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Summary 

Prior to the 2001 malarial treatment policy change in Tanzania, studies were conducted to 

assess the efficacy of sulfadoxine-pyrimethamine (SP) and usefulness of molecular 

markers in monitoring SP resistance. In these studies the 1996 WHO protocol (with 14 

days follow-up) was used to assess treatment responses. The findings show that SP 

failure rates were 6.8 – 13.5% and P. falciparum triple-Pfdhfr mutant genotype (18.6 – 

21.8 %) were already prevalent prior to the change. Mkuzi site, which due to high CQ 

failure rate, had been using SP against pediatric malaria since 1984, had exceptionally 

high failure rate (23.6%) and prevalence of triple-Pfdhfr mutant genotype (80%). 

Therefore, the study suggested that the drug may have a short useful therapeutic life 

(UTL) in Tanzania. Hence SP was adopted as an interim first line antimalarial drug in 

2001 while combination therapies were being evaluated for long-term use. The molecular 

findings also pointed to the potential of the triple-pfdhfr mutant genotype as an early 

warning tool for increasing SP resistance. These data formed the baseline SP efficacy and 

molecular markers profile in Tanzania prior to the policy change. 

 

SP efficacy monitoring studies conducted using the WHO 2002 protocol (with 28 days 

follow-up) after widespread use of SP showed high (~40%) SP failure rates in Tanzania. 

Therefore, these findings provided evidence for withdrawing SP use in Tanzania and 

highly justified the recommendation of Ministry of Health of switching the first line 

treatment to artemether-lumefantrine (AL). Concurrent with efficacy studies, community 

surveys were conducted in the health facilities’ catchment areas to assess the profile of all 

molecular markers of P. falciparum resistance to withdrawn and in-use antimalarial drugs 

as well as those that have never been officially deployed for use. Results show that 

molecular markers of SP resistance are more prevalent compared to those recorded prior 

to adoption of SP, with triple-Pfdhfr mutant genotype ranging from 54 – 74%. The triple-

Pfdhfr mutant genotype showed some little evidence of depiction of SP failure rate 

observed at health facilities. This marker may be applicable as a tool in community-based 

surveillance of dynamics of SP resistance. However, its usefulness must be further 

explored by assessing its dynamics relative to SP failure rates in many sites, preferably 
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with different failure rates while taking into account linkage disequilibria of the observed 

mutations. 

 

The frequencies of the main mediators of CQ resistance markers (Pfcrt 76 and Pfmdr1 86 

Asn) have decreased following suspension of CQ use in Tanzania, but seems to be 

influenced by uncontrolled use of QN and AQ for uncomplicated malaria. The lack of the 

ATPase6 mutation suggest that resistance to artemisinin has not been selected in 

Tanzania. This observation further supports the decision to adopt AL. The capacity to 

detect many SNPs in many resistance conferring genes makes DNA micorarray 

technology a potential tool for monitoring dynamics of P falciparum resistance to both 

withdrawn, “in-use” and undeployed drugs. However, in order to better appreciate 

parasite genotypic dynamics following alteration of drug pressure, the interval between 

assessments should be relatively longer than the one used in this study. 

 

In the framework of WHO/TDR combination therapy (ACT) trials of uncomplicated P. 

falciparum malaria in Sub-Sahara African children, we assessed genotyping performance 

and use-effectiveness. Parasitological failures were adjusted by stepwise genotyping the 

P. falciparum glutamine rich protein (glurp), merozoite surface protein 1 (msp1) and 2 

(msp2) in Day 0 and post-Day14 recurrent parasitaemias. Recurrences on or before Day 

14 were assumed to be recrudescent and were not genotyped. Molecular genotyping 

refined parasitological outcomes, with differences between crude and adjusted outcomes 

in most sites >10%. The overall and laboratory performances, (69%) and (78%), 

respectively, of the stepwise genotyping system were better. However, diligence is 

needed in sample collection and analysis in order to reduce loss of genotyping data and 

hence failure to resolve recurrences. Additional genotyping of pre-Day 14 recurrences in 

Uganda site identified many more new infections and further reduced the PCR-adjusted 

parasitological failure rate by 8%. Therefore, the study recommends that all recurrent 

infections in malaria treatment trials/studies in high transmission areas should be 

genotyped. The stepwise genotyping approach, coupled with more advanced DNA 

extraction methods needs to be validated and considered for adoption as a standard 

integral part in malaria drug efficacy studies.  



 vii 

Zusammenfassung 

Bevor Tansanien 2001 seine Standards zur Malariabehandlung geändert hat, wurden 

Studien durchgeführt, um die Effizienz von Sulphadoxin-Pyrimethamine (SP), sowie den 

Nutzen molekularer Marker zur Überwachung der SP-Resistenz zu testen. Um den 

Behandlungserfolg mit SP zu testen, wurde für diese Studien das WHO Protokol von 

1996 (mit 2-wöchiger Überwachungsperiode) angewendet. Hierbei zeigte sich, das die 

Behandlungsmisserfolge mit SP zwischen 6.8 und 13.5 % lagen und die 3-fach Mutante 

des Plasmodium falciparum dhf-Gens (18.6 – 21.8%) bereits vor dem 

Medikamentenwechsel auftrat. In Mkuzi wurden, wo bereits seit 1984 wegen 

Behandlungsversagen bei Chloroquine SP bei pädiatrischer Malaria verwendet wurde, 

aussergewöhnliche hohe Behandlungsmisserfolge (23.6%) und eine hohe Prävalenz der 

dhfr Triplemutante festgestellt. Daher weist diese Studie auf einen sehr kurzen 

therapeutisch nützlichen Zeitraum von SP in Tansanien hin (useful therapeutic life, 

UTL). Dennoch wurde SP als Interims-Medikament zur Behandlung unkompolizierter 

Malaria gewählt, während seit 2001 Kombinationstherapien für die dauerhafte 

Behandlung evaluiert werden. Die molekularen Daten unterstreichen das Potential, die 

dhfr Triplemutante als Frühwarnsystem für zunehmenden Resistenz gegen SP zu 

verwenden. Die hier vorgestellten Daten sind die Basis der SP Effizienz und stellen das 

molekulare Markerprofil in Tansanien vor dem Wechsel der Behandlungsstrategie dar. 

 

Effizienstudien mit SP nach weitläufigem Gebrauch von SP wurden mit dem WHO 

Protokoll von 2002 (mit 28-tägiger Überwachungsperiode) durchgeführt und zeigten eine 

hohe Rate an Behandlungsmisserfolgen (~40%) in Tansanien. Dieser Befund verstärkt 

die Empfehlung SP abzusetzen und begründet die Empfehlung des 

Gesundheitsministeriums, Artemether-Lumefantrine (AL) als Standardmedikament zu 

verwenden. Gleichzeitig zu Studien an den Gesundheitszentren wurden Untersuchungen 

in den Dorfgemeinschaften im Einzugsgebiet der Gesundheitszentren durchgeführt, um 

das Profil aller molekularen Marker, die mit Resistenz assoziert sind, zu erstellen. Dies 

umfasste auch Marker für bereits zurückgezogene oder bisher offiziell nicht verwendete 

Antimalaria-Medikamente. Dabei zeigte sich, dass die molekularen Marker für SP-

Resistenz, insbesondere die dhfr Triplemutante mit einer Prävalenz von 54 – 74% eine 



 viii 

höhere Prävalenz haben als vor der Einführung von SP als Standardbehandlung. Es gab 

jedoch keine Beziehung zwischen der Anzahl der Behandlungs-misserfolge im 

Gesundheitszentrum und der individuellen Allel-Frequenz eines bestimmten mutierten 

Gens im Einzugsgebiet. Nur die dhfr Triplemutante deutete ansatzweise auf eine 

Verbindung zur Misserfolgsrate im Gesundheitszentrum hin. Dieser Marker könnte daher 

eventuell als Marker für eine community-based Überwachung der SP Resistenzdynamik 

nützlich sein. Die tatsächliche Verwendbarkeit dieses Markers zur Bestimmung der 

relativen SP Resistenz muss jedoch in anderen Gebieten, wenn möglich mit anderen 

Behandlungsmiss-erfolgsraten, untersucht werden.  

 

Die Häufigkeit der Marker für Chloroquinresistenz (Pfcrt 76 and Pfmdr1 86) ist nach 

dem Absetzen von Chloroquin in Tansanien zurückgegangen, scheint jedoch weiterhin 

von unkrontrolliertem Einsatz von Chinin und Amodiaquin zur Behandlung von leichter 

Malaria beinflusst zu werden. Die Absenz von Mutationen im ATPase6-Gen weist darauf 

hin, dass Artemisinin-Resistenz in Tansanien noch nicht selektioniert wurde. Dies 

unterstützt die Entscheidung zu AL zu wechseln. Die Möglichkeit, gleichzeitig viele 

verschiedene Punktmutationen (SNPs) in resistenz-assoziierten Genen nachzuweisen, 

macht den DNA-Mikroarray zum idealen Werkzeug bei der Überwachung der P. 

falciparum Resistenzdynamik gegen bereits verwendete und zurück gezogene 

Medikamente, momentan empfohlene, und bisher noch nicht verwendete Medikamente. 

Um jedoch die Dynamik Parasitenresistenz nach Veränderung des Selektionsdrucks 

durch Medikamente besser zu verstehen, sollten die Abstände zwischen den 

Untersuchungen länger sein, als in dieser Studie.  

 

Im Rahmen der, von der WHO durchgeführten, Studien mit Kombinationspräparaten 

(ACT) zur Behandlung unkomplizierter Malaria bei Kindern in Afrika südlich der 

Sahara, haben wir untersucht, welchen Nutzen und Effekt die molekulare 

Genotypisierung in diesen Studien hat. Die Rate der parasitologischen 

Behandlungsmisserfolge wurde nach stufenweiser Genotypisierung und Vergleich der 

Parasiten am Tag 0 und am Tag des Wiederauftretens zuerst auf Basis des P. falciparum 

glutamine-rich proteins (glurp), und danach mit den merozoite surface proteins 1 und 2 
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entsprechend korrigiert. Wiederauftretende Parasiten vor oder am Tag 14 wurden als 

rekurierende Parasiten angeschaut und wurden nicht genotypisiert. Das molekulare 

Genotypisieren verbesserte die parasitologische Ergebnisse, wonach die 

Medikamenteneffizienz in den meisten Studiengebieten um >10% verbessert wurde. Die 

allgemeine Durchführungserfolg der Genotypisierungssudien war mit 69%, und die 

spezifische Labordurchführung des stufenweisen Genotypisierens mit 78%, 

zufriedenstellend. Besondere Aufmerksamkeit sollte jedoch auf die Sample-Gewinnung 

und Analyse gelegt werden um Datenverlust bei der Genotypisierung zu reduzieren, 

wodurch eine Untersuchung wiederauftretender Parasiten verunmöglicht wird. Die 

Genotypisierung von Proben vor Tag 14 in Uganda erlaubte die Identifikation einer 

grosse Anzahl von neuen Infektionen, wodurch die Rate PCR angepasster 

parasitologischer Behandlungsversagen um 8% reduziert wurde. Die Annahme, dass 

Parasiten vor Tag 14 immer rekurierende Parasiten sind, muss somit als falsch angesehen 

werden. Diese Studie empfiehlt deshalb, alle wieder auftretenden Parasiten in 

Medikamentenstudien in Gebieten mit hoher Malaria-Transmission zu genotypisieren. 

Die stufenweise Genotypisierung mit verbesserten DNA Aufarbeitungsmethoden sollte 

weiter validiert werden, um als intergraler Standarttest in Effizienzstudien von 

Antimalaria-Medikamenten aufgenommen zu werden. 
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1 Chapter 1 

1.1 General introduction 

1.2 Background 

1.2.1 The burden of Malaria 

Malaria is a tropical protozoan parasitic disease caused by Plasmodium falciparum, P. 

vivax, P. ovale and P. malariae. The disease is transmitted to human by the female 

Anopheles mosquito, during a blood meal. Of the four species P. falciparum is the most 

pathogenic responsible for about 40,000 million disability adjusted life years and an 

estimated 350–500 million malaria clinical episodes occur annually world-wide. Around 

60% of the cases and over 80% of the deaths due to malaria occur in Sub-Saharan Africa. 

This is because the majority of infections in Africa are caused by P. falciparum and the 

most effective malaria vector, the mosquito Anopheles gambiae, is the most widespread 

in Africa and the most difficult to control. More than 1 million Africans, mostly children 

under 5 years of age, die from malaria each year. Malaria also contributes significantly to 

anemia in children and pregnant women, adverse birth outcomes such as spontaneous 

abortion, stillbirth, premature delivery and low birth weight, and overall child mortality. 

The disease contributes approximately 1.3% annual reduction of in economic growth in 

the region (World Malaria Report 2005). In Tanzania malaria transmission is intense and 

occurs year round in at least 100 of the country's 121 Districts. More than 18 million 

cases of malaria are diagnosed and treated each year.  Many more are treated outside the 

formal health facilities. Malaria is the leading cause of childhood mortality in Tanzania 

and the single leading reason for outpatient consultation at health facilities for all ages 

and the leading cause of deaths, accounting for 20% of all life-years lost. In Tanzania the 

disease is responsible for 45% of the disease burden for the children under five and for 16 

- 20% of hospital death among this age group (Local Initiative for Integrated Malaria 

Control, (LIIMCO) - National Malaria Control Program (NMCP), unpublished data).  

 

Resistance to antimalarials is a major drawback in effective malaria control in Sub-

Saharan Africa. Efficacy data collected in southern Africa between 1996 and 2000 using 
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the 14 day protocol showed high chloroquine (CQ) failure rates. Most of the region being 

above the critical value of total treatment failure = 25% (Talisuna et al. 2004; EANMAT 

2003).  At that period, sulfadoxine-pyrimethamine (SP) showed high adequate clinical 

response (ACR) ranging from 71.8 - 93% and > 90% for amodiaquine (AQ). Thus, 

around the year 2000, most southern African countries withdrew CQ and adopted either 

SP alone, SP+CQ or AQ in combination with artesunate (EANMAT 2003). In 2001 

Tanzania adopted SP as an interim first line drug for the treatment of uncomplicated 

malaria. Therefore, there was a need to monitor SP efficacy after its widespread use as 

first line malaria treatment drug in Tanzania. In contrary between 1999 and 2000, CQ 

efficacy in western Africa was generally high with only Ghana recording CQ treatment 

failure rate above the critical value (Talisuna et al. 2004). CQ has been the most 

commonly used drug for uncomplicated malaria in this region (Evans et al. 2005; Happi 

et al. 2005). It was earlier shown that artemisinin-based combination therapy (ACT) may 

slow down the development and spread of resistance to the drug accompanying it. Thus 

WHO began testing for tolerance and efficacy of combinations of CQ, SP and AQ with 

artesunate in 1999, by conducting trials in 9 sites in Sub-Saharan Africa. In these studies 

treatment responses were assessed for 28 days and genotyping was done to distinguish 

recrudescence from new infections.  

