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Abstract 

Spatial and temporal variations in malaria transmission are naturally associated 
with prevailing climatic and environmental factors, for example rainfall, humidity, 
temperature and human activities. These factors influence malaria transmission mainly in 
non-deterministic ways, making them less appropriate for accurate geographical mapping 
of malaria risk. One distinctive phenomenon, ‘photosynthetic productivity of vegetation’, 
is similarly affected by these factors, yet it can be easily estimated from remotely sensed 
data using standardized indices. In this study, multiple linear regression techniques are 
used to explore spatial and temporal associations between photosynthetic productivity of 
vegetation (measured as Normalized Difference Vegetation Index (NDVI)) and malaria 
transmission intensities (measured as Entomological Inoculation Rate (EIR)). The study 
shows significant relationships between NDVI and EIR both at continental level and at a 
number of the selected study sites. Moreover, in three of four sites where temporal 
analysis was conducted, a similarity of linear trends is observed between EIRs and means 
of current and previous month NDVIs. Both NDVI and EIR are significantly associated 
with altitude as well as to a rural/urban dummy variable. It is concluded that spatial and 
temporal variations in photosynthetic productivity of vegetation are strongly related to 
variations in malaria transmission at respective places and periods. Results of this basic 
exploration imply that vegetation production is a potential indicator of situations 
favourable for malaria transmission, and can therefore be used to improve mapping of 
geographical extents of risk of malaria, and perhaps several other vector borne diseases. 
 
Key words: Vegetation production, vegetation index, geographical information systems 
and remote sensing, malaria transmission, NDVI, EIR 
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1.0. Introduction 

The description of malaria as one of the world’s most devastating human diseases is 

indisputably appropriate. An estimated 3.2 billion people worldwide live in areas at risk 

of the disease, with at least five hundred million clinical episodes annually, mostly in 

Africa (WHO, 2008). To estimate the risk of malaria exposure among human populations 

and to enable equitable allocation of resources for its control, it is vital to accurately map 

the geographical distribution of the disease. Such maps could also help to evaluate 

impacts of existing intervention programs such as the current Global Malaria Action Plan 

(WHO, 2009), which aims at sustained universal coverage with malaria prevention 

measures but also at country by country elimination of risk from the disease.  

Spatial and temporal variations in the transmission of vector-borne diseases such 

as malaria are largely dependent upon prevailing environmental and climatic factors. 

Most malaria risk maps are generated using climate based models, which essentially 

generalize whether any given location is suitable or not suitable for malaria transmission 

to occur based on regional climate estimates (Githeko and Ndegwa, 2001, Hay et al., 

2003, Kleinschmidt et al., 2000a, Rogers et al., 2002b, Guerra et al., 2006, Hay et al., 

2001). Effects of these climatic factors can however be extremely random especially at 

local level, making them less appropriate for accurate mapping of malaria. It would also 

be difficult to measure all individual environmental and climatic factors and then to 

compute a single estimate for any geographical area or point. The probability of 

erroneous outputs would obviously increase with increasing number of climatic and 

environmental variables used.  



 10 

To counter these challenges, a separate but more distinctive natural phenomenon 

could be identified for use as a surrogate variable upon which improved malaria risk 

mapping can be based. That phenomenon should have three important characteristics 

namely: 1) it must be influenced by the same environmental and climatic factors as those 

that are proven to affect local malaria transmission, 2) changes upon it must be 

measurable in a standardized format and 3) it must be correlated to malaria transmission 

in a statistically determinable trend. One candidate phenomenon is the ‘photosynthetic 

productivity of vegetation’, which can be estimated as a vegetation index. Vegetation 

indices are widely used in different fields of research to assess conditions of plants at 

different places and times (Myneni et al., 1997, Tucker, 1979, Myneni et al., 1998).   

At any geographical location, plant production depends on climatic factors such 

as amount of precipitation received, temperature and altitude as well as human activities, 

factors which also affect malaria transmission (Gilles, 2001). Therefore, even though 

vegetation production and malaria transmission may be two completely independent 

events in nature, they are linked by similar climatic and environmental factors e.g. 

humidity and temperature. This confluence provides an opportunity to link the patterns of 

these two natural events, but also the potential to predict likelihood of malaria exposure 

at any geographical location on the basis of vegetation production trends.  

This study is a basic exploration of spatial and temporal relationships between 

photosynthetic productivity of vegetation (hereafter also referred to as vegetation 

production) and malaria transmission intensities in selected parts of Africa. 
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1.1. Study objectives 

1.1.1. General objective 

The general objective of this study is to explore spatial and temporal associations 

between malaria transmission intensities and photosynthetic productivity of vegetation in 

selected parts of Africa. It is envisaged that if there exists a significant relationship 

between these two variables, then perhaps it would be possible to define geographical and 

temporal extents of malaria transmission simply by analysing and interpreting spatial and 

temporal patterns of vegetation growth; especially in situations where actual empirical 

data on malaria transmission is scarce or unavailable. 

1.1.2. Specific objectives 

1. To compare seasonal variations of vegetation growth against seasonal variations 

of rainfall in selected malaria endemic areas with different climatic conditions, in 

Africa. Since rainfall is a major determinant of plant growth, it is could possibly 

modify any relationships between malaria transmission and vegetation growth. 

 

2. To explore temporal associations between vegetation indices and malaria 

transmission intensities in selected localities in Africa. This objective covers only 

those study sites with malaria transmission data available over several consecutive 

months; allowing for direct comparison with vegetation productivity data for the 

same areas and the same period. 

 

3. To determine whether high or low vegetation indices in different parts of Africa 

are spatially correspondent to high or low malaria transmission intensities in the 

same areas and at the same times. Unlike objective 2 above, this objective 
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involves malaria transmission data from a number of selected study sites with 

spatially clustered malaria transmission data, not necessarily collected over 

consecutive months. 

1.2. Study hypothesis 

The underlying hypothesis of this work is that since both malaria transmission and 

vegetation production are dependent upon similar environmental and climatic factors, 

changes in temporal and spatial patterns of these variables would be comparable. If this is 

true, then perhaps it could also be possible to estimate geographical and temporal extents 

of malaria transmission by simply interpreting vegetation production trends in respective 

localities, especially where actual empirical data on malaria transmission is scarce, 

unavailable or difficult to obtain. 
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2.0. Literature review 

2.1. Overview of malaria transmission 

Human malaria is caused by protozoan parasites, Plasmodium falciparum, Plasmodium 

ovale, Plasmodium vivax and Plasmodium malariae, all of which are transmitted by 

female mosquitoes of the Anopheles species. In Africa, the most common and most 

virulent form of malaria is the one caused by P. falciparum (MacDonald, 1956). Malaria 

transmission occurs when a plasmodium infected blood-seeking female Anopheles bites a 

susceptible human. There are approximately 430 species of Anopheles, about 70 of which 

are known malaria vectors (Service, 2004). Of these species, Anopheles gambiae and An. 

funestus are the primary Afro-tropical vectors (MacDonald, 1956). 

The mosquito vector (Anopheles) acquires the malaria parasite (Plasmodium) 

when it is at the gametocyte stage and is circulating in human peripheral blood. Over 

approximately 11-12 days, the parasite develops inside the mosquito gut and becomes a 

different life form called sporozoite. This is the infective stage of the malaria parasite and 

is usually concentrated in the mosquito salivary glands. At this stage, the parasites can 

possibly be transmitted into the blood steam of humans that these mosquitoes bite. 

Adult mosquitoes convert their vertebrate blood meals into eggs, which they lay, 

usually in open sunlit pools of clear water. The eggs hatch into larvae and develop 

through three instars to reach the fourth instar, after which these larvae become pupae (a 

stage of minimal physical activity). After 1-2 days, the pupae hatch into adult male and 

female mosquitoes. Adults can survive on sugars, naturally from plants, but the females 

will require also vertebrate blood so as to develop eggs (Clements, 1992).  



