. It has been shown by Amari et al. (1997) 

that the number of data points used for cross-validation should be very small 

compared to the number of training points. Reduction in the number of training 

data points reduced the accuracy of the final network. Table 2-2 provides a 

summary of all the experimental conditions employed and shows which 

experiments were used for training, validation and testing. 

2.4.1 Neural Network Design 

The network architecture refers to the number of layers in the network and the 

number of neurons in each layer. It has been shown previously that just one 

hidden layer is generally sufficient to model most data sets in membrane 

separation processes (Chellam 2005). Training of the network is performed by 

updating the networks weights over a number of epochs, or iterations, until the 

maximum squared error (MSE) in the validation data set begins to increase as 

outlined previously. Optimisation of the network architecture, with the aim of 

minimising the MSE for the training data, was performed via a trial and error 

procedure. The number of neurons in the input layer should match the number of 

input parameters (in this case, five) and the number of neurons in the output layer 

matches the number of outputs. A network with 1 hidden layer and 9 neurons in 

that hidden layer is shown in Figure 2-8. The effect of number of neurons in the 
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hidden layer on the MSE of the training data for the specific resistance is 

examined in a trial and error procedure in order to determine the network 

architecture that can best represent the specific resistance data.  

 

Figure 2-8: Network Architecture 

The effect of the number of hidden neurons on the MSE for the specific resistance 

data is shown in Figure 2-9 (MSE for nine neurons = 9.85 x 10-8) and, on that 

basis, a 5-9-1, fully connected architecture was chosen. 
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Figure 2-9: Optimisation of Network Architecture 
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2.4.2 Network Prediction 

2.4.2.1 Specific Cake Resistance αααα 

Figure 2-10 shows the fit of the optimised 5-9-1 network to the full set of specific 

resistance data, including those used in training, validation and testing. The 

network is found to correlate each dataset well. 
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Figure 2-10: Fit of Optimised Network to Specific Resistance Data 

Solid line denotes the y=x line  

For the training dataset, the regression equation is y = 0.97x + 0.009 with an R2 

value of 0.98. 95 % confidence intervals for the slope and the intercept are [0.94, 

1] and [-0.001, 0.02] respectively. For the validation dataset, the regression 

equation is y = 1.0143x + 7x10-4 with an R2 value of 0.99. 95 % confidence limits 

for the slope and intercept are found to be [0.96, 1.07] and [-0.02, 0.02] 

respectively. For the test dataset, the regression equation is y = 1.12x – 0.06 with 
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an R2 value of 0.94. 95 % confidence limits for the slope and intercept are [1.01, 

1.22] and [-0.01, -9x10-3] respectively. 

Therefore, the neural network approach offers a potential alternative to more 

traditional regression techniques for correlating specific resistance behaviour, 

especially when factors in addition to pressure are included in the analysis. In 

combination with conventional filtration theory, the neural network could be used 

to form a hybrid model that calculates filtration performance over a wide range of 

suspension and process conditions. 

2.4.2.2 Steady State Flux 

While the focus of this study has been to develop an ANN to predict the specific 

resistance from which process characteristics can be calculated, the possibility of 

using the same ANN to predict the filtrate flux data directly has been investigated. 

The advantage of this approach is not so much its applicability to dead-end 

filtration, since the experimental set-up is somewhat artificial and does not reflect 

the true batch nature of industrial filtration processes, but because the ANN for 

predicting steady fluxes is easily extended to crossflow systems where specific 

resistance measurements are very difficult to obtain (McCarthy et al. 2002b). 

Figure 2-11 shows the fit of a 5-9-1 network obtained in the experiments 

described above. Exactly the same training, testing and validation sets as for the 

specific resistance network were used, although a superior fit may have been 

obtained if a new training set had been chosen specifically for the flux data and if 

the network architecture had been optimised using the flux data rather than 

specific resistance. As can be seen, the ANN for the flux correlates the data well 

and could form the basis of an ANN applied to predicting steady state fluxes in 
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crossflow systems once additional inputs such as crossflow velocity, and module 

geometry are included. 

Experimental Steady State Flux (Normalised)
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Figure 2-11: Fit of 5-9-1 Network to Steady State Flux Data  

Solid line denotes the y=x line 

For the training dataset, the regression equation is y = 0.97x + 0.02 with an R2 

value of 0.98. 95 % confidence limits for the slope and the intercept are found to 

be [0.93, 1] and [0.002, 0.03] respectively. For the validation dataset, the 

regression equation is y = 1.06x - 0.05 with an R2 value of 0.91. 95 % confidence 

limits for the slope and intercept are found to be [0.86, 1.27] and [-0.06, 0.05] 

respectively. For the test dataset, the regression equation is y = 1.03x – 0.007 with 

an R2 value of 0.8. 95 % confidence limits for the slope and intercept are [0.91, 

1.16] and [-0.05, 0.03] respectively. 
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2.4.3 Interpretation of the Network Weights 

In this chapter, it has been shown that an artificial neural network can be used to 

correlate dead-end specific resistance and flux data. However, previous 

researchers have shown that the network weights corresponding to an apparently 

best fitting network are not unique (Curry and Morgan 2006). Indeed, two 

networks with identical architecture, trained with the same data, may model that 

data with very similar accuracy and yet the final network weights obtained will 

almost certainly not be the same. The initial values of the weights (which are 

initialized here to random values between -0.1 and +0.1) have a strong effect on 

the final weights obtained for the trained network. This is because the initial 

weight vector determines the network starting point on the error hyper-space 

(Bowen et al. 2000). There is a tendency, when training, for the network to move 

into the closest local minimum to the starting point on the error surface, rather 

than to obtain the global minimum. The number of hidden neurons is directly 

proportional to the number of local minima in the error surface, and therefore 

adding more hidden neurons to the network will increase the risk of the network 

becoming trapped in a local minimum.  

This variability in the weights obtained when training a network has implications 

for interpreting the networks weights. Traditionally, ANNs have been looked on 

as ‘black-box’ models, where an accurate description of the process is not 

required, relying merely on the ability of neural networks to approximately 

calculate the outputs of a system from knowledge of its inputs (Piron et al. 1997). 

However, some attempts have been made to assess the network connection 

weights in order to quantitatively derive some cause-effect information, using a 
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weight partitioning method. The equation used by Chellam (2005), developed by 

Garson (1991), can be written 
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     [2-3] 

where v represents the relative effect of the input variable, v, on the output, nv is 

the number of input variables, nh is the number of neurons in the hidden layer, wkj 

represents the absolute value of the weight from the k-th input to the j-th neuron 

and Oj represents the absolute value of the weight from the j-th neuron. (A sample 

calculation illustrating the practical application for a simple network is shown in a 

short appendix at the end of this chapter.) However, since the network weights are 

variable, depending on the initial weights used in the training process, the 

computed effects of input parameters will also be variable. To investigate this 

phenomenon, the 5-9-1 specific resistance and flux networks are trained over a 

series of 20 runs with random initial weights in each case. While the effects of the 

inputs on the output were found to vary, this variation was small as shown later 

(Figure 2-12 and Figure 2-13), suggesting that the variability of network weights 

does not make their interpretation impossible.  

2.4.3.1 Relative Effect of Input Parameters 

From Figure 2-12, it is clear that the main parameters affecting the specific 

resistance are the pressure and the pH, as would have been expected from Figure 

2-3 and Figure 2-6. The effects of the other parameters are lower but not 

insignificant. This analysis indicates that the relative importance of the salt 
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concentration, yeast concentration and membrane resistance are similar. However 

it was shown previously that the effect of yeast concentration on α is negligible 

using a standard regression analysis, whereas the salt concentration was shown to 

have a small effect on α in Figure 2-6. It is important to note, however, that this 

approach is only semi-quantitative and a non-zero value for the relative effect of a 

parameter does not imply a cause-effect relationship but simply shows that the 

experimental output was different for various values of a given input. This 

variation may have been due to normal experimental scatter rather than 

representing a true relationship. Error bars represent the standard error over 20 

runs in Figures 2-11 and 2-12. Figure 2-13 gives the relative effects of the input 

parameters on the flux. The effect of yeast concentration on the flux is large, as 

would be expected from Equations 1-1 and 1-2, as concentration appears 

explicitly in mechanistic filtration theory. The other parameters that have the most 

effect are the pressure and the pH. This approach of calculating the relative effects 

of various input parameters on the system output would be most useful in 

complex systems where the underlying physics was not well understood and it 

was desired to identify key process parameters. However, its semi-quantitative 

nature means that it will only serve as a guide that may aid in reducing the amount 

of experimentation required but will not lead to a true physical understanding of 

the process. 
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Figure 2-12: The (mean) relative importance of input parameters to the specific cake 

resistance 
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Figure 2-13: The (mean) relative importance of input parameters to the steady state flux. 

It is possible that this analysis could be used in a similar manner to principal 

component analysis. The smallest inputs could be regarded in some cases as 
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insignificant (as for the case of specific resistance, where the concentration and 

membrane resistance are seen to have no effect). An interesting analysis could be 

the elimination of the inputs which have the smallest relative effect on the 

network outputs, allowing for more in-depth analysis of the more important 

effects.  

2.5 Conclusions 

This chapter focused on the correlation of specific cake resistance and flux data in 

dead-end filtration of yeast suspensions using artificial neural networks. The 

results obtained show that excellent agreement between experimental data and 

predicted values could be achieved over wide ranges of pressure, membrane 

resistance, yeast concentration, and suspension pH and ionic strength. The 

approach is easily extended to include the many other factors that affect the 

specific resistance. The neural network for the steady state flux would be easy to 

extend to encompass crossflow filtration by the addition of parameters such as the 

crossflow velocity and module configuration. The network weights were 

interpreted using the weight partitioning method suggested by Garson (1991) to 

evaluate the relative effect of the input parameters on the specific cake resistance 

and the steady state flux. This is an area that is worthy of further study as it is very 

desirable to be able to extract meaning from the weight matrix of neural networks.  

As discussed previously, dead-end filtration is of limited applicability industrially. 

Chapters 3 and 4 will focus on the extension of this method to stirred and batch 

crossflow microfiltration systems, where prediction and optimisation of flux 

decline is a topic of much research.  
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This chapter has focused on the filtration of microbial cells; however, this 

approach should be applicable to more complex suspensions. In an attempt to test 

the accuracy of this method when applied to more complex systems, filtration 

experiments from this point forward will be carried out using a non-Newtonian, 

shear thinning, thixotropic suspension of bentonite clay.  

2.6 Appendix - Matlab Code 

Creation of an ANN in Matlab is made easy by the use of built-in functions in the 

Neural Network Toolbox. The code for the network used in prediction of specific 

resistance data may be seen in Code 2-1, where the importing of the data, the 

initialisation of the network (setting up the network architecture and the transfer 

functions to be used, and setting of the network training parameters), initialisation 

of the weight and bias matrices, training of the network, generation of a plot of the 

network performance (evolution of the error in the three datasets) and simulation 

of the training dataset are shown.  It is important to note that the normalisation of 

the input and output data is performed in Excel prior to being imported to Matlab, 

although incorporation of code to perform this task in Matlab itself would be quite 

simple. 
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Code 2-1: Network Initialisation 

 
 

% Reading in the inputs and the target values for training 
p=xlsread('alphainputs', 'training'); 
t=xlsread('alphatargets', 'training'); 
  
% reading in validation data 
validationinputs=xlsread('alphainputs', 'validation'); 
validationtargets=xlsread('alphatargets', 'validation'); 
val.P=validationinputs; val.T=validationtargets; 
  
%reading in test data 
testinputs=xlsread('alphainputs', 'testing'); 
testtargets=xlsread('alphatargets', 'testing'); 
test.P=testinputs; test.T=testtargets; 
ptr=p; ttr=t; 
  
% Making the network using the logsig transfer function 
no_hidden_neurons=9; 
no_input_neurons=5; %fixed 
no_output_neurons=1; %fixed 
net=newff(minmax(ptr), [no_hidden_neurons no_output_neurons], {'logsig' 'logsig'}, 'trainlm'); 
  
% Setting the network parameters 
net.trainParam.goal=1e-8; 
net.trainParam.epochs=150; 
net.trainParam.show=25; 
net.trainParam.max_fail=20; 
  
% Initialising the weight and bias matrix to random values between -0.1 and +0.1 
a=-0.1; 
b=+0.1; 
h=(no_input_neurons*no_hidden_neurons+no_hidden_neurons+no_hidden_neurons*no_output_
neurons+no_output_neurons); 
y=a + (b-a) * rand(h,1); 
  
net=setx(net, y); 
  
initialinputweights=net.iw{1,1}; 
initiallayerweights=net.lw{2,1}; 
  
% Training the network 
[net, tr]=train(net, ptr, ttr, [], [], val, test); 

% Plotting the performance of the network - the network stops training if the validation error starts 
to increase 
plot(tr.epoch, tr.perf, tr.epoch, tr.vperf, tr.epoch, tr.tperf); 
legend('Training', 'Validation', 'Test', -1); 
ylabel('Squared Error'); xlabel('Epoch'); 
% Simulating the network using the training dataset inputs 
a=sim(net, p); 
figure 
% Performing linear regression on the network outputs and comparing with 
% the targets 
[m, b, r]=postreg(a, t); 
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The data is divided into three sections as mentioned previously, and the datasets 

are saved as excel spreadsheets. Two spreadsheets are generated, one containing 

the network inputs (named alphainputs.xls) and one containing the network 

targets (named alphatargets.xls). Each spreadsheet contains three worksheets, 

named ‘training’, ‘validation’ and ‘testing’. The format for the input data may be 

seen in Table 2-3, where the experimental conditions for each run are contained in 

columns, and each experimental parameter occupies a row. 

Table 2-3: Inputs to ANN 

Yeast Conc. 0.40 0.70 0.30 … 

pH 0.37 0.37 0.46 … 

Salt Conc. 0.20 0.46 0.63 … 

∆P  0.20 0.20 0.20 … 

 Rm  0.64 0.32 0.29 … 

   

The network targets are contained in a single row.  

The network inputs and targets are read into Matlab using the function ‘xlsread’, 

and each dataset is named within the code. For example, the network inputs for 

the training dataset are imported and given the name ‘p’ using the code: 

p=xlsread('alphainputs', 'training'); 

The number of input, output and hidden neurons are specified, and the network is 

initialised using the function ‘newff’, which creates a feedforward, 

backpropagation network. 

net=newff(minmax(ptr), [no_hidden_neurons no_output_neurons], {'logsig' 'logsig'}, 'trainlm'); 
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 The arguments which must be included with the function ‘newff’ are:  

• An Rx2 matrix of minimum and maximum values for R input elements 

(minmax(ptr)) 

• The number of hidden neurons and the number of output neurons 

• The transfer functions used between each layer (‘logsig’ for both in this 

case, the sigmoidal transfer function) 

• The training algorithm (‘trainlm’ – the Leverberg Marqhardt algorithm – a 

method for convergence using a variation on the steepest descent method) 

 

The network training parameters are set using built-in functions. 

net.trainParam.goal=1e-8; 
net.trainParam.epochs=150; 
net.trainParam.show=25; 
net.trainParam.max_fail=20; 

 

where net.trainParam.goal is the desired MSE, net.trainParam.epochs is the 

number of passes, net.trainParam.show specifies the number of iterations after 

which the progress of the network will be displayed in Matlab, and 

net.trainParam.max_fail is the number of epochs for which the validation error is 

allowed to increase before training is stopped.  

The network performance is plotted as in Figure 2-14. This figure is automatically 

generated by Matlab when training a network. Although it seems that the error for 

the test dataset is initially small with a rapid increase followed by a decrease, this 

is likely to be an anomaly within the initialisation of the weights, where the 

network weights happen to fit well to the test dataset.  
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Figure 2-14: Network Performance 

The training dataset is then simulated and using linear regression, the network 

output is compared to the target dataset. 

a=sim(net, p); 
figure 
[m, b, r]=postreg(a, t); 

 

This code generates the plot shown in Figure 2-15. 

 

Figure 2-15: Comparison of Network Simulation of Test Data with Targets 
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The evaluation of the relative importance of the input parameters using the Garson 

Equation (Equation 2-3) as described previously is shown in Code 2-2 below. 

This code generates the relative importance as a proportion of 1. A sample 

calculation for the Garson Equation is also shown below (Section 2.6.1). 

The network simulation of the training, validation and test datasets are plotted 

separately and altogether as one dataset and compared with the target data with 

Code 2-3.  
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Code 2-2: Garson Equation 

 
 

inputsize=size(p); 
no_inputs=inputsize(1,1); 
no_datapoints=inputsize(1, 2); 
  
realinputweightmatrix=net.iw{1,1}; 
inputweights=abs(realinputweightmatrix); 
reallayerweights=net.lw{2,1}; 
layerweights=abs(reallayerweights); 
rowsumsinputs=sum(inputweights'); 
  
% Code to Work out the Garson Equation 
%Top Line 
k=1 % k is the variable of interest 
while k<=no_inputs 
  
    j=1; 
  
    while j<=no_hidden_neurons 
        wvj=inputweights(j,k); 
  
        wkj=rowsumsinputs(1,j); 
  
        oj=layerweights(1,j); 
        top(j)=(wvj/wkj)*oj; 
        j=j+1; 
    end 
    topline=sum(top'); 
  
    %Bottomline will always be the same, regardless of the variable you're 
    %interested in. It's basically the sum of all the possible top lines you 
    %could have. 
  
    inputparameter=1; 
  
    while inputparameter<=no_inputs 
        hiddenneuron=1; 
        while hiddenneuron<=no_hidden_neurons 
            wvq=inputweights(hiddenneuron,inputparameter); 
  
            wxq=rowsumsinputs(1,hiddenneuron); 
  
            oq=layerweights(1,hiddenneuron); 
            btop(hiddenneuron)=(wvq/wxq)*oq; 
            hiddenneuron=hiddenneuron+1; 
        end 
        toplinesb(inputparameter)=sum(btop'); 
        inputparameter=inputparameter+1; 
    end 
  
    bottomline=sum(toplinesb'); 
  
    parameterinfluence=topline/bottomline 
  
    k=k+1 
end 
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Code 2-3: Generation of Plots for Training, Validation and Test Datasets 

 

The plots generated using this code are shown below (Figures 2-15 to 2-18). 

% Plotting training set of data 
j=ptr; 
k=ttr; 
atrain=sim(net,j); 
figure 
plot(k, atrain, 'ro', k, k); 
u=k*.1+k; 
v=k-.1*k; 
hold on 
plot(k, u, 'm-', k, v, 'c-'); 
location=2; 
legend('Training Data', '100% Agreement', '10% Above', '10% Below', location); 
title('Test of Network - Training Data'); 
ylabel('Network Output'); 
xlabel('Target Values'); 
 
% Checking with validation set of data 
zz=val.P; 
kk=val.T; 
avalidation=sim(net,zz); 
figure 
plot(kk, avalidation, 'ro', kk, kk); 
q=kk+.1*kk; 
w=kk-.1*kk; 
hold on 
plot(kk, q, 'm-', kk, w, 'c-'); 
location=2; 
legend('Validation Data', '100% Agreement', '10% Above', '10% Below', location); 
title('Test of Network - Validation Data'); 
ylabel('Network Output'); 
xlabel('Target Values'); 
 
% Checking with test set of data 
jj=test.P; 
ll=test.T; 
atest=sim(net,jj); 
figure 
plot(ll, atest, 'ro', ll, ll); 
qq=ll+.1*ll; 
ww=ll-.1*ll; 
hold on 
plot(ll, qq, 'm-', ll, ww, 'c-') 
location=2; 
legend('Test Data', '100% Agreement', '10% Above', '10% Below', location); 
title('Test of Network - Test Data'); 
ylabel('Network Output'); 
xlabel('Target Values'); 
% 
 
% Checking with entire set of data 
totalinputs=xlsread('alphainputs', 'total'); 
totaltargets=xlsread('alphatargets', 'total'); 
wholetest=sim(net,totalinputs); 
figure 
plot(totaltargets, wholetest, 'ro', totaltargets, totaltargets); 
rr=totaltargets+.1*totaltargets; 
ee=totaltargets-.1*totaltargets; 
hold on 
plot(totaltargets, rr, 'm-', totaltargets, ee, 'c-') 
location=2; 
legend('Entire Data Set', '100% Agreement', '10% Above', '10% Below', location); 
title('Test of Network - Entire Data Set'); 
ylabel('Network Output'); 
xlabel('Target Values'); 
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Figure 2-16: Training Dataset 

 

Figure 2-17: Validation Dataset 
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Figure 2-18: Test Dataset 

 

Figure 2-19: Entire Dataset 
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2.6.1 Sample Calculation of Relative Effect of Input Parameters Using 

the Garson Equation 

Consider a neural network with two inputs, a single hidden layer with three 

neurons and a single output (Figure 2-20). After training of the network, the 

network weights are found to have the values given in Table 2-4.  

Table 2-4: Network Weights for Garson Equation 

From 1
st
 Input to 

Hidden Layer 

From 2
nd

 Input to 

Hidden Layer 

From Hidden Layer to 

Output 

w1,1 0.517 w2,1 0.649 O1 0.981 

w1,2 0.162 w2,2 0.132 O2 0.461 

w1,3 0.488 w2,3 0.584 O3 0.641 

 

 

Figure 2-20: Sample Network for Garson Equation 
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The relative effect of the first input on the network output is given, according to 

the Garson Equation (Equation 2-3), by the expression 

0.517 0.162 0.488
0.981 0.461 0.641

0.517 0.649 0.162 0.132 0.488 0.584
v

X Y

     
+ +     

+ + +     =
+

 

where  

0.517 0.162 0.488
0.981 0.461 0.641

0.517 0.649 0.162 0.132 0.488 0.584
X

     
= + +     

+ + +     
 

and 

0.649 0.132 0.584
0.981 0.461 0.641

0.517 0.649 0.162 0.132 0.488 0.584
Y

     
= + +     

+ + +     
 

Thus, the relative effect of the first input works out to be 0.5078. 
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CHAPTER 3: STIRRED CELL MICROFILTRATION OF 

BENTONITE SUSPENSIONS: DYNAMIC MODELLING USING A 

NOVEL NEURAL NETWORK METHOD  

 

In stirred microfiltration the filtration is nominally perpendicular to the 

membrane, as in dead-end microfiltration. However the filter cell is equipped with 

a stirrer or impeller, and the shearing action provided by this keeps the solids in 

suspension and limits deposition on the membrane, mimicking crossflow 

microfiltration. It has been established that the process parameters that influence 

the filtration behaviour of this kind of system include the pressure, temperature, 

feed concentration, stirring speed, membrane morphology or resistance and initial 

solids concentration (Zokaee et al. 1999). Filtration characteristics for this type of 

system have been investigated for bacterial cells (Zokaee et al. 1999) natural 

organic matter in drinking water treatment (Fan et al. 2001; Cho et al. 2006), 

proteins (Ho and Zydney 2000), glass industry wastewater containing colloidal 

clay and glass particles (Kang and Choo 2003), and turbidity constituents of beer 

and wine (Czekaj et al. 2000a, 2001).  

Few studies have been devoted to the modelling of this type of system and most 

of these focus on the stirred filtration of protein solutions. In many cases, fouling 

in stirred microfiltration of proteins has been found to be dominated by internal 

fouling mechanisms initially and later by a period of external fouling (Zokaee et 

al. 1999; Ho and Zydney 2000; Czekaj et al. 2001).  Models used have been based 

on constant pressure blocking filtration laws, where the Standard Blocking Model 

has shown good agreement at low filtration times and for dilute solutions, and the 
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cake filtration model (in dead-end systems) has shown good agreement at higher 

filtration times (Zokaee et al. 1999). Ho and Zydney (2000) developed a model 

incorporating these phenomena into a single mathematical expression. These 

models prove to be rather limited, in that they could not be expected to work 

outside the confines of the particular experimental system. Also, complex 

interactions based on suspension characteristics such as pH and ionic strength are 

mostly neglected in the analyses. Thus, it is unlikely that they would work for 

highly complex systems such as fermentation broths or non-Newtonian 

suspensions. Further discussion of complexities in this type of system may be 

found in Chapter 1. For these reasons, the use of empirical modelling techniques 

based on neural networks is an attractive approach. 