 

The mode of action and mechanism of parasite resistance to antimalarial drugs has been 

extensively studied but remains to be partially characterized. A number of genes have 

been associated to resistance to quinoline [Pfcrt (Fidock et al. 2000b) and Pfmdr1 (Foote 

et al. 1990)], antifolates [Pfdhfr (Cowman et al. 1988; Reeder et al. 1996) and Pfdhps 

(Triglia et al. 1997)] and artemisinins [PfATPase6 (Jambou et al. 2005)]. Mutations in 

these resistance conferring genes alters the respective protein structural conformation 

leading to reduced binding or altered molecular transport system, hence parasite 

surviving the drug effect. There is a large body of data showing that a combination of 

mutations in pfdhfr (51Ile, 59Arg, and 108Asn) and pfdhps (437Gly and 540Glu) might 

form a useful marker for field surveillance of SP resistance in Africa (Kyabayinze et al. 

2003; Kublin et al. 2002; Happi et al. 2005). However, the usefulness of these markers 

remains controversial because other investigators (Jelinek et al. 1997; Rallon et al. . 
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1999; Francis et al. 2006) did not establish association with treatment outcome. 

Nonetheless, the mutations in these resistance-associated genes are considered as markers 

for resistance and may be useful as early warning signals for increasing resistance 

(Wongsrichanalai et al.  2002) 

 

Therefore, the studies described here were conducted in order to establish the baseline SP 

clinical and molecular marker profiles prior to the adoption of SP as first line drug and to 

monitor efficacy after its widespread use in Tanzania. In framework of WHO-CT trials 

conducted in Sub-Sahara Africa countries, the study also evaluated the use-effectiveness 

of molecular genotyping in discriminating recrudescence and new infections in recurrent 

infections. Finally the studies assess the usefulness of a novel high throughput SNP 

detection technique as a tool for large-scale community-based surveillance of dynamics 

of parasite resistance to both withdrawn and in use drugs. 
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2 Chapter 2 

2.1 Literature review 

2.2 Malaria Chemotherapy and Assessment of antimalarial efficacy 

Correct diagnosis and prompt treatment with an effective antimalarial drug is of 

paramount importance in determining the outcome of the malaria treatment. Malaria can 

be diagnosed by clinical signs (i.e. presumptive diagnosis), observation of presence of 

parasites by microscopy or parasite antigens by rapid diagnostic tests (RDTs) or DNA by 

polymerase chain reaction (PCR) (Arrow et al. 2004; WHO, 2006). Various drugs are 

used for management of malaria including the antifolates (e.g. sulphadoxine, 

pyrimethamine, proguanil, chlorproguanil and trimethoprim), quinolines (e.g. 

mefloquine, halofantrine, lumefantrine, amodiaquine, piperaquine, tafenoquine 

chloroquine, quinine and quinidine), artemisinins (e.g. artemisinin, dihydroartemisinin 

artemether, artesunate), atovaquone (falls into its own class with specific mode of action) 

and several antibacterial drugs (e.g. tetracycline, clindamycin) also have weak 

antiplasmodial activities (Arrow et al. 2004). 

 

Shortly after the first report of CQ resistance in 1965, standardized in vivo antimalarial 

drug efficacy testing systems were developed, used, and updated in 1972. These 

protocols remained in use until 1996 when a specific protocol for intense transmission 

areas (WHO, 1996) was developed. In this protocol, in vivo treatment responses were 

assessed for 14 days and classified on the basis of either clearance of clinical 

signs/symptoms as adequate clinical response (ACR), early treatment failure (ETF), and 

late treatment failure (LTF) or parasite as resistance level 1 (RI) level 2 (RII) and level 3 

(RIII). Experience gained showed that the 14 days protocol underestimates treatment 

failure rates. This led to the suggestion that post-treatment follow up should be long 

enough to detect recrudescent infections emerging later after initial parasite clearance. 

Hence the 1996 protocol was revised in 2002 incorporating in vitro parasite susceptibility 

testing and drug resistance molecular markers assessment protocols as supporting 
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methods (WHO, 2002). This new protocol recommends that assessment of response 

should be done for 28 - 63 days, depending on the half life of the drug under study. In 

addition, the protocol combines clinical and parasitological observations in assessing 

treatment responses. Therefore, treatment outcomes are classified as adequate clinical and 

parasitological response (ACPR), ETF, late clinical failure (LCF) and late parasitological 

failure (LPF). Thus it is redundant now to report clinical and parasitological responses 

separately (Ringwald, 2004). 

 

However, longer follow-ups periods pose difficulties in interpreting drug efficacy 

outcomes, particularly in high transmission areas, because new infections occurring 

during follow up may be wrongly interpreted as treatment failures. Therefore, the WHO 

2002 protocol emphasizes that molecular genotyping must be used to distinguish between 

new and recrudescent infections. Distinction of recrudescence from new infection is done 

by genotyping the highly polymorphic P. falciparum msp1, msp2 and glurp genes using 

polymerase chain reaction (PCR) coupled with restriction fragment length polymorphism 

(RFLP) and subsequent comparison of admission (Day 0) and recurrent infection allelic 

profile (Snounou and Beck 1998 ; Viriyakosol et al. . 1995; Beck 1999; Greenwood 

2002). Recently analysis of immunologically neutral microsatellite markers has been 

suggested to complement MSP (Nyachieo et al. 2005) whereas fluorescent-labeled PCR 

and sizing of fragments by Genescan was found to be more precise than PCR-RFLP and 

bears the potential for high throughput (Falk et al. 2006). 

 

In vitro efficacy tests and molecular genotyping of resistance markers (mutations in 

resistance conferring genes) are supplementary methods used in the assessment of P. 

falciparum resistance to antimalarial drugs. The former involve testing the susceptibility 

of parasite to drug in culture whereas the latter measures the SNPs at various positions in 

resistance-associated genes. If reliable evidence on their in vivo resistance predictive 

value is established, the two methods may replace the former method which is labour and 

time intensive. In order to able to fully exploit makers of antimalarial drug resistance we 

need to a better understanding of how drugs work and how resistance come about. A 
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detailed review of mode of action, mechanism of resistance and their respective 

molecular markers of resistance is provided in chapter 2. 

 

2.3 Antimalarial Drug Resistance situation in Sub-Sahara Africa 

Drug resistance is defined as the ability of a parasite to survive and/or multiply despite 

the administration and absorption of a drug given in doses equal to or higher than those 

usually recommended, but within the limits of tolerance of the subject (WHO, 1965; 

WHO, 1973). Resistance to antimalarials is a major drawback in effective malaria control 

in Sub-Saharan Africa. In this region, P. falciparum has developed resistance to the cheap 

and safe antimalarials such as CQ and sulfadoxine-pyrimethamine (SP). Efficacy data 

collected in southern Africa [Tanzania (Mainland and Zanzibar), Kenya, Uganda and 

Rwanda] showed high clinical failure to CQ (10% 71%) (EANMAT 2003), with most of 

the region being above the critical value of total treatment failure = 25% (Talisuna et al. 

2004). However, SP and AQ both showed high ACR ranging from 71.8% - 93%. Thus 

around 2000 most southern African countries replaced CQ with either SP monotherapies, 

AQ+AS or non-artemisinin combination therapies (non-ACTs) such as SP+AQ as first 

line malaria treatment drugs (EANMAT 2003). In contrary, within the same period CQ 

was efficacious in western Africa (Nigeria, Mali, Senegal, Ghana, Ivory Coast and The 

Gambia). Only Ghana had CQ treatment failure rate above the critical value (Talisuna et 

al. 2004). Thus the drug has been the most commonly used drug for uncomplicated 

malaria in this region (Evans et al. 2005; Happi et al. 2005). However, recent data show 

high levels of CQ resistance in Nigeria (39% at day 14, Sowunmi et al. 2005), Senegal 

(21%, at day 28, Sarr et al. 2005) and Ghana (25%, day 28 PCR corrected Koram et al. 

2005). 

 

Due to spread of resistance to SP and CQ monotherapies, the use of artemisinin-based 

combination antimalarial therapies (ACT) is now highly advocated (Arrow et al. 2004; 

WHO, 2006). However, for an effective combination therapy, both partner drugs must be 

reasonably efficacious and deployed preferably prior to their use as monotherapies 

(Watkins et al. 2005). Indeed the high background of SP and CQ failure rates observed in 
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various countries made these drugs unsuitable partners in ACT (Obonyo et al. 2003, 

Prioto et al. 2003, Sirima et al. 2003, Gill et al. 2003). Recommended ACTs include 

artemether+lumefantrine (AL), artesunate+amodiaquine (AS+AQ) and 

artesunate+mefloquine (AS+MQ) (WHO, 2006). Most Sub-Saharan African countries are 

revising malaria treatment policies to adopt ACT. So far 15 out of 43 Sub-Saharan 

countries have already adopted the policy of AS-AQ as first-line, and the rest are at 

various stages of preparation for switching to ACT. Tanzania will revise malaria 

treatment policy to replace SP with AL in 2006 (NMCP, unpublished data). Artemisinins 

are highly potent antimalarial drugs and are also active against early-stage gametocytes 

(Mehra and Bhasin 1993). To date no relevant clinical resistance has been reported since 

they were firstly introduced in 1972. The drugs have short half-lives and act very fast. 

They clear over 90% of parasite load within the first 6 hours of administration and the 

rest of the load is slowly eliminated by the partner drug that usually has long half-life and 

acts slowly. Hence fewer parasites are exposed to sub-therapeutic levels, a potential 

factor for the selection and spread of resistance (White and Olliaro 1996; Bloland et al. 

2000).  

 

2.4 Mode of action and mechanisms of resistance to antimalarial drugs 

2.4.1 Antifolates 

Prokaryotic and eukaryotic cells require reduced folate cofactors for the biosynthesis of 

many cellular components. In plants and most microorganisms folate must be synthesized 

de novo through the folate biosynthesis pathway. However, higher eukaryotic cells 

including mammal can not synthesize folate de novo and are totally dependent on 

exogenous (dietary supplied) folate as the only source for tetrahydrofolate (THF) 

production by dihydrofolate reductase (DHFR). These differences in folate biosynthesis 

capacity between mammals and microorganisms makes the pathway an attractive 

antimicrobial target (Bermingham and Derrick 2002; Djapa et al. 2006). In normal 

physiological state the parasite’s dihydropteroate synthase (DHPS) catalyses the 

condensation of p-aminobenzoic acid (p-ABA) with 2-amino-4-hydroxy-6-

hydroxymethyl-7, 8 dihydropteridine pyrophosphate (DHPPP) to form dihydropteroate 
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(DHP). Subsequently the dihydrofolate synthase (DHFS) adds a glutamate to DHP to 

form dihydrofolate (DHF) which is finally reduced by DHFR to form THF (Figure 1). 

THF and its derivatives are used as cofactors in biosynthesis of amino acids (e.g. serine, 

methionine, glycine and histidine) and purines and thymidylate for normal cell growth 

and function. Sulfa drugs and p-ABA show high degree of structural similarities, thus 

competitively bind to DHPS. Therefore, by binding to DHPS sulfa drugs competitively 

inhibits the activity of this enzyme. Pyrimethamine selectively binds with several folds 

higher affinity to DHFR of the parasite than the human host, preventing its activity of 

DHP. Hence sulfadoxine and pyrimethamine exert their parasitocidal effect by 

synergistically inhibiting the parasite’s folic acid biosynthesis pathway. On the other 

hand, it was earlier shown that DHPS catalyses the formation of sulfa-DHP (Dieckmann 

et al. 1986). This complex was thought to play a role in parasitocidal effect of 

sulfadoxine (Mberu et al. 2002) and was recently confirmed to be inhibitory to parasite 

growth (Patel et al. 2004). The proposed sulfa-DHP complex formation is indicated in the 

folic acid biosynthesis pathway in Figure 1.  

 

Therefore, point mutations at the amino acid position in the dhfr 16 Val, 51 Ile, 59 Arg, 

108 Asn/Thr and 164 Leu (Cowman et al. 1988; Peterson et al. 1988) and dhps 436 

Ala/Phe, 437 Gly, 540 Glu, 581 Gly and 613 Thr/Ser (Triglia et al. 1997) result in 

structural changes on the two proteins’ active site cavities and subsequently reduced 

binding affinity, consequently inhibiting folic acid synthesis. Accumulation of mutations, 

in a stepwise fashion is incriminated for increased resistance to antifolate. (Plowe et al. 

1998; Plowe et al. 1997). These mutations are considered as molecular markers for 

surveillance of antifolate resistance. Several studies have shown their association with SP 

treatment failure (Kublin et al. 2002; Nzila et al. 2000; Kyabayinze et al. 2003; Happi et 

al. 2005). The ratios of prevalence of these markers to SP treatment failure rates, termed 

genotype failure index (GFI) (Kublin et al. 2002; Kyabayinze et al. 2003) point to the 

existence of association between treatment failure and SP resistance markers. However, 

the dhps genotype has not consistently been able to completely account for P. falciparum 

in vivo failure to SP (Alifrangis et al. 2003; Mutabingwa et al. 2001; Mockenhaupt et al. 

2005) or in vitro sulfadoxine or dapsone resistance in (Mberu et al. 2002). These 
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observations unequivocally support the suggestion (Patel et al. 2004) that resistance to 

sulfadoxine may primarily be attributable to other determinants, such as formation of 

sulfa-DHP complex. Pfdhfr/Pfdhps gene amplification has not been demonstrated in 

nature and appears to play no role in antifolate resistance (Plowe, 2005).  

 

 

Source: Patel et al. 2004 

 

Figure 1. The folate biosynthesis pathway. The condensation of p-aminobenzoic acid to 

dihydropterin pyrophosphate is catalyzed by dihydropteroate synthase (DHPS) to form 

dihydropteroate, which is then reduced to dihydrofolate by dihydrofolate synthase. 

Dihydrofolate is reduced to tetrahydrofolate by dihydrofolate reductase. DHPS also 

catalyzes the formation of sulfa-dihydropteroate in the presence of a sulfa drug. Sulfa 

drugs and the sulfa-DHP formed are shown in red. Enzymes are indicated in blue and 

normal metabolites are shown in black. Reproduced from Patel et al. 2004. 
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2.4.2 4-aminoquinolines  

This class includes chloroquine (CQ) and amodiaquine (AQ). Many studies have been 

done to elucidate the parasitocidal activity of these quinolines. However, to date their 

modes of action remain largely unclear. Nonetheless, a large body of knowledge 

accumulated for over 30 years shows that the drugs act primarily in the parasite digestive 

vacuole (DV) by interfering with detoxification of heme, a by-product of hemoglobin 

digestion (Ginsburg et al. 1998; Zhang et al. 1999). In this compartment CQ is 

considered to have several target sites including heme dimerisation activity, aspartic and 

cysteine protease activity and intravesicular pH (Krogstad and De 1998) 

 

In order to comprehend the current and widely accepted mode of CQ action, it is 

important to understand some P. falciparum ultra-structures and feeding processes. The 

intraerythrocytic parasites are surrounded by a parasitophorous vacuolar membrane 

(PVM). Thus together with the parasite plasma membrane (PPM), intraerythrocytic 

parasites are surrounded by a double membrane layer. The parasites feed on the 

hemoglobin found in the host RBC via a cytostome by forming a localized invagination 

of the PVM and PPM. The double membrane hemoglobin-laden endocytic vesicles 

[transport vesicles (TV)] are then pinched off from the cytostome (Figure 2). The first 

formed TV matures into DV whose PVM is digested leaving only the PPM 

(Hempelmann et al. 2003). The DV is an equivalent of lysosomes in other eukaryotic 

cells, hence sometime called secondary lysosomes. In the DV (Yoyan et al. 1984, in 

Hempelmann et al.  2003) and/or TV (Slomianny et al. 1990) hemoglobin is broken 

down by several enzymes including cysteine and aspartic proteases, into peptides and/or 

amino acids and ferrous protoporphyrin (FeIII IX) which is quickly oxidized to ferric 

protoporphyrin (FeII IX) (heme) (Barnerjee and Goldenberg 2001; Eagan et al. 2002). 