 14 

2.2. Relationship between malaria transmission and local environmental factors 

Growth and development of both the malaria mosquitoes and malaria parasites are 

influenced by prevailing climatic factors, which must interact in a favourable way for 

transmission to occur at any geographical location. These factors may include, among 

other factors: 1) amount of precipitation 2) temperature changes over a given period of 

time, 3) elevation of the land above sea level and 4) humidity. These factors interact in 

different ways to dictate total risk of malaria exposure that people experience in a given 

area (Kiswewski et al., 2004, Snow et al., 2005). Like several other vector-borne 

diseases, the intensity and distribution of malaria is also modified by human activities 

over geographical landscapes. Notable examples of such anthropogenic factors are 

urbanization (Trape and Zoulani, 1987, Trape et al., 1992, Robert et al., 2003) and 

agricultural activities (Kitron, 1987, Ijumba and Lindsay, 2001). 

For nearly all arthropod-bone infections including malaria, the period during 

which the parasite undergoes further development and maturation inside a female 

mosquito i.e. the extrinsic incubation period depends on prevailing climatic factors such 

as temperatures, rainfall and humidity (Watts et al., 1987, Turell et al., 1985, Saul, 1996, 

Noden et al., 1995, Gilles, 2001). It is established that the optimal temperature range is 

between 25oC and 30oC and that the parasites stop to develop when temperatures reduce 

to below 16oC (Figure 1). Furthermore, malaria transmission intensities depend on the 

development and population dynamics of mosquitoes, processes which are also strongly 

linked to local environment and climate (Bayoh and Lindsay, 2007, Lindsay and Birley, 

1996a). The average time taken from egg stage to the time when mosquito adults emerge 

is 6-8 days. This interval reduces with increasing temperature (Bayoh and Lindsay, 2004, 
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Bayoh and Lindsay, 2007), and development is nearly interrupted at very low or very 

high temperatures. These relationships have previously been exploited through attempts 

to map temperature ranges within which malaria mosquitoes can survive and thus 

consider these ranges as indicators of potential malaria zones (Bayoh et al., 2001). 

 

Figure 1: Time taken for two different malaria parasites (P. vivax and P. falciparum) to mature inside adult 

Anopheles mosquitoes (adapted from Gilles, 2001). 

 

Precipitation also has direct effects on malaria transmission. It leads to the 

presence of water in potential breeding grounds thus the population of mosquitoes 

naturally increases a few weeks after the start of rains. In addition, increased precipitation 

also leads to increased humidity thereby enhancing the survival of malaria mosquitoes 

(Gilles, 2001). These are the main reasons that malaria epidemics are so often associated 

with the arrival of rainy seasons (Gilles, 2001). Similarly, limited precipitation in arid 

areas is associated with limited presence of malaria vectors in such areas.  

Finally, human activities such as rice farming, dam construction, drainage system 

constructions and urbanization may modify environments in ways that make them more 

or less suitable for malaria transmission (Omumbo et al., 2005a, Mutero et al., 2000, 

Ijumba and Lindsay, 2001, Ijumba et al., 2002, Keiser et al., 2005). Urbanization may 
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lead to thousands of new man-made mosquito breeding sites but can also leads to the 

clearing of vegetation thus modifying local climate. Other examples are rice irrigation 

and dam construction which may lead to increased water flowing, onto otherwise dry 

lands. Such artificial precipitation also increases local suitability for malaria transmission 

(Ijumba and Lindsay, 2001).  

2.3. Vegetation production as a local environmental variable and how to measure it 

Plants very readily respond to changes in environmental conditions, thus their condition 

of photosynthetic productivity can be an indication of several processes in the 

environment. In the past, photosynthetic productivity of vegetation was measured merely 

by observation. Even today many communities still rely on the physical appearance of 

leaves to know when it is time to plant crops or time to harvest the crops. Variations of 

vegetation production can generally be detected by studying leaf phenology; whereas 

highly productive plants are green, leafy and have increased biomass, reduced 

photosynthetic activity is evidenced by reduced or loss of green coloration, the wilting 

leaves and a general decrease in overall plant biomass. 

Measurements of vegetation production have improved tremendously with the 

transformation of camera technologies and space-borne satellites (Janssen and 

Huurneman, 2001). The first large scale attempt to measure either vegetation production 

or vegetation biomass using remotely sensed satellite data was by Compton Tucker and 

his colleagues working in the Sahelian desert, Senegal between 1980 and 1984 (Tucker et 

al., 1983, Tucker et al., 1985). Thirty years later, satellite imageries have become the 

main source of data for vegetation monitoring. These techniques rely on electromagnetic 



 17 

reflectance from plant leaves, which is captured and recorded as readable images by 

sensors aboard the satellites. 

To interpret satellite vegetation data, the spectral reflectances recorded by the 

satellite sensors are fitted onto a predefined scale to enable distinction between two or 

more states of vegetation production, for example green-leafy rice fields versus bare rock 

or surfaces covered only with patchy shrubs. These restricted scales define the different 

vegetation indices useful for vegetation monitoring. Of the many different vegetation 

indices, with different specific purposes (Baret and Guyot, 1991), the most common and 

perhaps most suitable for general vegetation monitoring is Normalized Difference 

Vegetation Index (NDVI), originally described by Tucker in 1979. 

2.3.1. The theory of Normalized Difference Vegetation Index (NDVI) 

All matter with temperature above zero radiate energy in the form of electromagnetic 

waves (Janssen and Huurneman, 2001). Known electromagnetic waves vary from gamma 

rays, which have the smallest wavelengths, to radio waves, which have the longest 

wavelengths. The entire range of energies is referred to as Electromagnetic Spectrum 

(EMS). Though a few bodies can emit their own electromagnetic energies, for most they 

only reflect energy that is originally from the sun.   

In the visible part of the electromagnetic spectrum, plants using their chlorophyll 

content, absorb most of the red and blue radiation, which they use for photosynthetic 

activity within the leaves (Figure 2). Reflection of visible radiation occurs only in the 

green segment of the EMS. This is fundamentally why human eyes perceive healthy 

plants as green. However, in the near-infrared part of the EMS, the spongy mesophyll 

content reflects most of the energy. Healthy leaves have high chlorophyll content 
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therefore they reflect proportionally more energy in the visible part of the 

electromagnetic spectrum. When these plants dry up, their chlorophyll content and 

consequently the photosynthetic activity decreases. The reflectance of energy on the 

green part of the EMS and absorption on the red part of the EMS are proportionately 

reduced. Mesophyll however continues to reflect in the near-infrared wavelengths.  

In the mid-infrared segment, the water content in the leaves absorb most of the 

energy and so there is very little reflection. The EMS sections at which electromagnetic 

energy is absorbed by the plant water are the ‘water absorption bands’. When plants dry 

up, reflectance in the mid-infrared region increases. Thus dry plants (e.g. during 

harvesting seasons) tend to loose their green coloration and instead turn brown. The 

relationship between photosynthetic productivity of plants and climatic factors can 

therefore be indirectly understood simply by observing changes on plant leaves. 

 

Figure 2: Electromagnetic energies reflected or absorbed by healthy leafy plants (Not to scale).Figure 

adapted with slight modification from Janssen and Huurneman, 2001. 