The objective of this chapter is to investigate the dynamic behaviour of the stirred 

system in the microfiltration of particulate suspensions and to explore the use of 

artificial neural networks in modelling these systems. Modelling of system 

dynamics is important in the context of industrial application of filtration 

processes (Bowen et al. 1998a; Aydiner et al. 2005). For example, in a typical 

process plant in which filtration plays a part, a simple model of flux dynamics 

would allow prediction of filtrate volume in a given time from the relationship 

0

t

V A Jdt= ∫        [3-1] 

It is proposed, in this study, to perform exploratory work to determine if ANNs 

provide a good approach to modelling such a batch system.  

The filtration of suspension of two types of solid is described: calcium carbonate 

and bentonite, the latter forming a highly non-Newtonian suspension. The data 
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obtained is used to show the difficulties involved in using non-linear regression 

approaches to data fitting and to evaluate the potential of the neural network 

approach. 

3.1 Materials and Methods 

3.1.1 Filter Cell and Reservoir 

Experiments were performed using a stirred cell with capacity of 180ml and 

internal diameter 63mm (Figure 3-1, Amicon, Millipore).  

 

Figure 3-1: Stirred Cell and Reservoir 

An o-ring of 1mm thickness was used to ensure a seal in the stirred cell. The cell 

is equipped with a stirrer of diameter 47 mm, the stirring speed of which was 

controlled using magnetic stirring plates (Stuart Scientific and IKA Labortechnik). 

The stirred cell was fed from a reservoir of capacity 800ml (Amicon, Millopore). 

The cell and reservoir were pressurised using compressed air (Figure 3-2). It is 
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important to note that this set-up is unusual in that is consists of a quasi-

continuous two-compartment system. The feed is placed in the reservoir, and 

pressure is applied. Some of the feed moves from the reservoir into the stirred 

cell, with the volume in the stirred cell being dependent upon the applied pressure. 

For most of the run, the volume in the stirred cell is constant but the particle 

concentration is increasing due to the build-up of particles on the membrane 

surface as filtration proceeds, and this is followed by a final phase (when the 

reservoir has emptied) when the cell itself empties. Thus this system is only a true 

batch system at the end phase, when the cell is emptying. The filtrate volume is 

measured in one second intervals and the flux calculated from this. 

 

Figure 3-2: Stirred Cell Apparatus Incorporating Feed Reservoir 

3.1.2 Membranes 

Two different types of membranes were used, a glass fibre membrane of pore size 

1µm (Pall), and a hydrophilic polyethersulfone membrane of pore size 0.45 µm 

(Pall). The membranes were of diameter 63 mm but the o-ring used in the cell 
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reduced the area available to flow, rendering the effective membrane area equal to 

29.2 cm2. PES membranes were not available in a suitable diameter for this 

particular apparatus. Therefore, membranes with 90 mm diameter were purchased 

and cut to size. This was done using a template manufactured specifically for this 

purpose in DCU. Membranes were held inside the template and cut with a sharp 

scalpel to the required size. 

3.1.2.1 Membrane Resistance Rm  

The hydraulic permeability or membrane resistance of each fresh membrane is 

measured by filtering pure water through the membrane and determining the 

resistance to flow in dead-end mode as described in Chapter 2.  

Membrane compression effects, or the dependence of the hydraulic permeability 

of the membrane on pressure, have been seen in many cases to affect flux decline 

characteristics in all types of filtration. Compression of the membrane with 

applied pressure has been found to be linear in some cases and non linear in 

others, and has proven to be a membrane specific phenomenon. In the case of 

microfiltration, flux decline in crossflow mode has been attributed previously to 

membrane compression effects (Dharmappa and Hagare 1999). Non-linear 

membrane compression effects were seen to contribute to flux decline in the 

stirred microfiltration of cutinase and E. Coli cell fragments by Sousa et al. 

(2002). Flux decline was also found to be affected by membrane compression by 

Kelly et al. (1993) for the stirred microfiltration of proteins. A linear relationship 

between applied pressure and Rm calculated from pure water flux was observed by 

Lu et al. (2007) for ultrafiltration membranes. Membrane compression prior to 

filtration of proteins in a UF membrane was performed by Li et al. (2005). 
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Membrane compression effects were shown to affect the ultrasonic technique 

being investigated and pre-compression of the membrane allowed the ultrasonic 

signals from the membrane to stabilise. An increase in hydraulic permeability of 

nanofiltration membranes with increasing pressure was noted by Drews et al. 

(2003). Sjöman et al. (2007) also noted that membrane compression may have an 

effect on the nanofiltration of monosaccharide solutions. Membrane compression 

of membranes for reverse osmosis was examined in detail by Ermakova et al. 

(1998). Flux decline due to membrane compression at long times in crossflow RO 

of extracellular polymeric substances was observed by Tansel et al. (2006). 

It is clear that it is necessary to quantify membrane compressibility and 

compression effects in order to accurately investigate the flux decline 

characteristics of the filtration system. As such, membrane compressibility for all 

membranes used was investigated for each experimental run, and the membranes 

were pressurised to the highest pressure used experimentally prior to investigation 

of the pressure dependence of the hydraulic permeability in order to account for 

effects related to non-relaxation of the membrane after compression, or hysteresis 

effects. 

3.1.2.1.1 Glass Fibre Membranes 

The resistance of the glass fibre membrane was found to be pressure dependent 

(Figure 3-3). A linear relationship between Rm and ∆P is evident. The variation in 

resistance from membrane to membrane was less than 1 % for all membranes 

investigated. The Rm for the glass fibre membranes ranged from 2.5 to 5.5 x 1010 

m-1. 
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Figure 3-3: Effect of pressure on glass fibre membrane resistance 

3.1.2.1.2 Hydrophilic Polyethersulphone Membranes 

The resistance to flow of the PES (polyethersulphone) membranes was also found 

to be pressure dependent; however, the variability from membrane to membrane 

was greater for this type than for the glass fibre membranes. Figure 3-4 shows the 

pressure dependence of the membranes where the error bars represent the standard 

error for the data set.  
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Figure 3-4: Effect of pressure on Rm for PES membranes with pore size 0.45µµµµm 
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The standard error is calculated for a set of data with a single mean as the standard 

deviation of the data divided by the square root of the number of data points, i.e.,  

N
 Error  Standard

σ
=       [3-2] 

It appears that the pressure dependence of the Rm for these membranes is more 

complex than that of the glass fibre membranes, displaying a non-linear pressure 

dependency. However given the magnitude of the standard error associated with 

the membrane resistance at 0.2 bar, it is possible that this is not the case. The large 

standard error associated with the values obtained for Rm may be due to the 

cutting of the membranes prior to their use. Slight variations in the edges may 

have affected the value obtained. However, as the measured membrane resistance 

is used as an input to the neural network later, the variation between runs is of no 

consequence. The Rm is slightly higher than that for the glass fibre membranes, of 

the order of 4.5 to 6.5 x1010 m-1.  

3.1.2.2 Impeller 

The impeller speed was controlled using two magnetic stirring tables. The stirring 

tables had a number of speed settings numbered from 1 to 10. The stirring speeds 

corresponding to each setting when used with the stirred cell were found using a 

stroboscope (Radionics Ltd.). 

A stroboscope consists of a strobe light, the frequency of which may be adjusted. 

The impeller was marked and for each stirring table setting, the frequency of the 

stroboscope was adjusted until the impeller appeared stationary, i.e. the frequency 

of the strobe light was equal to the frequency of rotation of the impeller.  
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3.1.3 Stirrer Table 

The impeller speed was dependent on the type of stirrer table used and the setting. 

Two different stirring tables were used over the course of collecting the 

experimental data as one of the stirring tables malfunctioned. For the first stirring 

table used (Stuart Scientific) settings were adjusted between 4 and 8 as the 

stroboscope could not be used to determine impeller rotational speeds at setting 

lower than 4, and the amount of liquid in the stirrer cell could be entirely 

suspended causing the impeller to stop stirring at settings greater than 8. For the 

second stirring table used (IKA Labortechnik) the settings were adjusted between 

2 and 8. The stirrer rotational speed N was calculated in RPM using the 

stroboscope and this was converted to an equivalent impeller tip speed by 

multiplying by the impeller radius which was 23.5 mm. Stirring speeds were in 

the range 0.07 to 0.31 m/s. 

3.1.4 CaCO3 and Bentonite Suspensions 

Suspensions were made up by measuring out the appropriate mass of either 

CaCO3 or bentonite and adding to ultra pure (RO) water to achieve the desired 

concentration. For bentonite suspensions, the pH was adjusted by addition of 

0.5M NaOH or H2SO4 solutions. Suspensions were mixed for 24 hours before use 

to ensure complete suspension of bentonite. Filtration temperature was kept 

constant with the use of a water bath at the required temperature after pre-heating 

or cooling of the suspension. 
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3.2 Results and Discussion 

3.2.1 Stirred Microfiltration of CaCO3  

Preliminary experiments were carried out using CaCO3 in order to establish 

operating procedures for the cell. Glass fibre filters with pore size 1 µm were used 

for all CaCO3 experiments. The parameters investigated were the initial CaCO3 

concentration, C0; the applied transmembrane pressure, ∆P; the stirrer tip speed u; 

the membrane resistance Rm, and the temperature T which affects the filtrate 

viscosity µ. Filtration is faster at lower initial concentrations and higher pressures, 

and as such the feed is used up more quickly. This explains the different lengths 

of the curves in Figure 3-5 and Figure 3-6. 

As mentioned previously, filtrate volume is measured at one second intervals; 

hence the flux is also calculated at one second intervals. This necessitates the use 

of continuous curves for data representation rather than individual symbols. 
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Figure 3-5: Effect of Increasing Initial CaCO3 Concentration on Flux Decline 
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Filtration experiments were carried out between 2 and 5 g/L. The effect of 

increasing the concentration was to decrease the filtrate flux as can been seen 

from Figure 3-5, where the transmembrane pressure is 1 bar, stirrer tip speed is 

0.08 m/s and the suspension temperature is 6 oC. 

It should be noted that the calculated values for fluxes at very low times is subject 

to a certain amount of experimental error. This is due to the fact that the 

experimenter must open the filtrate valve and start the timer simultaneously, a 

process that is currently performed by hand without the use of a control system. 

Error in the measurements at low filtration times is magnified by the 

differentiation of the filtrate mass in order to calculate the flux. 

Although it would appear from Figure 3-5 that increasing suspension 

concentration decreases the initial filtrate flux, it would be expected that 

concentration would have no effect on initial fluxes and as such this phenomenon 

is attributed to the difficulties in accurately measuring the flux at low times. 
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Figure 3-6: Effect of Increasing Pressure on Flux Decline 

Figure 3-6 shows the effect of increasing transmembrane pressure is to increase 

the filtrate flux for an initial CaCO3 concentration of 3g/L, stirrer tip speed 0.1 

m/s and suspension temperature of 23 oC. 

It is to be expected that the initial flux would increase with increased pressure, as 

the flux at low filtration times should be approximately equal to the flux through 

the clean membrane. 
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Figure 3-7: Effect of Increasing Stirrer Speed on Flux Decline  

Figure 3-7 shows the effect of changing the stirrer speed at initial CaCO3 

concentrations of 3 g/L and 6 g/L, ∆P of 0.5bar and suspension temperature of 23 

oC. It may be seen from Figure 3-7 that the stirrer speed has virtually no effect on 

the filtrate flux in the filtration of CaCO3.  

This phenomenon was also seen in the work of Kang & Choo (2003) where the 

fluxes were almost independent of stirring conditions. This may be due to the fact 

that the cake resistance is comparable to the membrane resistance, so that the 

dislodging of the cake layer at higher shear rates may not show any perceptible 

change of flux. Specific resistances for cakes of CaCO3 determined using the 

stirred cell in dead-end mode (i.e. without the use of the stirrer) using the methods 

outlined in Chapter 2 are to the order of 1011 m/kg and, from this, cake resistances 

for the suspension concentrations achievable using this apparatus are calculated to 

be of the order of 1010 m-1 which is of the same order of magnitude as the 
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resistance to flow of the membrane itself. For example, supposing the cake 

resistance is 1.9x1010 m-1 and the membrane resistance is 2.9x1010 m-1, and an 

increase in the shear causes a decrease in the cake resistance of 20 %. Thus the 

cake resistance is reduced to 1.5x1010 m-1 which corresponds to a drop in the total 

resistance to flow (Rc  + Rm) of just 6 %.   

A fresh membrane is used for each run and the resistance to flow of each fresh 

membrane is measured as described in Section 3.1.2.1. Identical membranes are 

used for each run and the membrane resistance varies only slightly from 

membrane to membrane. As the resistance of a cake of CaCO3 is comparable to 

that of the membranes used as discussed above, an increase in Rm has been shown 

to lead to a decrease in the filtrate flux as would be expected as it is the membrane 

resistance that is the limiting resistance in this case. This phenomenon may be 

observed in Figure 3-8 in which the CaCO3 concentration is 3 g/L, ∆P is 0.5 bar, 

the stirrer speed is 0.1 m/s and the suspension temperature is 23 oC. Two curves at 

the same membrane resistance are included to demonstrate the reproducibility of 

the flux decline experiments.  
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Figure 3-8: Effect of Increasing Membrane Resistance on Flux Decline 

The filtrate in the case of filtration of CaCO3 suspensions is pure water. An 

increase in suspension temperature decreases the filtrate viscosity. This leads to an 

increase in the filtrate flux as can be seen in Figure 3-9 where the initial CaCO3 

concentration C0 is 3 g/L, the stirrer speed is 0.13 m/s and the transmembrane 

pressure ∆P is 1 bar. 
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Figure 3-9: Effect of Increasing Temperature on Flux Decline 
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3.2.2 Stirred Microfiltration of Bentonite 

Following on from preliminary investigations with the simpler Newtonian CaCO3 

suspensions, bentonite was used in order to collect data for a complex non-

Newtonian system. Bentonite characteristics are discussed in detail in Chapter 1.  

Three initial bentonite suspension concentrations were investigated, 0.5, 1 and 2 

g/L. As expected, the effect of increasing the bentonite concentration was to 

decrease the quasi-steady state flux achieved at long filtration times. Little effect 

was apparent on the initial steep flux decline (Figure 3-10, where ∆P is 0.2 bar, u 

is 0.07 m/s, pH is 8 and filtrate temperature is 21 oC). It is worth noting however, 

that there is an extremely rapid decline in flux. 
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Figure 3-10: Effect of C0 on Flux Decline for Stirred MF of Bentonite  

Plotting the flux against the natural log of time enables the initial flux decline to 

be seen more clearly (Figure 3-11). As the flux reaches a quasi steady state 

rapidly, as mentioned previously, the effects of the operating parameters on the 

flux will be shown in this manner from this point forward. 
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Figure 3-11: Semi-log Plot of the Effect of C0 on Flux Decline  

The effect of increasing the applied transmembrane pressure proves to be quite 

small as can be seen from Figure 3-12 (C0 of 1 g/L, u of 0.07 m/s, pH of 8 and 

filtrate temperature of 21 oC), a phenomenon also observed by Ladva and 

Fordham (1989; 1992).  
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Figure 3-12: Semi-log Plot of the Effect of Pressure on Flux Decline 
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The stirring speed influences the shearing forces in the stirred cell and as such 

should affect the rheological properties of the suspension and also the deposition 

of bentonite on the membrane surface. It is clear from Figure 3-13 (C0 of 1 g/L, 

∆P of 0.5 bar, pH 8 and 22 oC), that an increase in the stirrer speed causes a 

corresponding increase in the filtrate flux.  
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Figure 3-13: Semi-log Plot of the Effect of Stirrer Speed on Flux Decline  

The resistance to flow provided by a cake of bentonite should be much higher 

than Rm which is of the order of 1010 m-1 as reported specific resistances for 

bentonite have been of the order of 1013 – 1014 m/kg. Based on a value of this 

magnitude, for the range of concentrations used in this study, the resistance of a 

cake of bentonite should be of the order of 1012 m-1.  It is clear from Figure 3-14 

(C0 of 2 g/L, ∆P of 0.2 bar, u of 0.07 m/s, pH 9 and 21 oC) that the membrane 

resistance has little or no effect on the flux time characteristics apart from at low 

filtration times when very little bentonite has deposited on the membrane, and that 

the flux versus time curves for specified operating parameters are very 

reproducible regardless of any variability in Rm.  
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Figure 3-14: Semi-log Plot of the Effect of Membrane Resistance Flux Decline 

It is clear from Figure 3-15 (C0 of 1 g/L, ∆P of 0.5 bar, u of 0.07 m/s and 21 oC) 

that the filtration behaviour exhibits a complex dependence on the suspension pH, 

especially the period of initial flux decline where the more marked effect is 

observed.  
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Figure 3-15: Semi-log Plot of the Effect of pH on Flux decline 
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Typical unadjusted pHs for the aqueous bentonite suspensions in this study are in 

the range 8 – 9. Lowering the suspension pH serves to decrease the filtrate flux. 

However, raising the pH to 10.4 decreases the filtrate flux to a value between that 

observed at pHs of 2.52 and 5.17. This may be explained in part by the complex 

dependency of the suspension rheology on the pH, as outlined in Chapter 1. Also, 

the specific resistance is well known to be a complex function of pH as outlined in 

Chapter 2. 

3.2.3 Modelling of Filtration Data 

In this section, the use of artificial neural networks in modelling the stirred cell 

filtration of calcium carbonate and bentonite suspensions is explored. Initially, the 

difficulties associated with using non-linear regression techniques for modelling 

such complex systems are demonstrated. For CaCO3 and bentonite, experiments 

for each system are performed with various combinations of the operating 

parameters of interest and the flux-time curves generated for each experiment are 

the data used in modelling the system. CaCO3 experiments are as presented 

previously in the Figures in Section 3.2.1 and the operating parameters for the 

Bentonite experiments are as outlined in Table 3-1. The experiments were 

selected in order to elucidate the effect of changing each parameter while holding 

all other parameters constant, for the range of operating parameters determined as 

important. The concentration range was chosen on the basis of the impeller – too 

high a concentration of bentonite and the stirrer was unable to turn. The pressure 

ranged up to 2 bar as low pressures are typically desirable industrially in order to 

retain economic viability (Mulder 1996; Keefe and Dubbin 2005).  A relatively 
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small range of impeller tip speeds was attainable with this equipment, ranging 

from 0.07 to 0.17 m/s. 

Table 3-1: Bentonite Filtration Experiments 

 

3.2.3.1 Non-Linear Regression 

Non-linear regression is a traditionally used technique for quick correlation of 

data, where regression equations may be used to gain some information about the 

 P  (bar) C 0  (g/L) u  (m/s) pH T (
o 
C) R m  ( x 10 

10 
 m

-1 
) 

0.2 2.0 0.07 9.7 21 5.71
0.2 2.0 0.07 9.5 21 4.15
0.2 2.0 0.07 9.4 22 3.14
0.2 0.5 0.07 8.1 21 3.38
0.2 0.5 0.07 8.1 22 3.29
0.2 0.5 0.07 8.2 21 3.19
0.5 1.0 0.07 9.1 21 3.51
1.0 1.0 0.07 9.1 21 5.09
1.5 1.0 0.07 8.9 21 5.25
2.0 1.0 0.07 8.9 23 10.93
0.5 1.0 0.07 9.0 22 3.60
0.5 1.0 0.10 8.8 22 6.73
0.5 1.0 0.07 9.0 20 5.89
0.5 1.0 0.07 8.8 23 4.39
0.5 1.0 0.10 8.6 24 4.36
0.5 1.0 0.17 8.8 23 4.21
0.5 1.0 0.07 5.2 24 4.39
0.5 1.0 0.07 5.2 22 4.36
0.5 1.0 0.07 6.9 23 4.21
0.5 1.0 0.07 6.9 22 6.73
0.5 1.0 0.07 10.4 22 5.39
0.5 1.0 0.07 10.4 22 4.95
1.0 1.0 0.07 8.8 22 4.54
0.5 1.0 0.07 10.4 22 4.98
0.5 1.0 0.07 2.5 21 6.85
0.5 1.0 0.07 2.5 21 4.76
1.0 1.0 0.07 9.0 22 4.28
1.0 1.0 0.07 9.0 23 4.42
1.5 1.0 0.07 9.0 22 5.15
1.5 1.0 0.07 9.0 22 4.87
0.5 1.0 0.17 8.8 23 5.08

∆ 
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physical characteristics of a system. Preliminary analysis of data generated on 

stirred microfiltration of CaCO3 indicated that the parameters that should be 

included in a model describing the process are the initial CaCO3 concentration, 

C0; the applied transmembrane pressure, ∆P; the membrane resistance Rm, and the 

temperature T, which affects the filtrate viscosity µ (Section 3.2.1). The stirrer 

speed is included as a parameter as this would be useful in the extension of this 

approach to systems in which the stirrer speed is important, and also to evaluate 

the models generated in terms of capturing the underlying physical phenomena of 

the system using the weight partitioning method described in Chapter 2. For 

Bentonite filtration, the parameters of interest are the initial bentonite 

concentration, C0; the applied transmembrane pressure, ∆P; the membrane 

resistance Rm, the pH, the stirrer velocity u and the filtrate temperature (Section 

3.2.2). The temperature was included as a parameter as the bentonite filtration 

experiments were performed at room temperature, (which varied between 20 oC 

and 24 oC depending on the day) and because bentonite filtration characteristics 

are found to be affected by the rheological properties of the fluid (Doneva et al. 

1997). 

Regression analysis examines the relationship of a dependent variable to specified 

independent variables. A regression equation used to fit data contains one or more 

unknown regression parameters (constants) which quantitatively link the 

dependent and independent variables and may be represented by 

( )θfy =         [3-3] 
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where y is the dependent variable, and θ  represents the variables upon which y 

depends. For a given system, the functional form for the regression model must be 

approximated and expressed as a mathematical function. Common equations used 

in biology and other fields of science include Gaussian distribution, sine wave, 

polynomial equations, exponential growth, Boltzmann sigmoid, power series and 

many others. Once a model is chosen that fits the data well, non-linear regression 

is used to give estimates of the regression equation parameters. 

An initial value for each variable in the regression equation is estimated. The sum 

of squares of the vertical distances of the experimental data points from the points 

on the curve generated by employing the initial values of the regression 

parameters is calculated. This sum of squares is used as an indication of the 

goodness of fit of the curve to the data. The variables are adjusted to attempt to fit 

the curve to the data points. There are several algorithms that are commonly used 

for adjusting the variables, including Simulated Annealing, Gradient Descent, 

Conjugate Gradient, the Gauss-Newton Method and the Levenberg-Marqhardt 

Method (Krivý et al. 2000). The variables are adjusted many times according to 

the algorithm (each adjustment is called an iteration) until the sum of squares is 

virtually unaffected by adjustment of the variables.  

Sigmaplot (© Systat Software Inc.) is used to perform non-linear regression on 

the experimental data in this research. The Sigmaplot Regression Wizard uses the 

Marquardt-Levenberg algorithm to find the coefficients (parameters) of the 

independent variable(s) that give the best fit between the equation and the data. 

This algorithm seeks the values of the parameters that minimize the sum of the 

squared differences between the values of the observed and predicted values of 
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the dependent variable. As previously mentioned, the process is iterative - the 

curve fitter begins with an initial guess at the parameters, checks to see how well 

the equation fits, then continues to make better guesses until the differences 

between the residual sum of squares no longer decreases significantly. This 

condition is known as convergence. With the SigmaPlot Regression Wizard, in 

order to speed up convergence, it is possible to specify values for the number of 

iterations; the step size, which is the limit of the initial change in parameter 

estimates between iterations; and the tolerance limits, being the absolute value of 

the difference between the square root of the sum of squares of the residuals from 

one iteration to the next.  

In order to generate a regression model for a system, a functional form for the 

filtration characteristics must be approximated. A simple function that 

approximates flux decline data is the power law expression relating flux and time: 

n
AtJ

−=        [3-4] 

where J is the filtrate flux, t is the filtration time and A and n are constants. A log-

log plot of flux decline data should give an indication as to whether this model 

may be used to approximate filtration data for the CaCO3 system. 