The amino acids (AA) are believed to undergo protonation (AAH+) and exported into the 

cytosol (Figure 2 & 3) where they are utilized for protein synthesis and parasite growth. 

The heme is membrane-toxic, it rapidly intercalate with lipid bilayers and interferes with 

electron transport chains, leading to peroxidative damage to unsaturated lipids and/or 

membrane-embedded proteins (Zhang et al. 1999). The parasite lacks a heme oxygenase 

pathway but protects itself from heme toxicity by crystalising free heme into non-toxic 
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hemozoin (malaria pigment) which accumulates in the DV (Banerjee and Goldberg 2001; 

Slater et al. 1991; Slater and Cerami 1992 in Waters and Janse). Chemically hemozoin is 

identical to synthetic β-hematin and comprised of dimers of β-hematin linked by 

hydrogen bonds (Pagola et al. 2000). It is believed that heme dimerization process is 

promoted mainly by the lipid (linoleic acid) fraction of the erythrocyte membrane 

forming the inner membrane of endocytic vesicles (Fitch et al. 2000; Orjih, 2001; 

Hempelmann et al. 2003) and the acid environment (pH around 5) inside the vesicles 

(Orjih, 2001).  

 

 

Source: Hempelmann et al. 2003  

 

Fig. 2. Proposed mechanism of haemozoin biogenesis. Host cell cytoplasm is ingested by 

the cytostome (CYT) and packaged in unique double-membrane transport vesicles (TV). 

The inner (solid blue line) and outer (broken blue line) membrane of the TV is derived 

from the parasitophorous vacuolar membrane (PVM) and parasite plasma membrane 

(PPM), respectively. The TV is acidified by the action of the vacuolar proton pump (H+). 
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Degradation of hemoglobin takes place inside the inner membrane, and the heme is 

deposited on the inner membrane. Small peptides and/or amino acids (AA) pass through 

the pore and are transported through the outer TV membrane into the parasite cytoplasm. 

The high concentration of heme on the inner TV membrane promotes formation of 

microcrystalline haemozoin (Hz, brown) or ‘malarial pigment’. On completion of 

digestion, the vesicles fuse with the digestive vacuole (DV), and the maturing crystals 

and residual membrane scaffold (MS) are delivered to the interior of the DV. Reproduced 

from Hempelmann et al. 2003 

 

Treatment with CQ or AQ results in swelling of the DV as a result of drug accumulation 

(Aikawa 1972; Jacobs et al. 1988 in Waller et al. 2004). Further studies showed that CQ-

resistant (CQR) parasites accumulate less drug than CQ-sensitive (CQS) (Saliba et al. 

1998). In the DV these drugs binds to heme preventing its detoxification (Ginsburg et al. 

1998; Zhang et al. 1999). Search for genetic determinants of CQ resistance mapped CQR 

to a 36 kb region that contains 8 putative genes and identified cg1 and cg2 gene as 

responsible for CQ resistance (Su et al. 1997). These genes were shortly shown to have 

no role in resistance and it was proposed that other nearby genes may be more important 

in CQ resistance (Fidock et al. 2000a). Further screening of the region identified a P. 

falciparum CQ resistance transporter gene (Pfcrt) on chromosome 7 as the most 

important determinant of CQ resistance and mutations were identified and associated 

with increased CQ resistance in vitro (Fidock et al. 2000b) and in vivo (Djmede et al. 

2001, 2001b). Earlier on the phenomena of reduced drug accumulation and resistance 

reversibility shared between multi-drug resistant cancer cells and CQR P. falciparum 

(Karcz and Cowman 1991) prompted the search and subsequent discovery of P. 

falciparum mdr-like (Pfmdr1) gene in chromosome 5 which was linked to CQ resistance 

(Foote et al. 1990; Cowman and Karcz 1991). The Pfcrt encodes for the chloroqunie 

resistance transporter (PfCRT) protein and the Pfmdr a P-glycoprotein homologue 1 

(Pgh1) protein. Both PfCRT (Fidock et al. 200b) and Pgh 1 (Cowman et al. 1991) are 

located on the parasite’s DV membrane and currently regarded as the primary mediators 

of CQ resistance (Fidock et al. 2000b; Djimde et al. 2001) despite their being on different 

chromosome.  
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A model of CQ effect on heme detoxification by wild-type and mutant parasite in the DV 

was suggested by Warhurst 2001 as shown in Figure 3. In Panel A, in the lysosome of a 

chloroquine-sensitive parasite, hydrogen ions enter through the proton pump, acidifying 

the lysosomal environment (pH 5.5). This process is probably regulated by the Pgh1 

protein, which releases anions into the lysosome to optimize the difference in the 

transmembrane charge. During the digestion of hemoglobin (Hb), protonated basic amino 

acids (AAH+) are released together with toxic ferriprotoporphyrin IX (Fp9). 

Ferriprotoporphyrin IX is detoxified by polymerization to crystalline hemozoin. The 

weak base chloroquine, present in the cytoplasm (pH 7.4), dissolves in the lysosomal 

membrane and enters the acidic environment, undergoing protonation to a form (CQH+) 

that is insoluble in the membrane and that quickly becomes concentrated. CQH+ binds to 

ferriprotoporphyrin IX and thus inhibits its polymerization, which leads to the 

accumulation of ferriprotoporphyrin IX, causing membrane damage. The protonated 

basic amino acids exit the lysosome by means of the transmembrane protein PfCRT. The 

PfCRT protein probably has a limited affinity for CQH+ and exports some of the drug 

from chloroquine-sensitive parasites. Panel B shows the lysosome of a parasite with 

mutations in pfcrt and pfmdr 1 related to chloroquine resistance. The mutant PfCRT 

probably has an increased affinity for CQH+ and exports large amounts of the drug, 

enabling the polymerization of ferriprotoporphyrin IX to proceed normally. 

Concomitantly, the mutant PfCRT would have a reduced affinity for AAH+, which may 

reduce the efficiency of the export of AAH+ and, in the absence of chloroquine, result in 

the accumulation of more protons (H+) in the lysosome. The presence of mutant Pgh1 

may partially prevent this accumulation of protons, increasing the fitness of parasites 

with pfcrt and pfmdr 1 mutations. The mutation in pfmdr 1 also increases the sensitivity 

of the parasite to mefloquine and artemisinin, probably as a result of the partial 

inactivation of the ability of mutant Pgh1 to export these drugs. 

 

Accumulation of mutations in the Pfcrt at position 72 Ser, 74 Ile, 75 Glu, 76 Thr, 220 Ser, 

271 Glu, 326 Ser, 356 Thr and 371 Ile (Fidock et al. 2000b) and Pfmdr1 at positions 86 

Asn/Thr, 184 Phe, 1034 Cys, 1042 Asp and 1246 Tyr (Foote et al. 1990) are associated 
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with increased resistance to CQ. These two genes are believed to interact synergistically 

(Adagut and Warhurst 2001). The Pfcrt 76 mutation is strongly associated with CQ 

resistance and the GFI calculated using this marker were stable (Djimde et al. 2001; 

Tinto et al. 2005). Nonetheless, mutations in mdr1 only modulate CQ susceptibility of 

Pfcrt mutant parasite but are, by themselves, incapable of conferring CQ resistance (Reed 

et al. 2000; Djimde et al. 2001; Babiker et al. 2001; Adagut and Warhurst, 2001).  The 

Pfmdr1 86 Tyr is the most important modulator of CQ resistance. Thus pfcrt 76 Thr and 

pfmdr1 86 Tyr mutations are recommended for use as markers for in vivo CQ resistance 

(Djimde et al. 2001a Djimde et al. . 2001b). 

 

 

Source: Warhurst, 2001 

 

Figure 3. The Effect of Chloroquine on Heme Detoxification in the Lysosome of a 

Chloroquine-Sensitive Plasmodium falciparum Malaria Parasite (Panel A) and a 

Chloroquine-Resistant Malaria Parasite (Panel B). Reproduced from Warhurst, 2001 

Studies have shown also that CQ treatment induces masking of the lipid fraction of the 

erythrocyte membrane that promotes ferriprotoporphyrin dimerization (Fitch et al. 2003a) 

and reduces the activity of neutral aminopeptidase, an enzyme required for normal 
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processing of hemoglobin-laden endocytic vesicles (Fitch et al. 2003b). These 

interferences are also considered to cause heme to accumulate to toxic levels. The 

detergent-like effect of FP on biological membranes accounts for its lytic toxicity (Fitch 

et al. 1984). 

 

Alternative modes of CQ action have been proposed. Elevation of vacuolar pH above the 

optimal values for aspartic and cysteine proteases activity in the food vacuole may lead to 

inhibition of hemoglobin degradation, consequently inhibiting parasite growth.   It has 

been postulated that CQ may interfere with glutathione mediated detoxification of toxic 

superoxide (.O2-) and hydroxyl (.OH) radicals liberated as a result of reaction of Fe (II) 

reacts with dioxygen. Over 30 years ago it was shown that CQ intercalates with DNA 

(O'Brien et al 1966; Meshnick, 1990; Yin et al. 2003) leading to inhibition of DNA 

replication as observed in many prokaryotic and eukaryotic cells. However, this 

hypothesis received little attention until recently when various studies provided clues that 

the nucleus may be the key site of CQ action and resistance arises due to alteration of 

targeting proteins or certain mechanism which prevents CQ from entering its targeting 

proteins in the nucleus (Li, 2006). Phospholipid is another potential target for CQ. 

Although CQ binds with low affinity to phospholipid, CQ-heme complex is believed to 

bind with high affinity to phospholipids (via the FP bridge) and mediate cytotoxic effect 

to the parasite (Fitch, 2004). The possibilities of nucleus and phospholipids being targets 

of CQ action need to be further explored.    

 

2.4.3 Quinoline-4-methanols 

This class includes quinine (QN), mefloquine (MQ), lumefantrine and halofantrine, etc. 

Similarly, the precise mode of these quinolines is not known. However, there is evidence 

of binding of these drugs to targets other than the ferriprotoporphyrin IX. Exposure of 

CQR parasites to quinine and mefloquine does not lead to accumulation and aggregation 

hemoglobin-laden endocytic vesicles (Jacobs et al. 1987; Oliaro et al. 1989), increased 

masking of the linoleic acid (Chou and Fitch 1993; Fitch and Chou 1997; Fitch et al. 

2003a) or excess accumulation of undimerized ferriprotoporphyrin. Mefloquine, quinine 
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and other quinoline-4-methanol subclass bind with high affinity to phospholipid targets in 

malaria parasites (Porcar et al. 2003). The drugs also inhibit and reverse vesicular 

docking in the endolysosomal system, either by impairing membrane function directly or 

indirectly by inhibiting calcium release from an acid stores (Fitch, 2004). Mefloquine and 

quinine antagonize CQ-induced abnormalities in malaria parasites, primarily by 

inhibition of hemoglobin ingestion (Famin and Ginsburg 2002) and secondarily they 

inhibit membrane recycling, leading to killing of the parasite. However, the binding of 

CQ-FP complex to phospholipids is an agonist for vesicular docking in malaria parasites 

(Fitch, 2004).   

 

The inverse effects of 4-aminoquinolines and quinoline-4-methanol on parasite 

morphological abnormalities are consistent with observations made on the role of the two 

membrane transport genes on resistance to these antimalarial drugs. Similar to CQ 

resistance to mefloquine and/or quinine is also influenced by Pfcrt (Mu et al. 2003, Bray 

et al. 2005) and Pfmdr1 genotype, and/or copy number /over expression of the Pfmdr1 

gene (Foote et al. 1990; Duraisingh et al. 2000; Price et al. 2004; Duraisingh and 

Cowman, 2005). However, in contrast to CQ, mutations in Pfcrt have been associated 

with increased susceptibility to mefloquine and quinine (Sidhu et al. 2002) and the wild 

type Pfmdr1 allele further augments resistance to mefloquine (Cowman et al. 2002; 

Duraisingh et al. 2000; Price et al. 1999) and artemether+lumefantrine (coartem®) 

(Sisowath et al. 2005). In another study (Mu et al. 2003 and Bray et al. 2005), the 

mutants Pfcrt were associated with QN resistance. This ability of Pfmdr1 to influence 

sensitivity of parasites to aminoquinolines, arylaminoalcohols and artemisinins provides 

evidence of contribution of mdr1 to multi-drug resistance (Duraisingh and Cowman 

2005; Price et al. 1999). Multi-drug resistance is said to have occurred when cells 

selected for resistance to one agent, are rendered resistant to a number of structurally 

unrelated drug (Juliano and Ling, 1976 in Duraisingh and Cowman 2005). In addition to 

Pfmdr1 and Pfcrt, 9 more genes have been found to be associated with P. falciparum 

sensitivity to CQ and QN. However, in this study mutations in Pfcrt were insufficient to 

confer QN resistance suggesting that overlapping non identical sets of genes explain why 

parasites can be resistance to CQ but highly sensitive to QN (Mu et al. 2003). In general, 
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these observations show that drug resistance is a complex phenotype involving 

interaction of many different genes. 

 

2.4.4 Artemisinins  

Originally the mode of action of artemisinins was considered to be similar to CQ; 

inhibition of heme polymerization (Pandey et al. 1999). However, it was later shown that 

artemisinins kill parasites by heme-depended activation of the endoperoxide bridge 

(Meshnick, 1994). The cleavage of the bridge activates a series of reactions culminating 

into the formation of an oxygen-centered free radical, carbon–centered free radical and 

finally an epoxide. Carbon-centered radicals and epoxide are highly active alkylating 

agents and may kill parasites by alkylating some, unidentified targets (Olliaro, 2001; 

Jefford et al. 2001; Olliaro et al. 2001). However, this theory was not universally 

accepted. It was proposed that the antimalarial activity of artemisinins is conferred by the 

1,2,4 trioxane pharmacophore within artemisinins (Olliaro et al. 2001). The trioxane 

structure is now being exploited in developing synthetic peroxide antimalarials 

(Vennerstrom et al. 2004). However, the theory of heme dependent activation of the 

endoperoxide bridge contrast the mode of action of most bioactive molecules where 

activity is mediated by binding to an active site. The observations that artemisinins (i) 

localize to parasite and not food vacuole membranes (Ellis et al. 1985) (ii) are capable of 

killing tiny rings lacking hemozoin (ter Kuile et al. 1993) and (iii) do not inhibit 

hemozoin formation (Haynes et al. 2003) have ruled out food vacuole as the site for 

artemisinin action.  