 

Normalized Difference Vegetation Index (NDVI) is a standardized measure of 

changes upon vegetation production and is based on reflectances from plants within the 
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optical range of the electromagnetic spectrum. It is calculated as a ratio between the 

difference of reflectances in visible red (R) and near-infrared (NIR) wavelengths and the 

sum of these two reflectances: 

1........................................................... Eq
RNIR
RNIRNDVI

+
−

=  

The index has a range of -1 to +1, with no units. Increasing positive values 

represent blooming plant growth, while lower positive values can represent poor and less 

productive plants, land degradation or bare soils. On the other hand negative NDVI 

values represent the presence of water, ice or clouds. Highly photosynthetic plant life 

such as in dense forest canopies usually have NDVI values of 0.6 or more, while bare soil 

or places with scanty vegetation or dried up plants have NDVI values of between 0.1 and 

0.2 (Jackson and Huete, 1991, Tucker, 1979).  

Acquisition of NDVI-relevant satellite data has been promoted over the past three 

decades, principally by the United States National Oceanic and Atmospheric 

Administration (NOAA) earth observation programs, and NDVI has today become the 

most widely used vegetation index. Lately, the largest NDVI compilation relies on data 

from the Advanced Very High Resolution Radiometer (AVHRR), a sensor mounted on 

US-NOAA satellites (Tucker et al., 2005). This data (NOAA-NDVI data) is readily 

available, easy to use, covers nearly the entire globe and spans over 25 years. 

2.3.2. Relationship between NDVI and rainfall 

One of the most important determinants of vegetation phenology is temporal pattern and 

intensity of local rainfall (Richard and Poccard 1998, Davenport and Nicholson 1993, 

Nicholson 1990, Zhou et al 2001). Indeed rainfall is also the main reason that NDVI can 
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be expected to be associated with transmission of mosquito-borne diseases such as 

malaria. Studies have shown that in various ecosystems, vegetative productivity often 

increases following an increase in amount of precipitation, and that within certain 

precipitation ranges, local vegetation indices are linearly correlated to intensity of 

rainfall. For example, in a study conducted to investigate relationships between NDVI 

and rainfall in East Africa, temporal and spatial patterns of both variables and their inter-

relationships were assessed across different vegetation formations in East Africa 

(Davenport and Nicholson 1993). Using data from 65 different weather stations across 

ten different climate formations, this study demonstrated a strong similarity between 

patterns of these two variables as long as annual rainfall remained below 1000mm and 

monthly rainfall below 200mm. The best correlation was found to occur between 

monthly composite NDVIs and three-monthly averages of rainfall in the current and two 

previous months (Davenport and Nicholson 1993).  

In another study, using data from southern Africa countries, NDVI and annual 

rainfall were found to be comparable as well, even though at such temporal scales 

(annual means), there was minimal sensitivity of NDVI to rainfall (Richard and Poccard, 

1998). Like in the first study, this analysis also found the strongest correlation to occur 

between monthly composite NDVI and lagged rainfall data, in this case the average 

rainfall received in previous two months. It is therefore clear that phenology of vegetation 

as depicted by NDVI closely resembles seasonal cycles of rainfall, even though 

vegetation productivity tends to peak, one to two months after peak rainfall. 
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2.4. Malaria transmission as a local environmental variable and how to measure it 

Quantitative estimates of malaria can be expressed in two ways: 1) based on malaria 

parasite data obtained from tests conducted on humans, or 2) based on parasite data from 

tests conducted on mosquitoes. The two ways may be denoted simply as parasitological 

or entomological estimates respectively. Parasitological estimates are the more common 

method and involve examination of blood using microscopes or rapid diagnostic kits, to 

detect malaria parasites. Malaria prevalence rates or incidence rates can then be 

expressed as proportions of the tested samples that are positive for malaria (Gilles, 2001). 

Parasitological estimates are often interpreted as the relevant indicators of the malaria 

disease burden. 

On the other hand, to estimate the actual force of malaria transmission or the actual 

exposure that humans experience, entomological estimates remain the most suitable. To 

determine malaria transmission based on entomological survey data, the following steps 

are necessary: 

1) Estimation of mosquito densities in the study area. Malaria transmitting 

mosquitoes that enter human houses to bite people, or those that bite people 

outdoors, are sampled using appropriate trapping techniques (Silver, 2008) after 

which, their numerical counts and characteristics are analyzed. This data itself can 

already provide coarse estimates of biting risk and malaria transmission potential. 

2) Estimation of parasite infection rates among the mosquitoes. Percentage of 

Anopheles mosquitoes that carry sporozoites (infective stage of malaria parasite) 

is determined. This is called the sporozoite rate and is a measure of the natural 

infection rates circulating among populations of mosquitoes, and which would 
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possibly translate into real human infection if the infected mosquitoes bite 

humans. The sporozoite analysis is done using special techniques like Enzyme 

Linked Immunosobent Assays (ELISA) techniques (Beier et al., 1990b). 

3) Estimation of human biting rates. Proportion of bites that occur on humans as 

opposed to any other blood hosts is determined. This proportion represents biting 

preferences of mosquitoes and therefore the likelihood that any blood fed 

mosquito would have bitten a human rather than any other animal. This involves 

molecular analysis of blood extracted from mosquito guts (Beier et al., 1990a). 

4) Estimating the number of infectious bites that people receive in a given period of 

time at a given place. This is the most accurate and most common estimate of 

transmission intensities. It is referred to as entomological inoculation rate (EIR) 

and is calculated based on human biting rates and mosquito sporozoite rates. 

2.4.1. The theory of Entomological Inoculation Rate (EIR) 

Entomological Inoculation Rate (EIR) is the most commonly used estimate of malaria 

transmission intensities and is considered a fairly standard method for estimating risk of 

malaria exposure that humans experience (Beier et al., 1999, Smith et al., 2005). 

Specifically, EIR at any place is the number of infectious mosquito bites that an average 

individual receives over a given period of time at that particular place. It is usually 

measured as annual EIR but can also be represented as daily EIR or monthly EIR. 

Computationally, it is the product of number of bites from malaria vectors that an 

individual gets in a defined period, i.e. the biting rate (BR) and proportion of those 

mosquitoes that are actually infected with sporozoites, i.e. sporozoite rate (SR): 

2............................................................. EqSRBREIR ×=  
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In Africa, where malaria transmission is very highly heterogeneous, there are 

places with EIR values that are too low to detect using standard techniques, yet there are 

also places where malaria transmission is so intense that annual EIR exceeds 1000 

(Okello et al., 2006, Beier et al., 1999, Smith et al., 2005). Nevertheless, these rates have 

been found to strongly correlate with malaria parasite prevalence (Beier et al., 1999, 

Smith et al., 2005) as well as malaria related child mortality and morbidity (Smith et al., 

2001, Smith et al., 1998), reaffirming the relevance of EIR estimates (Figure 3). 

A B

 

Figure 3: Relationship between mean annual EIR and: A) child mortality in Africa or B) malaria 

prevalence in Africa. In Panel A, the green circles represent mortality rates among infants (0-11 months of 

age), while the open squares represent mortality rates among children less than five years (12-59 months) 

of age. In Panel B, the solid circles represent two outlier villages where EIR was undetectable or barely 

detectably but where malaria prevalence was above 40%. The two figure panels have been adapted from 

Smith et al., 2001 and Beier et al., 1999 respectively. 
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2.5. Significance of the study 

This work is a basic exploration of spatial and temporal relationships between malaria 

transmission measured as Entomological Inoculation Rate (EIR) and photosynthetic 

productivity of vegetation, measured as Normalized Difference Vegetation Index 

(NDVI). No attempt is made to actually develop any algorithms for purposes of 

predicting malaria transmission on the basis of vegetation production. 