It should be noted that this type of analysis is questionable when the functional 

relationship used for the system does not have its basis in the physical 

characteristics of the system.  
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Figure 3-16: Log-log plot of flux decline for CaCO3 

It is clear from Figure 3-16 (Operating Conditions as Figure 3-5) that log-log plots 

of flux versus time are reasonably linear after initial low filtration times, and as 

such a power law approach may be justified. This type of expression is found to 

fit the flux versus time data well for CaCO3, with R2 values achieved for a power 

law fit for the data in Figure 3-6 ranging upwards from 0.97.  

For the bentonite data, the power law fit does not have as good agreement as 

found for CaCO3 as can be seen from Figure 3-17 (Operating Parameters as Figure 

3-15), where a log-log plot of the flux versus time data is clearly non-linear. 
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Figure 3-17: Log-Log Plot of Flux Decline for Bentonite 

It is clear from this non-linearity that a power law fit is unsuitable for use in 

describing bentonite filtration data. It would be possible to explore the use of 

more complicated functions involving more than two empirical parameters, all of 

which might be related to the system parameters. However, such an approach 

would be time consuming and likely to lead to unwieldy correlations. 

3.2.3.1.1 Regression Equations 

A regression equation must be designed to relate the regression constants to the 

operating parameters. For the sake of simplicity, the constants in Equation 3-4 are 

assumed to be functions of the operating parameters as follows:  

f

m

edcb
RuCPaA µ0∆=       [3-5] 

l

m

kjih
RuCPgn µ0∆=       [3-6] 
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As outlined previously, this type of regression analysis would be suitable only for 

the CaCO3 filtration data, due to the non-linearity of the log-log plots for the 

bentonite data. This difficulty in using non-linear regression techniques justifies 

the use of artificial neural networks, especially when attempting to model 

complex functions such as pH and ionic strength effects. 

The constants in the regression equations were evaluated using non-linear 

regression in Sigmaplot 8.0 for Windows as described in Chapter 1. For each run, 

a power law model was applied to the flux-time data and regression analysis was 

used to find a value of A and n. Regression analysis was then performed on the 

values of A and n corresponding to the experimental conditions, to find the 

constants in Equations 3-5 and 3-6. Tolerance limits for convergence were set at 

1x10-4 in all cases. When using Sigmaplot, the fit of regressions is shown using R2 

values and the norm (the sum of the squares of the residuals). R2 values were 

between 0.8 and 1 in all cases, and norms to the order of 10-5 were achieved, 

indicating a successful convergence to a solution for the values of A and n.  

3.2.3.1.2 Non-Linear Regression Model 

The constants found for CaCO3 are outlined in Table 3-2. It is important to note 

that these are dimensional constants, with units particular to the analysis used in 

this study. These constants would only be suitable for use with the correct units 

for the operating parameters and flux.  
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Table 3-2: Stirred MF of CaCO3 Regression Constants 

Constant Value Constant Value 

a 3.2x10-7 g 3.2x10-7 

b 0.23 h -0.43 

c -0.02 i 0.22 

d 0.41 j 0.44 

e 0.47 k 1.39 

f 0.44 l 1.18 

 

Thus the regression equation to describe stirred microfiltration of CaCO3 is  

( ) ( )18.139.144.022.0
0

43.07102.344.047.041.002.0
0

24.07102.3 mRuCP

m tRuCPJ
µµ

−− ∆×−−− ×∆×=   [3-7] 

The power law regression model for CaCO3 is seen in Figure 3-18 to fit the data 

quite well, where the linear regression equation for the correlation is y = 0.96x + 

5x10-5, with an R2 value of 0.97. Confidence intervals for the slope and the 

intercept are found to be [0.96, 0.97] and [4.07x10-5, 5.26x10-5] respectively. The 

power law model does not quite fit the data at low filtration times. The low 

filtration times correspond with the highest fluxes on the plot, i.e. to the right hand 

side. It is to be expected that a simple power law model would fit filtration data 

badly at low times as it predicts that the flux goes to infinity at t=0.  This 

highlights a drawback of the non-linear regression technique, in that a functional 

relationship for the system must be approximated.  
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Figure 3-18: Fit of Power Law Model to CaCO3 Filtration Data  

Each experimental run is plotted in Figure 3-18, and it is possible to identify 

specific experimental runs from this Figure. In particular, a single experimental 

run lies below and to the right of the y=x line. It is clear that this particular 

experiment is not correlated well using the power law approach. 

It is interesting to note that regression constants a and g are equal. Also the 

exponent for C0 for the multiplier of the power law model is close to zero, 

implying an insignificant effect. 

It is probably that this correlation could be improved by the use of other 

regression functions that would fit the system better. A technique known as 

symbolic regression may be used to generate functions to fit experimental data 

using evolutionary algorithms. This technique focuses on the fit of a functional 

set, consisting of user defined mathematical relationships, to a terminal set, 
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consisting of the constants and parameters of the problem (Cai et al. 2006). More 

simply, symbolic regression may be used to search a database of all possible 

regression equations to find the equation that fits the dataset, a process which 

would be exhaustive if attempted by hand. This may be an area for future work. 

Another approach that might simplify the conventional regression approach is 

dimensional analysis. Foley (2006) has shown that a dimensionless equation of 

the form 
2

,
m

J P P
f

u uRcu µ

 ∆ ∆
=  

 
 fits steady state flux data for yeast suspensions 

with moderate accuracy. However, extension of this approach to time-dependent 

problems as we have here, would lead to an additional dimensionless group 

(involving time) that would still leave a challenging regression problem. 

Although this approach generates a reasonable correlation for CaCO3 filtration 

data after initial filtration times, it is questionable whether using this approach is 

scientifically sound and is included here simply as a comparison between 

traditional non-linear regression and the application of ANNs, which are regarded 

by many as simply a complex regression. 

3.2.3.2 Artificial Neural Networks 

The aim of this section is to design an ANN that can be used to model the CaCO3 

and bentonite filtration data and to develop a network for the bentonite data that 

can be used as a predictive tool. For modelling purposes alone, all of the available 

data is used in training the network, and for modelling and predictive purposes the 

data is divided into training, validation and testing sets as described in Chapter 2. 
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3.2.3.2.1 Calcium Carbonate 

As outlined previously (Chapter 2) Matlab software was used in the development 

of the ANN for modelling of CaCO3 data. The network inputs and output are 

normalised between 0 and 1 prior to being used with the network. The inputs to 

the network for CaCO3 are ∆P, C0, u, µ, Rm and t, the time, and the network 

output is the flux at each time step. All of the time data was used, leading to an 

input matrix with 26436 elements, and an output vector with 4406 elements. It is 

desirable to use the simplest network possible when using an ANN as a modelling 

tool as this gives the fastest processing time and makes the underlying model as 

simple as possible. The appropriate network architecture is found using a trial and 

error procedure as outlined in Chapter 2.  

For the CaCO3 system, it is found that a 6-6-1 backpropagation network using a 

sigmoidal transfer function models the system with an excellent degree of 

accuracy (Figure 3-19, where the red line indicates the y=x line) 
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Figure 3-19: Fit of 6-6-1 ANN to CaCO3 Filtration Data  
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This network architecture, which has the same number of neurons in the hidden 

layer as there are inputs to the system, is the simplest possible network 

architecture with the lowest number of neurons. This highlights the advantages of 

using an ANN rather than attempting to find a suitable regression function.  

The regression equation for the data is y = 0.995x + 5x10-6, with an R2 value of 

0.99. 95 % confidence intervals for the slope and intercept are [0.993, 0.997] and 

[2.94x10-6, 7.11x10-6] respectively. 

3.2.3.2.2 Bentonite 

For the bentonite data, Trajan neural network software (StatSoft) is used. While 

Matlab is an excellent tool for design of ANNs (and provides an in-depth 

understanding of the functionality of ANNs due to the necessity for the user to 

construct the code required for training, validation and testing of a network) 

Trajan software proves to be more user friendly and eliminates the need for data 

pre-processing. 

As mentioned previously, bentonite filtration characteristics have proved to be 

more complex than that of CaCO3. This may be due to the non-Newtonian 

behaviour and the fact that more operating parameters are examined, particularly 

complex pH effects. Another point to note is that the filtration times with 

Bentonite are much longer than those for CaCO3. This leads to longer processing 

times and it is much more difficult to achieve an accurate regression for an input 

matrix with 180,000 elements (this number is obtained from the number of 

experiments multiplied by the number of time points) – the larger the data set and 

the more complex the network, the longer the processing times and the 

computational power required. Using a laptop computer (Intel ® Core™ 2 CPU 
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T5500, 1.66GHz, 512MB of RAM), processing times were close to 30 minutes 

with the simplest possible network. An advantage of using ANNS for such a 

complex system is that the architecture of the ANN can be made more 

complicated in order to reflect the complexity of the data - the number of hidden 

layers can be increased, and the number of neurons in each hidden layer can be 

increased, until such a time as the network gives an acceptable approximation to 

the system behaviour. However, a disadvantage associated with this is that the 

more complex the network, the longer the processing time and the more memory 

required for processing the data. This proves to be a problem when dealing with 

such a large dataset.  

3.2.3.3 Novel ANN Design for Modelling Microfiltration Dynamics 

In this study, a novel approach was developed in which the number of data points 

was reduced by examining only particular time points along the flux-time curve, 

and, more importantly, the time was not included explicitly in the network. 

Although simply reduced the number of data points would be effective in 

reducing the amount of memory required for processing of the neural net, a more 

computationally efficient method is proposed which also allows easy access to the 

evolution of the weights along the time series. Previous work on time-series 

filtration data has always included time either as an input to the network, or a 

recurrent network has been used in which the output of the previous time point is 

used as an input to the next time point.  

Table 3-3 gives a summary of previous work on application of ANNs to time 

series filtration data. The amount of published work on modelling of time series 

data using ANNs is quite small, however, it appears that time has been included 
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explicitly in all cases. The application of ANNs to time series data occurs across 

the spectrum of filtration processes, with CFMF representing crossflow 

microfiltration, CFUF crossflow ultrafiltration and CFNF nanofiltration, and 

where BP represents a standard backpropagation network and RB represents a 

radial basis ANN.  

Table 3-3: Application of ANNs to Time Series Filtration 

Study Type of Filtration Time Use 

Aydiner et al. (2005) CFMF time as input to BP network 

Bowen et al. (1998a) CFUF time as input to BP network 

Bowen et al. (1998b) CFUF time as input to BP network 

Cabassud et al. (2002) CFUF time as input to BP network 

Chellam (2005) CFMF time as input to BP network 

Chen and Kim (2006) CFMF time as input to BP and RB networks 

Cheng et al. (2008) CFMF time as input to BP and RB networks 

Curcio et al  (2006) CFUF time as input to BP network 

Curcio et al. (2005) CFUF time as input to BP network 

da Silva and Flauzino (2007) CFMF time as input to BP  network 

Delgrange-Vincent et al. (2000) CFUF 2 Recurrent Networks 

Dornier et al. (1995a) CFMF time as input to BP network 

Dornier et al. (1995b) CFMF time as input to BP network 

Dornier et al. (1998) CFMF time as input to Simplex network 

Hamachi et al. (1999) CFMF Recurrent Network 

Piron et al. (1997) CFMF Recurrent Network 

Rai et al. (2005) Stirred UF time as input to BP network 

Razavi et al. (2003a) CFUF time as input to BP network 

Razavi et al. (2003b) CFUF time as input to BP network 

Razavi et al. (2004) CFUF time as input to BP network 

Sahoo and Ray (2006) CFMF time as input to BP and RB networks 

Shetty and Chellam (2003) CFNF time as input to BP network 

Teodisiu et al. (2000) CFUF time as input to BP network 

With time included explicitly, the number of outputs from the network for each 

experimental run corresponds to the number of time points taken from each run.   
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In order to reduce processing times and network complexity, a novel approach is 

developed here in which time is not included explicitly in the network. The 

network architecture used and the difference between the previous architectures 

and this novel configuration may be seen in Figure 3-20.  

 

 

Figure 3-20: Comparison of Network Architectures for Time Series Data 

The first architecture is that used in previous work on modelling of time series 

data and the second is the approach developed in this work.  

As mentioned previously, the number of data points required for a network 

designed using time as an input will be as many times greater than the number of 

data points required for the architecture developed here as the number of time 

points used. 
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For these experiments, the time series data is found to be regular over the course 

of the filtration experiments in all cases. As such, it is justified to take a selection 

of data points along the flux – time curve to accurately represent the data. The use 

of fewer data points should not lead to any loss of information about the 

relationship between flux and time as no apparent anomalies occur across the time 

scale used to date. Data points here are chosen arbitrarily at 10 seconds, 50 

seconds, 100 seconds and thereafter every 100 seconds until 1300 seconds, a total 

of 15 time points. Successive time points in smaller increments were chosen at 

low times as the shape of the flux-time curve dictates that greater changes occur at 

low times, with the significant initial flux decline, and as such extra data points at 

low times are necessary to represent the characteristics. Accurate measurement of 

fluxes at very low filtration times proves to be susceptible to experimental error, 

and as such the first time point included was at 10 seconds. 

The flux at each of the chosen time points forms the output matrix for the 

network. This means that rather than 1 output at each time point (the technique 

employed in previous work) there are 15 outputs for each experimental run. For a 

network with 6 operating parameters and 31 experimental runs as in this case, 

taking 15 time points over the course of a run, the previously used approach 

requires an input matrix with 3255 elements, and an output vector with 465 

elements. With the approach developed here, the input matrix consists of 186 

elements, and the output matrix consists of 465 elements. 

The differences in the input and output matrices are represented in Table 3-4. For 

the previous approaches used in modelling this dataset, the input matrix is a 465 x 
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7 matrix, whereas in the novel approach developed in this work, the input matrix 

is a 31 x 6 matrix. 

Table 3-4: Input and Output Matrices for Modelling of Dynamic Filtration using ANNs – 

Previous Approaches 

Input Matrix Output Matrix 

 ←# Operating Parameters + 1→ ←1→ 

Operating Parameters Run 1 Time 1 Flux 1,1 

Operating Parameters Run 1 Time 2 Flux 1,2 

M  M  M  

Operating Parameters Run 1 Time m Flux 1,m 

M  
M  

M  
M  

M  
M  

Operating Parameters Run n Time 1 Flux n,1 

M  M  M  

 

↑ 

# Experiments(n)  

x  

# Time Points (m) 

↓ 

Operating Parameters Run n Time m Flux n,m 

 

Table 3-5: Input and Output Matrices for Modelling of Dynamic Filtration using ANNs – 

Current Approach 

Input Matrix Output Matrix 

 
←# Operating Parameters→ ←# Time Points (m)→ 

Operating Parameters 1 Flux 1,1, Flux 1,2…Flux 1,m 

Operating Parameters 2 Flux 2,1, Flux 2,2…Flux 2,m 

M  
M  

M  
M  

 

↑ 

# Experiments(n)  

↓ 
Operating Parameters n Flux n,1, Flux n,2…Flux n,m 

 

 This approach leads to shorter processing times and greater flexibility with 

regards to increasing the network complexity. Another advantage of this approach 

is that the evolution of the relative contribution of the input parameters to the flux 

along the time series can be investigated, as will be discussed in Section 3.2.3.3.1.  
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For prediction purposes, the data is divided into three datasets for training, 

validation and testing as described in Chapter 2. The division consists of 10 runs 

for training, 10 for validation and 11 for testing, dividing the available data almost 

evenly but retaining the larger proportion of unseen data for testing purposes. 

Division of available data is performed randomly by using a function in Trajan 

that allows the user to input the number of experiments required in each set and 

then shuffles the data, assigning experiments to training validation and testing 

randomly. Random selection of training data for ANNs is desirable as it requires 

no a priori knowledge of the system. The division of data is summarised in Table 

3-6. The size of the training set necessary for setting the network weights may be 

found by increasing the size of the dataset by a trial and error procedure until the 

prediction of the test data is sufficiently accurate. 30 % of the data for training 

was found to be sufficient in this case. 

 



  118 

Table 3-6: Division of Data for Bentonite Network 

Run ∆∆∆∆P (bar) C0 (g/L) u (m/s) pH T (
o
C) Rm (x10

10
 m

-1
) 

Training 

1 0.2 2.0 0.04 9.7 21 5.71 
4 0.2 0.5 0.04 8.1 21 3.38 

12 0.5 1.0 0.08 8.8 22 6.73 
13 0.5 1.0 0.04 9.0 20 5.89 
17 0.5 1.0 0.04 5.2 24 4.39 
19 0.5 1.0 0.04 6.9 23 4.21 
20 0.5 1.0 0.04 6.9 22 6.73 
25 0.5 1.0 0.04 2.5 21 6.85 
27 1.0 1.0 0.04 9.0 22 4.28 
31 0.5 1.0 0.17 8.8 23 5.08 

Validation 

6 0.2 0.5 0.04 8.1 21 3.19 
8 1.0 1.0 0.04 9.1 21 5.09 
9 1.5 1.0 0.04 8.9 21 5.25 

14 0.5 1.0 0.04 8.8 23 4.39 
15 0.5 1.0 0.08 8.6 24 4.36 
16 0.5 1.0 0.17 8.8 23 4.21 
18 0.5 1.0 0.04 5.2 22 4.36 
21 0.5 1.0 0.04 10.4 22 5.39 
22 0.5 1.0 0.04 10.4 22 4.95 
26 0.5 1.0 0.04 2.5 21 4.76 

Test 

2 0.2 2.0 0.04 9.5 21 4.15 
3 0.2 2.0 0.04 9.4 22 3.14 
5 0.2 0.5 0.04 8.1 22 3.29 
7 0.5 1.0 0.04 9.1 21 3.51 

10 2.0 1.0 0.04 8.9 23 1.09 
11 0.5 1.0 0.04 9.0 22 3.60 
23 1.0 1.0 0.04 8.8 22 4.54 
24 0.5 1.0 0.04 10.4 22 4.98 
28 1.0 1.0 0.04 9.0 23 4.42 
29 1.5 1.0 0.04 9.0 22 5.15 
30 1.5 1.0 0.04 9.0 22 4.87 

 

A network architecture consisting of 1 hidden layer with 8 hidden neurons using a 

sigmoidal transfer function was found to be the most suitable configuration for 

this system using a trial and error method as outlined in Chapter 2, where the most 
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suitable architecture is the one which gives the lowest MSE for the dataset (Figure 

3-21). 
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Figure 3-21: Optimisation of Bentonite Network 

Comparison of the network predictions and targets for the training data set is 

presented in Figure 3-22, where the solid line indicates the y=x line. The 

regression equation for the data is y = x – 0.03 with an R2 value of 0.99 and the 95 

% confidence intervals for the intercept and slope are [-0.07, -0.001] and [0.99, 

1.01]. 
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Figure 3-22: Fit of Network to Bentonite Training Dataset  
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As discussed in Chapter 2, the validation dataset is used in training the network in 

conjunction with the training dataset, serving as a method for the prevention of 

overtraining. The correlation of the validation dataset is presented in Figure 3-23. 

The regression equation for the validation dataset is y = 1.08x – 0.08 with an R2 

value of 0.92. The 95 % confidence intervals for the intercept and slope are [-0.33, 

0.17] and [1.02, 1.12]. 
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Figure 3-23: Fit of Network to Bentonite Validation Dataset 

In this case the test dataset is made larger than either the training or validation 

datasets as it is desirable to use the smallest possible dataset in setting up the 

network, especially industrially where it may not be possible for economical 

reasons to generate a large databank prior to validation of a process (Maier and 

Dandy 2000). 
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The test data is made up of experimental data previously unseen by the network 

and it is this dataset that tests the prediction capabilities of the network. In this 

case the network predictions are correlated with the target values with a regression 

equation of y = 0.93x – 0.1105 with an R2 value of 0.92 (Figure 3-24, where the 

solid line indicates the y=x line). 95 % confidence intervals for the slope and 

intercept are [0.88, 0.97] and [-0.3, 0.1] respectively. 
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Figure 3-24: Fit of Network to Bentonite Test Dataset 

3.2.3.3.1 Evaluating the relative contributions of inputs 

It has been argued that the use of ANNs is akin to a ‘black box’ model, incapable 

of giving any insight into the physical characteristics of a system (Piron et al. 

1997; Olden and Jackson 2002). However, it was shown in Chapter 2 that it is 

possible to give a qualitative insight into the characteristics of a dead-end 

microfiltration system using a weight partitioning method first proposed by 

Garson (1991) and later modified by Goh (1994).  This approach may be used to 
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elucidate the relative contributions of the input parameters on the outputs from the 

network and has been used for transient crossflow filtration of polydispersed 

suspensions (Chellam 2005). For dynamic filtration, Chellam (2005) report a 20-

40 % contribution of time to the fouling characteristics. Aydiner et al. (2005) also 

discussed the percentage contributions of the input variables to the flux for time 

series data (it was not stated how these contributions were calculated) reporting a 

40-50 % effect of time, 15-20 % effect of concentration and of pressure and 4 % 

effect of membrane type. However, this analysis gives very little insight into the 

actual characteristics of the system – it is reasonable to assume that time will have 

a large effect on the flux as time series data is being analysed. Thus an 

investigation of this type on a network that uses time explicitly as an input cannot 

offer much significant benefit.  

An approach used in Chapter 2 is further developed here to elucidate the relative 

contribution of the operating parameters along the time series using the novel 

network architecture proposed previously. The Garson Equation is used to 

evaluate the contribution to the flux of each input parameter at each point along 

the time series. Previous work using this approach, discussed in Chapter 1, focus 

on networks having only one output (Oj being the weight from each hidden 

neuron to the single output). However, in this case there are many outputs along 

the time series, as described in Section 3.2.3.3. Thus, it is possible to quantify the 

importance of the inputs at each time point. This should give a better insight into 

the physical characteristics of the system changing with time. Network weights 

are easily accessed using Trajan software using an option to display the weight 

distributions for each layer.  
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Using this approach it is shown that the relative contributions of applied pressure 

and initial concentration are approximately constant along the filtration runs with 

concentration accounting for approximately 35 % and pressure accounting for 

approximately 7 %. The slopes of plots of percentage contribution of applied 

pressure and initial concentration against time were insignificantly different from 

zero at the 95 % confidence level and thus it can be concluded that they are 

essentially constant (Figure 3-25). 
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Figure 3-25 Contributions of Pressure and Initial Concentration along Time Series 

The size of the importance of these parameters is reflected in the experimental 

investigations outlined in Section 3.2.2, where the initial concentration was seen 

to have a large effect on the flux-time curve, whereas the applied pressure was 

seen to have very little effect. 

In the case of the membrane resistance and stirrer speed, the contribution of Rm is 

found to decrease overall while the contribution of the stirrer speed is found to 

increase along the flux-time curve (Figure 3-26). 
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Figure 3-26: Contribution of Membrane Resistance and Stirring Speed along Time Series 

This result would seem to be sensible given the mechanisms of stirred 

microfiltration. In the case of Rm, at the beginning of filtration there are few 

particles deposited on the membrane surface and so the membrane resistance 

governs filtrate flux, whereas towards the end of filtration the membrane is 

essentially covered by particles and ceases to be the limiting resistance and 

becomes less important. Cake resistance dominates at long times and is a function 

of the stirring speed - thus the effect of u should be strongest at long times. 
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Figure 3-27: Contribution of pH and Temperature along Time Series 
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There is no constant increase or decrease in the effects of pH and temperature 

along the course of the filtration run, however it appears that both parameters 

decrease in relative importance with time, after an initial increase. 

The case of stirred microfiltration is a relatively simple system however it is clear 

that this approach could be extended for use with systems in which the 

mechanisms would not be as easily understood.  