 

Thapsigargin, a plant-derived sesquiterpene lactone, is a highly specific inhibitor of 

sarco/endoplasmic reticulum Ca2+ (SERCA). Since thapsigargin and artemisinins show 

structural similarities, it was hypothesized and later proven that artemisinins can 

specifically and selectively inhibit PfATPase6, the only SERCA-type Ca2+-ATPase in P. 

falciparum genome, after activation by iron (Eckstein-Ludwig et al. 2003). The 

interaction of artemisinins with thapsigargin-binding cleft of susceptible SERCAs was 

confirmed (Uhlemann et al. 2005), pointing out that mutations which modulate its 
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sensitivity to artemisinins may mark emergence of resistance. Subsequent in vitro studies 

showed that P. falciparum with elevated IC50 values for artemisinins share particular 

mutations i.e PfATPase6 769, 623 and 431 (Jambou et al. 2005). However, the 

development of stable artemisinin resistant P. chabaudi chabaudi lacking mutations or 

amplification of the ATPase6 gene failed to establish the role of this gene in resistance to 

artemisinin (Afonso et al. 2006). P. falciparum sensitivity to artemisinins is also 

considered to be influenced the Pfmdr1 genotype and amplification (Price et al. 2004; 

Duraisingh et al. 2000). While the mode of action of artemisinins is still controversial and 

unclear, mutations in the PfATPase6 and Pfmdr1 are the only currently available markers 

that may be used as warning signals for emergence of in vivo resistance to artemisinins. 

Uncontrolled use of artemisinins monotherapies such as that reported in Urban Dar-es 

salaam, Tanzania (Kachur et al. 2006) or in combination with ineffective partners might 

lead to faster selection of resistance resulting into reduction of presumed long useful 

therapeutic life (UTL) of the ACTs (Duffy and Sibley, 2005). 

 

2.5 Methods used in the detection of SNPs in resistance-associated 

genes 

SNPs in resistance-associated genes can be identified by sequencing the DNA fragment 

of interest. This method is not commonly used in field studies. It is suitable for detection 

of new mutations and confirmation ambiguous cases. In 1990s PCR-based methods for 

SNP detection in malaria resistance-associated genes were developed and applied in the 

filed. These include mutation-specific PCR (MS-PCR) (Plowe et al. 1995) and PCR-

restriction fragment length polymorphism (PCR-RFLP) (Duraisingh et al. 1998). These 

methods are labor and time intensive, therefore, less attractive for large-scale studies. In 

attempts to increase high throughput in SNP analysis, dot-blot hybridization methods 

were established in early 2000s. These methods are more or less similar to PCR-RFLP 

but instead of developing the restriction map by RFLP, the PCR products are spotted onto 

membrane and hybridized to either radio-labeled (Abdel-Muhsin et al. 2002) or 

digoxigenin-labeled (Pearce et al. 2003) sequence-specific oligonucleotide probes 

(SSOP). Comparison of these methods showed high sensitivity to MS-PCR but the 
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method was non-specific. On the other hand PCR-RFLP was specific but less sensitive. 

The radio-labeled dot blot method was as specific and sensitive as PCR-RFLP (Ranford-

Cartwright et al. 2002). The use of PCR, followed by SSOP enzyme-linked 

immunosorbent assay (ELISA) (Alifrangis et al. 2006) and real-time PCR (Purfield et al. 

1994; Farcas et al. 2006) in the detection of P falciparum resistance alleles was recently 

demonstrated with advantage of increased specificity over the old methods. 

 

2.6 Emergence and Spread of P. falciparum Resistance 

The Pfdhr and Pfdhps mutations occur in a progressive, stepwise fashion occur in a 

progressive stepwise fashion starting with single 108 mutation generation replaced by 

108 Asn + 51 Ile followed by 108 Asn + 51 Ile  + 59Arg and finally 164 Leu is added and  

higher levels of resistance are observed in multiple mutant parasites (Plowe et al. 1997). 

Parasites carrying the 108 mutation spreads because they tolerate higher levels of SP and 

can invade human approximately 12 days post SP treatment compared to 50 days in wild-

type (Hastings et al. 2002). Addition of 51 appears to restore the lost DHFR enzymatic 

activity than increasing the tolerance of 108+51 mutant parasites to SP. This genotype is 

associated with increases parasite clearance time and presence of gametocyte, probably as 

a result of prolonged parasite survival under drug pressure (Méndez et al. 2002). The 

subsequent Pfdhr triple and quadruple mutations are driven by drug pressure and provide 

no information on natural selection (Hastings et al. 2005).  

 

Analysis of microsatellite DNA flanking the dhfr and dhps loci showed a few common 

origins of resistant alleles in South America Amazon (Cortese et al. 2002), Southern 

Africa (Roper et al. 2003) and Southeast Asia (Nair et al. 2003). Comparison of dhfr and 

crt resistant alleles of parasites from Southern Africa and Southeast Asian also showed 

common ancestral origin. Thus it has been proposed that (i) there are a few origins of 

resistant alleles (ii) de novo mutations are less important than migration for introducing 

resistance alleles into parasite population and (iii) selective sweep or gene flow is a 

primary mode of spread of resistance (Roper et al. 2004; Anderson and Roper, 2005).  
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The reasons for few origins of resistant alleles are detailed in Anderson and Roper, 

(2005). In summary, for a resistant allele to spread it must be found in parasite lineages 

that are committed to become gametocytes. Less than 1% of asexual parasites are 

committed to become gametocytes (Taylor and Read 1997). In addition, parasites 

expressing a predominant var gene are targeted for clearance by the immune system. 

Only mutations borne by proliferating parasites expressing newly switched var genes will 

escape clearance and achieve transmission. As a result, the “effective population” in 

terms of transmission and spread of resistant alleles is usually lower than the actual 

population of parasites infecting humans. Secondly, resistance involves multiple 

mutations. Since mutations are accumulated progressively, it is unlikely that multiple 

mutations occur in the same allele during a single replication. This process presents 

sequential bottlenecks in the population of resistant alleles. Thirdly, drug resistance and 

compensatory mutations, that reduces fitness cost, rarely arise simultaneously in the same 

parasite genome. Indeed, after 5 - 10 years of SP use in parts of Africa, the Pfdhfr 164 

mutation has not been reported consistently. It is hypothesized that the African parasites 

lack the genetic traits that would confer the ability to bear the dhfr 164 mutation (Nzila et 

al. 2005).  

 

Reduction of CQ drug pressure following its discontinuation resulted in decreased 

prevalence of crt 76 mutation in Malawi (Kublin et al. 2003; Mita et al. 2003). 

Concurrently there was recovery of CQ sensitivity with 100% clearance of asymptomatic 

infections and lack of in vitro resistant isolates (Kublin et al. 2003). The recovery of 

sensitivity following suspension of CQ use is attributable to expansion of wild-type allele 

rather than back mutations (Mita et al. 2004). Similar observations have been recorded 

following suspension of CQ use in China (Liu et al. 1995) and Vietnam (Nguyen et al. 

2001; Nguyen et al. 2003; Thahn et al. 2001). Decline in drug resistance after removal of 

drug pressure could provide a new paradigm for antimalarial treatment policies in Africa 

(Laufer and Plowe, 2004). 

 

The magnitude of loss of fitness cost incurred by Pfmdr1mutations in vitro has been 

estimated to be 25% and it was shown that there is greater selective pressure on the 
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mutant Pcfrt than on the mutant Pfmdr1 (Hayward et al. 2005). This observation is 

consistent with the negligible change in Pfmdr1 86 Asn compared to Pfcrt 76 mutant 

allele observed in Malawi after CQ withdrawal (Mita et al. 2003). The data on the 

reversal of resistance in Malawi (Kublin et al. 2003 and Mita et al. 2003) suggested that 

the Pfcrt 76 mutation is 5% less fit than wild-type, under the assumption of 5 generations 

of malaria per year and no parasite immigration was occurring (Hastings and Donnelly, 

2005). However, reversal of SP resistance has not been observed but there has been 

reports on persistence of Pfdhfr mutations after discontinuation of SP use in South-east 

Asia (Nair et al. 2002) which was incriminated to mutations that fully or partially 

compensate for metabolic defect on the original Pfdhfr mutation (Nair et al. 2003). 

Decline in drug resistance after removal of drug pressure could provide a new paradigm 

for antimalarial treatment policies in Africa (Laufer and Plowe, 2004). 

  

2.7 Discrimination of recrudescents from new infections by molecular 

genotyping. 

Many Plasmodium falciparum genes show extensive genetic polymorphism which can be 

used for genetic finger printing. High polymorphism has been shown in msp1, msp2 and 

glurp genes in different geographical locations in malaria endemic areas (Felger et al. 

1994; Babiker et al. 1997; Snounou et al. 1999; Peyerl-Hoffmann et al. 2001; Magesa et 

al. 2001; Aubouy et al. 2003). Therefore, these loci have been used in many trials to 

distinguish recrudescence from new infections. Because of their extensive polymorphism, 

it is highly unlikely for a patient in areas of intense transmission to become newly 

infected with a parasite possessing an identical genotype during follow-up because this 

probability is the product of individual allele frequencies of each allele of the three genes 

(Snounou and Beck 1998). Therefore, by comparing the genotypes of these three loci 

together at baseline and at the time of parasite recurrence, recrudescent can be 

distinguished reliably from new infections (Snounou and Beck, 1998; Viriyakosol et al. 

1995; Beck, 1999; Greenwood, 2002). However there is variation not only in the sample 

analysis but also in interpretation of genotyping data, limiting comparison of data from 

various sites. Recurrent parasites can be potentially classified into four categories based 
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on the degree of allelic matching: (i) all alleles in the baseline and recurrent parasites are 

identical, (ii) some alleles are missing in the recurrent parasites (iii) recurrent parasites 

contain alleles identical to those at baseline with additional/new ones not observed at 

baseline (iv) alleles in the baseline and recurrent parasite samples are different. It is 

generally accepted that categories (i - iii) represent recrudescent and (iv) new infection 

(Magesa et al. 2001; Snounou and Beck, 1998; Basco and Ringwald, 2000; Brockman et 

al. 1999; Basco et al. 2002; Ranford-Cartwright et al. 1997; Happi et al. 2004). Some 

investigators (Cattamanchi et al. 2003; Kyabayinze et al. 2003) consider that category 

(iii) represents a new infection because of the appearance of new alleles. It is believed 

that, resolution of symptoms and parasite clearance are regarded as the most accurate 

measures of the intrinsic resistance of the parasites to a drug (Sibley and Hunt, 2003). 

The controversy surrounding category (iii) has not been resolved and the need for 

standardized genotyping protocol has been recognized.   

 

Interpretation of genotyping data may be complicated by (i) re-infections with new 

parasites possessing identical genotypes to those present on Day 0 may lead to an 

erroneous diagnosis of recrudescence, (ii) inability of PCR to detect all clones present on 

Day 0 whose reappearance may therefore be regarded as a new infection and (iii) micro-

epidemics in which the same parasite(s) circulates over and over again in the same small 

population e.g. a household. However, the first possibility is negligibly low when two or 

more discriminatory markers are being used (Snonou and Beck, 1998). The second 

possibility is also low because it has been shown that symptomatic infections are less 

complex than asymptomatic ones (Irion et al.  1998; Farnert and Bjorkman, 2005). 

Therefore, single time-point samples may reliably represent all subpopulations present on 

Day 0. Nonetheless, these weaknesses point to the need for some caution in interpreting 

PCR-adjusted treatment outcomes. 
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3 Chapter 3 

3.1 Rationale of the project 

3.1.1 SP efficacy testing 

CQ was used as first line drug in Tanzania for over 45 years. By 1999 the average 

country-wide CQ resistance was 50% (ranging from 45 to 70%). In 2001 Tanzania 

adopted SP as an interim first line drug for the treatment of uncomplicated malaria. 

Following the experience that SP resistance developed shortly after widespread use of SP 

in Southeast Asia (low transmission area), predictions were made that resistance to SP 

would spread faster following its widespread use in areas of intense malaria transmission 

areas. Therefore, it was important to monitor SP efficacy to provide policy makers with 

evidences on which they can make rational policy changes. Around 2001 little was 

known about the role of resistance markers in SP resistance in Tanzania. Using the 

clinical setting the study sought to establish SP baseline clinical and molecular marker 

profile and assess the association to treatment failure rates.  

 

3.1.2 Community approach for monitoring P. falciparum resistance to 

antimalarial drugs 

The mode of action and mechanism of resistance to antifolate and quinolines has been 

studied but remains to be partially characterized. Nonetheless, some genes have been 

associated with resistance to quinoline (Pfcrt and Pfmdr1), antifolates (Pfdhfr and 

Pfdhps) and artemisinins (PfATPase6). Mutations in resistance-associated genes alter the 

respective protein structural conformation, hence reduced binding or molecular transport 

system leading to parasite surviving the drug effect. These mutations are considered as 

markers for resistance and are useful as early warning signals for increasing resistance. 

Most of the current reports on the role of mutant alleles in antimalarial drug resistance are 

based on data collected in relatively small samples sizes of children < 5 years of age. The 

parasite population in the untreated asymptomatic infections (parasite reservoir) has been 
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largely ignored but might play an important role in the development and spread of 

resistance. In addition, because of technical and time limitations only a few mutations are 

usually analyzed. Hence there is a need for high throughput methods capable of handling 

many samples and detecting many SNPs in several genes (genogram) at a time. Such 

systems should allow for community-based monitoring of dynamics of resistance to 

withdrawn, “in-use” and undeployed antimalarial drugs.  

 

3.1.3 Distinction of recrudescent from new infections 

The assessment of antimalarial drug efficacy post-treatment follow up should be long 

enough to detect recrudescent infections after initial parasite clearance. Longer follow-up 

periods pose difficulties in interpreting drug efficacy outcomes, particularly in high 

transmission areas, because new infections occurring during follow up may be interpreted 

as treatment failures. Thus molecular genotyping of P. falciparum msp1, msp2 and glurp 

genes is recommended to distinguish between new and recrudescent infections and adjust 

treatment outcomes accordingly (WHO, 2002; WHO, 2006). This approach has been 

used in many trials to distinguish recrudescence from new infections (Basco and 

Ringwald, 2000; Brockman  et al. 1999; Basco et al.  2002; Ranford-Cartwright et al. 

1997; Happi et al. 2004; Cattamanchi et al. 2003; Kyabayinze et al. 2003; Irion et al. 

1998) but its use-effectiveness, particularly in large clinical trials has not been fully 

evaluated. 

 

3.2 Broad Objective 

The study aimed at assessing the dynamics of in vivo P. falciparum resistance to SP, 

profiles and dynamics of drug resistance molecular markers and use-effectiveness of 

molecular genotyping in adjusting antimalarial treatment failure rates  
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3.2.1 Specific Objectives 

1. To assess the baseline SP efficacy and resistance marker profile prior to its adoption  

as first line drug in Tanzania and determine the potential of the latter in monitoring 

resistance  

2. To assess SP efficacy 2 -3 years after its widespread use as first line antimalarial drug 

in Tanzania.  

3. To evaluate a novel high throughput DNA microarray SNPs detection technique as a 

tool for community-based approach for simultaneously monitoring dynamics of 

resistance to “in-use” and withdrawn drugs. 