The primary motivation of the work was the need to determine whether or not 

patterns of vegetation productivity are geographically related to patterns of malaria 

transmission intensities and therefore whether there is any potential of using NDVI in 

future as a reliable indicator of places where environmental conditions are suitable for 

malaria transmission to occur.  It was envisaged that if reasonably strong relationships 

between vegetation production and malaria transmission were observed, then such 

relationships could potentially be incorporated in models that use vegetation production, 

instead of or together with the usually numerous and often random effects of climatic 

factors (such as precipitation, humidity, temperatures, altitude, topography, etc) to more 

accurately define geographical and temporal extents of malaria exposure; or simply to 

determine likelihood and level of malaria exposure at any given location and at any given 

time. This would be especially useful where there is no empirical field data available for 

malaria transmission. 
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3.0. Study areas 

3.1. General description 

This study is generally focused on the entire continent of Africa. However, spatial and 

temporal associations are explored at local level for selected areas depending on 

availability of EIR data in published literature (Figure 4), and whether the data was 

sufficiently clustered or temporally repeated enough to allow for the analyses: 

0 1000km0 1000km0 1000km0 1000km

 

Figure 4: General study area showing locations from where EIR data was available (n=302). 
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3.2. The Gambia 

Data obtained from the Gambia (Figure 5) were dated between 1989 and 1995, at a time 

when average EIR was below 20 and the primary malaria vector was An. gambiae. Only 

one of the 25 study sites was urban (Lindsay et al., 1992, Lindsay et al., 1990, Lindsay 

and Janneh, 1989) and the study sites were generally below 50m above sea level. 

 

Figure 5: Locations in the Gambia for which EIR data was available (n = 25). 
 

3.3. The United Republic of Tanzania 
 
Selected sites in Tanzania included: an area in Kilombero district, in south eastern part of 

the country and two clusters in north eastern part, one in Bagamoyo district and another 

cluster covering parts of Muheza, Korogwe and Pangani districts (Figure 6).  
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Figure 6: Locations in Tanzania for which spatially clustered EIR data was available (n = 35) 
 

 The Kilombero district cluster lies within a low-lying flood plain (averaging 

270m altitude) with 1200-1800mm annual rainfall. Data obtained here dated between 

1993 and 2004, during which time EIR varied from 4 to 420 and the primary vector was 

An. gambiae (Drakeley et al., 2003). Four of the nine study sites were at the edge of a 

small town, Ifakara town, while the others were rural villages. The second cluster, the 

Bagamoyo district cluster lies at the Indian Ocean coast at approximately 30m altitude. 

Here also, EIR was highly variable (26.7 to 547.5) during the data collection period 

which was 1992 to 1996 (Shiff et al., 1995, Temu, 1997). The primary vectors were An. 

gambiae and An. funestus and all data for this cluster were from rural areas. Lastly, the 

cluster that covers areas around Muheza, Korogwe and Pangani Districts, north eastern 

Tanzania is on the side of a mountain range, the Usambara mountain range, which rises 
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from 300 metres to 1650 metres above sea level and is characterized by steep undulating 

slopes (Balls et al., 2004). In this entirely rural cluster, EIR was also highly 

heterogeneous (2 to 702) during the data collection period (1988 to 1996) and the primary 

vector at that time was An. gambiae. 

3.4. Burkina Faso 
 
In Burkina Faso, there are two areas, where locally clustered EIR data was available 

(Figure 7) and both of which are approximately 300m above sea level, 

 
 

Figure 7: Locations in Burkina Faso for which spatially clustered EIR data was available (n = 37) 
 

 

As shown in figure 7, the first study area covered six districts in the south western 

region of the country and the second area covered four districts in the central part of the 

country. In both regions, the main malaria vector was An. gambiae even though there 
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were also considerably high proportions of An. funestus (Robert and Carnevale, 1991, 

Robert et al., 1988, Carnevale et al., 1992, Carnevale et al., 1988). Whereas in the 

western region only 5 out of 23 EIR data sites were urban, half of the data points in the 

central region were urban. 

3.5. Uganda 
 

In Uganda, there are three districts where repeated monthly EIR data had been 

collected from single point locations between 2001 and 2002 period, as part of a malaria 

drug efficacy trial (Okello et al., 2006). This allowed not only for spatial analysis but also 

for temporal exploration of local level EIR-NDVI relationships. The three sites are in: 1) 

the north western frontier district of Arua, 2) Apac district in the central part of the 

country and 3) district in south eastern part (Figure 8).  

In Arua district, the data was collected from Cillio village, an area of 930m 

altitude and 289mm annual rainfall. In Apac, data came from Olami-A village, 1000m 

altitude with annual rainfall of 1474 mm. This district experiences arguably the world’s 

most intense malaria transmission; unprotected residents here receiving up to 3500 

infectious bites annually (Okello et al., 2006). Finally in Tororo district, data had been 

collected from Namwaya Central village (1125m altitude and 1459mm annual rainfall). 

All these three study sites were rural villages. While the main malaria vector in Arua 

district during the time when the EIR data was collected was An. funestus, it was An. 

gambiae which was the predominant species in Apac and Tororo.  
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Figure 8: Locations in Uganda for which temporally repeated EIR data was available (n = 39) 
 

3.6. Cameroon 
 
Another area for which repeated monthly EIR data was available, and where temporal 

variations of EIR and NDVI could therefore be analyzed, was a rural village in the 

district of Haute Sanaga in central Cameroon (Figure 9). This village lies at 

approximately 583m altitude and has mean annual rainfall of 1719mm. Between 

February and December 1999 when data was collected, EIR varied from 48 to 188 and 

the main vector was An. funestus (Cohuet et al., 2003). 
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Figure 9: Locations in Cameroon for which temporally repeated EIR data was available (n = 8) 
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4.0. Datasets 

4.1. Malaria transmission intensities  

4.1.2. Published EIR data 

The EIR data used here comes from published research papers dating from as early as 

1981.The following inclusion criteria was used to select EIR data for this purpose: 1) the 

data must have been collected from Africa, 2) it must have been collected between 1981 

and 2006, so as to match availability of the NDVI data (see section 4.2), 3) the author(s) 

must have explicitly specified the geographical coordinates of the study area, 4) the 

author(s) must have explicitly specified the start and end dates of their study and 5) the 

EIR must have been explicitly defined as daily, monthly or as annual EIR. A list of all the 

EIR data used here, including referenced sources is included in Appendix 1. 

This EIR data is of two different types namely: 1) those obtained from MARA 

(Mapping Malaria Risk in Africa), an online database (http://www.mara.org.za/) and 2) 

those obtained directly from scientific publications. The MARA database has EIR records 

dating between 1979 and 1996, and was the source of most of the malaria transmission 

data used here (Appendix 1). In addition, direct internet searches were conducted, which 

yielded extra EIR data covering the period between 1995 and 2004 including a few 

studies conducted in mid 1990s, which were not in the MARA database. A total of 302 

EIR entries matching the set inclusion criteria were obtained. These were distributed in 

16 African countries, occasionally occurring in localized clusters or repetitively for 

several months (Figures 4-9). Generally, the EIR data was highly heterogeneous, across 

time and space with values ranging from as low as 0 (undetectable transmission) to as 

high as 3545 infectious bites per year in a rural village in Uganda (Okello et al., 2006). 

http://www.mara.org.za/
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This is illustrated in figure 10, which shows a frequency distribution of the data when 

grouped in classes with an arbitrary class-size of 50 values each.  
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Figure 10: Frequency distribution of EIR data when grouped in consecutive classes of 50 values each from 

0 to 3545. Classes with zero frequency are not included. 

4.2. Vegetation production 

4.2.1. The GIMMS NOAA-AVHRR NDVI data 

The vegetation production data used for this study has previously been described in detail 

by Tucker et al 2005. It is archived at the Global Land Cover Facility 

http://glcf.umiacs.umd.edu/data/gimms/ in GeoTIFF format (Geographic Tagged Image 

Files), and is publicly available for download via a file transfer protocol (FTP) server. 