3.3 Conclusions and Further Work 

Correlation and prediction of complex non-Newtonian dynamic filtration data is 

shown to be possible using simple artificial neural network techniques 

incorporating a novel approach to modelling time series filtration data of 

Bentonite, a clay that forms a non-Newtonian aqueous suspension. The approach 

outlined in this study eliminates the use of time as an explicit input to the network, 

resulting in a massive reduction in the size of the input matrix to the network in 

comparison to previously published work on application of ANNs to dynamic 

filtration data (Table 3-3). Correspondingly, computation times are reduced and 

the network complexity may be increased as much as is necessary in order to 

accurately capture the complexities of the system in question. This network 

architecture has many outputs consisting of the time series data for the system of 

interest, rather than having one output from the network corresponding to many 

time series inputs. Using a weight partitioning method (Garson 1991), qualitative 

insight into the physical characteristics and the time dependence of the system 

mechanics may be assessed. The relative importance of input parameters along the 

time series is calculated and it is shown for the case of stirred microfiltration of 

bentonite, that the membrane resistance is very important at the start of filtration 
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becoming less important as filtration continues, whereas the stirrer speed is shown 

to be less important at the start of filtration (when the membrane is the dominating 

resistance to filtrate flux) and becomes more important as more particles are 

deposited on the membrane surface forming a cake. It is proposed that this 

approach could be used for systems which are little understood in order to gain 

some insight into the characteristics - gaining information that would be useful, 

for example, in the design of pilot plant studies, without the need to perform a full 

spectrum of experiments investigating system behaviour.  

While the stirred cell set-up is a simple lab scale system for the collection of 

dynamic batch filtration data, the next logical step is extension of the method 

developed in this chapter to a system more similar to established industrial 

processes. Thus, Chapter 4 will focus on batch crossflow microfiltration.  

In order to elucidate more information about the specific resistance of cakes 

formed in a stirred cell, the specific resistance will be evaluated from the end 

points of each filtration run. At this stage, the cell and reservoir have been 

emptied and the cake mass is easily quantifiable. Assuming no membrane fouling, 

the specific resistance may be easily calculated. It is proposed to determine 

whether the specific resistance values are dependent on stirrer speed. This data 

may prove useful in providing insight into the underlying physics of the system, 

and may give some idea as the effect of crossflow velocity in CFMF especially 

since so many difficulties surround the measurement of specific resistance in 

crossflow microfiltration (McCarthy 2001). This will be further discussed in 

Chapter 5. 
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As mentioned previously (Section 3.1.1), the stirred cell set-up in this study is not 

a true batch system in that it acts as a continuous system initially and then as a 

batch system when the feed reservoir has emptied. However, this system may 

approximate the situation industrially of the shut-down phase of filtration 

operations and as such provides an interesting system for analysis. While the 

ANN model presented is empirical in nature, and it has been shown that the use of 

the weight partitioning method can give some qualitative insight into the physical 

characteristics, semi-empirical modelling would be a more fundamental chemical 

engineering approach to the problem. Chapter 5 will focus on the developments of 

models to describe this system. 
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CHAPTER 4: BATCH CROSSFLOW MICROFILTRATION OF 

BENTONITE SUSPENSIONS USING TUBULAR CERAMIC 

MEMBRANES: DYNAMIC MODELLING WITH ARTIFICIAL 

NEURAL NETWORKS 

 

4.1 Introduction 

In crossflow microfiltration the flow is tangential to the membrane surface. The 

shearing action provided by the crossflow keeps solids suspended and limits 

deposition of particles on the membrane, similar to the shearing action of the 

stirrer in Chapter 3. This is discussed in detail in Chapter 1. Batch filtration 

systems present an interesting problem for modelling, as the concentration in the 

system is changing continuously. Chapter 3 examined the ANN modelling of 

semi-batch stirred microfiltration of bentonite, and this approach is extended here 

to batch crossflow microfiltration in a tubular ceramic system.  

Filtrate flux in batch crossflow systems has been shown to exhibit an initial steep 

decline at low filtration times followed by a slower flux decline period for 

different suspension types from latex (Doneva et al. 1998) to gluten (Thompson et 

al. 2006). Higher initial suspension concentrations produce greater flux declines. 

Transmembrane pressure has been shown to have little effect on the filtrate flux of 

compressible cakes (Fordham and Ladva 1989), while increased crossflow 

velocity has been shown to increase the filtrate flux of lactic acid fermentation 

broths (Carrère and Blaszkow 2001), spleen extract (Li et al. 2008)  and bentonite 

(Fordham and Ladva 1989). 
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There have been few reported studies of application of ANNs to batch crossflow 

filtration data. Chellam (2005) fitted flux decline data in batch crossflow filtration 

of incompressible glass and silica particles and used the Garson Equation used in 

Chapters 2 and 3 to elucidate the relative importance of the input parameters.  

4.2 Materials and Methods 

4.2.1 Crossflow Filtration Rig 

The filtration module consists of a ceramic (Carbosepharose) tubular membrane 

(obtained from Techsep, France) encased in a stainless steel housing.  

 

Figure 4-1: Crossflow Filtration Rig 
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The membrane is 0.4m in length with an inner diameter of 6mm and an outer 

diameter of 9mm. The membrane pore size is 0.12µm.  

 

Figure 4-2: Ceramic Membrane 

The crossflow filtration rig may be used for batch or continuous crossflow 

filtration. A schematic of the equipment used may be seen in Figure 4-3 and Table 

4-1. A variable speed Millipore Easyload peristaltic pump (Millipore, Bedford, 

MA) is used to pump fluid through the system. Using this setup, the pressure and 

crossflow velocity may be varied independently of each other, due to the inclusion 

of a bypass line. The crossflow is set up by activating the pump (B), which pumps 

feed from the feed reservoir (A). Volumetric feed flow rate through the module is 

controlled by adjusting the speed setting on the pump and then using the valve on 

the feed line (V1) and the valve on the retentate line (V3), the pressure and 

crossflow may be adjusted to the desired levels. The feed is split in two, with a 

portion of the feed going through the bypass line, back into the feed reservoir, and 

the rest going through the flow meter to the membrane. Valve V3 is used to 
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increase or decrease the transmembrane pressure, while valve V1 controls the feed 

flowrate that passes into the membrane tube by controlling how much feed goes 

through the bypass line. By controlling the flowrate of the feed flowing through 

the bypass line, oscillations produced in the fluid flow by the pump could be 

dampened, and for the filtration run an essentially steady flow could be achieved. 

Feed pressure (P1), retentate pressure (P3) and filtrate pressure (P2) are monitored 

by pressure gauges on the relevant line as seen in Figure 4-3. The ∆P reported is 

the mean transmembrane pressure drop, ∆Ptm (referred to henceforth as ∆P), 

which is defined as: 

( )
filtrate

retentatefeed

tm P
PP

P −
−

=∆
2

     [4-1] 

where Pfeed is the feed pressure measured using P1, Pretentate is the retentate 

pressure measured using P3 and Pfiltrate is the filtrate pressure measured using P2. 
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Figure 4-3: Crossflow Filtration Rig 

Table 4-1: Key to Figure 4-3 

Symbol Key Symbol Key 

A Feed 
Reservoir 

V1 Needle valve on bypass line; controls 
flowrate to filtration module 

B Pump V2 3 way valve to allow collection of filtrate 
samples 

C Permeate 
Collection 

V3 Needle valve; controls transmembrane 
pressure 

D Balance P1,2,3 Pressure gauges as described 

F Flowmeter   
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4.2.2 Preparation of Filtration Module 

Previous work using this equipment indicated that membrane fouling was an 

important factor depending on the water source used for suspensions (McCarthy 

2001), a phenomenon which may be due to the small membrane pore size. 

Extensive investigations were performed to elucidate the percentage increase in 

the ‘clean’ membrane resistance with filtration of 1 L of source waters including 

distilled water, deionised water (including deionised water pre-filtered to 0.8 µm 

and 0.45 µm) and ultrapure water (distilled water, purified using a Millipore water 

purification system by reverse osmosis and 0.2 µm ultrafiltration). It was found 

that the percentage increase using ultrapure water was less than 10 %, whereas in 

the worst case scenario, using deionised water, the percentage increase was more 

than 100 %. Thus only ultrapure water was allowed to contact the membrane for 

cleaning and for preparation of bentonite suspensions.   

The resistance of the clean membrane, Rm, was measured prior to each filtration 

run using ultrapure water. The transmembrane pressure drop ∆P was 100 kPa and 

the volumetric flowrate through the module was 0.8 L/min (an inlet crossflow 

velocity of 0.47 m/s). The clean membrane resistance was 7.4x1011 m-1 and 

experiments were conducted only when the measured value was within 10 % of 

this value. 

Prior to conducting the crossflow experiments the membrane required chemical 

cleaning to restore the clean Rm. This cleaning schedule was established in 

previous work using this experimental rig (McCarthy 2001). The membrane was 

cleaned with 1 % NaOH followed by 2 % sodium hypochlorite (bleach), followed 
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by 2 % nitric acid and finally 1 % NaOH. 2 L of washing suspension at 70 – 80 oC 

was used in each case. Approximately 0.5 L of the washing solution was allowed 

to pass through the membrane at a ∆P of 100 kPa, and then the filtrate line was 

closed and the cleaning solution was circulated through the module for 15 minutes 

at ∆P of zero. After use of each cleaning agent, the membrane was flushed with 

ultrapure water. The membrane resistance was measured at the end of the cleaning 

process and the protocol repeated if the membrane resistance was not within the 

desired limits. The pH of the water used to measure the membrane resistance after 

cleaning was checked to ensure that there was no change before and after contact 

with the module, to ensure that no residual acid/base remained in the system that 

could alter the pH of the bentonite suspensions. 

Bentonite suspensions were made up using ultrapure water to the desired 

concentration as described in Chapter 3. Fresh suspensions were used for each 

experiment and suspensions were stirred for exactly 24 hours prior to use, and 

were used immediately, as bentonite has been reported as having thixotropic 

properties (Kelessidis and Maglione 2008). Suspension temperature was adjusted 

to the desired level by pre-heating/cooling and kept constant during filtration runs 

using a water/ice bath. Suspensions were stirred at constant shear throughout 

filtration runs by placing on a magnetic stirring table. 

4.2.3 Batch Crossflow Operation 

A known volume of suspension (4 L ± 0.05 L) was placed in reservoir A and 

placed on a stirring table. The filtrate valve V2 was closed and the pressure 

control valve V3 was fully opened to establish a ∆P of zero. The suspension was 
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allowed to circulate in the system for approximately 2 minutes to ensure thorough 

mixing of suspension with any residual ultrapure water trapped in the system.  

Filtration runs were performed over two hours, with filtrate collected in vessel C. 

No filtrate was recycled to the feed vessel. Filtrate flux was measured by 

recording the mass of filtrate collected over time. Filtrate mass was measured at 1 

minute intervals and the flux over each successive minute was calculated on the 

basis of the permeate volume collected over 60 seconds. 

dt

dV

A
J

1
=         [4-2] 

The transmembrane pressure was controlled using valve V3 and the flowrate of 

suspension through the module was controlled by adjusting valve V1.  

4.3 Results and Discussion 

4.3.1 Experimental Observations 

A small dataset was designed using a simple experimental design examining the 

effects of changing each operating parameter in turn on batch crossflow 

microfiltration. Operating parameters of interest are as outlined in Chapter 3: ∆P, 

pH, C0, T, u and Rm. The dataset was kept as small as possible in order to mimic 

industrial practice, where economics dictate the use of the smallest dataset 

possible in design/validation of a process. It is expected that filtration 

characteristics for the crossflow system should be qualitatively similar to those 

found in the stirred cell setup in Chapter 3. The experiments performed may be 

seen in Table 4-2. 
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Table 4-2: Experimental Design for Batch Crossflow of Bentonite 

Run C0 (g/L) pH u (m/s) T (oC) ∆∆∆∆P (kPa) Rm (x10
11

m
-1

) 

1 0.5 7 0.24 21.0 100 7.43 
2 0.5 7 0.47 21.0 100 7.36 
3 0.5 7 0.59 21.0 100 7.44 
4 1.0 7 0.47 21.5 100 7.85 
5 5.0 7 0.47 21.5 100 7.62 
6 0.5 3 0.47 20.5 100 7.45 
7 0.5 7 0.47 20.5 100 7.36 
8 0.5 9 0.47 20.5 100 7.30 
9 0.5 11 0.47 20.5 100 7.30 

10 0.5 7 0.47 21.0 60 7.46 
11 0.5 7 0.47 21.0 80 7.46 
12 0.5 7 0.47 21.0 120 7.29 
13 0.5 7 0.47 10.0 100 7.32 
14 0.5 7 0.47 20.0 100 7.36 
15 0.5 7 0.47 32.0 100 7.25 

 

Experimental fluxes were found to be very reproducible with careful cleaning of 

the membrane and precision in suspension preparation. Fluxes used are averaged 

over three experimental runs, with average errors of just over 1 %. Differences in 

experimental values were greatest at initial filtration times, with maximum 

differences from the average flux reaching up to 15 % in some cases, however the 

errors were reduced to less than 2 % by the second time point in all cases and as 

such it is reasonable to conclude that the experiments are easily reproducible 

(Figure 4-4). As observed in Chapter 3, the initial flux decline for microfiltration 

of bentonite suspensions is very rapid, and flux-time curves will be represented on 

a semi-log scale in order to see the initial flux decline more clearly.  
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Figure 4-4: Reproducibility of Microfiltration Experiments 

Filtration experiments were carried out for initial concentrations of between 0.5 

and 2 g/L. The effect of increasing the initial concentration is to decrease the 

quasi-steady state flux achieved (Figure 4-5).  
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Figure 4-5: Effect of Initial Concentration on Flux Decline 

As found in the stirred batch filtration of bentonite, applied pressure ∆P shows 

very little effect on the flux at longer processing times. Higher applied pressure 
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leads to higher initial fluxes (Figure 4-6) however little effect is seen after initial 

deposition of particles on the membrane. This phenomenon was also observed by 

Fordham and Ladva (1989; 1992). 
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Figure 4-6: Effect of Pressure on Flux Decline 

Increasing the crossflow velocity causes a corresponding increase in the permeate 

flux (Figure 4-7). This is as expected as the higher the crossflow the more the 

limitation of deposition on the membrane surface (Belfort et al. 1994).  
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Figure 4-7: Effect of Crossflow Velocity on Flux Decline 
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The membrane resistance Rm is seen to have little or no effect on the filtrate flux 

in stirred microfiltration of bentonite in Chapter 3. The membrane resistance in 

this case is essentially constant, varying by less than 6 % across all experiments 

performed due to the chemical cleaning of the membrane until the original clean 

pure water flux is achieved. Thus examination of the effect of Rm on the filtrate 

flux is not possible for this system. 

The flux characteristics are seen to exhibit a complex dependence on the pH 

(Figure 4-8). Little effect is observed at mid-range pHs (7, 9) whereas extremes of 

pH (3, 11) are seen to lower the flux considerably. This complexity is to be 

expected as a similar result was seen in batch stirred microfiltration of bentonite, 

where the lowest fluxes were at pHs of 11.4 and 2.52 
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Figure 4-8: Effect of pH on Flux Decline 

The effect of increasing or lowering the suspension temperature is to increase or 

decrease the flux (Figure 4-9). This is due to the temperature dependence of the 

viscosity of aqueous bentonite suspensions (Reineke and Varnado 1978) and the 

temperature dependence of the filtrate viscosity. The filtrate viscosity affects the 
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flux directly according to standard filtration theory. Increasing the suspension 

viscosity causes a corresponding increase in the wall shear stress which should 

decrease the cake mass, leading to increased fluxes. As the flux increases with 

increasing temperature for this system, it is clear that the effect of the increasing 

temperature decreasing the filtrate viscosity is the dominant effect in this case.  
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Figure 4-9: Effect of Temperature on Flux Decline 

 

4.3.2 Artificial Neural Network Modelling 

This section outlines the use of the novel approach developed in Chapter 3 for 

correlation and prediction of dynamic filtration data using ANNs. As described in 

Chapters 2 and 3, the entire data set is used for optimisation of the network 

architecture, and the dataset is then divided into training, validation and test sets 

in order to develop a network for prediction of previously unseen dynamic batch 

filtration data. As described in Chapter 3, Trajan Neural Network Software is used 

in all ANNs in this chapter.  
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A network with a single hidden layer with seven neurons is found to be the 

optimum network architecture for this dataset using the trial and error approach 

outlined in Chapter 2, with an MSE of 3.6x10-7. No appreciable benefit is seen 

upon addition of a second hidden layer (Figure 4-10). The optimum architecture is 

the least complicated configuration which achieves the lowest possible error. 
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Figure 4-10: Network Optimisation 

This network correlates the entire dataset with a regression equation of y = 0.99 x 

+ 1x10-7, with an R2 value of 0.99 (Figure 4-11). 95 % confidence intervals for the 

slope and intercept are found to be [0.97, 1.004] and [-9.5x10-8, 3.67x10-7] This 

network has the architecture 6-7-9, where 6 is the number of inputs, 7 is the 

number of hidden neurons and 9 is the number of outputs (fluxes at specified time 

points). The number of data points used along the flux - time curve is minimised 

in order to allow for a simpler network; as the flux-time curves are regular in all 

cases it is reasonable to surmise that no loss of information about the shape of the 
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curves would result from omission of time points. Extra data points are used at 

low filtration times, where the initial flux decline is of interest. The times used are 

at 60, 180, 300, 480, 900, 1800, 2700, 3600 and 4500 seconds.  
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Figure 4-11: Correlation of Entire Dataset using 6-7-9 Network 

4.3.2.1 Weight Partitioning Method 

The weight partitioning method described in Chapter 3 (Garson 1991) is applied 

to examine the relative contribution of the inputs along the flux-time curve, 

incorporating the entire dataset,. This should give some insight into the 

mechanisms of batch crossflow filtration of bentonite. 

The effects of the parameters seem to mimic the flux development, with changes 

observed in the input contributions at low filtration time, the relative contributions 

becoming essentially constant at longer filtration times (Figure 4-12).  
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Figure 4-12: Evolution of Relative Input Contributions for Batch Crossflow 
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Figure 4-13: Evolution of Relative Input Contributions for Stirred Cell System 
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Overall, it is worth noting that the evolution of the inputs is quite different to that 

found for the stirred cell system. In particular, the effect of pH is much less 

significant for the stirred cell system.  

It is also questionable whether the contributions found at the earliest time points 

are reliable, as the network prediction has been shown to be least accurate at these 

times.   

Looking at the data more closely, Figure 4-14 shows that the effects of the initial 

concentration and the membrane resistance for this system seem to be interlinked, 

where both act together at initial filtration times, being of similar importance (15-

16 %), and after initial deposition of particles on the membrane, the initial 

concentration becomes of greater importance (at approximately 19 %) than the 

membrane resistance (at approximately 9 %), both remaining essentially constant 

at longer filtration times.  
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Figure 4-14: Evolution of Contribution of C0 and Rm  
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This would seem to be a sensible result, given the mechanisms of crossflow 

microfiltration. However, this depends on whether the initial data point is reliable 

– the fit of the network is not as good at low filtration times as it is at longer times 

so this is questionable (see Figure 4-11, where data points on the right hand side 

correspond to initial filtrate fluxes).  

The crossflow velocity is seen to be of greater importance at low filtration times at 

13 %, decreasing to 11 % with time (Figure 4-15). This is the opposite effect to 

that found in the stirred cell experiments, where crossflow velocity was found to 

be of greater importance at later times. The decrease in the importance of 

crossflow velocity with time may indicate the formation of a partly irreversible 

cake after early filtration times. This is further supported by the chemical cleaning 

required to re-establish the pure water flux through the membrane prior to use. 

This will be discussed in further detail in Chapter 6. 
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Figure 4-15: Evolution of Contribution of u 
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The pH effect is by far the most significant for the system, accounting for 30 - 

40% (Figure 4-16).  
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Figure 4-16: Evolution of Contribution of pH 

The suspension temperature exhibits a sharp increase in importance from 13% to 

19% over initial filtration times, subsequently declining along the course of flux-

time curve to approximately 16% (Figure 4-17).  
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Figure 4-17: Evolution of Contribution of Temperature and Pressure 
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It is difficult to say if these changes are significant statistically without the 

availability of percentage contributions generated from another comparable 

dataset. However, it would be expected that temperature would be a stronger 

effect at the start of a filtration run whereas at the end of the run the cake is 

dominant. The applied pressure is of slightly greater importance at initial filtration 

times (12 %) declining to a steady 10 % at longer filtration times (Figure 4-17). 

This is in keeping with the simple cake formation model as discussed where the 

cake is dominant after initial filtration times.  

The effect of pH is the greatest observed for the system and it has been 

established that the relationship between pH and filtrate flux of bentonite is a 

complex one (Chapter 3, Section 4.3.1) Further work could include the 

development of a network for bentonite batch crossflow filtration data at constant 

pH, allowing the examination of the other system parameters in greater detail. 

Although it appears that the Garson Equation can be used to obtain some 

information about the physical phenomena occurring in the system, it is important 

to realise that the contributions are relative to each other. It is possible that 

physical arguments based on a single parameter may not be suitable for describing 

the system – if the relative contribution of one parameter changes it automatically 

affects the contribution of one or more of the other parameters. For example, if the 

effect of crossflow velocity becomes less important with time due to irreversible 

cake formation, then some other parameter must as a consequence become more 

important with time. 
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4.3.2.2 Training, Validation and Testing 

The entire dataset was used initially in order to elucidate the relative importance 

of the operating parameters, as the larger the dataset, the less likely for noise in 

the data to affect the results. In this section, the ANN is trained with a portion of 

the available data in order to investigate the use of the ANN in predictive mode.  

The dataset is divided randomly into training, validation and test subsets as 

described in Chapter 3. Of the 15 experimental runs, 5 are used for training, 9 for 

testing and 1 for validation in order to prevent overfitting and loss of 

generalisation ability, as described in Chapters 2 and 3. It is desirable to use as 

few experiments as possible in training the network in order to reflect the 

industrial situation where minimisation of experimentation makes more economic 

sense. The dataset is divided up randomly into these subsets using the shuffle 

function in Trajan, as described in Chapter 3.The division of data is as outlined in 

Table 4-3. 

T 
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able 4-3: Division of Data into Training, Validation and Testing Subsets 

 Run C0 (g/L) pH u (m/s) T (
o
C) ∆∆∆∆P (kPa)  Rm (x10

11
 m

-1
) 

Train 1 0.5 7 0.24 21.0 100 7.43 
Test 2 0.5 7 0.47 21.0 100 7.36 
Test 3 0.5 7 0.59 21.0 100 7.44 
Train 4 1.0 7 0.47 21.5 100 7.85 
Train 5 5.0 7 0.47 21.5 100 7.62 
Test 6 0.5 3 0.47 20.5 100 7.45 
Test 7 0.5 7 0.47 20.5 100 7.36 
Train 8 0.5 9 0.47 20.5 100 7.30 
Test 9 0.5 11 0.47 20.5 100 7.30 
Test 10 0.5 7 0.47 21.0 60 7.46 
Train 11 0.5 7 0.47 21.0 80 7.46 
Val 12 0.5 7 0.47 21.0 120 7.29 
Test 13 0.5 7 0.47 10.0 100 7.32 
Test 14 0.5 7 0.47 20.0 100 7.36 
Test 15 0.5 7 0.47 32.0 100 7.25 

 

The fit of the predictions to the test flux data may be seen in Figure 4-18, where 

the dashed lines indicate the ANN prediction and the symbols represent 

experimental data. It is clear from Figure 4-18 that the network is capable of being 

used in predictive mode with great accuracy, with an R2 value of 0.9874 for the fit 

of the network predictions to the test data. 
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Figure 4-18: Fit of ANN Predictions to Test Dataset 
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The fit of the network predictions to the training and test datasets may be seen in 

Figure 4-19, where the solid line denotes the y=x line.  
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Figure 4-19: Correlation of Training and Test Datasets 

For the training dataset, the regression equation is  y = 0.96x + 3x10-7, with an R2 

of 0.99. 95 % confidence intervals for the slope and intercept are found to be 

[0.93, 0.97] and [-1.2x10-8, 6.28x10-7] respectively. For the test data, the 

regression equation is y = 0.93x + 7x10-7 with an R2 value of 0.99. 95 % 

confidence intervals for the slope and intercept are found to be [0.9, 0.95] and 

[3.7x10-7, 1.1x10-6] respectively.  