4. To assess the use-effectiveness of molecular genotyping in adjusting antimalarial 

treatment outcomes.  

 

In the following Chapters each of the specific objectives is presented as a working paper. 

Chapter 4 and 5 summarizes the baseline SP efficacy and resistance marker profile prior to 

and after its adoption of SP as first line drug in Tanzania whereas chapter 6 assesses the 

usefulness of a community-based approaches for monitoring antimalarial drug resistance. 

Finally, in the framework of WHO combination therapy trials conducted in Sub-Saharan 

Africa, chapter 7 and 8 shows the use-effectiveness of molecular genotyping in distinguishing 

recrudescents from new infection. Chapter 9 brings together chapters 4 – 8 in a synoptic 

general discussion and conclusions. 
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4 Chapter 4.  

4.1 Therapeutic efficacy of sulfadoxine-pyrimethamine and prevalence 

of resistance markers in Tanzania prior to revision of malaria 

treatment policy: Plasmodium falciparum dihydrofolate reductase 

and dihydropteroate synthase mutations in monitoring in vivo 

resistance 

 

 

This paper has been published in American Journal of Tropical Medicine and Hygiene 

2004, 71(6:696-702). 
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MALARIA TREATMENT POLICY: PLASMODIUM FALCIPARUM DIHYDROFOLATE

REDUCTASE AND DIHYDROPTEROATE SYNTHASE MUTATIONS IN
MONITORING IN VIVO RESISTANCE
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Abstract. Prior to the 2001 malarial treatment policy change in Tanzania, we conducted trials to assess the efficacy
of sulfadoxine-pyrimethamine (SP) and the usefulness of molecular markers in monitoring resistance. A total of 383
uncomplicated Plasmodium falciparum malaria patients (between 6 and 59 months old) were treated with SP and their
responses were assessed. Mutations in the P. falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase
(pfdhps) genes in admission day blood samples were analyzed. Results indicated that 85.6% of the patients showed an
adequate clinical response, 9.7% an early treatment failure, and 4.7% a late treatment failure. The quintuple mutant
genotype (pfdhfr 51 Ile, 59 Arg, and 108 Asn and pfdhps 437 Gly and 540 Glu) showed an association with treatment
outcome (odds ratio � 2.1; 95% confidence interval � 0.94–4.48, P � 0.045). The prevalence of the triple pfdhfr mutant
genotype (51 Ile, 59 Arg, and 108 Asn) at a site of high SP resistance (23.6%) was four times higher compared with that
observed at sites of moderate SP resistance (6.8−14.4%) (P � 0.000001). The genotype failure index calculated by using
this marker was invariable (1.96−2.1) at sites with moderate SP resistance, but varied (3.4) at a site of high SP resistance.
In conclusion, our clinical and molecular findings suggest that SP may have a short useful therapeutic life in Tanzania;
thus, its adoption as an interim first-line antimalarial drug. The findings also point to the potential of the triple pfdhfr
mutant genotype as an early warning tool for increasing SP resistance. These data form the baseline SP efficacy and
molecular markers profile in Tanzania prior to the policy change.

INTRODUCTION

In 2001, the Tanzania mainland adopted sulfadoxine-
pyrimethamine (SP) and amodiaquine (AQ) as first- and sec-
ond-line antimalarial drugs, respectively, following increased
chloroquine (CQ) resistance (45–70%). The use of SP for
first-line purposes is an interim measure while different anti-
malarial combinations are being evaluated for long-term use.
Before this change, SP was used as a second-line antimalarial
drug.1 Several other countries in southern Africa including
Kenya, Burundi, Rwanda, the Tanzania islands (Zanzibar),
and Malawi have switched to SP, AQ, or artesunate (AS)
monotherapies or combination therapies, whereas Uganda
opted for the SP/CQ combination following widespread CQ
resistance.2 Sulfadoxine-pyrimethamine is one of the few,
cheap, and relatively safe antimalarial drugs that is still effec-
tive against CQ-resistant malaria in Africa. Recent studies in
southern Africa have recorded high efficacies, ranging from
82% to 92%.2–8 However, the fact that Plasmodium falci-
parum rapidly develops resistance to SP following wide use of
the drug poses a serious threat to malarial control efforts in
endemic countries.9 High levels of SP resistance have been
recorded in a highly endemic northeastern part of Tanzania
where pyrimethamine10,11 and sulfadoxine12 were used at dif-
ferent periods between 1950 and 1994 for prophylactic and
therapeutic trials, respectively. In a recent study conducted in
this area, 45% of the patients treated with SP failed to clear
their parasitemias to below patency levels on day 7.13 This
failure rate is substantially higher compared with 25% in
Ifakara (southeastern Tanzania)14 and 26% in Kigoma (west-
ern Tanzania),5 both of which are also highly endemic areas

in Tanzania, but in which SP had not been widely used.
Therefore, it is obvious that following wide use of SP in Tan-
zania, resistance is likely to increase rapidly. Given appropri-
ate tools, the National Malaria Control Program (NMCP)
framework provides a better platform for regularly updating
information on antimalarial drug resistance situation in Tan-
zania. Currently, the in vivo efficacy test is the gold standard
method for monitoring antimalarial drug resistance in coun-
tries endemic for malaria. However, the method is expensive
and complex in terms of interpreting outcomes, especially in
high transmission areas where chances of re-infection are
high. Thus, the need for a cheap, rapid, and reliable epide-
miologic tool for SP surveillance has been recognized.

Molecular markers of SP resistance are considered to be a
cheap and less complex candidate tool for in vivo SP resis-
tance surveillance. There is a large body of data showing that
a combination of mutations in the P. falciparum dihydrofolate
reductase (pfdhfr) (51 Ile, 59 Arg, and 108 Asn) and dihy-
dropteroate synthase (pfdhps) (437 Gly and 540 Glu) genes
might constitute a useful marker for field surveillance of SP
resistance in Africa.15–24 However, the usefulness of these
markers remains controversial because other investiga-
tors25,26 did not establish an association with treatment out-
come. Furthermore, some new mutations in the pfdhfr gene
have been discovered27; thus, their roles in vivo resistance
must be assessed. New approaches for understanding the re-
lationship between mutations and antimalarial drug resis-
tance have been suggested. The genotype resistance index
(GRI) and the genotype failure index (GFI) concepts28 and
the ratio of mutant to wild-type pfcrt alleles29 have been
pointed out as practical models using a pfcrt 76 Thr mutation
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in the surveillance of CQ resistance. There is a need to verify
such models (by using the pfdhfr and pfdhps gene markers) in
areas where SP is used as the first-line antimalarial drug.

As a preparation for the policy change, we conducted stud-
ies to determine SP efficacy and prevalence of SP resistance
molecular markers (pfdhfr and pfdhps gene mutations) in
Tanzania. We also assessed the applicability of these markers
in monitoring SP resistance. The findings presented here form
the baseline SP efficacy and molecular markers profile for
Tanzania and support the decision made by the Ministry of
Health to adopt SP as an interim first-line antimalarial drug.
Our findings also present evidence of association between
treatment failure and quintuple mutant genotype. The preva-
lence of mutant genotypes and GFI values in high versus
moderate resistance sites point to the potential of the triple
pfdhfr mutant genotype as an early warning tool for increas-
ing SP resistance in Tanzania. Nonetheless, we recommend
further studies, at both community and health facility levels,
to verify the usefulness of pfdhfr and pfdhps genotypes in
estimating SP resistance.

MATERIALS AND METHODS

Study sites. These trials were carried out in Butimba,
Kyela, Masasi, Mkuzi, and Mlimba Rural Health Centers in
Tanzania. These areas are antimalarial drug resistance sur-
veillance sites of the NMCP, classified epidemiologically
as mesoendemic (Kyela and Butimba) or holoendemic
(Mkuzi, Mlimba, and Masasi), and are located in different
geographic areas in the country (Figure 1). The catchment
areas for these health facilities are rural-based communities
of similar socioeconomic background.

Recruitment of study subjects. All patients between 6 and
59 months old who reported to the health centers were evalu-
ated and considered for recruitment by the study team. De-
tailed medical histories were obtained and clinical examina-
tions were conducted. Thick and thin smears were made from
finger prick blood and stained with Giesmsa for parasite de-
tection and identification by microscopy. Patients were even-
tually recruited for study if they had an axillary temperature
� 37.5°C, microscopically confirmed P. falciparum monoin-

FIGURE 1. Map of Tanzania showing the geographic location of the study sites, resistance to sulfadoxine-pyrimethamine (S), and the
prevalence of Plasmodium falciparum dihydrofolate reductase (pfdhfr) and dihydropteroate synthase (pfdhps) genotypes. The triple pfdhfr (51
Ile, 59 Arg, and 108 Asn) and double pfdhps (437 Gly and 540 Glu) mutant genotypes are highly prevalent in Mkuzi, an area with the highest
level of resistance to SP. The rest of the sites (Butimba, Kyela Masasi, and Mlimba) have moderate levels of resistance to SP and prevalences of
this mutant genotype, but high prevalences of wild-type genotype. This figure appears in color at www.ajtmh.org.
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fections (parasitemia between 2,000 and 100,000 asexual stage
parasites/�L), no history of antimalarial use in the last 14 days
prior to the episode, an absence of co-infection with other
diseases, and consent from parents or guardians. Patients who
had mixed Plasmodium spp. infections, severe malaria or dan-
ger sings, history of allergy to sulfa drugs, or other chronic
infections were not recruited for study but, respectively, were
given appropriate treatment by the study team.

Treatment of patients. Recruited patients were treated with
SP (Fansidar�, 500 mg of sulfadoxine and 25 mg of pyrimeth-
amine; Roche, Basel, Switzerland) in a single oral dose of 1.25
mg/kg of pyrimethamine and 25 mg/kg of sulfadoxine and
observed for 30 minutes. If vomiting occurred within this pe-
riod, a replacement dose was administered and again ob-
served for an additional 30 minutes. Further vomiting led to
exclusion of the patient from the study. These patients were
rescued by parenterally administered quinine (nine doses of
30 mg/kg). Parents or guardians of recruited children were
asked to return to the health centers for response evaluation
on days 2, 3, 7, and 14 post-treatment. In addition, they were
advised to return at any other (unscheduled) day if tempera-
ture or sickness persisted or relapsed. Patients who did not
turn up for scheduled follow-ups were visited at home by a
member of the study team. Clinical and parasitologic exami-
nations were conducted on each follow-up day. A patient was
withdrawn from the study if any of the following occurred
during the follow-up period: development of a concurrent
infection, treatment with another antimalarial drug, the pa-
tient could not be traced at a home visit on a scheduled day or
the day after, or the parent/guardian requested that the pa-
tient be withdrawn from the study. Treatment responses were
classified as an adequate clinical response (ACR), an early
treatment failure (TF), and a late treatment failure (LTF) as
described in the 1996 World Health Organization (WHO) in
vivo efficacy testing protocol for areas of intense transmis-
sion.30 Patients who failed to respond were treated with amo-
diaquine (10 mg/kg for dose 1 and 2 and 5 mg/kg for dose 3).
At the end of the study, 414 patients were recruited (67 in
Butimba, 70 in Kyela, 78 in Masasi, 133 in Mkuzi, and 66 in
Mlimba). Thirty-one cases were either lost to follow-up or
excluded from the study during follow-up. Thus, 383 patients
completed the study or were followed-up to day of failure.
The study was reviewed and approved by the both institu-
tional (Ifakara Health Research and Development Centre
[IHRDC] Ethics Committee) and national (Medical Research
Coordinating Committee) authorities and consent was ob-
tained from parents or guardians prior to recruitment of each
patient.

Blood sample collection, extraction of DNA, and mutation
analysis. Before treatment of recruited patients, finger prick
blood was spotted onto filter paper (3MM; Whatman Inter-
national Ltd., Maidstone, United Kingdom), air-dried, trans-
ported to the IHRDC laboratory, and stored dry in self-
sealing plastic bags at room temperature until required for
extraction of DNA. The DNA was extracted from the filter
paper using the Chelex extraction method previously de-
scribed.31 Polymorphisms in pfdhfr codons 51, 59, 108, and
164 and pfdhps codons 436, 437, 540, 581, and 613 were de-
termined by performing primary and nested polymerase chain
reaction (PCR) amplifications with subsequent restriction
fragment length polymorphism (RFLP) analysis of the nested
PCR products as described in detail elsewhere.32 The RFLP

products were resolved by electrophoresis on 10% polyacryl-
amide gels, stained with ethidium bromide, photographed,
and scored. A 2 × 2 chi-square table was used to analyze
associations between clinical and molecular data and Epitable
in Epi-Info (Centers for Disease Control and Prevention, At-
lanta, GA and World Health Organization, Geneva, Switzer-
land) and was used to compare differences in the prevalence
of SP resistance and molecular markers in the study sites. P
values < 0.05 (and confidence intervals [CIs] > 1 for odds ratio
[OR]) were considered significant. The GFI was calculated as
the ratio of the prevalence of resistant genotype to the preva-
lence of drug failure,28 and the variability of the values among
study sites was assessed by linear regression.

RESULTS

Treatment outcome for SP and association with the quin-
tuple mutant genotype. Of 383 SP treated patients, 328
(85.6%) showed ACR with highest level of efficacy (93%)
being recorded in Butimba and the lowest (76.4%) in Mkuzi.
Fifty-five (14.4%) cases did not respond to SP treatment of
which 37 (9.7%) and 18 (4.7%) were ETF and LTF cases,
respectively (Table 1). There was no significant difference in
the prevalence of SP treatment failure in Butimba, Kyela,
Masasi, and Mlimba (�2 � 2.52, degree of freedom [df] � 3,
P � 0.4723), but significant difference was observed (�2 �
15.06, df � 4, P � 0.0046) when the Mkuzi Health Center
was included in the analysis. Table 2 relates the clinical and
molecular data for the SP-treated patients. Of 55 treatment
failure cases 12 (22%) and 43 (78%) carried parasites with
quintuple and non-quintuple genotypes, respectively. Of the
328 patients who showed ACR, 39 (12%) and 289 (88%)
individuals harbored the quintuple and non-quintuple (any
other combination of genotypes apart from quintuple) geno-
types, respectively. Statistical analysis showed association be-
tween the quintuple mutant genotype and SP treatment fail-
ure (OR � 2.1, 95% CI � 0.94–4.48, P � 0.045). Although
the lower 95% CI was slightly less than 1, a Pearson chi-
square test (�2 � 4.0) indicated that this represented a sta-
tistically significant association (Table 2). In a separate analy-
sis, the triple pfdhfr mutant and the double pfdhps mutant
genotype did not show a predictive value for SP treatment
failure.