This data is most accurately identified as Global Inventory Modeling and Mapping 

Studies (GIMMS) Satellite Drift Corrected and NOAA-16 incorporated Normalized 

Difference Vegetation Index (NDVI), monthly 1981-2006, or simply as the GIMMS 

NOAA-AVHRR NDVI data (Tucker et al., 2005). 

http://glcf.umiacs.umd.edu/data/gimms/
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The data was derived from reflectances captured by Advanced Very High 

Resolution Radiometers (AVHRR), mounted on National Oceanic and Atmospheric 

Administration (NOAA) earth observation satellites. These satellites had originally been 

designed for meteorological purposes, but have increasingly been used for vegetation 

monitoring since early 1980s. Their sensors acquire data on five different spectral bands 

(or channels) including the red (0.5-0.7 micrometres) and infrared (0.7-1.1 micrometres) 

wavelength bands useful for vegetation monitoring, as well as three thermal infrared 

bands, mainly applicable for sea surface temperature monitoring. The GIMMS-NDVIs 

are computed based on reflectance data, measured as digital counts on bands 1 and 2 (red 

and infrared bands respectively), as described in equation 1.  

The data is originally captured as 1.1km pixels but are resampled to 4km pixels 

using onboard data transformation algorithms (Tucker et al., 2005). Further resampling is 

done to achieve a spatial resolution of 8km, as a trade-off to suite storage requirements 

and maximize area of coverage. The data is available for the entire globe except 

Greenland and Antarctica and is composited such that for each month since July 1981 to 

2006, there are two NDVI data files for all locations; first composite covering days 1 to 

15 and a second composite for the same months covering days 16 to 30th or 31st.   

Prior to archiving, this data underwent comprehensive processing to correct for 

several inherent effects, namely: 1) atmospheric interference such as persistent cloud 

cover, water vapor and volcanic aerosols, 2) intercalibration differences in characteristics 

between the different sensors used in different NOAA missions, 3) overtime change in 

sensitivities of the sensors due to sensor degradation and 4) satellite drift in the orbits. 

Also already performed was the conversion of data units from digital values measured by 
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the sensors to the actual reflectances necessary to calculate NDVIs.  Lastly, the archived 

data is provided on Albers Equal Area Conic Projection, set on Clarke 1866 ellipsoid and 

it has been scaled so that the NDVI values range from -10000 to 10000. All water pixels 

are assigned the value of -10000 and masked pixels assigned the value of -5000.   

4.3. Rainfall data 

Rainfall data was obtained free of charge from the research data archives of the National 

Centre for Atmospheric Research, Colorado, USA (http://dss.ucar.edu/datasets/ds571.0. 

This dataset had originally been compiled by Dr. Sharon Nicholson at the Florida State 

University, USA. It consists of monthly rainfall totals for more than sixty weather 

stations across Africa, and covers the period between 1901 and 1984. For the purposes of 

this analysis, data was extracted for two weather stations located in two different climatic 

zones in Kenya, namely: i) Kitale, a forested agricultural area with high annual rainfall 

(averaging 1231mm) and ii) Mandera, a semi-arid grassland receiving low amounts of 

rainfall (130.5mm annual average).  

This data set has been extensively reported upon, and rainfall-NDVI analyses 

have previously been conducted for several locations in Africa, including the two Kenyan 

sites considered here (Davenport and Nicholson 1993, Nicholson 1990, Richard and 

Poccard 1998). The data is therefore used here specifically to emphasize the fact that 

rainfall is the major factor affecting vegetation growth, and to highlight the potential of 

rainfall-NDVI relationships as a confounder of any relationships between NDVI and EIR. 

http://dss.ucar.edu/datasets/ds571.0
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4.4. Supplementary data 

For each EIR data point, the following additional information was extracted from the 

research publications: 1) geographical coordinates, i.e. latitude and longitudes of the data 

collection site, 2) settlement status, i.e. whether the study site was urban or rural, 3) start 

and end dates of the study, 4) primary malaria vector specie(s) in the area during the 

period of the study, and 5) the elevation of the study site (in metres) above sea level. 

In many cases, elevation data was available in the respective EIR publications but 

in some of the publications, it had not been expressly reported. Therefore to obtain a 

complete and uniform dataset, all the heights were determined anew using earth viewing 

software, Google Earth, version 5 (Google™, USA). These heights were generalized to 

represent each entire study area. Google Earth uses digital elevation model (DEM) data 

collected by NASA’s Shuttle Radar Topography Mission and most land areas are covered 

in the satellite imagery with resolution of about 15m per pixel, which is considerably 

finer than the NDVI dataset used in this analysis. Similarly where the publications did not 

have explicit records of whether a study area was urbanized or rural, that information was 

obtained by direct viewing of the area in Google Earth (Google™, USA), to determine if 

it was urban or rural. Obviously, there may be other elevation datasets with greater 

accuracy and resolution than the Google Earth data, for example the 1 arc-minute 

resolution ETOPO-1 global relief model published by National Geophysical Data Centre 

(http://www.ngdc.noaa.gov/mgg/global/global.html). Nevertheless, the Google Earth 

data, apart from being readily and freely available in a fully processed format, was also 

considerably sufficient for this particular application, as the NDVI and EIR datasets with 

which it is compared, were compiled for higher resolutions of at least 8km per pixel. 

http://www.ngdc.noaa.gov/mgg/global/global.html
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5.0. Methods 

5.1. Processing data in GIS 

The collected data was first checked and corrected for inconsistencies such as 

inaccuracies of coordinate records and improper labelling. All the EIR data was then 

converted to a single standard unit of representation, i.e. annual EIR. Second, study dates 

obtained from the EIR published records were arranged in a chronological order so that 

NDVI images corresponding to these dates and locations could be identified and collated. 

This way, for each study and study site, all NDVI images for the entire study period were 

obtained and matched to respective dates and areas. The NDVI images were imported 

into ArcGIS® Desktop 9.2 (ESRI, USA) and projected to Africa Albers Equal Area Conic 

projection. To minimize file size and avoid mismatches, the NDVI data was grouped by 

dates and different data files created for each set of consecutive dates. For example if in 

one given area there had been three different studies dated Jan 1981 to Dec 1981, July 

1981 to June 1982 and Jan 1982 to Dec 1982 respectively, would conveniently be 

analyzed from the same map file bearing all the NDVI map data for the period between 

January 1981 and December 1982.  

Third, a shape file containing EIR data points for each study area was imported to 

the same map file as the respective NDVIs. Using the study area coordinates, the month 

and the year when the research had been conducted, NDVI values were sampled for each 

study site and the respective study durations. For example in the case of a study lasting 

January 1991 to December 1991, the entire range of NDVI values for that particular 

geographical location, were extracted for the whole of 1991. This means 24 NDVI 

parameter values for that particular study (since there were 2 NDVI composites per 
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month). The NDVI extraction was repeated for all the EIR data points. This procedure is 

analogous to ‘drilling’ through layers of NDVI data files for different dates and 

extracting for each particular location, the respective NDVI values from every layer.  

Since the original NDVI data had been scaled to the range of -10000 to +10000, 

(water pixels being represented as -10000) to facilitate storage, the extracted NDVI 

values needed were rescaled so as to fit the actual NDVI data range (-1 to +1) using the 

following formula as elucidated in the original data documentation (Tucker et al., 2005): 

3.................................................
10000

EqRawFloatNDVI 





×=  

5.2. Statistical analysis 

The following estimates were computed for each EIR data point: mean NDVI, maximum 

NDVI, minimum NDVI and median NDVI. The importance of using these multiple 

estimates of NDVI was to extend the statistical spectrum of this exploration. Since EIR 

was highly heterogeneous, with initial scatter plots revealing considerable skewness, the 

data was first logarithmically transformed to minimize these excessive variations and to 

make it readily amenable to statistical analysis using parametric methods: 

( ) 4.........................................................110 EqXLogy +=  

where ‘X’ is the actual EIR value for any data point and the value 1 is added to give 

statistical meaning to  any zero values in the dataset, during the transformation.  