4.4 Conclusions and Further Work 

In this chapter, batch crossflow microfiltration of bentonite was investigated and 

the effect of operating parameters on the flux-time curves was examined. The 
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results were as to be expected, with increasing initial suspension concentration 

and decreasing crossflow velocity and suspension temperature contributing to 

decline in quasi steady state fluxes achieved at long filtration times. Applied 

pressure was shown to have little effect on the flux, while the flux was shown to 

exhibit a complex dependence on the suspension pH. The filtrate flux was shown 

to achieve a quasi-steady state value at longer filtration times.  

A feed-forward backpropagation ANN with one hidden layer containing 7 

neurons was developed for correlation and prediction of the batch filtration data. 

The novel method outlined in Chapter 3 was used in designing of the network, 

with time not included explicitly in the network. The network consisted of 6 

inputs and 9 outputs, composed of the fluxes at 9 times along the flux-time curve. 

Analysis of the network weights using the weight partitioning method proposed 

by Garson (1991) was used to gain some insight into the relative importance of 

the input parameters along the flux-time curve. It was found that the great effect 

by far was the pH effect, at 30 - 40 %. All of the other parameters showed initial 

change followed by a quasi-steady state, mimicking the action of the flux-time 

curve itself. The concentration was observed to increase in importance from an 

initial 15-16 % to 19 %, the membrane resistance was seen to decrease in 

importance from 15-16 % to 9 %, ∆P and u exhibited decreases in importance 

from 12 and 13 % to 10 and 11 % respectively, while the temperature displayed a 

sharp increase in importance initially from 13 % to 19 % and then declined to 16 

% thereafter. As the pH effect is so large in comparison to the other effects, it is 

proposed that an area for further work could include the development of a dataset 

at constant pH in order to examine the effects of the other parameters in greater 

detail. 
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The dataset was divided into training, validation and test subsets as described in 

Chapters 2 and 3. A total of 5 experiments were used in training the network, 

while 1 was used for validation (prevention of overfitting and loss of 

generalisation ability). The network was tested using 9 experiments. Excellent 

correlation and prediction was achieved, with R2 values of 0.99 for the entire 

dataset, 0.99 for the training subset, 0.99 for the validation set and 0.99 for the test 

set.  

While the neural network approach is capable of giving an excellent result in 

terms of correlation and prediction of dynamic filtration data, and the weight 

partitioning method has been shown to be of use in gaining some qualitative 

insight into the mechanisms of the system, it has been argued that ANNs are 

technically a complicated non-linear regression approach to modelling a system 

with a regression structure that is extremely complicated due to the number of 

connections in the network, and useful only as a “brute force” or “black-box 

model” approach to modelling a system (Piron et al. 1997; Olden and Jackson 

2002). While the weight partitioning method has shown results here that seem 

sensible in light of the mechanisms of crossflow microfiltration, it may be argued 

that a true chemical engineering approach to the problem must give some 

quantitative insight into the mechanisms of the system. Chapters 5 and 6 will thus 

focus on semi-empirical modelling of the semi-batch stirred, batch crossflow and 

continuous crossflow microfiltration of bentonite suspensions. 
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CHAPTER 5: SEMI-EMPIRICAL MODELLING OF STIRRED 

CELL AND CERAMIC CROSSFLOW MICROFILTRATION 

5.1 Introduction 

The neural network models presented so far in this research are empirical in 

nature. Although a legitimate approach especially in the modelling of complex 

systems, the development of physical models to describe the systems used in this 

research would be a more fundamental chemical engineering approach to the 

problem. The use of physical modelling especially in batch systems where the 

concentration in the system is changing as a function of time is an interesting 

problem and should give more qualitative insight into the underlying physical 

phenomena determining flux behaviour.  

Mathematical modelling of filtration has been the subject of much research, as 

discussed in Chapter 1. Models have been developed based on different theories, 

including those based on resistance models (Hermia 1982), particle back-transport 

models including shear induced diffusion (Zydney and Colton 1986; Romero and 

Davis 1990) and inertial lift (Green and Belfort 1980; Altena and Belfort 1984), 

flowing cake and surface transport models (Davis and Leighton 1987) and force 

balance models (Lu and Ju 1989; Dharmappa et al. 1992; Foley et al. 1995b). 

Bentonite filtration has been a subject of interest in research due to its 

applicability in oil and petroleum industries as mud used in drilling oil wells. Two 

regimes have been observed in the crossflow filtration of concentrated bentonite 

suspensions (Fordham and Ladva 1989; 1992) - an early regime in which the 

filtration was unaffected by shear and in which filtrate flux was indicative of 
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dead-end filtration and a later regime in which the flux was essentially constant. 

Weak pressure dependence was found during the initial flux decline at low 

filtration times, and negligible pressure dependence was found in the constant flux 

regime due to the reduction in cake permeability with filtration pressure  

(Ferguson and Klotz 1954; Bezemer and Havenaar 1966). Filtrate flux of colloids 

such as bentonite is shown to be controlled by cake properties (thickness and 

permeability) and significantly influenced by the shear rate and colloidal state of 

the suspension (Jiao and Sharma 1992). 

Models have been developed to describe crossflow filtration of bentonite based on 

a number of the theories outlined above. The convective model or flowing cake 

model is one theory that has been applied to crossflow filtration of bentonite 

(Vassilieff et al. 1996; Doneva et al. 1997; Vassilieff and Doneva 1997). Analysis 

of model parameters and experimental data have shown that the initial transient 

flux decline observed in filtration of bentonite at low concentrations was achieved 

by accumulation of particles on the surface of the membrane rather than by 

plugging of the pores of the membrane. 

Models balancing the forces acting on a particle have been proposed with varying 

mechanisms based on the method of removal of a particle from a surface. 

Removal may by assumed to occur by sliding with the use of a friction factor as 

the constant of proportionality between normal drag and tangential forces 

(Outmans 1963). If removal is assumed to take place by rolling, a torque balance 

may be performed (Jiao and Sharma 1994).  

Experimental investigations into the crossflow filtration of colloids have shown 

that the cakes formed during crossflow microfiltration of bentonite are 
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inhomogeneous with smaller particles deposited as filtration proceeds. When no 

particles small enough to be deposited are available in the suspension, an 

equilibrium cake thickness is achieved (Jiao and Sharma 1994). This is in 

agreement with models developed on the basis of force balances taking 

polydispersity into account (Foley et al. 1995b).  

Cakes formed during filtration of bentonite have been shown to be compressible 

(n = 0.83) with a power law relationship between specific cake resistance and 

filtration pressure fitting well to experimental data measured using dead-end 

ultrafilters (Choe et al. 1986; Gourgues et al. 1992). Specific cake resistances of 

the order of 1014 m/kg for bentonite concentrations of 0.1 g/L were found for 

pressures in the range 20-70 kPa by Kim and DiGiano (2006) using a flat sheet 

membrane with pore size 1 µm (membrane resistance was not reported). Pressure 

dependence of the specific cake resistance was correlated using the standard 

power law relationship and cakes of bentonite were found to be highly 

compressible, with n values of 0.97. 

The aim of this chapter is to investigate the stirred and crossflow microfiltration 

of aqueous bentonite suspensions and to generate models to describe the systems 

based on semi-empirical modelling techniques incorporating mass and force 

balances for the systems. Theoretical models developed will be fit to experimental 

data in order to obtain values for parameters incorporated into the models, 

including specific cake resistance and parameters governing particle removal from 

the cake/membrane surface. 
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5.2 Model Development and Solution - Stirred Cell System 

The stirred cell system is described in detail in Chapter 3. This set-up provides an 

interesting system for modelling purposes due to the essentially two-compartment 

configuration, i.e. the equipment may not be considered a single well-mixed 

system. A simple schematic for the system is presented in Figure 5-1 where VR is 

the feed reservoir volume, C0 is the initial feed concentration, J is the filtrate flux, 

A is the membrane area, V is the volume in the stirred cell, and C is the suspension 

concentration in the stirred cell.  

JA

V,C

JA

V
R
, C

0

 

Figure 5-1: Stirred Cell Set-up for Modelling Purposes 

Mass balances for the system are combined with the use of a simple equation used 

to describe the cake build-up in a stirred cell system in order to generate a 

functional model of the system behaviour. 
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5.2.1 Mass Balances 

5.2.1.1 Feed Reservoir 

As described in Chapter 3, the feed reservoir is initially filled with 700ml of feed. 

When the reservoir is pressurised (but before the filtrate line is opened), the 

application of pressure forces some of the feed into the stirred cell (the amount 

depends on the applied pressure). When the filtrate line is opened, the amount of 

feed in the stirred cell is kept constant by flux of feed from the reservoir to the 

stirred cell equalling the filtrate flux from the stirred cell. This setup is not unlike 

continuous diafiltration (constant volume diafiltration) where fresh water is fed 

from a reservoir and causes low molecular weight impurities to be flushed from 

the solution in the cell. Thus the rate of depletion of feed in the reservoir is equal 

to the filtrate flux. 

Mathematically this may be represented by the following equations: 

AJ
dt

dVR −= when 0>RV       [5-1a] 

0=
dt

dVR when 0=RV       [5-1b]  

Where VR is the reservoir volume, A is the membrane area and J is the filtrate 

flux. The filtrate flux is defined using the classic equation for flux based on 

Darcy’s Law as mentioned previously: 

( )mR

P
J

m αµ +

∆
=        [5-2] 
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5.2.1.2 Stirred Cell 

Once the stirred cell is filled with feed from the reservoir and filtration is started, 

the amount of feed in the cell is kept constant by flux of feed from the reservoir, 

i.e. the rate of depletion is zero. When the reservoir is emptied, the amount of feed 

in the stirred cell depletes at a rate equal to the flowrate of filtrate from the cell. 

Mathematically the mass balance for the stirred cell may be represented by: 

0=
dt

dV
 when 0>RV       [5-3a] 

AJ
dt

dV
−=  when 0=RV      [5-3b] 

where V is the volume of feed in the stirred cell. 

5.2.1.3 Particle Balance for the Stirred Cell 

While the reservoir is not empty and is transferring feed to the stirred cell, the rate 

of accumulation of particles in suspension in the stirred cell is equal to the influx 

of particles from the reservoir minus the rate of accumulation of particles on the 

surface of the membrane or on the cake. When the reservoir has emptied, the 

change in the amount of particles in the cell is equal to the cake formation rate.   

A key assumption throughout the modelling work presented in this chapter is that 

the rate of cake formation is equal to the rate of deposition of particles on the 

membrane surface minus the rate of removal where the rate of removal is assumed 

to be proportional to the mass of particles per membrane area. This type of model 

owes its origins to early theories of heat exchanger fouling proposed by Kern and 

Seaton (1959). Those authors modelled surface fouling with a removal rate that 
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was proportional to the mass of deposited material and a rate constant that was 

proportional to the wall shear stress (Kern and Seaton 1959). This system is 

analogous to the situation in crossflow and stirred cell filtration systems where 

this modelling approach may be represented mathematically as follows: 

kmCJ
dt

dm
−=        [5-4] 

where C is the concentration of particles in the stirred cell and CJ is the deposition 

rate. The rate constant, k, will likely depend on the particle size and size 

distribution, and also on other characteristics of the particles such as the potential 

for adhesion on the membrane surface (McCarthy et al. 1996; Silva et al. 2000). 

As in heat exchanger cleaning theory, it would be expected to be a shear-

dependent constant. 

A particle balance for the stirred cell will take the following form 

( )
0  when0 >−= RV

dt

dm
AAJC

dt

VCd
    [5-5a] 

( )
0  when =−= RV

dt

dm
A

dt

VCd
    [5-5b] 

Where C0 is the initial feed concentration and dm/dt is defined as in Equation 5-4. 

Expanding the first part of Equation 5-5a 

dt

dm
AAJC

dt

dV
C

dt

dC
V −=+ 0      [5-6] 

When VR > 0, 0=
dt

dV
 and V=V0. Combining these and using Equation 5-4 

for
dt

dm
, this may be written as 
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( )kAmCAJAJC
Vdt

dC
+−= 0

0

1
     [5-7] 

with C = C0 at t = 0. 

Now, when the reservoir is empty (i.e. VR = 0) 

dt

dm
A

dt

dV
C

dt

dC
V −=+       [5-8] 

However when the reservoir is empty AJ
dt

dV −= , therefore 

( )kmCJACAJ
dt

dC
V −−=       [5-9] 

Giving 

V

Akm

dt

dC
=         [5-10] 

Equations 5-1 and 5-3 describe the rate of change of the feed reservoir and stirred 

cell volume over time, Equation 5-2 describes the filtrate flux, Equation 5-4 

describes the change in cake mass with time, and the change in concentration with 

time is given by Equations 5-7 and 5-10. These equations complete the model for 

cake formation and flux decline in the stirred cell system. It should be noted that 

in all cases, membrane fouling is assumed to be negligible, i.e., Rm is assumed 

constant. 
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5.2.2 Solution of Model Equations using Berkeley Madonna Software 

5.2.2.1 Model Development 

Berkeley Madonna 8.0.1 (© 1997-2001 Robert I. Macey and George F. Oster) is a 

fast and convenient general purpose differential equation solver. It can be used to 

solve ODEs (Ordinary Differential Equations) and difference equations – both 

initial value and boundary value problems. It is easy to use in that the equations 

describing the problem can be typed in ordinary mathematical notation, in any 

order. The equations are then compiled easily and plots of the model are generated 

automatically, without the need for coding. It is also possible to create models 

visually with icons using a flowchart editor function, which generates the 

equations automatically.  A key advantage of Berkeley Madonna and the main 

reason for why this software was employed in the work for this thesis is the fact 

that experimental data may be imported and a curve fitter tool can be used to 

estimate parameters by fitting the model solution to one or more data sets (Macey 

et al. 2000). The relevant equations for the stirred cell system are coded as in 

Model 5-1 shown below. 
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Model 5-1: Stirred Cell with Reservoir 

 

It is possible to specify an integration method for the model, the options being 

Euler, 2nd order Runge-Kutta (RK2), 4th order Runge-Kutta (RK4), along with a 

stiff integration method. The integration method chosen is Runge-Kutta 4, due to 

its enhanced convergence capabilities and greater accuracy compared to Euler or 

RK2 methods. Euler’s method is not generally used in scientific computation as 

the truncation error per step is larger than that associated with more advanced 

methods, and the Runge-Kutta methods eliminate lower order errors (i.e. for the 

METHOD RK4 
STARTTIME = 0 
STOPTIME=9500 
DT = 0.02 
DTOUT = 10 
 
K=0.0002  
RM=3E10 
ALPHA=3e13 
MU=0.001 
DP=1E5  
C0 = 1 
A = .002971 
 
 
J=DP/MU/(RM+ALPHA*M)   
 
 
VR0=7E-4 
INIT(VR)=VR0 
D/DT(VR) = IF(VR>0) THEN -A*J ELSE 0 
 
V0=1.2E-4 
INIT(V)=V0 
D/DT(V) = IF(VR>0) THEN 0 ELSE -A*J 
 
INIT(C)=C0 
D/DT(C) = IF(VR>0) THEN 1/V0*(C0*A*J-C*A*J+K*A*M) ELSE 
1/V*K*A*M  
 
INIT(M)=0 
D/DT(M)=C*J-K*M 
 
VP = IF(VR>0) THEN VR0-VR ELSE V0-V+VR0 
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RK4 method, only 4th order errors are present) (Press et al. 1988). The integration 

method chosen is specified in the model (METHOD RK4).  

The terms STARTTIME and STOPTIME refer to the times between which the 

model is compiled. The start time is zero and the stop time is the time it takes for 

a filtration run to take place for the specified operating parameters set. 

DT is the fixed stepsize for the integration. It is possible to ascertain whether the 

stepsize used is sufficiently small for accuracy using the Check DT function in 

Madonna. The check is performed by running the model twice – once with the 

stepsize specified, and then with the stepsize reduced by a factor of 10. After both 

runs have been completed, a report is generated where the maximum and 

minimum root mean square deviation between the two runs for each stored 

variable may be examined. A difference between the two runs may indicate that a 

smaller stepsize should be specified in the model code. The stepsize in this case is 

set to 0.02, which is small enough to give sufficient accuracy in all cases. 

DTOUT is the interval at which results are stored in memory. In this case 10 

seconds is chosen. Usually Berkeley Madonna would store an output point for 

each time step; however with a small stepsize (0.02 in this case) this would result 

in a large output dataset. The use of DTOUT enables storage of output data 

independently of the stepsize used to produce it.  

The model parameters used are initialised in the code either to a fixed value or to 

an initial value if the parameter is involved in a differential equation. Boundary 

value problems are also possible using Berkeley Madonna however this is not 

necessary in this case. The model is initialised using parameter values however 
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these values may be tailored for each individual experiment using the Parameter 

Window in Madonna prior to each run. This window allows changes to be made 

to the parameters in the model as well as to the integration method used without 

recompiling the model. 

To illustrate the behaviour predicted by this model the model parameters were 

chosen as described below. The cake removal constant k, [K] is given a value here 

of 2x10-4 s-1; the membrane resistance Rm, [RM] which is given a value in the 

model code of 3x1010 m-1; the specific cake resistance α, [ALPHA] initialized to a 

value of 3x1013 m/kg; the filtrate viscosity µ, [MU], set at 0.001 kg/ms; and the 

transmembrane pressure ∆P [DP] set at 1x105 kg/ms2. The initial concentration C0 

[C0] is set at 1 g/L and the membrane area A is set at 0.002971 m2.  

The flux J is defined using Equation 5-2. The flux is dependent on the mass of 

cake per unit membrane area [M], while all other parameters are fixed. 

The mass balance for the reservoir is outlined in Equation 5-1. The initial 

reservoir volume VR0 [VR0] is set at 7x10-4 m3. The reservoir volume is initialised 

to this value [INIT(VR)=VR0] and the equation describing the change in the 

reservoir volume VR with time is written [D/DT(VR) = IF(VR>0) THEN –A*J 

ELSE 0]. 

The change in concentration over time is incorporated into the model using 

Equations 5-7 and 5-10 where Equation 5-7 describes dC/dt when the reservoir is 

not empty, and Equation 5-10 describes dC/dt when the reservoir is empty. The 

concentration is initialised to C0 [INIT(C) = C0]. Equations 5-7 and 5-10 are 
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written as [D/DT(C) = IF(VR>0) THEN 1/V0*(C0*A*J - C*A*J + K*A*M) 

ELSE 1/V*K*A*M] 

The change in cake mass per unit membrane area with time is included with the 

mass being initialised to zero, i.e. no particles on the membrane [INIT(M)=0]. 

Then the cake formation rate is written as [D/DT(M)=C*J-K*M]. 

The permeate (filtrate) volume VP is included in the model for completeness. 

While the feed reservoir has liquid in it, the filtrate volume at any point in time 

will be the initial reservoir volume minus the reservoir volume at that point in 

time (as the stirred cell volume is constant until the reservoir has emptied). When 

the feed reservoir is emptied, the filtrate volume will be the initial volume of the 

reservoir plus the initial volume in the stirred cell minus the volume in the stirred 

cell at that time point [VP = IF(VR>0) THEN VR0-VR ELSE V0-V+VR0]. 

The model is compiled by pressing the Run button on the Equations Window, as 

indicated below. 
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Figure 5-2: Screenshot of Equations Window in Berkeley Madonna 

This generates plots automatically of each parameter against time (Figure 5-3). It 

is possible to view all of the parameters together, separately, or in different 

combinations. 

 

Figure 5-3: Screenshot of Predicted Flux versus Time 
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The initial flux decline is very rapid as is expected, followed by a period of slow 

flux decline. This is similar to the experimental results presented in Chapter 4. 

The reservoir volume decreases with time as filtration continues, until the point 

where the reservoir is empty (Figure 5-4). From this point onwards, the filter cell 

is operating in true batch mode. 

 

Figure 5-4: Predicted Reservoir Volume versus Time 

When the reservoir has emptied, the filter cell starts to empty, operating in true 

batch mode as mentioned previously (Figure 5-5). 
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Figure 5-5: Predicted Filter Cell Volume versus Time 

The concentration in the filter cell increases slowly over the course of filtration 

while the reservoir volume is greater than zero. When the reservoir volume has 

emptied and the cell is operating in true batch mode, there is a rapid increase in 

concentration, going to infinity as the volume of liquid in the cell goes to zero 

(Figure 5-6). 

 

Figure 5-6: Predicted Concentration in Filter Cell versus Time 
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The mass of particles per unit membrane area increases over the course of the 

filtration as expected. The increase is faster as the filter cell itself is emptying in 

batch mode (Figure 5-7). 

 

Figure 5-7: Predicted Mass of Particles per Unit Area of Membrane versus Time 

The filtrate volume increases as filtration continues as expected, until all of the 

initial feed in the reservoir and stirred cell has been collected (Figure 5-8). 

 

Figure 5-8: Predicted Filtrate Volume versus Time 
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5.2.2.2 Curve Fitting to Experimental Data 

As mentioned previously, after the model has been compiled it is possible to set 

individual parameters for each experiment using the Parameter Window, and then 

run the model using these parameters without having to recompile the model 

completely. The parameter window may be seen in Figure 5-9. 

 

Figure 5-9: Parameter Window 

Each parameter outlined in the model is shown, and it is possible to set a value 

relating to each experimental run. The experiments investigated here are the same 

as those outlined in Chapter 4. A star is shown beside each parameter that has 

been altered from the value used initially in the model development. 

Once the appropriate parameters have been set in the Parameter Window, the 

model is run. The curve fitting function may then be used to fit the model to 

experimental data.  



  171 

In this study, the parameters of interest are the cake removal constant, k, and the 

specific cake resistance, α.  

Using the curve fit function, the parameters that are to be changed to fit the model 

to the experimental data may be selected, and a dataset to be modelled may be 

imported (Figure 5-10).  

 

Figure 5-10: Selection of Model Parameters for Curve Fitting 

All constants in the model except for k and α are fixed. The variable to be fitted to 

experiment is chosen as the flux. The experimental data to be imported is in the 

form of a text file with a column for time and a column for flux. A tolerance for 

convergence is set to 1e-7, which implies that the parameters are computed to 7 

significant figures.  

The model is then fit to the experimental data by automatically varying the values 

of k and α. The output from the curve fitting is a plot of both the model and the 

experimental data. The data may be viewed in table form. This may be copied and 

pasted into an Excel spreadsheet and R2 values and confidence intervals for the 

slope and intercept of the regression equation of the model fit to the experimental 

data can then be found using the Data Analysis toolkit.  
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After the model has been fit to the experimental data, the Parameter Window 

displays the values of k and α that optimise the fit (Figure 5-9).  

5.2.3 Experimental Values of Specific Cake Resistance 

Measurement of the specific cake resistance in crossflow systems is generally 

problematic as it involves a direct measurement of the cake mass (McCarthy et al. 

2002b). This is unlike dead-end filtration where cake mass can be inferred from 

the filtrate volume. In Chapter 3, experimental runs were performed in which the 

flux was measured as a function of time until such time as the reservoir and stirred 

cell were emptied. A useful consequence of this experimental set-up is that the 

cake mass at the end of the run is equal to the total amount of solids in the initial 

suspension.  

The specific resistance, α is then calculated for each set of operating conditions 

by rearranging the classic equation describing filtration processes (Equation 1-2) 

to give 









−

∆
= mR

J

P

m µ
α

1
       [5-11] 

where  

A

CV
m 00=        [5-12] 

and V0 is the initial suspension volume. 
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This experimental value of α may then be compared with the value for α found 

using the curve fitting function in Berkeley Madonna. Trends in the values of α 

for varying experimental parameters may also be investigated. 

5.3 Results and Discussion - Stirred Cell System 

5.3.1 Curve Fitting of Model to Experimental Data and Comparison 

with Experimental Values for αααα 

The model development and the curve fitting using Berkeley Madonna are 

described in Section 5.2. The model is fit to the experimental data collected as 

outlined in Chapter 3. The cake removal constant k and the specific cake 

resistance α are optimised to ensure a good fit of the model to the experimental 

data. In this section, the resulting values of k and α are analysed and the α values 

found are compared with specific cake resistances measured directly from the 

experimental data. 

The model was found to fit the data well in all cases with the lowest R2 value 0.7 

and the highest 0.97. The lower R2 values are due to noise in the data and to the 

model over-predicting the flux at the earliest time points. The lower R2 values are 

mostly at high pH (10.4), where a faster flux decline is predicted by the model 

than exhibited by the experimental data. 