Prevalence of multiple pfdhfr and pfdhps mutant genotypes
and estimated GFI values. The prevalence of SP resistance
and pfdhfr and pfdhps genotypes is summarized and shown in
Figure 1. Mkuzi showed highest prevalence of triple pfdhfr
(80.3%) and double pfdhps (32.3%) mutant genotypes, while

TABLE 1
Summary of sulfadoxine-pyrimethamine treatment outcome in the

five sentinel sites in Tanzania*

Site No. ETF LTF Overall TF ACR

Butimba 57 4 0 4 (7%) 53 (93%)
Kyela 67 5 3 8 (12%) 59 (88%)
Masasi 73 4 1 5 (6.8%) 68 (92.9%)
Mkuzi 127 21 9 30 (23.6%) 97 (76.4%)
Mlimba 59 3 5 8 (13.5%) 51 (86.5%)

Total 383 37 (9.7%) 18 (4.7%) 55 (14.4%) 328 (85.6%)
* ETF � early treatment failure; LTF � late treatment failure; TF � treatment failure;

ACR � adequate clinical response.
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Mlimba showed the lowest prevalences of 18.6% and 3.4%,
respectively. There was no difference in the prevalence of the
triple pfdhfr mutant genotype (�2 � 0.12, df � 3, P � 0.9893)
at the Butimba, Kyela, and Masasi, and Mlimba sites. How-
ever, a significant difference (�2 � 131, df � 4, P � 0.000001)
are observed when the Mkuzi site was included in the analy-
sis. Conversely, the prevalence of the double pfdhps mutant
genotype was significantly different (�2 � 12, df � 3,
P � 0.0074) at the Butimba, Kyela Masasi, and Mlimba sites
and more so (�2 � 39, df � 4, P � 0.00012) when Mkuzi was
included in the analysis. Similarly, the prevalence of pure wild
pfdhfr and pfdhps genotypes was different among the low
resistance sites (�2 � 12.3, df � 3, P � 0.006345 and �2 �
49.4, df � 3, P � 0.00011, respectively). Using the prevalence
of different combinations of mutations in pfdhfr and pfdhps
as a marker for SP resistance, we calculated the GFI and
observed that only the triple pfdhfr mutant genotype gener-
ated invariable indices (ranging from 1.96 to 2.1) in moderate
resistance areas (Butimba, Kyela, Masasi, and Mlimba), sug-
gesting a relationship between the marker and SP treatment
failure. The GFI observed in Mkuzi (a high resistance area)
was 3.4, which was different from that observed in other sites.
Indices derived by other markers (combination of triple and
double pfdhfr or double pfdhps mutant genotypes) are highly
variable (Table 3) and do not suggest any relationship with
treatment failure. We did not detect pfdhps 436 Ala/Phe, 581
Gly, and 613 Thr/Ser and pfdhfr 164 Leu mutations in any of
our study sites.

DISCUSSION

In 2001, Tanzania-mainland adopted SP as an interim, first-
line antimalarial drug. As a preparation for this policy change,
we conducted studies to establish the baseline SP efficacy and
prevalence of SP resistance molecular markers (pfdhfr and
pfdhps mutations) in this country. We have established that
SP was effective against uncomplicated malaria when the
mainland of Tanzania revised its malaria treatment policy.

The ACR ranged from 76.4% to 93% (average efficacy �
85.6%), which was similar to efficacies reported in other
southern and eastern Africa countries (82–98%) between
1997 and 2002.2–8 In our trials, Mkuzi showed highest levels of
overall SP resistance (23.6%) followed by Mlimba (13.5%),
Kyela (12%), Butimba (7%), and Masasi (6.8%), with aver-
age resistance being 14.4%. According to the criteria for
changing malaria treatment policy,33,34 by 2000 resistance in
all sentinel sites had gone beyond the grace period (combined
ETF and LTF < 5%) and all except Mkuzi were within the
alert period (combined ETF and LTF between 6% and 15%).
It is interesting to note that before the policy change, SP
resistance in Mkuzi was already in the action period (com-
bined ETF and LTF between 16% and 24%). In 2001, the SP
parasitological failure rate by day 28 in the Muheza District
(in which the Mkuzi site is located) was 45%.13 So far this is
the area with the highest SP resistance in Tanzania. The
prevalent SP resistance observed in these studies is attribut-
able to the country-wide use of SP in the last several years as
a second-line antimalarial drug. However, the higher preva-
lence in Mkuzi is also due to the use of pyrimethamine for
prophylactic and/or therapeutic trials at different periods
from 1950s to 199410–12 and to the use of SP since 1984 for
first-line treatment in children less than five years of age at
the Muheza District Hospital.13 Thus, with the deployment of
SP for country-wide use, it is obvious that resistance will in-
crease rapidly. Therefore, our findings support the decision to
adopt SP as an interim, first-line, antimalarial drug, while
some combination antimalarials are being evaluated for long-
term use. High levels of SP resistance have also been ob-
served in the neighboring countries of Burundi and Rwanda,
with failure rates beyond the critical 25% value in most sen-
tinel sites. These countries have already switched to SP/AQ
and AQ/AS, respectively, as their first-line antimalarial
drugs.2

In this study, the quintuple mutant genotype was associated
(OR � 2.1) with SP treatment failure by day 14. In previous
studies in Uganda23 and Malawi,24 stronger associations (OR
> 10) between treatment failure and pfdhfr 59 Arg and pfdhps
540 Glu mutations (the quintuple mutant predictors) were
observed. The smaller OR value observed in our study is
partly attributable to a shorter (14 days) follow-up period
used in this study. The majority of the SP treatment failure
cases are known to occur beyond day 14. Therefore, extended
follow-ups with subsequent distinction of recrudescence by
genotyping would have provided more reliable interpretation
of treatment response35 and improved the association.23 In
addition, inclusion of in vitro data would have been of para-
mount importance in elucidating the reason for the smaller
OR value and providing a wider SP efficacy baseline data for
Tanzania.

Our study has established that the prevalence of the triple
pfdhfr mutant genotype was four times higher in an area of
high SP resistance compared with areas of moderate SP re-
sistance. This observation clearly suggests a relationship be-
tween the marker and SP resistance, and points to the poten-
tial of this genotype in the development of a reliable early
warning tool for escalating SP resistance in Tanzania. The
GFI calculated by using this marker also varied between high
(3.4) and moderate SP resistance (1.96−2.1) sites. Nonethe-
less, values observed in the later sites are invariable and com-
parable with those observed using pfdhfr 59 Arg and

TABLE 2
Assessment of association between pfdhfr and pfdhps genotypes and

treatment outcome*

Genotype TF ACR OR (95% CI) Chi-square P

Quintuple mutants 12 39
Non-quintuple 43 289 2.1 (0.94–4.48) 4.0 0.045

Total 55 328
* pfdhfr = Plasmodium falciparum dihydrofolate reductase; pfdhps � P. faciparum dihy-

dropteroate synthase. TF � Treatment failure; ACR � adequate clinical response; OR �
odds ratio; CI � confidence interval, quintuple � pfdhfr 108 Asn, 51 Ile, 59 Arg and pfdhps
437 Gly and 540 Glu.

TABLE 3
GFIs calculated by using different combinations of mutations in

pfdhfr and pfdhps as markers of SP resistance in five sentinel sites
in Tanzania*

Site Overall TF (%) GFITriple dhfr GFITriple + Double dhfr GFIDouble dhps

Butimba 7 2.1 9.64 2.76
Kyela 12 1.99 5.3 1
Masasi 6.8 1.98 5.7 0.6
Mkuzi 23.6 3.4 4.4 1.37
Mlimba 13.5 1.96 6.4 0.25

* TF � Treatment failure; GFI � genotype failure index (subscripts are markers used to
calculate the GFI). For definitions of other abbreviations, see Tables 1 and 2.
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pfdhps 540 Glu genotypes as markers for SP resistance in
Uganda (1.9)23 and Malawi (2.2).24 The GFIs observed in our
study imply that the prevalence of the triple pfdhfr mutant
genotype was 3.4 and 2 times higher than treatment failure
rates in high and moderate SP resistance sites, respectively. It
should be noted that the deviation observed in the former site
might limit the applicability of GFI-based models as tools for
monitoring SP resistance. This deviation may partly imply
that during the genesis of SP resistance, a plateau/saturation
point may be reached beyond which a further increase in the
prevalence of the triple pfdhfr mutant genotype produces
only a marginal decrease in in vivo SP treatment failure. It has
also been argued that differences in prevalence of the triple
pfdhfr mutant genotype among sites might only reflect the
duration and magnitude of SP use and not differences in SP
resistance.36 Therefore, to better understand the relationship
between mutations and treatment failure, we recommend
multi-sites community and health facility longitudinal studies
to be carried out. These studies should focus on exploring the
use of mutant genotypes in estimating resistance, rather than
predicting individual treatment failures. In addition, they
should be designed so as to allow controlling for confounders
such as age and parasite densities. The GFIs generated by
using other combinations of pfdhfr and pfdhps mutations
were highly variable. Thus, the role of these markers in moni-
toring SP resistance (in the GFI context) needs further inves-
tigation. In this study, the moderate resistance sites showed
no significant difference in the prevalence of the triple pfdhfr
mutant genotype, contrary to a previous report in which sites
with small differences in SP resistance showed major differ-
ences in pfdhfr genotypes.36 Instead, these sites showed
marked differences in the prevalence of double pfdhps mu-
tant genotypes. A high prevalence of triple pfdhfr and double
pfdhps point mutations haplotypes has also been observed in
northern Tanzania with significant interregional heterogene-
ity in allele frequency.37

The pfdhfr 164 Leu mutation has been detected in the Mu-
heza District in Tanzania, an area with high SP resistance, by
using yeast expression assays.38 However, this mutation was
not detected by the standard PCR-RFLP and/or sequencing
methods in the present and other studies conducted in the
same39 or other parts of Africa.40,41 Therefore, it has been
suggested that the pfdhfr 164 Leu mutant allele detected in
Tanzania represents only the normal baseline and nonfunc-
tional mutations of the pfdhfr gene that occur naturally dur-
ing DNA replication.39,40 Similar to another report from
Malawi,41 we did not detect the pfdhps 436 Ala/Phe, 581 Gly,
or 613 Thr/Ser mutations at any of our study sites. All of these
mutations that have not been detected in Africa are prevalent
in southeast Asia and South America.42 Interestingly, how-
ever, the pfdhps 436 mutation was detected in Kibaha, Tan-
zania.37 Studies on polymorphic microsatellite repeats in the
flanking regions of the pfdhfr and pfdhps genes in southern
Africa and southeast Asia suggest gene flow/selective sweep
rather than new mutations as the most likely means by which
SP resistance spreads.43,44 Therefore, the absence of these
alleles in areas such as Muheza, where antifolate antimalarials
have been used for a long time and resistance is high, suggests
that the southern African and southeast Asian parasite popu-
lations may have different evolutionary origins. This hypoth-
esis is yet to be verified. However, there will always be a
necessity to constantly monitor for parasites carrying the

pfdhfr 164 Leu alleles in sub-Saharan Africa because its ap-
pearance, through importation or otherwise, and subsequent
spread would compromise the useful therapeutic life (UTL)
of other alternative antimalarial drugs such as chlorproguanil-
dapsone.

These findings constitute the baseline data on SP efficacy
and prevalence of pfdhfr and pfdhps genotypes in Tanzania.
The clinical and molecular information gained from these
studies signal that SP may have a short UTL in Tanzania, the
basis for adoption of SP as an interim, first-line antimalarial
drug. Thus, there is a need to advocate for rational use of the
drug and conduct regular surveillance to monitor resistance
concurrent with accelerated evaluation of different alterna-
tive treatments, especially combination antimalarial thera-
pies. These data provide preliminary evidence suggesting that
the triple pfdhfr mutant genotype may form a suitable early
warning tool for increasing SP resistance in Tanzania. Further
studies need to be done, at both community and health facility
levels, to verify the usefulness of pfdhfr and pfdhps genotypes
in estimating SP resistance.
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Abstract
Background: Systematic surveillance for resistant malaria shows high level of resistance of
Plasmodium falciparum to sulfadoxine-pyrimethamine (SP) across eastern and southern parts of
Africa. This study assessed in vivo SP efficacy after two years of use as an interim first-line drug in
Tanzania, and determined the rates of treatment failures obtained after 14 and 28 days of follow-up.

Methods: The study was conducted in the Ipinda, Mlimba and Mkuranga health facilities in
Tanzania. Children aged 6–59 months presenting with raised temperature associated exclusively
with P. falciparum (1,000–100,000 parasites per µl) were treated with standard dose of SP.
Treatment responses were classified according to the World Health Organization (WHO)
definition as Adequate Clinical and Parasitological Response (ACPR), Early Treatment Failure
(ETF), Late Clinical Failure (LCF) and Late Parasitological Failure (LPF) on day 14 and day 28.

Results: Overall 196 (85.2%) of 230 patients had ACPR on day 14 but only 116 (50.9%) on day 28
(57.7% after excluding new infections by parasite genotyping). Altogether 21 (9.1%) and 13 (5.7%)
of the 230 patients assessed up to day 14 and 39 (17.1%) and 55 (24.1%) of the 228 followed up to
day 28 had clinical and parasitological failure, respectively.

Conclusion: These findings indicate that SP has low therapeutic value in Tanzania. The
recommendation of changing first line treatment to artemether + lumefantrine combination
therapy from early next year is, therefore, highly justified. These findings further stress that, for
long half-life drugs such as SP, establishment of cut-off points for policy change in high transmission
areas should consider both clinical and parasitological responses beyond day 14.

Background
There is controversy over the therapeutic life of sulfadox-
ine-pyrimethamine (SP) when used alone for the treat-

ment of uncomplicated malaria in Africa. Experts do not
all agree on which drug efficacy measurements more accu-
rately predict usefulness of a drug in a community. Some
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consider clearance of symptoms alone [1] or plus para-
sites by day 14, as advised by the World Health Organiza-
tion [Regional Office for Africa (WHO/AFRO)
Consultative Meeting on Antimalarial Policy in the Africa
Region, 14th–15th August 2003, Harare, Zimbabwe]. Oth-
ers regard clearance of both symptoms and parasites over
a much longer period as the most accurate measure of
drug effectiveness [2-4].

The assessment methodology has profound implications
in terms of treatment policy strategies. Attempts have
been made to define the cut-off points for changing first-
line malaria treatment. Using the old treatment response
classification criteria, the action period was due when a
combined Early Treatment Failure (ETF) and Late Treat-
ment Failure (LTF) were between 16 – 24% [4,5]. A couple
of years ago, WHO/AFRO recommended 15% clinical and
25% parasitological treatment failure rates at day 14 as
cut-off points for implementation of policy change in
intense transmission areas (WHO/AFRO consultative
meeting on antimalarial policy in the Africa region, 14th–
15th August 2003, Harare, Zimbabwe).

Systematic surveillance for efficacy of antimalarial drugs
shows increasing levels of Plasmodium falciparum resist-
ance to SP across eastern and southern parts of Africa
[6,7]. In 2001, Tanzania adopted SP as interim first-line
treatment for uncomplicated malaria while awaiting for
the results of different combination therapies trials. As
part of the National Malaria Control Programme
(NMCP), this study assessed in vivo SP efficacy after two
years of widespread use in Tanzania.

Methodology
The study was conducted from July to November 2003 in
the Ipinda (south-west), Mlimba (south-east) and
Mkuranga (east) health facilities in Tanzania. Malaria
transmission in these areas is perennial with peaks
between May and July. A slightly modified WHO antima-
larial drug efficacy testing protocol [8] was used, so as to
conform with another study that was being conducted at
the same time under the same project framework in Papua
New Guinea, in areas with lower levels of endemicity.