The elevation data was grouped into classes of 250 metres each and the classes 

were ranked from lowest to highest (rank values: 1-7).  On the other hand, urbanization 

was coded as 1 or 0 to represent rural and urban areas respectively. Statistical tests were 

conducted using SPSS® software version 15 (SPSS inc. Chicago USA).  
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Effects of elevation and urbanization on vegetation production were first analyzed 

separately using generalized linear regression models. Next, a multivariate regression 

analysis was conducted in which EIR was modelled as a function of NDVI, making sure 

that effects of both urbanization and elevation were corrected for: 

5.................................2211 Eqexbxbbxay ++++=  

where y is the log transformed value of EIR,  a is the y-intercept and b, b1 and b2 refer to 

the slopes of the regression line representing change in EIR for each respective change in 

NDVI (x), elevation (x1) or urbanization (x2) and e is  the residual error estimate. In order 

to include urbanization, as a categorical variable in the multiple regression analysis, rural 

areas were coded as 0 while urban areas were coded as 1. To estimate the strength of the 

modelled relationships, a goodness of fit statistic, i.e. R-squared (R2), representing the 

proportion of variations in EIR, which can be explained by the best fit linear regression 

equations, and the probability that the regression model is not the correct fit so that the 

slope is zero (significance value) were also calculated.  

Using this method, the relationships were explored for different categories as 

follows: 1) continent-wide relationship, explored on the basis of all the data obtained, 2) 

local level spatial relationships, explored for areas where spatially clustered EIR data 

were available (The Gambia, three clusters in Tanzania and  two clusters in Burkina 

Faso) and 3) temporal relationships explored for areas where consecutively repeated EIR 

measurements collected on monthly basis were available (one village in Cameroon and 

three villages in Uganda).  

For the temporal analyses, the NDVI data was lagged by combining means of 

previous month and current month NDVIs. This lag considers the fact that vegetation 
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production and malaria transmission respond at different rates to the different climatic 

factors, such as rainfall, and therefore enabled representation of changes manifesting as 

late as one month after being initiated. None of the data obtained from the MARA 

database was suitable for this temporal analysis; thus only the data extracted directly 

from research publications was used for this purpose. A similar regression analysis was 

performed to assess relationships between NDVI and rainfall. In this case however, three-

month composite moving averages of rainfall were used, such that each NDVI value was 

matched with the average of the concurrent and two previous monthly rainfall data, as 

originally described by Davenport and Nicholson (1993). 
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6.0. Results 

6.1. Relationship between vegetation growth and rainfall  

When NDVI data is analysed against three-monthly moving averages of rainfall, the 

patterns and intensity of rainfall are directly comparable to patterns and intensity of 

vegetative productivity for the 1983-84 period in both Kitale (t = 6.25, R2 = 0.71, P < 

0.001) and Mandera (t = 9.44, R2 = 0.77, P < 0.001)) (Figure 11). 
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Figure 11: Relationship between vegetation productivity (grey bars) and 3-monthly moving rainfall 

averages (line graphs) for Kitale (a forested agricultural zone in western Kenya) and Mandera (a semi-arid 

grassland area in northern Kenya).  
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Since the Nicholson rainfall data extended only up to the end of 1984, even 

though the NDVI data spanned from as early as mid 1981, this NDVI-rainfall trend 

analysis was restricted to cover only the period during which the two datasets overlapped.  

6.2. Effects of elevation and urbanization on vegetation production and malaria 

transmission intensities 

Initial analysis indicates that elevation is strongly associated with NDVI in the different 

study sites (table 1). Analysis of trends shows that NDVI is significantly higher in high 

altitude areas, when compared to low altitude areas (t = 8.75, P < 0.001, R2 = 0.23). 

Malaria transmission intensities also increase with altitude but only up to about 1000m, 

after which transmission evidently reduces despite continued increase in altitude (Figure 

12). In fact, when both NDVI and EIR are plotted against altitude in the same graph, it 

appears that any association between vegetation production and malaria transmission is 

limited to areas not exceeding approximately 1000m altitude, and that beyond this height, 

there is no linear relationship between the two variables (Figure 12). 

Similarly it is observed that NDVI is significantly higher in rural areas that in 

urban areas (F = 16.09, P < 0.001).  Rural areas have a mean NDVI value of 0.478 

(95%CI 0.458 - 0.497), n=250, while urban areas have mean NDVI value of 0.387 

(95%CI 0.337 – 0.437), n=42.  Analysis using a Generalized Linear Model also shows 

significantly higher malaria transmission intensities in rural areas than in urban areas. In 

fact, analysis of odds of being infected with malaria reveals that people living in rural 

areas (which in general are areas with higher NDVIs) are 2.14 (1.58 - 2.89) times more 

likely to contract malaria than people living in urban areas, which generally have lower 

NDVIs (P < 0.001). 
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Table 1: Correlation between elevation and NDVI in the different parts of Africa from where EIR data was 

collected. 

Elevation (Meters ) Mean NDVI 95% CL N 
0-250 0.391 0.359 - 0.423 104 

250-500 0.426 0.401 - 0.451 69 
500-750 0.452 0.398 - 0.506 23 
750-1000 0.582 0.529 - 0.635 18 
1000-1250 0.545 0.506 - 0.584 51 
1250-1500 0.628 0.588 - 0.669 24 

Above 1500 0.620 0.554 - 0.686 3 
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Figure 12. Trends of variations in malaria transmission intensities (grey bars) and vegetation production 

(line graph), when plotted alongside increasing elevation (metres above sea level). While NDVI increases 

with elevation even beyond 1000m, malaria transmission intensities increase only up to about 1000m, after 

which it evidently reduces despite any further increase in altitude. 



 44 

6.3. Overall continent-wide association between vegetation production and malaria 

transmission intensities 

A scatter plot showing the overall relationship between LogEIR and Mean NDVIs is 

shown in figure 13. If all the data from the continent is considered, and after correcting 

for effects of urbanization and elevation, malaria transmission intensities (EIR) remains 

significantly associated with vegetation production (t=3.329, P<0.001). Table 2 shows 

effects of the different variables on malaria transmission in Africa.  

 

Table 2: Results of the multiple regression analysis showing effects of vegetation production on malaria 

transmission intensities, after correcting for effects of urbanization and elevation$. 

Factors Regression 
Coefficients 

Std. 
Error 

t P 95%CL 

Urbanization 0.762 .154 4.942 .000 .459 to 1.066 
Elevation -0.114 .034 -3.321 .001 -.181 to -0.046 

NDVI 1.347 .405 3.329 .001 .551 to 2.144 
Intercept 0.627 .193 3.252 .001 .247 to 1.007 

 

$ Since urbanization was treated as a binary variable and coded as either 1 or 0 for rural and urban areas 

respectively, the given urbanization coefficient is applicable only where a place is rural, otherwise the 

coefficient is zero. Similarly, the elevation coefficients are based on height class values (1 to 7) as opposed 

to the actual elevation values. The regression coefficient for NDVI represents the effects of vegetative 

productivity on malaria transmission intensities, having allowed for effects of urbanisation and elevation. 
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Figure 13: Continent-wide correlation between malaria transmission intensities and vegetation production 

in Africa (R2 = 0.15). Based on the regression coefficients shown in table 2, the best fitting linear 

regression model is: Log (EIR+1) = 0.63 + 1.35NDVI +0.762R – 0.114E, where R is the dummy variable 

referring to whether the place was rural (R=1) or urban (R=0) and E refers to elevation class value (1≤E-

≤7). 