The α and k values are determined by fitting the model to the experimental flux 

data and are analysed to ascertain whether there is good agreement with 

experimental α values and whether there are trends in k that may lend some 
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insight into the physical characteristics of the system. Values reported are for the 

most part the average of three experimental runs except where stated and the 

variability reported is the standard deviation expressed as a percentage of the 

average. 

Increasing the initial concentration from 0.5 to 2 g/L (at ∆P of 0.2 bar and u of 

0.09 m/s) leads to a decrease in the cake removal constant k from 3.4x10-3 + 38 % 

to 1.26x10-3 + 10 % s-1. For a crossflow system, the increased suspension 

concentration leads to a more viscous suspension, which should lead to increased 

shear stress at the cake or membrane surface, which should lead to increased 

removal (i.e. a higher k). However in the stirred system, the increased viscosity 

may mean that the fluid flow is slower at higher concentrations at this rotational 

speed, leading to a decrease in k. The increase in initial concentration is seen to 

lead to a small increase in specific cake resistance, from 5.4x1013 + 14 % to 

6.2x1013 + 14 % m/kg. Traditional filtration theory indicates that specific cake 

resistance is not dependent on suspension concentration and it is found 

experimentally that α is essentially constant at 1.8x1013 m/kg. Since the difference 

between the two α values determined using the model prediction is small (10 %) 

which is less than the variability in the values (14 %) it is reasonable to conclude 

that the model predicts that the specific resistance is independent of suspension 

concentration. 

Both experiment and model exhibit a power law relationship for the specific cake 

resistance with applied pressure (Figure 5-11 - C0 = 0.5 g/L, u = 0.09 m/s, pH 9), 

in agreement with conventional filtration theory for non-microbial suspensions 

(McCarthy et al. 1998a; McCarthy 2001).  
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Figure 5-11: Effect of ∆∆∆∆P on αααα ○ Experiment; ● Model 

The magnitude of the specific resistance is over-estimated by the model in all 

cases and the exponents of the power law models are different for the model 

prediction and experiment, the model prediction being to the power of 0.59 (with 

an R2 value of 0.92) and the experimental value for the exponent being 0.90 with 

an R2 value of 0.99. This is in good agreement with the exponent of 0.83 found 

previously (Choe et al. 1986; Gourgues et al. 1992).  

The cake removal constant k was found to be essentially independent of pressure 

with a mean value of 2.75x10-3 + 20 % s-1 (The slope of a plot of k versus ∆P was 

insignificantly different from zero at the 95 % confidence level). 

The increase of stirring speed has shown to lead to a decrease in the experimental 

specific cake resistance. Some theory suggests that the specific cake resistance 

should increase with increasing shear in the system due to the preferential 

deposition of small particles (Baker et al. 1985; Lu and Ju 1989). A possible 
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explanation for the findings of this study is that as the crossflow is increased, 

thinner cakes of bentonite are formed. Thus it might be expected that the pressure 

drop across the cake decreases as the crossflow velocity is increased. For a 

compressible cake, this could result in the specific cake resistance decreasing with 

crossflow velocity. It is difficult to say if this effect is significant in these 

experiments as to work out cake pressure drop accurately, it is necessary to know 

the membrane resistance at the end of the run (recalling that JRPP mc µ−∆=∆ ). 

To do this, fouling of the membrane must be quantified which was not the case in 

these experiments.   

Another possible reason for this decrease in the specific cake resistance is shear-

induced agglomeration of bentonite. Shear induced agglomeration is a 

phenomenon that has been investigated for many types of suspension, from 

particulate non-colloidal suspensions (Chimmili et al. 1998), aqueous polymeric 

suspensions (Banerjee 2005), thixotropic alumina (where the shear induced 

agglomeration is shown to account for time-dependent changes in the apparent 

viscosity (Lemke et al. 1999) and for aqueous bentonite suspensions (Bekkour et 

al. 2005). An increase in shear in the system could lead to increased 

particle/agglomerate size and a resulting decrease in specific cake resistance.  

Further work could include investigation into the structure of cakes of bentonite 

formed under different shear conditions in order to elucidate the mechanism of 

specific cake resistance reduction with stirring speed. SEM (scanning electron 

microscopy) or other in-situ methods of observation of the cake structure have 

been used with success for many different types of cakes and would be a useful 

tool in understanding the mechanisms of cake formation with bentonite (Flynn et 
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al. 1990; Wakeman 1994; Tarleton and Hancock 1996; Li et al. 1998; Mores and 

Davis 2001; Li et al. 2005). 

In contrast to the consistent effect of stirrer speed on the experimental specific 

cake resistance, the model-derived values of α show no discernible dependence 

on stirrer speed (Figure 5-12 - C0 = 0.5 g/L, ∆P = 0.5 bar, pH 9), and were also 

over-estimated. 

Similarly, while one would have expected to cake removal constant to increase 

with increasing stirrer speed, curve fitting shows that k increases initially from 

2.6x10-3 + 30 % s-1 to 1.7x10-2 + 33 % s-1 and then remains essentially constant as 

the stirring speed is increased from 0.09 to 0.18 and 0.31 s-1 (Figure 5-12).  
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Figure 5-12: Effect of Stirring Speed on αααα (○ Experimental; ● Model); and k (▲) 

The effect of pH is, as expected, a complex one. The specific cake resistance is 

seen to be at a minimum for pH 7 and a maximum for pH 10, mimicking the trend 

exhibited in the experimental data (Figure 5-13 - C0 = 0.5 g/L, ∆P = 0.5 bar, u = 
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0.09 m/s). Again, however, the specific cake resistance is over-estimated by an 

order of magnitude (x1014 instead of x1013 m/kg). A similar trend is seen in the 

cake removal constant k (s-1). 
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Figure 5-13: Effect of pH on αααα (○ Experimental; ● Model); and k (▲)  

5.3.1.1 Variability in the Fitted Value for αααα 

In general, the ability of the model to yield realistic values of the specific cake 

resistance is poor and this begs the question as to whether the model itself is 

fundamentally flawed. It is worth noting, however, that the computed value of α 

proves to be extremely dependent on the initial flux measured experimentally, 

leading to a lack of reproducibility in the values of specific resistance determined 

from the Berkeley Madonna model - the higher the initial flux, the lower the value 

of alpha that is computed. This may be observed in the case of two duplicate 
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experiments, each performed at 0.5 bar, 1 g/L, stirrer speed of 0.09 m/s, pH of 

10.4 and Rm of 5.1x1010 m-1 (Figure 5-14). The flux data is very reproducible 

however for one experiment a slightly higher initial flux is measured. This may be 

due to experimental differences as the valve to start the permeate flow is opened 

by hand. The fitted α value for the first run is 5x1014 m/kg whereas the fitted 

value for the other run is 1.5x1014 m/kg. This discrepancy would imply that fitted 

alpha values are highly dependent on the initial rapid flux decline and especially 

the flux value for the 10 s reading. As this is quite subject to experimental error 

and general noise in the data, it is questionable whether the computed values for 

alpha are reliable. 
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Figure 5-14: Duplicate run comparison:  

● αααα is computed to be 5x10
14

 m/kg; ○ αααα is computed to be 1.5x10
14

 m/kg 
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5.3.2 Modifications to Model 

Despite the inherent difficulties in evaluating consistent model parameters, the 

lack of clear trends in model parameters (except in the case of the pressure 

dependence of α), and the tendency of the model to overestimate the specific 

resistance, the ability of the model to capture the time dependence of the flux for a 

given run suggests that further investigation of this basic modelling approach, 

albeit with some modification, might be useful. In this section an attempt is made 

to modify the original, essentially empirical, model to take account of physical 

phenomena that are well known to be relevant in crossflow systems.  

Firstly, it is proposed that filtration takes place in dead-end mode until the flux 

drops below a critical value, at which point cake removal begins, similar to 

previous experimental findings (Fordham and Ladva 1989; 1992). This concept is 

described in the next section. The second phenomenon to be incorporated into the 

model is membrane fouling and this is discussed later. 

5.3.2.1 Critical Flux J
*
 

The model developed in this section contains a critical flux J*, which is the flux 

below which cake removal takes place. Consider an isolated particle on the cake 

or membrane (Figure 5-15): 
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Figure 5-15: Force Balance for J
*
 

Ft is the tangential hydrodynamic force sweeping the particle off the cake or 

membrane; where d is the particle diameter and τw is the wall shear stress 

(assumed constant here, i.e. channel narrowing is assumed negligible). 

FN is defined as the normal force dragging the particle onto the membrane/cake, 

and Ff is the frictional force opposing the tangential force. All other possible 

forces are neglected. 

For the case of a particle in contact with a membrane/cake whose thickness is 

much larger than the diameter of the particle, the normal drag force has been 

defined as (Sherwood 1988; Foley et al. 1995b) 

5
2−

= βµJdkFN        [5-13] 

where k is a numerical constant, µ is the filtrate viscosity, J is the filtrate flux, d is 

the particle diameter and β is a constant defined as  

2dκβ =         [5-14] 
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The membrane permeability, κ, is defined by the equation 
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
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α

δ

κ
1

1
       [5-15] 

where Lm is the membrane thickness and δ is the cake thickness.  

For a particle to stay on the membrane/cake, the frictional force must be greater 

than the tangential force (Ff > Ft), i.e. 

5
1

5
2

3 dJ wf τκη >
−

       [5-16] 

where ηf is the coefficient of friction between the particle and the surface beneath 

it. 

Thus a particle will not be removed as long as the flux exceeds the value J* where 

5
25

1

*

3
κ

µη

τ

f

wd
J =        [5-17] 

When the cake resistance is dominant, Equation 5-15 may be written 

ppppm φαρδφαρ

δ

α

δ
κ

1
===       [5-18] 

Where ρp is the particle density and φp is the particle volume fraction in the cake. 

Thus 
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wd
J

φαρµη

τ
      [5-19] 

Thus J
* would be expected to increase with increasing τw, i.e. with increasing 

crossflow velocity, and to decrease with increasing pressure (as both α and φp 

increase with increasing pressure).  

5.3.2.2 Modified Model incorporating J
*
 

As mentioned in the previous section, cake removal by the crossflow will only be 

effective if the flux is below J*, the critical flux. Thus the differential equations 

developed in Section 5.2.1 must be modified to reflect this. 

The rate of change of the specific cake mass will be  

*

*

 if 

 if 

dm
CJ J J

dt

dm
CJ km J J

dt

= >

= − ≤

      [5-20] 

One of the features of this modified model is that it predicts that cake formation is 

at least partly irreversible, i.e., if the system is flushed with clean water (C0 = 0) 

after cake formation, the flux will return to J
* and not J0. This phenomenon is 

studied in more detail in Chapter 6.  

Using the particle balance for the stirred cell (Equation 5-5) for the change in 

particle concentration with time depending on whether the reservoir is empty or 

not and whether cake removal is taking place or not, the relevant mass balances 
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lead to: 

( )0
*   then and 0 When CC

V

AJ

dt

dC
JJVR −=>>    [5-21a] 

( )kAmCAJAJC
Vdt

dC
JJVR +−=≤> 0

* 1
  then and 0 when [5-21b] 

0  then and 0 when * =>=
dt

dC
JJVR     [5-21c] 

V

kAm

ct

dC
JJVR =≤=   then and 0 when *    [5-21d] 

5.3.2.3 Membrane Fouling 

Fouling is an almost universal feature of the flux decline in microfiltration 

systems (Belfort et al. 1994) and as such, any realistic model should take it into 

account. Very few models of membrane fouling exist and most simply assume 

some empirical relationship between membrane resistance and filtrate volume or 

cake mass (Hermia 1982). In this work, rapid instantaneous fouling is assumed, as 

more complicated approaches would lead to many model parameters which would 

be problematic from the point of view of fitting the model to experimental data. 

Instantaneous fouling would be consistent with surface blocking of the membrane 

pores by the initially deposited layers of particles.  

Instantaneous membrane fouling may be represented by  
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bRR mm 0
=         [5-22] 

Where Rm is the membrane resistance after time zero, i.e. the instantaneously 

fouled membrane resistance; and Rm0 is the initial clean membrane resistance and 

b is a constant that will be fitted to the experimental data.  

When membrane fouling occurs, the experimentally measured specific resistance 

is actually an apparent specific resistance, measured at the end of a run when all 

particles have deposited (Foley 1994). This may be related to the true specific 

resistance, α, by manipulation of the basic flux equation. The flux measured at the 

end of the run may be represented by the apparent specific resistance αapp and the 

true specific cake resistance α as follows: 

( ) ( )mR

P
J

mR

P

mappm αµαµ +

∆
==

+

∆

0

 

Thus mRmR mappm αα +=+0  

Rearranging 

0m m
app

R R

m
α α

−
= +   

Using Equation 5-22:  
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( )
m

R
b

m

app
01−+= αα       [5-23] 

The parameters to be computed from the experimental data are the critical flux J* 

(m/s), the cake removal rate, k (s-1), the true specific cake resistance α (m/kg) and 

the instantaneous membrane fouling constant b. From these, the model apparent 

specific resistance, αapp, can be determined and compared with the experimental 

value.  

The modified model equations may finally be coded in Berkeley Madonna as 

follows (Model 5-2): 



 

 

187 

Model 5-2: Modified Model for Stirred Cell with Reservoir 

 
 
 

The modifications to the original model should give rise to improved insight into 

the physical characteristics of the trends in the system, and more accurate 

METHOD RK4 
STARTTIME = 10 
STOPTIME=9500 
DT = 0.02 
DTOUT = 10 
 
K=0.0002  
RM0=3E10 
B=1.01 
RM=RM0*B 
ALPHA=3E13 
MU=0.001 
DP=1E5 
 
JSTAR=5E-5 
J=DP/MU/(RM+ALPHA*M) 
 
C0 = 1 
A = .002971 
 
VR0=7E-4 
INIT(VR)=VR0 
D/DT(VR) = IF(VR>0) THEN -A*J ELSE 0 
 
V0=1.2E-4 
INIT(V)=V0 
D/DT(V) = IF(VR>0) THEN 0 ELSE -A*J 
 
C0=1 
INIT(C)=C0 
D/DT(C) = IF(VR>0) AND(J>JSTAR) THEN (1/V)*(A*J*(C0-C))  
ELSE IF(VR>0) AND(J<=JSTAR) THEN (1/V)*(C0*A*J-C*A*J+K*A*M) 
ELSE IF(VR<=0) AND (J>JSTAR) THEN 0 
ELSE (A*K*M)/V  
 
INIT(M)=0 
D/DT(M)=IF(J>JSTAR) THEN C*J ELSE C*J-K*M 
 
VP = IF(VR>0) THEN VR0-VR ELSE V0-V+VR0 
 
ALPHAAPP = IF(M>0) THEN ALPHA+(B-1)*(RM0/M) ELSE ALPHA 
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approximations to the specific cake resistance measured experimentally. 

5.3.2.4 Curve Fitting of Modified Model to Experimental Data 

The model development and the curve fitting using Berkeley Madonna are as 

described previously. The model is fit to the experimental data collected as 

outlined in Chapter 3. The cake removal constant k, the specific cake resistance α, 

the instantaneous membrane fouling constant b and the critical flux, J
* are 

optimised to ensure a good fit of the model to the experimental data. In this 

section, the resulting values of k, b, J
* and α are analysed and the α values found 

are compared with specific cake resistances measured directly from the 

experimental data. Unlike the previous section where the model was fit to the flux 

data, here it is fit to the original filtrate volume data. Using the volume data 

eliminates the need for differentiating the data to get the flux, a process that 

magnifies errors. 

The model is seen to be capable of being fitted to the data well in all cases with R2 

values close to 1 and 95 % confidence intervals for the slope and intercepts of a 

regression line relating the experimental and predicted data spanning 1 and 0 in all 

cases.  
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An example of the fit of the model to experimental data is shown in Figure 5-16, 

where the experimental conditions are: initial concentration 2 g/L, 0.2 bar, 0.09 

m/s, pH 9.7 and 21 oC. The experiments are the same as those outlined in the 

previous section. 
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Figure 5-16 – Fit of Model (─) to Experiment (●)  

As mentioned previously, the experimentally determined apparent specific 

resistance αapp is essentially constant at 1.8x1013 (+ 6 %) m/kg for an increase in 

C0 of 0.5 g/L to 2 g/L. As discussed previously, the value for α computed from 

the model may be converted to an apparent specific resistance for comparison 

using Equation 5-23. The apparent specific resistance calculated from the 

computed value for α, the instantaneous membrane fouling constant b, and the 

initial membrane resistance, is seen to increase slightly from 2x1013 (+ 20 %) to 

3.9x1013 (+ 13 %) m/kg. This computed increase in the specific cake resistance 
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with concentration clearly does not agree with experiment. 

The cake removal constant k was found to be concentration dependent, increasing 

from 9.15x10-6 (+ 12 %) to 1.68x10-5 (+ 58 %) s-1 over the range studied. It is 

difficult to ascertain whether this is a true trend for the data or not due to the high 

level of variability in the computed values for k. However an increase with 

concentration would be in agreement with an increase in τw due to increased 

suspension viscosity, which would make removal more efficient. 

The instantaneous membrane fouling constant b increases from 5.86 (+ 15 %) to 

10.88 (+ 45 %) indicating a greater degree of instantaneous membrane fouling 

with increasing initial concentration. Variability in the values of b computed is 

high, again making it difficult to say that this represents a trend in the data.  

The critical flux, J
*, shows a slight increase from 6.26x10-6 (+ 22 %) at a 

concentration of 0.5 g/L to 6.85x10-6 (+ 67 %) m/s at a concentration of 2 g/L. 

The variability found in the fitted values for J* are high and as such it is difficult 

to say whether this represents a trend. 

The effect of pressure on the computed value of the apparent specific cake 

resistance correlates well with the experimentally measured α values, where a 

regression on the experimentally measured and model values gives an R2 value of 

0.88 (Figure 5-17).  

The experimentally determined αapp values obtained in this study lead to a 
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relationship of αapp = 8x1013∆P
0.9 while the fitted model relationship is αapp = 

1x1014∆P
0.61 (∆P in bar, Figure 5-17 - C0 = 0.5 g/L, u = 0.09 m/s, pH = 9). This is 

in reasonable agreement with previous studies on bentonite filtration where the 

exponent found was 0.83  (Choe et al. 1986; Gourgues et al. 1992). Variability in 

the fitted values of α are higher than the unmodified model when averaged over 4 

experimental runs, ranging from 17 % for 1.5 bar to 37 % for 1 bar, in contrast 

with variability ranging from 10 % - 26 % with the unmodified model. The 

exponent for the power law relationship is slightly closer to the experimentally 

determined value with the modified model at 0.61 in contrast to the original model 

which gave an exponent of 0.59. It is worth noting that the magnitudes of the 

specific resistances obtained by fitting the modified model are much closer to 

experiment than with the previous, unmodified model. 
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Figure 5-17: Effect of ∆∆∆∆P on ααααapp ○ Experiment; ● Model  
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The fitted values of the cake removal constant k, instantaneous membrane fouling 

constant b and critical flux, J
*, all increase with applied pressure up to 1.5 bar 

(Figure 5-18 - C0 = 0.5 g/L, u = 0.09 m/s, pH = 9). A decrease is then seen for the 

2 bar experiment. This may be an experimental discrepancy, however, as the 

experiment at 2 bar was performed only once. Variability in the values fitted 

averaged over up to 4 experimental runs are high in all cases, at up to 33 % for the 

cake removal constant k, 36 % for the instantaneous membrane fouling constant b, 

and 93 % for the flux below which cake removal occurs, J*. 
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Figure 5-18: Effect of ∆∆∆∆P on k (●) J
*
 (○) and b (▲)  
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The decrease in the specific cake resistance with increasing stirring speed found 

experimentally is predicted well by the model (Figure 5-19 - C0 = 0.5 g/L, ∆P = 

0.5 bar, pH = 9). 
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Figure 5-19: Effect of u on ααααapp ○ Experiment; ● Model  

The model performs better at high stirring speeds. Variability in the computed 

values of αapp ranges between 3 and 24 %. The original model did not predict the 

decline in specific cake resistance with stirring speed.  

It would be expected that the cake removal constant k would increase with stirring 

speed however this trend is not apparent in the computed values, with k initially 

decreasing from 1.2x10-5 (+ 33 %) to 1.1x10-5 (+ 17 %) s-1 as the speed is 

increased from 0.09 m/s to 0.18 m/s, and then increasing to 1.5x10-5 (+ 64 %) s-1 

as the speed is increased further to 0.31 m/s. 
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The instantaneous membrane fouling constant b does not exhibit a clear trend with 

increasing stirring speed, increasing from 11 (+ 36 %) to 21 (+ 21 %) and then 

decreasing to 18 (+ 11 %) as the speed is increased, however there is no reason to 

suppose that instantaneous fouling would be dependent on stirrer speed. 

 The critical flux, J
* is seen to exhibit an increase from 4.8x10-6 (+ 93 %) to 

8.54x10-6 (+ 48 %) and to 8.64x10-6 (+ 32 %) m/s with stirring speed, however 

variability is so high that it is difficult to say if this is a significant trend. 

However, an increase in J
* would be consistent with the force balance model 

(Equation 5-19) as J
* is proportional to the wall shear stress, which should 

increase with stirring speed. 

The trends in α with pH are approximated well by the model, although the 

specific cake resistance is over-estimated for all pHs, most notably at pH of 2.5. 

However the trend of a decrease in α with pH from 2.5 to 7 followed by a sharp 

increase for a pH of 10 is captured well by the model (Figure 5-20 – C0 = 0.5 g/L, 

∆P = 0.5 bar, u = 0.09 m/s). Variability in the computed value of αapp is as much 

as 35 % and up to 17 % for the experimentally determined values, averaged over 

up to 3 experimental runs. No discernible trends are seen in the other fitted model 

parameters. 
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Figure 5-20: Effect of pH on ααααapp ○ Experiment; ● Model  

To conclude this section, it can be said that the modified model is capable of 

fitting experimental data with greater accuracy than the original model presented, 

with R2 values of close to 1 in all cases. Experimental trends in the specific cake 

resistance with transmembrane pressure, stirring speed and pH are found to be 

predicted well by the modified model, although the magnitude of the specific 

resistance is still over-predicted in many cases.  

There is a general lack of expected trends in the other model parameters (k, b and 

J
*) and the run-to-run variability in the predicted values of these parameters is 

high in many cases. However, the predicted values rely heavily on initial fluxes 

measured which may be subject to high experimental variability due to the 

experimental set-up.  

As described previously the batch crossflow system used in Chapter 4 is a more 



 

 

 

196 

widely used configuration industrially. As the ceramic membrane used in the 

batch system is re-used for each experimental run and is more robust than the 

membranes used in the stirred cell, it is hoped that the experimental data in the 

batch crossflow system may be more reliable, especially at early times. In the next 

section, the modified model developed here is applied to the batch ceramic 

crossflow filtration data first presented in Chapter 4. 

5.4 Model Development and Solution - Batch Crossflow System 

The batch crossflow filtration system is described in detail in Chapter 4. As the 

permeate is collected, the volume of feed in the tank decreases, while the 

concentration of particles, which are retained by the membrane, increases (Figure 

5-21). 

 

Figure 5-21: Schematic of Batch Crossflow Filtration Setup for Modelling Purposes 

Mass balances for the system are combined with the use of the simple equation 

used to describe the cake build-up previously for the stirred cell system, in order 

to generate a functional model of the system behaviour. This system is very 
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similar to the stirred cell system; however, it does not have the added 

complication of a two-compartment setup. The modified analysis developed in the 

previous section is also employed here. 

5.4.1 Mass Balances 

The particle balance for the system may be represented mathematically by 

( )
dt

dm
AVC

dt

d
−=        [5-24] 

where C is the solids concentration in the feed tank and V is the volume in the 

feed tank at time, t, 

Similarly the rate of depletion of volume from the feed tank should equal the 

permeate flowrate through the membrane 

AJ
dt

dV
−=         [5-25] 

It is assumed that the cake forms in the manner outlined in Section 5.2.1. 

kmCJ
dt

dm
JJ

CJ
dt

dm
JJ

−=≤

=>

  thenFor 

  thenFor 

*

*

     [5-26] 
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These equations can then be combined to give 

V

Akm

dt

dC
JJ

dt

dC
JJ

=≤

=>

  thenFor 

0  thenFor 

*

*

      [5-27] 

5.4.2 Modelling using Berkeley Madonna  

The mass balances are coded in Madonna as described previously (Model 5-3) 

where it should be noted that instantaneous membrane fouling is again included. 