Children aged 6–59 months presenting with raised tem-
perature (37.5°C–39.5°C) associated with P. falciparum
parasitaemia between 1,000–100,000 parasites per µl
were recruited. Exclusion criteria and other procedures
were as detailed in the protocol [8]. Patients were treated
(under observation) with a standard dose of SP (Fansidar®

Roche), i.e 1.25 mg/kg of pyrimethamine and 25 mg/kg of
sulfadoxine. The responses were classified according to
the new WHO definition as ACPR, ETF, LCF and LPF at
day 14 and day 28 [8].

Treatment failures rates were corrected after genotyping
the msp2 locus to detect new infections. Extensive diversity
in this locus has been observed with over 84 allelic vari-
ants in south-eastern Tanzania [9,10] and other investiga-
tors observed high genotype complexity with an average
of 4.9 genotypes per asymptomatic individual in eastern
Tanzania [11]. These observations are suggestive that msp2
alone may sufficiently discriminate recrudescence from
reinfection in Tanzania. It has previously been shown that
analysis of msp2 locus alone can effectively distinguish
recrudescence from reinfection in Uganda [12]. The clini-
cal and molecular data were combined and analysed
using Stata version 8.0 (Stata Corporation Inc, Texas,
USA).

Results
A total of 241 patients were recruited, of which 13 were
lost to follow-up. Table 1 summarizes patient age and
clinical parameters recorded on admission day by site.
Table 2 provides details of treatment outcome by site. On
day 28, only 116 (50.9%) of the 228 patients showed
ACPR. Molecular genotyping showed that 27/112
(24.5%) recurrent infections were due to re-infections,
therefore were excluded from the analysis and recorded as
withdrawn. Hence, PCR-corrected ACPR was 116/201
(57.7%). 196 (85.2%) of the 230 patients had ACPR by
day 14.

The total clinical failure by day 14 and 28 was observed in
21 (9.1%) out of 230 and 39 (17.1%) out of 228 patients,
respectively. 13 (5.7%) and 55 (24.1%) of the patients
had LPF by day 14 and 28, respectively. Thus 34 (14.9%)

Table 1: Mean age, temperature, haemoglobin and parasite density on admission day

Site Means

Weight in kg(SD)1 Age in years (SD)1 Temperature in °C (SD)1 Hb1 in g/dl (SD)1 parasites/µl (SD)

Ipinda (n = 73) 10.7(2.9) 1.7(1.3) 38.4(1.0) 9.4(1.6) 31'499 (30,260)
Mlimba (n = 75) 11.0(2.9) 1.7(1.4) 38.3(0.9) 9.0(1.6) 53,206(30,782)
Mkuranga (n = 93) 10.9(3.7) 1.3(1.0) 38.7(0.8) 8.6(1.9) 44,877(38,572)

Hb = haemoglobin; SD = standard deviation
Page 2 of 4
(page number not for citation purposes)

mugittu

mugittu
36



Malaria Journal 2005, 4:55 http://www.malariajournal.com/content/4/1/55
out of 230 and 112 (49.1%) out of 228 patients had over-
all treatment failure by day 14 and 28, respectively. After
genotyping recurrent infections day-28 treatment failures
decreased to 85 (42.3%). In this study Mkuranga recorded
the highest rates of both PCR-adjusted and unadjusted
treatment failures followed by Mlimba and Ipinda.

Discussion
In 2001 Tanzania replaced chloroquine with SP as interim
first-line antimalarial drug. Prior to this change, baseline
clinical trials with SP had been conducted throughout the
country using the 14 day follow-up protocol, and indi-
cated an average efficacy of 86% on day 14. These findings
paved the way for the malaria treatment policy change
[13] and SP is still used as first line antimalarial drug in
Tanzania. The present study assessed SP efficacy (using a
28 day follow-up) in three sites in Tanzania after two years
of use as first-line antimalarial drug. With this extended
period of follow-up, half of the patients (49.1%) failed
treatment. Even when new infections were taken into
account by genotyping, the overall treatment failure rate
(42.3%) was still high. This level of resistance is close to
that observed in Muheza (45%), an area of high SP resist-
ance in Tanzania [14].

Restricting our analysis to outcomes at day 14 would have
led to misleadingly low clinical (9.1%) and parasitologi-
cal (5.7%) treatment failure rates with the overall treat-
ment failure (14.9%) being equal to that recorded at
baseline prior to policy change. Using a shorter follow-up
period, another study in parts of Tanzania also recorded
an overall SP treatment failure of only 9.2% [15]. Accord-
ing to WHO/AFRO proposed thresholds for policy change
(i.e 15% and 25%, respectively), these failure levels would

still be considered acceptable. Retention of SP clinical effi-
cacy at day 14 after 10 years of its use as first-line drug has
been demonstrated in Malawi [1]. However, extending
the follow-up to day 28 the total failure was as high as
66%. Even at day 14 the clinical and total failure rates
were far above 15% and 25%, respectively. As in Malawi,
the majority of the recurrent infections in our study were
LPFs observed between day 14 and 28. The new WHO effi-
cacy testing protocol [8] recommends follow up for 28
days for drug with long half-life such as SP, if genotyping
can be done to distinguish recrudescence from re-infec-
tions. When efficacy assessment is based only on clear-
ance of symptoms in the first 14 days, the level of parasite
resistance can be grossly underestimated. It is widely
accepted that clearance of both parasitaemia and symp-
toms is the most accurate measure of the intrinsic resist-
ance of the parasite to a drug [2-4]. The resistant parasite
that is apparently causing asymptomatic infection in LPF
is likely to lead in the short-term to a new clinical episode
[14] and/or to anaemia, depending on the immunity of
the subject.

Our observations show that SP efficacy in Tanzania is
compromised and fully justify the recent decision to
review the current malaria treatment policy from early
next year in favour of artemether + lumefantrine combina-
tion therapy. This recommendation should be imple-
mented at a large scale as soon as possible. Such a change
would be welcome to protect the use of SP in its indica-
tion for the intermittent preventive treatment of pregnant
women (IPTp). Indeed, it is at present the only drug that
can be used for IPTp purpose because of its good safety
profile. As far as methodology is concerned, the findings
stress that cut-off points for malaria treatment policy

Table 2: Sulfadoxine-pyrimethamine treatment outcomes

Results no. of included 
patients

LF and 
corr.

Evaluable 
patients

ACPR 
n (%)

ETF
n (%)

LCF
n (%)

Total CF
n (%)

LPF
n (%)

Overall TF
n (%)

At D14
Ipinda 73 1 72 62(86.1) 7(9.7) 2(2.8) 9(12.5) 1(1.4) 10(13.9)
Mlimba 75 3 72 63(87.5) 3(4.3) 4(5.7) 7(9.1) 2(2.9) 9(12.9)
Mkuranga 93 7 86 71(82.6) 3(3.5) 2(2.3) 5(6.9) 10(11.6) 15(17.4)
Total 241 11 230 196(85.2) 13(5.7) 8(3.5) 21(9.1) 13(5.7) 34(14.9)
At D28
Ipinda 72 0 72 44(61.1) 7(9.7) 5(6.9) 12(16.7) 16(22.2) 28(38.9)
Mlimba 72 2 70 34(48.6) 3(4.3) 9(12.9) 12(17.1) 24(34.3) 36(51.4)
Mkuranga 86 0 86 38(44.2) 3(3.5) 12(13.9) 15(17.4) 33(38.4) 48(55.8)
Total 230 2 228 116(50.9) 13(5.7) 26(11.4) 39(17.1) 55(24.1) 112(49.1)
At D28 PCR-corrected
Ipinda 72 6 66 44(66.7) 7(9.7) 5(6.9) 12(16.7) 10(13.9) 22(33.3)
Mlimba 70 10 60 34(56.7) 3(4.3) 5(7.1) 8(11.4) 18(25.7) 26(43.3)
Mkuranga 86 11 75 38(50.7) 3(3.5) 8(9.3) 11(12.8) 26(30.2) 37(49.3)
Total 228 27 201 116(57.7) 13(5.7) 18(7.9) 31(13.6) 54(23.7) 85(42.3)

ACPR = Adequate Clinical and Parasitological Response; TF = Treatment failure, ETF = Early Treatment Failure, LCF = Late Clinical Failure; LPF = 
Late Parasitological Failure; CF = Clinical failure, n = Sample Size; TF = Treatment failure, FP = Lost to Follow-up, corr. = corrected
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change in high transmission areas should consider both
clinical and parasitological responses beyond day 14, cou-
pled with distinction of recrudescence from re-infection
using molecular genotyping.
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Abstract 

 

Background 

Single nucleotide polymorphisms (SNPs) in 5 P falciparum genes has been associated 

with resistance of the parasite to antimalarial drugs. These SNPs are considered as 

molecular markers of drug resistance that may be useful for assessing the dynamics of 

antimalarial drug resistance. However, their role in in vivo resistance remains unclear and 

controversial. We evaluated the usefulness of a novel high throughput DNA microarray 

in a community-based approach for monitoring resistance. 

 

Methodology 

In 2003 and 2004, we assessed SP efficacy against uncomplicated pediatric P. falciparum 

malaria in Ipinda, Mlimba and Mkuranga health facilities in Tanzania using the WHO 

2002 protocol. Concurrently, we assessed asymptomatic infections in 1202 individuals of 

all age groups in the health facilities catchment areas. Using a newly developed DNA 
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microarray technique, we determined SNPs in P. falciparum resistance-associated genes 

(dhfr and dhps, mdr1, crt and ATPase6), and estimated the frequencies of mutant alleles, 

taking into account the multiplicity of infection (MOI) in each person. We further 

assessed whether the frequency of these molecular markers in communities can be used 

to monitor the dynamics of resistance.  

 

Results 

The overall Day 28 PCR-adjusted SP treatment failure in 2003 (42.3%) and 2004 (41%) 

were high and not significantly different (p > 0.05) with and The frequencies of 

individual Pfdhfr mutant alleles were high and varied in the communities and did not 

reflect SP failure rates at health facilities. The prevalence of triple-Pfdhfr genotype was 

also not significantly different between 2003 and 2004. Ratios of this genotype and 

treatment failure were relatively stable. The frequency of Pfcrt 76 Thr mutant allele 

decreased in Ipinda and Mkuranga, but increased significantly in Mlimba (0.47 to 0.88), 

which is coherent with a significant increase in the frequency of Pfmdr1 86 Tyr allele 

also observed in Mlimba. No mutations in at position 769 and 623 in the ATPase6 gene 

were detected. 

 

Conclusion 

The triple-Pfdhfr mutant genotype may be useful in community based monitoring of 

dynamics of resistance to SP but requires further assessment including areas with 

different treatment failure rates. The frequencies of Pfcrt 76 Thr and Pfmdr1 86 Tyr 

alleles has decreased following suspension of Chloroquine (CQ) use but seems to be 

influenced by the pattern of quinine (QN) or amodiaquine (AQ) usage in the sites. The 

lack of ATPase6 mutant alleles suggest that artemisinin resistance is yet to be selected in 

Tanzania. The DNA microarray technology may provide a suitable system for 

simultaneously assessing, on a large scale, the spread of resistance to newly adopted 

artemisinin-based combination therapies (ACTs) and reversal of CQ and SP resistance 

after their suspension in Sub-Saharan Africa. However, the interval between assessments 

must be long enough in order to appreciate parasite genotypic dynamics following 

alteration of drug pressure.  
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Introduction 

Emergence and subsequent spread of P. falciparum to resistance to the cheap and safe 

antimalarials such as sulfadoxine-pyrimethamine (SP) and chloroquine (CQ) hinders 

effective malaria control in Sub-Saharan Africa. Hence ACTs including artemether- 

lumefantrine, artesunate + amodiaquine and artesunate + mefloquine are now advocated 

to replace these monotherapies in the region (WHO, 2006).  Currently, the deployment of 

ACT is underway in 15 Sub-Saharan countries out of 43 listed by WHO-AFRO whereas 

15 countries have already adopted the policy of AS-AQ as first-line (WHO, 2005).  

Tanzania is also in the process of revising malaria treatment policies to adopt ACTs 

(NMCP, unpublished data). Thus there is a need for regional-wide, standardized high 

throughput methods that can simultaneously monitor emergence and spread of resistance 

to the newly adopted ACTs and decreasing resistance to withdrawn drugs, with a view to 

assess the possibility of recycling the limited number of safe and cheap drugs as 

combination partners with artemisinins (Laufer and Plowe, 2004). 

 

Antimalarial drug efficacy is classically assessed by using the standard WHO in vivo and 

in vitro tests. These methods can be supplemented by assessment of molecular markers of 

antimalarial drug resistance. Molecular biological research has advanced our 

understanding of modes of drug action and mechanism of P. falciparum resistance to 

antiumalarials. It is now known that antifolates (pyrimethamine, sulfadoxine. Proguanil, 

chlorproguanil and trimethoprim) act by inhibiting either the DHFR or DHPS enzymes in 

the folate biosynthesis pathway and resistance to these drugs is mediated by SNPs in the 

Pfdhfr codons Ala 16 Val, Asn 51 Ile, Cys 59 Arg, Ser 108 Asn/Thr and Ile 164 Leu 

(Cowman et al. 1988; Reeder et al. 1996) and Pfdhps codons Ser 436 Phe, Ala 437 Gly, 

Lys 540 Glu, Ala 581 Gly and Ala 613 Thr/Ser (Triglia et al. 1997).  

 

On the other hand, the modes of action and mechanisms of resistance to quinolines and 

artemisinins are still largely unclear. A detailed review of quinoline drug action (Fitch, 

2004) shows that 4-aminoquinolines (e.g. CQ) act by interfering with heme detoxification 

in the parasites digestive vacuoles whereas quinoline-4-methanols [quinine (QN) and 



 43 

mefloquine (MQ) and lumefantrine (LM)] antagonizes the CQ-induced morphological 

changes in susceptible parasites by inhibiting and reversing vesicular docking in 

endolysosomal system, therefore, kill parasites by secondarily inhibiting membrane 

recycling. QN and MQ are also considered to inhibit hemoglobin ingestion (Fitch 2004). 

Two membrane transport proteins P. falciparum chloroquine resistance transporter 

(PfCRT) and Glycoprotein homologue 1 (Pgh1) encoded by Pfcrt and Pfmdr1 genes, 

alters drug accumulation and pH in the digestive vacuole. Both proteins influence 

quinolines’ antimalarial activity in a variety of ways.  Therefore, SNPs in the Pfcrt 

codons Cys 72 Ser, Met 74 Ile, Asn 75 Glu, Lys 76 Thr, 152, 163 Ala 220 Ser, Gln 271 

Glu and Asn 326 Ser, Ile 356 Thr and  Arg 371 Ile (Fidock et al. 2000) and Pfmdr1 

codons Ser 86 Asn/Thr, Tyr 184 Phe, Ser 1034 Cys, Asn 1042 Asp and Asp 1246 Tyr 

(Foote et al. 1990) mediate resistance to CQ whereas Pfmdr1 copy number amplification 

confers resistance to mefloquine and probably atemisinins (Cowman et al. 2002; 

Duraisingh et al. 2000; Price et al. 1999; Price et al. 2004). In contrary, mutations in the 

Pfcrt (Sidhu et al. 2002) and Pfmdr1 (Bray et al. 2005; Sisowath et al. 2005) are 

associated with increased susceptibility to QN and MQ. On the other hand, artemisinins 

interact and inhibit malarial parasite’s calcium ATPase (sarcoplasmic endoplasmic 

reticulum calcium ATPase (SERCA) (Eckstein-Ludwig et al. 2003; Uhlemann et al. 