 

6.4. Temporal relationships between vegetation production and malaria 

transmission intensities in selected study sites having monthly repeated EIR data. 

6.4.1. Uganda 
 
This analysis covers for the period between June 2001 and May 2002, when the 

temporally repeated data was collected. In Apac district, the peak vegetative productivity 

appears to have been between April and July 2001. Nevertheless, productivity remained 

generally high, with just a minor sink between August and October 2001. Then around 

January 2002, productivity was greatly decreased and NDVI remained below 0.5 for two 
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months. Malaria transmission clearly follows the same trend with the lowest EIR values 

having been at the same time as when vegetation production was also lowest (Figure 14). 

Linear regression analysis shows a significant relationship between malaria transmission 

and vegetation productivity in this area (t=3.10, P = 0.01, R2 = 0.49), the best fit linear 

regression model being, Log EIR = 2.07NDVI + 1.80. 

 Generally, similar trends of NDVI and EIR for this period are observable also for 

Arua district, even though in this area malaria transmission remained low during the peak 

productivity season in June and July 2001. Data from this site shows a barely significant 

relationship between the two variables (t = 1.48, P = 0.69, R2 = 0.19). Lastly in Tororo, 

where changes in vegetation productivity trends appear to have been mainly gentle with 

peaks in December and May 2001, EIR follows the same trend peaking and falling either 

at the same month as NDVI or a month earlier for example as observed in April 2002 

(Figure 14).  However, similar to Arua, statistical analysis of these trends shows no 

significant relationships between NDVI and EIR (t = 0.473, P = 0.646, R2 = 0.02). 

6.4.2. Cameroon 
 
Unlike in Apaca, Uganda, data from the village in Haute Samaga district, southern 

Cameroon depicts no significant relationship between mean NDVI and logEIR (t = 0.758, 

P = 0.49, R2 = 0.13). The monthly vegetation production trends are also not comparable 

to malaria transmission trends in the selected area. 
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Figure 14: Comparison of monthly phenology of vegetation production (open bars), and malaria 

transmission (green lines) between June 2001 and May 2002 in three sites in Uganda. The regression trends 

of log EIR on mean NDVI shown on the right side of each graph for the three sites: A) Apac district (R2 = 

0.49), B) Arua district (R2 = 0.19) and C) Tororo district (R2 = 0.02) in Uganda.  
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6.5. Spatial relationship between vegetation production and malaria transmission 

intensities in selected study sites with locally clustered EIR data. 

6.5.1. The Gambia 

Based on this analysis, there is a strong and statistically significant association between 

vegetation production and malaria transmission in The Gambia (t = 5.81, P < 0.001, R2 = 

0.74). EIR clearly increased with increasing NDVI during the time when the EIR data 

was collected. As shown in figure 15, the best fit regression model expressing EIR as a 

function of median NDVI is Log (EIR+1) = 9.1 NDVI – 1.9, which explains up to 74% 

of variations in malaria transmission in this study area (R2 = 0.74).  
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Figure 15: Relationship between vegetation production and malaria transmission intensities in The 

Gambia. Regression equation: LogEIR = 9.1NDVI – 1.9 and R2 =0.74. Since all data from this area fall 

within the same elevation class and since all except one are in rural areas, the regression equation does not 

include terms for urbanization or elevation. 
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6.5.2. Burkina Faso 

In spatial cluster 1 (i.e. the area covering six districts in south west of Burkina Faso) there 

appears to be a strong and significant relationship between NDVI and EIR (t = 2.95, P = 

0.008). Here, EIR increases with increasing NDVI and the best-fit model was logEIR = 

7.5 NDVI - 1.1, which explains nearly 30% of variations in malaria transmission in the 

area (R2 = 0.29). Moreover, in cluster 2 (i.e. the area covering four districts in central part 

of Burkina Faso), where there were relatively fewer data points, linear regression analysis 

depicts the strongest relationship in this entire exploration (t = 4.81, P = 0.009, R2 = 

0.85). EIR here is evidently higher when or where NDVI is high and vise versa. The best-

fit equation is logEIR = 15.12 NDVI– 2.0. In both clusters however, no effects are 

observed of urbanization (t=0.232, P=0.832) or elevation (t=1.450, P=0.243) on EIR or 

on the correlation between EIR and NDVI. 

6.5.3. United Republic of Tanzania 

Figure 16 illustrates a summary of analysis results for the Tanzanian data. In the first 

spatial cluster (i.e. Kilombero District, south eastern Tanzania), it is clear that after 

adjusting for the effects of both urbanization and elevation, EIR remains strongly 

associated with vegetation production (t = 2.670, P = 0.049, R2 = 0.82). In contrast data 

from the second cluster (i.e. Bagamoyo district, north eastern Tanzania) shows that 

malaria transmission intensities in this study site are only marginally statistically 

associated with vegetation production (t = -2.35, P = 0.057, R2 = 0.48). Finally, in the 

third spatial cluster (i.e. areas around Muheza, Korogwe and Pangani Districts, north 

eastern Tanzania), there is also a marginally significant relationship between EIR and 

NDVI (t = 2.214, P = 0.061, R2 = 0.51,). 
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Fig. 16: Relationship between vegetation production and malaria transmission intensities in three selected 

areas in Tanzania, for which clustered EIR data was available. 
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7.0. Discussion 

Vegetation production is a unique environmental variable which is essentially dependent 

on the same climatic factors as malaria transmission, but which can be more accurately 

represented using indices calculated from remotely sensed data such as Normalized 

Difference Vegetation Index (NDVI). This kind of data can be obtained at varying spatial 

resolutions, allowing vegetation production to be measured as a local environmental 

variable, depicting differences even for small villages. 

 Using GIS-based techniques, together with multiple linear regression analysis, 

this study has confirmed the hypothesis that variations in malaria transmission intensities 

in Africa are very closely associated, both spatially and temporally, to photosynthetic 

productivity of vegetation. This study was restricted to basic exploration and therefore no 

attempt has been made to predict malaria transmission on the basis of vegetation 

production. However, the results demonstrate that indeed vegetation production is a 

potential indicator of conditions for malaria transmission and that NDVI may therefore be 

incorporated in existing or new techniques to improve mapping of geographical and 

temporal extents of malaria risk. 

Though the NDVI-EIR relationship exists on a continent-wide scale, it is 

evidently stronger when localized data are considered. One especially interesting finding 

of this study is that people living in rural areas in Africa are at least two times more likely 

to contract malaria than people living in urban areas in Africa. Also, urban areas have 

poorer or fewer quantities of vegetation than rural areas, which may be due to the fact 

that urban areas consist of more built up areas with hard surfaces. Indeed, this study also 

shows that differences in vegetation production between urban areas and rural areas 
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correspond to differences in malaria transmission intensities in these areas. A similar 

confounding effect was observed for altitude, which also likely affects vegetation 

production in a manner equivalent to its effects on malaria transmission. These findings 

thus reinforce vegetation production as a potential indicator of areas suitable for malaria 

transmission, and thus a potential candidate to consider when fine-tuning transmission 

extents in malaria risk maps (Hay et al., 2005, Hay and Tatem, 2005). 

NDVI data sets, particularly those derived from NOAA-AVHRR are already 

widely popular in several fields e.g. agriculture, industrialization and environmental 

monitoring. For example, it has previously been used for assessing land degradation and 

evaluating environmental conservation programs (Chen et al., 2005, Runnström, 2000) 

and also to monitor progression of deserts (Tucker et al., 1983, Tucker et al., 1985). 