Model 5-3: Batch Crossflow 

 

 

METHOD RK4 
STARTTIME = 0 
STOPTIME=9500 
DT = 0.02 
DTOUT = 10 
 
 
K=0.0002  
RM0=7e11 
B=1.01 
RM=RM0*B 
ALPHA=3e13 
MU=0.001 
DP=1E5 
 
 
JSTAR=5e-5 
J=DP/MU/(RM+ALPHA*M) 
 
C0 = 1 
A = 7.539822e-3 
 
VR0=2e-3 
INIT(VR)=VR0 
D/DT(VR) = -A*J 
 
INIT(C)=C0 
D/DT(C) = IF(J>JSTAR) THEN 0 ELSE A*K*M/VR 
 
INIT(M)=0 
D/DT(M)=IF(J>JSTAR) THEN C*J ELSE C*J-K*M 
 
VP = VR0-VR 
 
ALPHAAPP = IF(M>0) THEN ALPHA+(B-1)*(RM0/M) ELSE ALPHA 
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The model is fit to the batch filtration data outlined in Chapter 4 in the manner 

discussed in Section 5.2.2.2. 

5.5 Results and Discussion - Batch Crossflow System 

The model is found to fit experimental permeate volume data well, with R2 values 

close to 1 in all cases. A typical fit is depicted in Figure 5-22 where this figure 

shows permeate flux data with experimental conditions C0 of 0.5 g/L, ∆P of 100 

kPa, u of 0.235 m/s, pH 7 and 21oC.  
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Figure 5-22: Fit of Model (─) to Experiment (●) 

By differentiation of the permeate fluxes predicted by the model, flux decline 
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patterns in the data are found to be approximated well by the model, matching the 

behaviour discussed in Chapter 4. However, fitting of the model to experimental 

data does not give much insight qualitatively or quantitatively into the 

mechanisms of the system. The computed model parameters are as outlined in 

Table 5-1. 

Table 5-1: Model Parameters 

Run C0   

(g/L) 

pH u  

(m/s) 

T  

(
o
C) 

∆∆∆∆P   

(kPa) 

 Rm  

(x10
11

 

m
-1

) 

αααα  

(x10
14

 

m/kg) 

k  

(x10
-3

 

s
-1

) 

b J
*
  

(x10
-4

 

m/s) 

1 0.5 7 0.24 21.0 100 7.43 10.9 4.25 5.12 0.06 

2 0.5 7 0.47 21.0 100 7.36 18.1 1.64 2.89 5.20 

3 0.5 7 0.59 21.0 100 7.44 7.10 3.10 5.67 0.09 

4 1.0 7 0.47 21.5 100 7.85 18.8 2.00 5.67 2.71 

5 5.0 7 0.47 21.5 100 7.62 26.0 1.51 9.50 23.0 

6 0.5 3 0.47 20.5 100 7.45 54.8 0.48 1.00 15.3 

7 0.5 7 0.47 20.5 100 7.36 8.75 1.83 5.38 1.99 

8 0.5 9 0.47 20.5 100 7.30 6.62 1.28 6.11 1.03 

9 0.5 11 0.47 20.5 100 7.30 9.07 1.13 9.42 1.64 

10 0.5 7 0.47 21.0 60 7.46 2.85 0.77 4.42 0.10 

11 0.5 7 0.47 21.0 80 7.46 2.46 0.38 6.09 0.27 

12 0.5 7 0.47 21.0 120 7.29 11.0 1.77 5.82 0.59 

13 0.5 7 0.47 10.0 100 7.32 31.3 7.87 2.17 3.93 

14 0.5 7 0.47 20.0 100 7.36 7.38 1.34 6.16 0.78 

15 0.5 7 0.47 32.0 100 7.25 1.03 0.34 7.49 0.14 

 

The magnitude of the specific cake resistance values is such that it is likely that 

they are overestimated, as was found in the stirred cell analysis. The trends in the 

alpha values are also not as expected. In particular, the pressure dependence of the 
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specific resistance does not follow power law behaviour. Furthermore, there is no 

clear effect of crossflow velocity on specific resistance.  

The other model parameters do not fare any better, with cake removal constants 

showing a clear trend only for temperature (decreasing k with increasing 

temperature). Instantaneous membrane fouling constants b are shown to increase 

with initial feed concentration and applied pressure, show no trend with increase 

in crossflow velocity (decreasing and then increasing) and increase with pH and 

temperature. The critical flux, J
* exhibits a decrease with initial feed 

concentration, increases with applied transmembrane pressure, and shows no clear 

trend with crossflow velocity, pH or temperature. In contrast, the force balance 

model, summarised in Equation 5-19, would predict that J
* decreases with 

increasing pressure (as it is inversely proportional to α and φp, the particle volume 

fraction in the cake) and increases with u, as J
* is proportional to τw, and be 

inversely proportional to µ. The prediction of the effect of concentration on J* is 

difficult as this depends on the viscosity of the suspension. Increased 

concentration leads to a higher suspension viscosity, and increased viscosity leads 

to a higher wall shear stress – however greater shear in the system leads to a 

decreased suspension viscosity for a shear-thinning fluid. More in-depth 

rheological studies would be necessary to quantify the effect of increasing 

suspension concentration on J
*, however a decrease in J

* with concentration 

indicates that the increased suspension viscosity due to concentration is the 
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dominant effect, with the changes in τw playing a lesser part. 

There may be several possible explanations as to why the model works better for 

the stirred cell experiments than for the ceramic membrane experiments. However 

the most likely explanation is that of changing flow regimes in the crossflow 

system.  

Reynolds numbers for the ceramic system, (based on an approximation of the 

dilute bentonite suspension as having Newtonian water-like characteristics) range 

from 1400 – 3500. For the ceramic system, the seeming lack of trends in the 

model parameters may be due to the transition between flow regimes as the 

crossflow is increased. Most experiments are performed at a crossflow velocity of 

0.47 m/s which corresponds to a Reynolds number of 2820. Most researchers 

would agree that the onset of laminar flow in a circular pipe occurs at a Reynolds 

number of approximately 2.3x103 however this number would of course be 

affected by the wall conditions in the circular pipe – in the case of the ceramic 

membrane, the build-up of cake on the walls of the membrane and the changing 

surface of the cake may lead to differences between experimental runs in the flow 

regime established, since the crossflow velocity yields a Reynolds number so 

close to the theoretical transitional value. 

However, treating the bentonite suspension as a Newtonian fluid may be a gross 

over-simplification – as the fluid is Non-Newtonian its viscosity within the 

membrane system will depend on the shear conditions specific to the membrane 
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configuration. 

Previous investigations into the rheological characteristics of aqueous bentonite 

suspensions have shown pseudoplasticity (Khandal and Tadros 1988; Sohm and 

Tadros 1989) and experimental studies have confirmed that aqueous bentonite 

suspensions in the concentration range used in this study exhibit pseudoplastic 

behaviour, with the flow behaviour index of approximately 0.83 which is 

independent of bentonite concentration for the range of concentrations 

investigated. (Previous studies for concentrated bentonite suspensions have 

indicated n values of 0.3 (Jiao and Sharma 1994) however this value is found for 

suspensions to the order of 40 g/L). The fluid consistency index K increases with 

concentration, the relationship being characterised well (with an R2 value of 

0.9989 for the range of concentrations in this study) by the equation 

6515.00112.0 CK =        [5-28] 

A method of determining the Reynolds number for thixotropic pseudoplastic flow 

in straight pipes (Honey and Pretorius 2000) may be used to give some idea as to 

whether the flow is laminar or turbulent (Frost 1982) 
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where D is the pipe diameter. The critical Reynolds number beyond which 
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turbulent flow is established may be determined using 
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The critical Reynolds number is calculated to be 2200. Using the experimentally 

determined values for n and K outlined previously, and using a density for 

aqueous bentonite suspensions of between 2000 and 3000 g/L (Brunton 1988; 

Doneva et al. 1997) it may be shown that the flow is laminar for the lower 

crossflow velocity used, 0.235 m/s and turbulent for the 0.47 and 0.5875 m/s 

crossflows for 0.5 g/L. In the case of concentration, where it is to be expected that 

the density would increase with suspension concentration, the more concentrated 

the suspension the lower the Reynolds number. Thus by approximating a 

suspension density between 2000 and 3000 g/L the flow regime for 0.47 m/s will 

be turbulent for 0.5 g/L and laminar for 5 g/L, whereas it is uncertain whether the 

flow will be laminar or turbulent for 1 g/L. This transition from turbulent to 

laminar flow for 5 g/L may explain the model prediction of a constant specific 

resistance for 0.5 and 1 g/L but a much higher specific resistance for 5 g/L. 

The Reynolds number for flow of a pseudoplastic fluid in a stirred tank may be 

calculated using 

K

dN
n ρ22

Re
−

=        [5-31] 
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Where N is the stirring speed (s-1), and d is the impeller diameter (m). This leads 

to Reynolds numbers in the range 3400 – 15000, indicating turbulent flow in all 

cases for the stirred cell. Laminar flow in a stirred vessel would only be achieved 

at very slow impeller rotational speeds. 

Changing flow regime would be expected to affect the predicted values of the 

model parameters. Laminar flow would be expected to have a lower cake removal 

constant than turbulent and this effect may be seen for example in the case of 

increased initial concentration in the ceramic system (Figure 5-23), where the 

flow is laminar for an initial concentration of 5 g/L and turbulent for 

concentrations of 0.5 and 1 g/L at ∆P = 100 kPa, u = 0.47 m/s, T = 21oC and pH 

of 7.  
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Figure 5-23: Effect of Flow Regime on Cake Removal Constant 

Further work may include the investigation of the effect of rheological properties 
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of bentonite suspension on crossflow filtration characteristics and development of 

a mathematical model taking the flow regime into account, incorporating more 

detailed experimental rheological studies. 

5.6 Conclusions and Further Work 

In this chapter, a number of mathematical models for stirred and ceramic 

membrane crossflow microfiltration of bentonite were developed. The models 

combine classical filtration theory with mass and particle balances for the specific 

systems in question, incorporating a simple equation for calculation of the change 

in specific cake mass with time. Solving of the differential equations generated for 

each system allow the evolution of the flux (or permeate volume) with time to be 

assessed.   

A basic model developed for stirred filtration is found to over-estimate the 

specific cake resistance when compared to experimentally determined values. A 

modified model is developed in which the idea of a critical flux above which cake 

removal (by stirring or crossflow) does not take place. This model also takes into 

account instantaneous membrane fouling, where the membrane is assumed to be 

irreversibly fouled by contacting with the bentonite suspension.  

This modified model is found to give reasonable approximations to the 

experimentally determined values of the specific resistance. The most notable 

trend in the specific cake resistance is that of a decrease with increasing crossflow 



 

 

 

207 

velocity. It is proposed that this phenomenon, which is contrary to traditional 

filtration theory which would predict the opposite behaviour, is due to shear-

induced agglomeration of the bentonite particles, and increased crossflow velocity 

leading to thinner cakes. The model parameters (cake removal constant k, 

instantaneous membrane fouling constant b and critical flux J*) are also fitted by 

the model and are found to exhibit expected trends in some cases, however run-to-

run variability makes it difficult to say if these are true trends or not.  

This same model is applied to batch crossflow filtration data. It would be 

expected that similar results would be obtained, however although the model fits 

flux decline data well, the specific cake resistance is largely overestimated and 

this and other model parameters were not found to follow consistent trends. This 

finding may be at least partly due to the changing flow regimes in the system due 

to increasing suspension concentration and crossflow velocity. 

This modelling approach has been shown to be somewhat useful in the estimation 

of the specific cake resistance for the stirred system and in the prediction of 

sensible trends in some cases for model parameters that give some insight into the 

physical characteristics of the stirred and ceramic systems. The modified model 

has also incorporated irreversibility and it is proposed that this may be used to 

give some idea as to the fouling mechanisms in the ceramic system. 

Further work may include the investigation of the effect of rheological properties 

of bentonite suspension on crossflow filtration characteristics and development of 
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a mathematical model taking the flow regime into account, incorporating more 

detailed experimental rheological studies. 

This chapter has suggested that incorporating irreversibility, either in terms of 

cake formation and/or membrane fouling is a necessary part of a model to 

describe crossflow microfiltration. The goal of Chapter 6 is to provide further 

insight into irreversibility during ceramic membrane crossflow microfiltration of 

bentonite suspensions.  
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CHAPTER 6: STUDIES ON IRREVERSIBILITY IN CAKE 

FORMATION AND FLUX DECLINE IN CONTINUOUS 

CROSSFLOW MICROFILTRATION OF BENTONITE 

 

6.1 Introduction 

The models presented in this research have encompassed neural network models 

and semi-empirical models based on simultaneous cake deposition and removal 

for stirred and ceramic membrane crossflow microfiltration of bentonite. While 

the empirical models are only partly successful in fitting to experimental data, 

they did raise the issues of membrane fouling and irreversible cake formation. The 

latter phenomenon, in particular, has not been addressed previously in the 

literature. The objective of this chapter was to carry out further studies on 

irreversibilities in crossflow microfiltration using continuous ceramic membrane 

filtration of bentonite as a model system. In particular, the aim was to design 

experiments that will test whether the models developed in the previous chapter 

do in fact represent reality. 

A continuous crossflow filtration set-up is utilised in this chapter in order to 

eliminate the modelling complications arising from the changing bulk suspension 

concentration that characterises the batch system in the previous chapter. The 

continuous crossflow set-up is thus simpler in nature and should allow attention to 
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be more focused on addressing the various phenomena contributing to flux 

decline in the system. 

Theoretical studies in continuous crossflow microfiltration and associated fouling 

mechanisms have been the subject of considerable research. Crossflow 

microfiltration systems have been found in general to be susceptible to fouling 

(Tarleton and Wakeman 1993; 1994) that may be reversible or irreversible. 

Reversible fouling may be composed of particle build-up on the cake/membrane 

surface which may be removed by flushing with clean water whereas irreversible 

fouling must be removed by some other method, chemical cleaning being the 

most widely used (Scott 1995; Mulder 1996). Application of CFMF to industrial 

processes can be limited by fouling, as cleaning of the membrane module may 

render a process unviable economically – cleaning is costly in terms of downtime 

and loss of product. Much research has focused on the development of methods to 

eliminate fouling such as the critical flux concept (Field et al. 1995). This is 

defined slightly differently to the critical flux used in this thesis as it represents 

the initial flux below which no particle deposition occurs.  Other methods include 

periodic reversal of the direction of the tangential flow (Howell et al. 1993), 

reversal of the direction of filtrate flow, i.e., backflushing (Tanaka et al. 1995; 

Redkar et al. 1996), pulsation of the feed stream (Czekaj et al. 2000b; Mores and 

Davis 2002) and production of centrifugal instabilities such as Dean and Taylor 

vortices (Moulin et al. 1996; Czekaj et al. 2000b; Moll et al. 2007). 

This chapter will again focus on the development of a semi-empirical balance to 
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describe continuous crossflow microfiltration of bentonite. However, the key aim 

here is to shed light on irreversibilities caused by irreversible cake formation and 

membrane fouling. Experiments involving the flushing of module with pure water 

are designed and interpreted in light of the model developed. 

6.2 Model Development and Solution 

A schematic of the experimental configuration for modelling purposes is 

presented in Figure 6-1. This configuration, known as total recycle mode, is an 

excellent approximation to a true continuous system. Mass balances for the 

system are combined with a simple expression for cake build-up in order to 

develop a model describing the system in a manner similar to that outlined in 

Chapter 5. 

Feed

Permeate

Retentate

 

Figure 6-1: Schematic of Continuous Crossflow Filtration Operation 

The filtrate flux is defined using the classic equation for flux based on Darcy’s 
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Law as mentioned previously: 

( )mR

P
J

m αµ +

∆
=        [6-1] 

The cake formation rate (or, rate of accumulation of particles on the membrane 

surface) may be assumed to be equal to the rate of deposition of particles on the 

membrane surface minus the mass of particles per membrane area multiplied by 

some cake removal rate, k, where this depends on the crossflow velocity. As 

described in Chapter 5, the cake is assumed to be removed only when the flux 

drops below a certain critical level, J*. This may be represented mathematically as 

follows: 

*

*

 if 

 if 

JJkmCJ
dt

dm

JJCJ
dt

dm

≤−=

>=

      [6-2] 

where C is the constant bulk concentration of particles in the feed stream. 

Membrane fouling is a common feature in flux decline in filtration systems. This 

is taken into account here in a similar manner to that employed in Chapter 5, 

using the idea of instantaneous membrane fouling where the membrane is subject 

to initial deposition of layers of particles on the surface of the membrane blocking 

the membrane pores. This may be described by 
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bRR mm 0
=         [6-3] 

where b is the instantaneous fouling constant, Rm is the instantaneously fouled 

membrane resistance and Rm0 is the original clean membrane resistance.  

Assuming that at steady state in continuous filtration (tss), the cake mass is mss and 

the feed is replaced with an infinite reservoir of pure water (i.e. no increase in 

feed concentration as the cake is flushed off the membrane). In this case the 

model becomes 

For J < J*    km
dt

dm
−=      [6-4a] 

For J > J*     0=
dt

dm
      [6-4b] 

Thus the model predicts that the cake mass will decrease exponentially with 

respect to time during flushing. If membrane fouling is irreversible and J
*<bJ0, 

the model predicts that some of the cake will remain on the membrane and the 

flux will recover to J*. Likewise if J
*> bJ0, all of the cake (bar the initial layer 

bound to the membrane and causing blockage of the pores) will be removed and 

the flux will recover to bRm0.  

In reality, the feed reservoir used in this study is not infinite, and the 

concentration in the feed tank increases during the course of the flushing process. 

The concentration is constant for the filtration phase, zero at the start of the 
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flushing phase, and then increases by the amount of bentonite that is flushed off 

the membrane surface. 

0 If CCtt flush =<        [6-5a] 

0 If == Ctt flush       [6-5b] 

R

flush
V

Akm

dt

dC
tt => If      [6-5c] 

Where tflush is the time at which the flushing phase is started, C0 is the initial 

(constant) concentration at the start of the filtration phase, A is the membrane 

area, k is the cake removal rate, m is the mass of particles per unit membrane area 

and VR is the volume of the feed reservoir. 

The parameters to be computed from the experimental data are the critical flux, J*, 

the cake removal rate, k, the specific cake resistance α and the instantaneous 

membrane fouling constant b. The equations may be coded and fit to the 

experimental data using Berkeley Madonna as described previously and the model 

code may be seen in Model 6-1. This code models both the filtration and flushing 

phases. 
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Model 6-1 

 

METHOD RK4 
STARTTIME = 0 
STOPTIME=70000 
DT = 0.02 
DTOUT = 10 
 
 
K=0.0002  
RM0=7E11 
B=1.01 
RM=RM0*B 
ALPHA=3E13 
MU=0.001 
DP=1E5 
C0=5 
TFLUSH=7200 
 
 
JSTAR=5E-5 
J=DP/MU/(RM+ALPHA*M) 
 
 
C= IF (TIME<TFLUSH) THEN C0  
ELSE IF (TIME=TFLUSH) THEN 0  
ELSE X 
 
INIT(X)=0 
 
D/DT(X)=IF (TIME>TFLUSH) THEN (A*K*M)/VR  
ELSE 0 
 
A = 7.539822E-3 
VR=2E-3 
 
 
 
INIT(M)=0 
D/DT(M)=if (J>JSTAR) THEN C*J ELSE C*J-K*M 
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6.3 Materials and Methods 

6.3.1 Crossflow Filtration Rig 

The crossflow rig is as described in Chapters 4 and 5. Here the operation is in 

continuous mode, i.e. the permeate and retentate streams are both recycled to the 

feed reservoir, keeping the feed volume constant (Figure 6-1). 

6.3.2 Continuous Crossflow Experiments 

Experiments are chosen to encompass the effects of feed concentration, crossflow 

velocity and transmembrane pressure on the filtrate flux. Experiments are 

duplicated at least once in order to ensure reproducibility.  

As it was found in the previous chapter that the flow regime changed from 

laminar to turbulent during the course of the filtration experiments, the 

concentration of the feed suspension here is increased in order to assure laminar 

flow in all cases, with Reynolds numbers of less than 1000 for all experiments 

(the critical Reynolds number for the system being approximately 2200). 

All experiments are performed at pH 3 as this pH is found to give the most 

marked flux decline in the batch filtration data in Chapter 5, thus producing more 

interesting data for analysis. The experiments performed are summarised in Table 
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6-1. 

Table 6-1: Continuous Crossflow Experimental Runs 

Run C0  (g/L) ∆∆∆∆P  (kPa) u (m/s) T (
o
C)  Rm (x10

11
 m

-1
) 

1 5 100 0.47 19.1 6.30 

2 5 100 0.47 19.2 6.54 

3 5 100 0.47 19.7 6.33 

4 5 60 0.47 20.4 8.43 

5 5 60 0.47 20.6 7.10 

6 5 140 0.47 20.6 6.62 

7 5 140 0.47 20.9 6.12 

8 5 100 0.47 20.2 8.40 

9 5 100 0.24 19.7 6.08 

10 5 100 0.24 20.9 7.99 

11 5 100 0.71 19.3 6.33 

12 5 100 0.71 19.1 7.06 

13 10 100 0.47 19.9 7.07 

14 3 100 0.47 19.3 7.26 

 

6.3.3 Experimental Procedure 

The experimental procedure is similar to that described in Chapter 5 for batch 

crossflow filtration, the only difference being that the permeate is recycled to the 

feed vessel.  

As mentioned previously (Chapters 4 and 5) ultrapure water is used in cleaning 

and suspension of the bentonite in order to avoid water fouling of the membrane 
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(McCarthy 2001). Membrane cleaning is as outlined in Chapter 4. The clean 

membrane resistance is measured prior to each filtration run and the cleaning 

schedule is repeated if the clean membrane resistance is not acceptable. The clean 

membrane resistance is approximately 7x1011 m-1.  

Bentonite suspensions were made up as described previously. Suspension pH was 

adjusted to pH 3 in all cases.  

6.3.3.1 Crossflow Filtration Operation 

A known volume of suspension (2L ± 0.05L) was placed in reservoir A and set on 

the stirring table. The filtrate valve V2 was closed and the pressure control valve 

V3 was fully opened to establish a ∆P of zero. The suspension was allowed to 

circulate in the system for approximately 2 minutes to ensure thorough mixing of 

suspension with any residual ultrapure water trapped in the system.  

Filtration experiments were carried out for 2 hours in total recycle mode, i.e. with 

permeate and retentate streams recycled to the feed reservoir. However the first 25 

ml of filtrate was collected in batch mode in order to capture more data points 

during the period of rapid initial flux decline. The volume collected during the 

initial batch period is sufficiently small so as not to impact on filtration 

performance. After the initial sample was collected it was returned to reservoir A, 

and the permeate was directed into Feed Reservoir A using valve V2 (See Figure 

4-1). Valve V2 was used to collect filtrate samples throughout the filtration 
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period. After each sample was collected it was returned to Reservoir A. Flux 

values were determined by recording the length of time taken to collect a known 

volume of filtrate (typically sample sizes of 5 – 10 ml).  

The transmembrane pressure was controlled using valve V3 and the flowrate of 

suspension through the module was controlled by adjusting valve V1.  

6.3.3.2 Flushing with Pure Water 

Prior to flushing, it was ensured that the permeate flux had reached steady state. 

Steady state flux was established in all cases for the experimental conditions in 

this study after two hours of filtration. 

The hold-up in the system (liquid retained in piping etc) was determined to be 

approximately 180 ml by allowing the system to drain completely after filtration 

runs were completed. After each filtration run, the hold-up of bentonite 

suspension in the system was replaced with ultrapure water by closing the 

permeate valve and pumping clean water at zero transmembrane pressure and a 

very low crossflow velocity (approximately 0.05 m/s) into the system until 180 ml 

of bentonite suspension had been collected and the fluid in the system appeared 

clear as viewed through the glass on the flowmeter. 