Moreover, public health applications of this data are also gradually increasing (Hay et al., 

1998, Rogers et al., 2002a). Other than the many characteristics of the GIMMS-NDVI 

dataset (Section 4.2.1), another advantage of using vegetation production (rather than 

natural climatic factors) to describe geographical patterns of disease, is the greater 

susceptibility of vegetation to human activities. There are situations where vegetation 

production responds to human activities in ways that are not in any way correlated to 

changes in natural factors such as temperature and rainfall. An example is when artificial 

precipitation, such as crop irrigation, causes an increase in vegetative productivity. This 

situation of ‘productive vegetation without rainfall’ would likely render rainfall-based 

mapping-algorithms erroneous. Situations like these, which in Africa commonly occur 

around rice irrigation schemes, large water projects or river valleys, may be readily 

corrected by incorporating vegetation production data in the analyses. This is because 
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both malaria transmission and vegetation production readily respond to increased 

precipitation, whether natural or man made. 

As revealed by this exploratory study, these associations between vegetation 

production and malaria transmission are however not universal throughout the continent; 

there are places with strong significant correlations between these two variables, and also 

areas where no such associations exist. Moreover the observed NDVI-EIR relationships 

appear to be actually stronger in some places than in others. While it was not possible to 

precisely determine causes of these differences, they are likely to be because of the fact 

that other than the underlying primary climatic factors such as rainfall and temperatures, 

there may be several other modifiers affecting vegetation growth and malaria 

transmission independently. For example, vegetation production may be affected by 

factors such as soil type acting independently of rainfall (Baret and Guyot 1991). 

Similarly, vegetation-rainfall relationships are known to remain valid only when rainfall 

is at least 1000mm annually (Nicholson, Davenport 1993), meaning that even if there 

were a perfect relationship between NDVI and EIR, it would potentially be confounded 

by amount of rainfall, soil type, human activities or other local environmental factors. 

The broad spatial and temporal coverage of the GIMMS-NDVI and the EIR data 

used in this analysis makes it particularly appropriate. This study covers not only the 

entire region of malaria endemic Africa, but also 23 years of NDVI data (1981-2004). 

While the 8km pixel size of the GIMMS-NDVI data may be considered extra-coarse for 

some applications, it has been a practically reasonable dataset for this work, given the 

fact that EIR data with which it is compared has been generalised for entire villages or 

towns. 
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One limitation of this work is its restriction to only the available data, i.e. the 

archived NDVI data and published EIR results. This biased sampling means that other 

malaria endemic places with no recorded previous entomological surveys could not have 

been included in the analysis. It can be argued therefore that this analysis would have 

greatly been improved if there had been evenly distributed sentinel data collection 

stations across the study area. Good examples where such an approach have been of 

immense benefit include the use climate stations data for land degradation monitoring in 

semi-arid China (Runnström, 2000) and vegetation growth and rainfall trends in Africa 

(Richard and Poccard 1998). 

Another limitation of this study was that it did not consider whether of not there 

had been any major malaria intervention projects at the time when the EIR data was 

collected. It is possible that such interventions would have lowered malaria transmission 

in ways that would weaken the correlations with vegetation production. Indeed malaria 

control methods such as the use of Insecticide Treated Nets (ITNs) or Indoor Residual 

Spraying (IRS) of insecticides are proven to greatly disrupt transmission (Kusnetsov, 

1977, Curtis and Mnzava, 2000, Mabaso et al., 2004). Nevertheless, such effects may not 

have been widespread in the 1980s and 1990s when most studies considered here were 

conducted. At that time, ITNs were not yet part of public health policy in Africa, IRS had 

been stopped in most countries after the failure of the global malaria eradication program 

in late 1960s and malaria transmission control activities had generally been nearly 

relegated (Lengeler, 2004). These results may therefore be confidently considered as 

being closely representative of natural relationships between malaria transmission and 

vegetation production. 
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8.0. Conclusion and recommendations 
 
It is concluded that changes which occur in the photosynthetic productivity of vegetation 

from time to time and from place to place are related to the changes in malaria 

transmission at the respective places and times. This relationship is stronger when 

localised data is considered as opposed to when data from the whole continent is 

considered. Moreover, factors such as urbanization and elevation which affect vegetation 

growth are also correlated to malaria transmission intensities. The implication of these 

results is that vegetation production is a potential indicator of geographical locations 

where existing factors are favourable for malaria transmission to occur. For purposes of 

delineating geographical extents of malaria risk areas, vegetation production may  for the 

basis of mapping techniques that are free numerous errors that abound when climatic 

factors such as precipitation, humidity, temperatures, altitude, topography, among others 

are used for mapping the risk and extents of malaria and perhaps other vector borne 

diseases. More accurate results would be obtained if such vegetation based algorithms are 

used for small local areas such as neighbouring villages and districts than if they are used 

for large scales such as an entire continent.  
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 Appendix 1: Data sources 

1. Vegetation production data_ 

• Obtained from the Global Land Cover Facility archives: 

http://glcf.umiacs.umd.edu/data/gimms/ 

2. Rainfall data 

• Obtained from the research archives of the National Centre for Atmospheric 

Research, Colorado, USA: http://dss.ucar.edu/datasets/ds571.0. 

3. Altitude and urbanization data 

• Obtained from Google Earth 

4. Malaria transmission data 

• Obtained from MARA (Mapping Malaria Risk in Africa): 

http://www.mara.org.za/.  

• For a complete list of references to the data including those from the MARA 

database as well as all the other data, see Appendix table 1 below. 

 

 

 

 

 

 

 

 

 

http://glcf.umiacs.umd.edu/data/gimms/
http://dss.ucar.edu/datasets/ds571.0
http://www.mara.org.za/
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5. Number and references of EIR data points obtained from different publications (Includes both the 

MARA publications and those obtained from elsewhere) 

 

*Where more than one publication is attributed to one author, the number of EIR data points is shown in 

respective order of publication listing.  
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Series from Lund University’s Geographical Department 
 
 

Master Thesis in Geographical Information Science (LUMA-GIS) 
 
1. Anthony Lawther: The application of GIS-based binary logistic regression for 

slope failure susceptibility mapping in the Western Grampian Mountains, 
Scotland. (2008). 

2. Rickard Hansen: Daily mobility in Grenoble Metropolitan Region, France. 
Applied GIS methods in time geographical research. (2008). 

3. Emil Bayramov: Environmental monitoring of bio-restoration activities using 
GIS and Remote Sensing. (2009). 

4. Rafael Villarreal Pacheco: Applications of Geographic Information Systems 
as an analytical and visualization tool for mass real estate valuation: a case 
study of Fontibon District, Bogota, Columbia. (2009). 

5. Siri Oestreich Waage: a case study of route solving for oversized transport: 
The use of GIS functionalities in transport of transformers, as part of 
maintaining a reliable power infrastructure (2010). 

6. Edgar Pimiento: Shallow landslide susceptibility – Modelling and validation 
(2010). 

7. Martina Schäfer: Near real-time mapping of floodwater mosquito breeding 
sites using aerial photographs (2010) 

8. August Pieter van Waarden-Nagel: Land use evaluation to assess the outcome 
of the programme of rehabilitation measures for the river Rhine in the 
Netherlands (2010) 

9. Samira Muhammad: Development and implementation of air quality data mart 
for Ontario, Canada: A case study of air quality in Ontario using OLAP tool. 
(2010) 

10 Fredros Oketch Okumu: Using remotely sensed data to explore spatial and 
temporal relationships between photosynthetic productivity of vegetation and 
malaria transmission intensities in selected parts of Africa (2011) 
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