The feed was then switched to a 2 L reservoir of clean ultrapure water. The 

ultrapure water flushing phase for each experiment was carried out at the same 

transmembrane pressure and crossflow velocity as the filtration phase. Permeate 
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flux during the flushing phase was measured in the same manner as during the 

filtration phase, described previously. 

6.4 Results and Discussion 

6.4.1 Experimental Observations and Fit of Model to Experiment 

6.4.1.1 Filtration Phase 

As described previously, the effects of feed concentration, applied pressure and 

crossflow velocity on the permeate flux are assessed. All runs are very 

reproducible and the averages of at least 2 experimental runs with the same 

operating parameters are displayed in this section. 

The cake removal constant k, the specific cake resistance α, the instantaneous 

membrane fouling constant b and the critical flux, J
* are optimised to ensure a 

good fit of the model to the experimental data. The fit of the model to experiment 

and the resulting values and trends in the parameters of k, b, J
* and α are 

analysed. The model was found to fit to the flux decline data with excellent 

accuracy, with R2 values of close to 1 in all cases. 

The effect of increasing feed concentration is to decrease the permeate flux as 

expected (Figure 6-2 – 100 kPa, 0.47 m/s, pH 3, 20 oC).  
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Figure 6-2: Effect of Concentration on Flux Decline  

(● 3 g/L, ○ 5 g/L, ▲ 10 g/L, — Model) 

An increase in mean transmembrane pressure leads to a corresponding decrease in 

the filtrate flux (Figure 6-3 – 5 g/L, 0.47 m/s, pH 3, 20 oC). However the effect of 

pressure on the filtrate flux is very small due to the compressibility of cakes of 

bentonite, as found previously in batch crossflow microfiltration of bentonite 

(Chapters 4 and 5). This phenomenon was also observed by Fordham and Ladva 

(1989; 1992). 
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Figure 6-3: Effect of Pressure on Flux Decline  

(● 140 kPa, ○ 100 kPa, ▲ 60 kPa, — Model) 

The effect of increasing the crossflow velocity is to increase the filtrate flux as 

expected (Figure 6-4 – 5 g/L, 100 kPa, pH 3, 20 oC). 
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Figure 6-4: Effect of Crossflow Velocity on Flux Decline  

(● 0.235 m/s, ○ 0.47 m/s, ▲ 0.705 m/s, — Model) 
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6.4.1.2 Flushing Phase 

The model is found to fit poorly to the flushing phase, with low R2 values. The 

model predicts that the flux should initially increase during the flushing phase. 

However, the removable portion of the cake flushed off the membrane is 

predicted to increase the concentration of the feed stream, thus causing a 

subsequent decline in flux as particles are re-deposited on the cake (Figure 6-5 – 

100 kPa, 0.47 m/s, 20 oC, pH 3). However, the experimental data is clearly in 

qualitative disagreement with this as is shown in Figures 6-5, 6-6 and 6-7. 
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Figure 6-5: Fit of Model to Flushing Phase for Various Values of C0   

(Lines – Model, Symbols – Experimental)  

— ● 3 g/L − − − ○ 5 g/L ··· ▼ 10 g/L 

Similar disagreement is shown in Figure 6-6 (5 g/L, 0.47 m/s, pH 3, 20 oC), where 

the effect of pressure on the flushing phase is shown. 
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Figure 6-6: Fit of Model to Flushing Phase at Various Pressures   

(Lines – Model, Symbols – Experimental)  

— ● 60 kPa − − − ○ 100 kPa ··· ▼ 140 kPa 

Increasing the crossflow velocity causes a corresponding increase in the recovery 

efficiency (Figure 6-7 – 5 g/L, 100 kPa, pH 3, 20 oC). Clean membrane fluxes are 

generally of the order of 10-4 m/s, while recovered fluxes are of the order of 10-5 

m/s. 
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Figure 6-7: Fit of Model to Flushing at Various Crossflow Velocities  

(Lines – Model, Symbols – Experimental)  

— ○ 0.235 m/s ··· ● 0.47 m/s  − − − ▼ 0.705 m/s 
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6.4.2 Trends in Model Parameters  

In the last two sections, it was shown that the model fits flux decline data very 

well but when extrapolated to the flushing phase it gives poor results. For 

completeness, this section summarises the trends in model parameters as 

determined from the fits to the filtration phase data. In theory, we would expect 

more consistent behaviour in the trends as the flow is consistently laminar in these 

experiments. 

The fitted values of the specific cake resistance are found to be essentially 

independent of concentration for the range of concentrations investigated at 

3.21x1015 + 1.5 % m/kg. This result is in agreement with established filtration 

theory and also with experimental measurements of specific cake resistances of 

bentonite using a stirred cell (Chapter 5). However the order of magnitude of the 

specific cake resistances predicted by the model is 1015 m/kg rather than 1013 

m/kg as measured experimentally in the stirred cell. Specific cake resistances 

found by fitting the model in Chapter 5 to batch microfiltration data led to specific 

cake resistances to the order of 1013 m/kg which increased with suspension 

concentration, however, as discussed previously, flow in the system was turbulent 

in some cases and laminar in others, and trends in the model parameters may be 

unreliable. 

The cake removal constant k decreased with increasing suspension concentration 

(Figure 6-8, 100 kPa, 0.47 m/s, pH 3, 20 oC). This is contrary to the result 
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obtained with the stirred cell, where the cake removal constant was seen to 

increase with increasing suspension concentration. This result is unexpected as it 

would be easy to assume that higher concentrations would create a higher 

viscosity which increases the wall shear stress and thus makes particle removal 

more efficient.  

The critical flux, J
* is also seen to decrease with increasing suspension 

concentration, which ties in with the experimental finding that flux recovery is 

more efficient at lower initial feed concentrations (Figure 6-8).  

The decrease in k and J* with suspension concentration may be due to adhesive 

forces between the membrane and particles which will be discussed in more detail 

later.  
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Figure 6-8: Effect of Feed Concentration on k (●) and J
*
(○) 
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The fitted specific cake resistance is found to exhibit a power law type 

dependence on pressure (Figure 6-9, 5 g/L, 0.47 m/s, pH 3, 20 oC; R2 = 0.94): 

89.013105 P∆×=α        [6-6] 

where ∆P is measured in kPa. The exponent is in good agreement with previous 

studies where an exponent of 0.83 was found (Choe et al. 1986; Gourgues et al. 

1992). However the magnitude of the specific cake resistance is again higher than 

that found experimentally in the stirred cell and in previous studies. 
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Figure 6-9: Effect of Pressure on Fitted αααα    

Increasing the transmembrane pressure is seen to lead to a decrease in the cake 

removal constant when the pressure is increased from 60 kPa to 100 kPa and to 

remain essentially constant when the pressure is further increased to 140 kPa 
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(Figure 6-10, 5 g/L, 0.47 m/s, pH 3, 20 oC).  

The increase in transmembrane pressure serves to increase J*, however it would 

be expected that J* would decrease with increased pressure according to the force 

balance analysis outlined in Chapter 5. A reason for this trend may be that the 

parameters are solved for on the basis of the entire experimental run, 

incorporating both filtration and flushing phases. As the flux recovers to a higher 

level during the flushing phase due to the higher driving force for filtration at 

increased pressure, (Figure 6-6), the solved-for values of J
* may reflect the 

recovered flux, rather than reflecting a true trend for the filtration phase.  
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Figure 6-10 – Effect of Pressure on k (●) and J
*
 (○)  

The specific cake resistance is seen to decrease with increasing crossflow velocity 

(Figure 6-11, 5 g/L, 100 kPa, pH 3, 20oC). This is as found experimentally using 

the stirred cell set-up in Chapter 5. Traditional filtration theory would indicate that 
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at higher shear rates, preferential deposition of small particles leads to an increase 

in specific cake resistance. A number of possible reasons for this discrepancy 

were raised in Chapter 5, where it was proposed that increased crossflow velocity 

led to thinner cakes with a corresponding decrease in pressure drop across the 

cakes, and as the cakes of bentonite are highly compressible (Fordham and Ladva 

1989; 1992), this leads to a decrease in α with increased crossflow velocity. It was 

also proposed that shear-induced agglomeration could contribute to this 

phenomenon where an increase in shear in the system can lead to an increased 

particle size and hence a reduced specific cake resistance. 
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Figure 6-11: Effect of Crossflow Velocity on Fitted αααα 

The cake removal constant k and J* are seen to increase with increasing crossflow 

velocity (Figure 6-12). These trends are as expected. 
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Crossflow Velocity u (m/s)

0.2 0.3 0.4 0.5 0.6 0.7 0.8

k
 (

x
1
0

-4
 s

-1
)

1.0

1.5

2.0

2.5

3.0

3.5

4.0

J
*  (

x
1
0

-5
 m

/s
)

0

1

2

3

4

5

6

 

Figure 6-12: Effect of Crossflow Velocity on k (●) and J
*
(○) 

6.4.3  Membrane Fouling and Irreversible Cake Formation 

The model presented in this chapter is capable of representing flux decline in 

continuous crossflow microfiltration of bentonite well, with sensible trends in the 

model parameters observed for the most part. In contrast, the ability of the model 

to fit the flushing phase was found to be poor. However, this poor fit is probably 

due to experimental error. The transmembrane pressure for the system is 

controlled manually by manipulation of the valves on the rig. As the flushing 

portion of the experiments was run overnight, the transmembrane pressure 

increased in the absence of correction during the flushing portion of the 

experiment and was re-set to the correct pressure when the rig was manned again. 

This would explain why the flux did not decline at later times during the flushing 

phase due to re-deposition of flushed cake. 
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Irreversibility, either in terms of cake formation or membrane fouling, is a 

necessary part of a comprehensive model exploring CFMF and an attempt has 

been made to incorporate this into the model by using the parameter J* to account 

for irreversible cake formation. The model developed in this study predicts 

qualitatively the formation of irreversible cakes however quantitative and 

qualitative agreement with experimental data for hydraulic cleaning by filtration 

of ultrapure water is poor.  

Although the data for the flushing portions of the experiments is unreliable, the 

flushing did confirm the irreversibility of cake formation in the system, leading to 

the consideration of irreversibility phenomena for the system.  

Further work should include the development of a control system for the 

crossflow rig to ensure that operating parameters for the system are kept at the 

correct levels. Further experimental investigations may include flushing at zero 

filtrate flux and assessment of irreversibility and model performance under these 

conditions, in order to provide more information about irreversibilities in the 

system. 

It is interesting to note that for continuous crossflow, the instantaneous membrane 

fouling constant, b, is found to be equal to approximately 1 in all cases except at a 

crossflow velocity of 0.235 m/s where b = 2.1, for the range of concentrations, 

pressures and crossflows studied at pH 3 and 20oC. This result is contrary to that 

found for the batch stirred and crossflow systems investigated in Chapter 5, where 
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considerable membrane fouling was found to occur. Instantaneous membrane 

fouling constants were found to be greater than 1 in all cases in fitting of the 

model to batch crossflow and stirred microfiltration in Chapter 5.  Suspension 

concentration was shown to lead to an increase in the instantaneous membrane 

fouling constant b for batch crossflow filtration in Chapter 5. For the batch 

crossflow set-up, filtration of a suspension with concentration 5 g/L at a 

transmembrane pressure of 100 kPa and crossflow velocity of 0.47 m/s yields a b 

value of 9.5. A continuous crossflow filtration run for the same experimental 

conditions yields a b value of 1. The only difference in experimental conditions is 

the pH – batch crossflow experiments were performed at pH 7 whereas 

continuous crossflow experiments were performed at pH 3.  

Comparing the batch and continuous crossflow experiments mentioned above, the 

specific cake resistance at pH 3 in continuous crossflow is 3.2x1015 m/kg, 

whereas the batch experiment at pH 7 yields a lower α of 2.6x1015 m/kg. Stirred 

cell experiments at pH 8.5 – 9 showed even lower specific cake resistances, to the 

order of magnitude of 1013 m/kg although there was no experiment performed at 

exactly the same process conditions for comparison. This lower specific cake 

resistance would suggest larger particles/aggregates, or higher cake voidage. It is 

possible that the attractive forces discussed previously at low pH lead to a lower 

cake voidage, with smaller aggregates, which would lead to a decrease in specific 

cake resistance. It has been shown previously that under acidic conditions, 

attractive forces between bentonite particles are dominant, whereas in basic 



 

 

 

233 

media, inter-particle interactions lead to a card-house-like structure based on edge 

to edge, edge to face, and face to face repulsion, instead of attraction (Benna et al. 

1999).  

On the basis of this, it is proposed that the irreversible cake formation of bentonite 

seen in continuous crossflow filtration of bentonite at pH 3 investigated in this 

chapter may be due to adhesive or electrostatic forces acting to bind the deposited 

particles together, a common feature in microfiltration of colloids (Chen et al. 

2005). Bentonite has been reported to develop opposite charges on the lateral and 

basal surfaces of the particles leading to attraction at low pHs which would 

support this theory (Cadene et al. 2005). The low pH used for continuous 

experiments was chosen on the basis of a faster flux decline leading to what was 

deemed more interesting data for analysis. It is possible that this choice of pH led 

also to a change in the flux decline mechanism, as the fouling of the membrane by 

blocking of the membrane pores found for batch crossflow filtration of bentonite 

at pH 7 (b>1) was not predicted for continuous crossflow filtration of bentonite at 

pH 3. 

It is clear from these investigations into the influence of pH on the model 

parameters that the suspension conditions play a large part in the filtration 

characteristics and the fouling mechanisms of filtration on bentonite. Further work 

may include the development of a model incorporating inter-particle interactions 

that could take into account the effect of pH on the suspension characteristics, 
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thus reducing the degree of empiricism.  

6.5 Conclusions 

A mathematical model for continuous crossflow microfiltration of bentonite 

suspensions is developed based on the techniques outlined in Chapter 5. The 

model is found to fit flux decline data well for a range of operating parameters, 

with sensible trends in many cases in the model parameters (specific cake 

resistance α, cake removal constant k, instantaneous membrane fouling constant b 

and flux below which cake removal occurs J*). 

Crossflow experiments are extended to investigate the irreversibility of cake 

formation in the continuous system. Cake formation is found to be partly 

irreversible; with permeate flux of clean flushing water recovering to a plateau 

lower than the clean membrane flux. This irreversibility of cake formation is 

incorporated into the model by the inclusion of the parameter J*. 

The model is found to fit the data well in terms of the filtration phase; however, 

the cake removal by flushing phase is not well represented by the model. This is 

attributed to experimental error and the difficulties in maintaining operating 

conditions constant over long flushing times without the use of a control system 

for the equipment.  

Comparison of fouling mechanisms for batch and continuous filtration show that 

fouling by surface blocking of membrane pores is predicted in the batch filtration 
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of bentonite at pH 7 (b>1), whereas this effect is not apparent for continuous 

filtration at identical operating conditions at pH 3, where only irreversible cake 

formation is observed (b=1). 

Further work may include a more in-depth analysis of fouling mechanisms in 

continuous crossflow microfiltration of bentonite and the incorporation of 

interparticle interactions into the force balance model in order to reduce the 

degree of empiricism of the model, to work towards a general model for filtration. 

More information about the irreversibilities in the system may be gleaned from 

further flushing experiments at zero filtrate flux.  
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CHAPTER 7: SUMMARY AND FUTURE WORK 

7.1 Summary 

Development of models to describe characteristics of microfiltration has been the 

subject of significant research. However, limited applicability of theoretical and 

empirical models describing flux decline in filtration systems has meant that a 

general model to predict flux decline remains elusive. This thesis has focused on 

application of Artificial Neural Networks for empirical modelling of dead-end 

filtration of yeast, stirred and batch crossflow filtration of bentonite and on the 

development of semi-empirical models based on simultaneous cake deposition 

and removal to describe stirred, batch and continuous crossflow of bentonite. 

In Chapter 2, a feedforward backpropagation ANN was developed for the 

correlation and prediction of specific resistance and steady state flux in dead-end 

filtration of washed yeast cells. Excellent agreement was achieved between the 

network predictions for specific cake resistance and steady state flux, where the 

network was trained using 70 % of the available data, and a previously unseen 

dataset consisting of approximately 25 % of the data. A weight partitioning 

method was introduced, and used to examine the relative importance of the input 

parameters on the specific cake resistance and the steady state flux. 

In Chapter 3, a novel ANN architecture for dynamic filtration data was 

introduced, increasing the computational efficiency of the network by eliminating 
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time as a specific input parameter to the network. This approach allowed 

examination of the evolution of the relative importance of the input parameters 

with time in stirred microfiltration of bentonite. Chapter 4 focused on the 

application of the techniques developed in Chapter 3 to batch crossflow filtration 

of bentonite in ceramic tubular membranes. Excellent agreement was achieved for 

both datasets, with one third of the data being used for testing the stirred cell 

network, and almost two thirds being used in testing the network for the batch 

crossflow data. 

In Chapters 5 and 6, a semi-empirical model to describe flux decline in stirred, 

batch and continuous crossflow filtration of bentonite based on simultaneous cake 

deposition and removal was developed, incorporating a cake removal constant 

based on the Kern-Seaton model for fouling in heat exchangers. Specific cake 

resistance for cakes formed during stirred microfiltration was measured by 

filtration of ultrapure water through the cakes. The effects of feed concentration 

and applied pressure on the specific resistance were as expected, the most 

interesting result being the decline in specific resistance with increasing stirring 

speed. The model developed reflected the trends in specific resistance with 

pressure and stirring speed, although in many cases the magnitude of the specific 

resistance was larger than that found experimentally. The basic model was 

extended to address the issues of fouling and irreversible cake formation in the 

system by inclusion of parameters to account for instantaneous fouling of the 

membrane and a critical flux below which cake removal takes place. Good 
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agreement was achieved in the generation of flux decline curves when the model 

parameters were fit to experimental flux decline data. Trends in the model 

parameters (k, α, b and J
*) were found to be sensible in most cases for stirred 

microfiltration, however for the most part no reasonable trends were found in 

batch crossflow filtration. This result was attributed to changing flow regimes in 

the system due to increasing concentration and crossflow velocity. Subsequent 

experimentation in continuous crossflow filtration was restricted to laminar flow 

at all times, and in general distinct trends in the model parameters were found. 

However, specific cake resistances found by fitting the model to flux decline data 

for the crossflow system were much larger than those found experimentally using 

the stirred cell, and the extension of the model to flushing of the membrane by 

filtration of ultrapure water proved to be incapable of capturing the flushing 

dynamics. This was attributed to experimental error due to the difficulties in 

maintaining constant operating parameters over the course of a long flushing 

phase, without the use of an automatic control system. 

Due to the complex nature of filtration processes, it has proven difficult to 

quantify the interactions and relationships that exist between process parameters 

and how they affect filtration characteristics. The wealth of research addressing 

modelling of filtration systems can attest to this. Modelling of filtration processes 

has been the subject of much and varied research for half a century, and yet a 

unifying model or theory to describe or predict flux decline has yet to be 

developed. 
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Process models, where they exist, are often the result of lab and pilot scale work, 

and are generally based on experiments where many of the process parameters are 

held constant. Apart from the issue of categorising the effects of individual 

process parameters, identification of the importance of the interactions between 

process parameters also proves to be a difficult matter, with extensive 

experimentation required. Empirical models of this type tend to be system-

specific, and unable to cope with simultaneous fluctuations in more than one or 

two key variables at a time, thus making them of little use in an industrial context. 

The development of theoretical models requires an in-depth understanding of the 

physical phenomena associated with a given system. Filtration problems in 

particular are subject to numerous interactions affecting the characteristics, all of 

which must be incorporated into a theoretical model for it to be useful. Despite the 

many years of research into filtration, the factors affecting flux decline including 

fouling mechanisms, irreversible cake build-up, inter-particle and particle-

membrane interactions, coupled with the effects of operator-controlled process 

parameters remain little understood. Also, existing models describing filtration of 

a particular system are difficult to extend to filtration of different suspension types 

due to the differences in interactions – for example, a theoretical model describing 

filtration of cells must include terms describing phenomena such as the cell 

morphology and cell wall properties, whereas these terms may be inapplicable to 

a model describing filtration of incompressible particles, or colloids.  

The use of artificial neural networks as an alternative to traditional modelling 
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techniques has many advantages. From an industrial point of view, development 

of networks that can be used for process modelling and optimisation requires far 

less experimentation than that required for the development of traditional 

empirical models.  It has also been shown that the use of weight partitioning 

methods such as that employed in this work can yield some information about the 

physical phenomena governing the system.  

Dynamic simulations are becoming widely used industrially in training and in 

selection of potential employees (Jago 2008). Dynamic simulations are 

mathematical representations of actual plants that can accurately mimic the 

process conditions of the plant. These dynamic simulations can be based on 

theory; however development of theoretical models describing an entire plant 

would be subject to massive experimentation requirements and rigorous 

understanding of the interactions within the processing plant. It is easy to see that 

development of an ANN describing an entire plant would be far more cost 

effective, requiring relatively little experimentation.  However, due the 

unsuitability of ANNs for extrapolation far outside of the parameters of the 

training data, the use of dynamic simulations based on ANNs in training 

personnel for major emergency situations in a virtual reality environment may be 

unreliable. 

Although ANNs are a valuable tool for use in quick correlation of data, and have 

great potential for the design and optimisation of filtration systems, continuing 

research into the development of theoretical and semi-empirical models is 
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necessary in order to further understanding of the fundamental basis of filtration 

behaviour on a universal scale.  

7.2 Recommendations for future work 

While artificial neural networks have been used in correlation and prediction of 

specific resistance, steady state flux and flux decline data with excellent accuracy 

in this work, there remains much potential for extension of this approach.   

The use of ANNs as an optimisation tool for a given system should be explored. 

Steady state permeate fluxes as high as possible would be of great importance 

industrially, where the main drawbacks to the use of membrane filtration as a 

separation technique is fouling and flux decline. The minimisation of these 

phenomena has been the subject of much research particularly in the areas 

incorporating the idea of critical flux. Much research has also focused on 

mechanical and chemical methods of reducing flux decline and fouling. It is 

proposed that an ANN could be developed in which the input to the network is the 

steady flux for an established process, and the outputs of the network the 

operating parameters. In this way, using a trained, validated and tested network, it 

should be possible to use the network to predict the process parameters that would 

give a desired permeate flux. 

The use of a weight partitioning method has shown some success in elucidating 

the relative importance of the process parameters for the filtration systems 
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addressed in this study. However, this method does not allow for the analysis of 

interactions between process parameters. It is also questionable whether this 

approach is useful if the optimum network architecture is not used, and if the 

global minimum on the error surface is not achieved in the training of the 

network.  

Genetic algorithms have been shown to be useful in the design of the optimum 

network structure (Sahoo and Ray 2006) for prediction of flux decline in 

crossflow filtration and this is an evolving area worthy of further study.   

Development of hybrid models incorporating theory and ANNs (known as ‘grey-

box modelling’) has also been shown recently to have great potential (Jones et al. 

2007). This area should be considered for future work. 

Non-linear regression was shown in Chapter 3 to be applicable to stirred 

microfiltration of CaCO3 suspensions. One of the drawbacks of this approach was 

the requirement for choosing a suitable functional relationship for the system. The 

use of symbolic regression using evolutionary algorithms to generate functions to 

fit experimental data may be an area for further study. This approach may be 

simplified by the use of dimensional analysis to generate dimensionless groups 

describing the system. 

In Chapters 5 and 6, models to describe flux decline in stirred, batch and 

continuous crossflow systems were developed. Changing flow regimes in the 
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batch system were found to affect model parameters, and inter-particle 

interactions were shown to possibly have an effect on fouling mechanisms and to 

greatly affect flux decline characteristics. Future research should focus on the 

development of more sophisticated models incorporating the flow regime and 

inter-particle interactions, in order to reduce the degree of empiricism. Further 

study on the formation of cakes of bentonite under crossflow conditions and the 

influence of suspension properties such as the pH on fouling mechanisms would 

be necessary in the development of a more accurate model.   
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