2005). In vitro studies showed that resistant P. falciparum share the ATPase6 Ser 769 

Asn, Ala 623 Glu and Glu 431 Lys (Jambou et al. 2005).  

 

Therefore, the mutations in Pfdhfr, Pfdhps, Pfcrt, Pfmdr1 and PfATPase6 are 

recommended for use as early warning signals for emergence and/or spread of resistance 

to antimalarial drugs. However, reports on their roles in in vivo resistance have been 

inconsistent. Some studies (Kublin et al. 2002; Kyabayinze et al. 2003) established 

strong association while others (Francis et al. 2006; Aubouy et al. 2003) didn’t. This 

inconsistence could partly be brought about by restricting studies to small numbers of 

symptomatic children < 5 years attending health facilities for treatment. The 

asymptomatic infections circulating in the community (parasite reservoir) has frequently 

been ignored but may play an important role in the spread of antimalarial drug resistance.  

More importantly, assessment of the role of mutations in resistance is complicated by the 
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fact that most malaria infections in high transmission areas are multiclonal. Thus in a 

mixed (wild-type and mutant) infection, it is difficult to determine the frequency of 

mutant allele or whether the observed multiple mutations are linked.  

 

In this study we used a novel high throughput DNA microarray technique to detect many 

reported SNPs in Pfdhfr, Pfdhps, Pfmdr1, Pfcrt and PfATPase6 (resistance genogram) in 

the asymptomatic infections and estimate the frequency of mutant alleles considering the 

multiplicity of infection (MOI).  Finally we assessed whether the profile of Pfdhfr and 

Pfdhps mutant genotype in the community (catchment area) may reflect SP treatment 

failure rates in respective health facilities. In addition, we compared the current levels of 

Pfcrt and Pfmdr1 mutations to those recorded in our previous studies prior to CQ 

suspension in Tanzania to assess whether suspension of CQ has resulted into decline of 

CQ resistance markers. 

 

Methodology 

Study areas and design 

The study was conducted between the end of May and November 2003 and 2004 in the 

Ipinda (south-west), Mlimba (south-east) and Mkuranga (east) health facilities in 

Tanzania. According to the Tanzania national census conducted in 2002 the populations 

of Ipinda, Mlimba and Mkuranga were 16,756, 32875 and 26,551 people, respectively, of 

more or less similar socioeconomic status. Malaria transmission in these areas is 

perennial with peaks between May and July. The study comprised of SP efficacy testing 

in the NMCP framework in the three the health facilities in parallel with assessment of 

the prevalence of drug resistance markers in parasite populations circulating as 

asymptomatic infection in catchment areas. 

 

Assessment of SP efficacy 

We used a slightly modified (minimum parasitaemia 1000 instead of 2000 parasites per 

µl) WHO antimalarial drug efficacy testing protocol for areas of intense transmission. 

This modification was made to conform to, and allow data comparison with, another 
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study that was being conducted at the same time under the same project framework in 

Papua New Guinea, in lower transmission areas. Children aged 6-59 months presenting 

with raised temperature (37.5°C - 39.5°C) associated with P. falciparum parasitaemia 

between 1,000 - 100,000 parasites per µl were recruited. Exclusion criteria and other 

procedures were as detailed in the WHO protocol. Patients were treated (under 

observation) with a standard dose of SP (Fansidar®, Roche), i.e. 1.25mg/kg of 

pyrimethamine and 25mg/kg of sulfadoxine. Patients were followed up for 28 days to 

assess response. The responses were classified according to the new WHO definition as 

Adequate Clinical and Parasitological Response (ACPR), Early Treatment Failure (ETF), 

Late Clinical Failure (LCF) and late Parasitological Failure (LPF) at day 14 and day 28 

(WHO 2002). Treatment failures rates were corrected after genotyping the msp2 locus in 

Day 0 and recurrent Day samples using a genescan-based technique as described (Falk et 

al. 2006). These studies obtained ethical clearance from both institutional and national 

bodies. Prior to recruitment of a study subject in clinical study informed consent was 

obtained from parent or guardian of each child. 

 

Assessment of antimalarial resistance markers in the catchment areas 

Due to logistic reasons community surveys in 2003 were delayed and conducted between 

August and mid October, outside the peak transmission. These community-based cross-

sectional surveys were conducted in health-facilities’ catchment areas. A total of 1202 

individuals from randomly selected households were recruited.  

 

From finger prick blood, thick and thin smears were made and approximately 500µl of 

blood was collected into an EDTA microtainer®. Smears were examined under the 

microscopy and parasitaemia reported as number of parasite per 200 WBC or gametocyte 

per 500 WBC. All 1202 individuals were also screened for P. falciparum infection by 

msp2 PCR amplification.  The blood in the EDTA microtainer® tubes was further 

allowed to settle for one hour. Plasma was discarded and the remaining pellets dissolved 

into 2 volumes of 6M GCT (GuHCl in Tris pH 8, 2 mM EDTA) and SDS added to a final 

conc. of 0.5%. The tubes were mix well by gentle shaking and stored at room temperature 
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for up to 2 days or at -20ºC until DNA extraction. Before recruitment of the subjects, 

consent was obtained from community leaders, heads of household as well as individual 

participants or guardians (in case of younger children). 

 

Extraction of DNA, PCR amplification and Detection of SNPs by microarray  

200 µl of the GCT-treated blood was used for DNA extraction by the conventional 

phenol-chloroform method. The DNA pellet was dissolved in 50 µl TE and kept at -20oC 

until required. P. falciparum DNA from all msp2 positive samples was amplified 

separately using a set of ten resistance gene-specific primers. Both primary and nested 

PCR amplifications were done in 96-well plates in 50 and 100µl reaction volumes, 

respectively. 10µl of each the 10 nested PCR amplifications were pooled into one new 96 

well plate (pool 1), briefly vortexed and centrifuged. 10µl of each of the 96 wells in pool 

1 were transferred into a new 96 well plate and diluted 1:10 with sterile distilled water 

(pool 2), briefly vortexed and centrifuged. 5µl of each of the wells in pool 2 were 

transferred in duplicate into a new 96-well plate (each plate then contained 48 patients) 

and SAP digested in 12µl reaction volumes, containing 1x shrimp alkaline phosphatase 

(SAP) buffer, 2 units of SAP and the 5 µl of the diluted PCR product by incubating the 

mixture at 37 oC. After 1 hour SAP was heat inactivated by heating at 90 oC for 15 

minutes. 

 

Single base primer extension reactions were carried out using 20-30bp locus-specific 

extension primers, thermo sequenase and cy3- or cy5-labeled ddNTPs. The extension 

primers are designed such that the last bases on their 3’end preceeds a polymorphic site. 

The extended primers (whose last bases on their 3’ ends are now labeled with a 

fluorochrome) were denatured by heating at 96ºC for 5 minutes and hybridized at 52ºC 

for 90 minutes to specific probe anchored onto aldehyde-coated microscopic slide. The 

slides were washed thrice in saline-sodium citrate (SSC) and sodium dodecyl sulfate 

(SDS), dried, scanned by GMS 418 scanner and arrays analyzed by Genepix to detect 

SNPs. The PCR amplification and detection of SNPs by DNA microarray technique are 

described in details elsewhere (Crameri et al. unpublished data).  
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Table 1 SP treatment Outcome in 2004 in vivo studies 

Results n  LF & corr Evaluable patients Treatment outcome 

    ACPR (n%) ETF (n%) LCF (n%) Total CF (n%) LPF (n%) Overall TF (n%) 

At Day 14         

Ipinda 75 1 74 68(91.9) 4(5.4) 0(o) 4(5.4) 2(2.7) 6(8.1) 

Mlimba 81 3 78 63(80.8) 2(2.6) 7(9) 9(11.5) 6(7.7) 15(19.2) 

Mkuranga 75 0 75 65(88.7) 1(1.3) 4(5.3) 5(6.7) 5(6.7) 10(13.3) 

Total 231 4 227 196(86.3) 7(3.1) 11(4.8) 18(7.9) 13(5.7) 31(13.7) 

At Day 28: uncorrected        

Ipinda 74 0 74 50(67.6) 4(5.4) 9(12.2) 13(17.6) 11(14.9) 24(32.4) 

Mlimba 78 0 78 39(50) 2(2.7) 17(21.8) 19(24.4) 20(25.6) 39(50) 

Mkuranga 75 0 75 39(52) 1(1.3) 21(28) 22(29.3) 14(18.7) 36(42) 

Total 227 0 227 128(56.4) 7(3.1) 47(20.7) 54(23.8) 45(19.8) 99(43.6) 

At Day 28: PCR corrected        

Ipinda 74 1 73 50(68.5) 4(5.5) 8(11) 12(16.4) 11(15.1) 23(31.5) 

Mlimba 78 4 74 39(52.7) 2(2.7) 14(18.9) 16(21.6) 19(25.7) 35(47.3) 

Mkuranga 75 5 70 39(55.7) 1(1.4) 19(27.1) 20(28.6) 11(15.7) 31(44.3) 

Total 227 10 217 128(58.9) 7(3.2) 41(18.9) 48(22.1) 41(18.9) 89(41) 

 

ACPR = Adequate Clinical and Parasitoloical Response; TF = Treatment failure, ETF = Early Treatment Failure, LCF = Late Clinical Failure; LPF = Late Parasitoloical Failure; CF = Clinical failure, n = Sample 

Size; TF = Treatment Failure, LF = Lost to Follow-up, corr. = corrected 
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Data analysis 

The clinical and community data were analyzed using Stata v 8.0 (Stata Corporation Inc, 

Texas, USA). A non-linear statistical model was used to estimate the frequency of mutant 

alleles. The model assumes that resistant and sensitive parasite clones are transmitted 

independently. Therefore, the likelihood of a sample to contain no resistant clone is (1 - 

p)n, where p is the frequency for the mutant allele and n is the multiplicity of infection of 

the sample. Similarly, the likelihood for the sample to contain no wild-type clone is 1 – p 

– (1 - p)n. The likelihood over the whole data set for p is computed as the product of these 

likelihood over all samples, using values of n derived from the msp2 typing. A Markov 

Chain Monte Carlo algorithm (Program Winbugs 1.3) was used to obtain estimates and 

credible intervals (Bayesian confidence intervals (CI) for p, making use of these 

likelihood, and assuming a uniform (0.1) prior distribution for p (Schneider et al. 2002).  

 

Results 

SP treatment outcome 

The findings of the in vivo study conducted in 2003 are detailed elsewhere (Mugittu et al. 

2005). Briefly, SP treatment failure rates were 34/230 (14.9%) and 112/228 (49.1%) [or 

85/201 (42.3%) after PCR-adjustment] at day 14 and 28, respectively. Only 116/201 

(57.7%) had ACPR at day 28.  The clinical results of the second study conducted in 2004 

are detailed in Table 1. Overall SP treatment failure at day 14, and 28 was observed in 

31/227 (13.7%) and 99/227 (43.6%) patients. Molecular genotyping of the msp2 locus 

distinguished 10 (10%) new infections out of 99 recurrent infections. Thus the overall 

(Day 28) PCR-corrected treatment failure decreased to 89/217 (41%) and only 128/217 

(58.9%) of patients had ACPR. There was no significant intra- or inter-sites difference in 

crude or PCR-adjusted treatment failure rates observed in 2003 and 2004 (p > 0.05)  

 

Assessment of antimalarial drug use pattern showed that 68/402 (17%), 121/398 (30%) 

and 24/402 (6%) individual in Ipinda, Mlimba and Mkuranga, respectively, had used 

either QN or AQ under prescription or self medication for treatment of malaria within 12 

months prior to recruitment into the study. 
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Frequency and pattern of mutant alleles in catchment areas  

Table 2 shows that the overall mean age, temperature and MOI was similar but there was 

a significant difference between the prevalence of asymptomatic infections by msp2 

amplification (p = 0.002) between 2003 and 2004. 146 samples collected in 2003 were 

excluded from analysis due to technical problems. These samples were randomly found 

within the whole data set and are unlikely to be source of biasness in the study. High 

frequencies of the Pfdhfr mutant alleles were found when compared to Pfdhps mutant 

alleles in both years and in all sites (Table 3). The frequencies of Pfdhfr 51 Ile, 59 Arg 

and 108 Asn in Mlimba and Mkuranga and Pfdhfr 51 Ile and 108 Asn in Ipinda were 

significantly higher (confidence intervals do not overlap) in 2004 than 2003. In Ipinda the 

frequencies of Pfdhfr 59 Arg in the 2 years were not significantly different. In contrast 

the frequencies of Pfdhps 437 Gly and 540 Glu mutant alleles were statistically different 

in Ipinda but not in Mlimba and Mkuranga. The Pfcrt 76 Thr mutant allele in 2003 and 

2004 significantly decreased in Ipinda (0.71 to 0.49) and Mkuranga (0.62 to 0.49). 

However, it increased significantly in Mlimba (0.47 to 0.88) coherent with significant 

increase in Pfmdr1 86 Tyr mutant allele (0.43 to 0.72) that did not show any change in 

the other sites. No clear trend was depicted by the rest of the CQ resistance markers, but 

their frequencies, especially the Pfmdr1 alleles were rather low. The Pfdhfr 164, Pfdhfr 

613 and PfATPase6 769 Asn, 623 Glu mutant alleles were not observed. SNPs in Pfdhps 

436, 581, 640 and 645 are not reported because their post-PCR hybridization parameters 

were not optimsed. SNPs at these positions have not been associated with in vivo drug 

resistance. 
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Table 2. Mean age, axilary temperature and parasitological characteristics collected community surveys 

Note: n = sample sizeSD = standard deviation, temp = Temperature, msp2 +ve samples positive by msp2, MOI = multiplicity of infection, CI = confidence interval. 

Site 2003 2004 

 N mean age in years (SD) Temp 
(SD) 

msp2 +ve (%) MOI (CI) n mean age in yeras (SD) Temp 
(SD) 

msp2 +ve (%) MOI (CI) 

Ipinda 173 21.3 (19.1) 36.6 
(0.32) 

58 (33.5) 2.49 (2.14,2,84) 200 20 (17.8) 36.3 
(0.58 

98 (49) 3.25 (2.88, 3.62) 

Mlimba 142 16.0 (14.5) 36.6 
(0.33) 

49 (34.5%) 2.33 (2.02, 2.65) 198 18 (17.3) 36.6 
(0.78) 

88 (44.4) 2.64 (2.29, 2.98) 

Mkuranga 157 21.2 (19.1) 36.6 
(0.19) 

45 (28.7%) 3.07 (2.69, 3.45) 200 20.7 (20.6) 36.8 
(0.47) 

98 (49) 2.73 (2.38, 3.07) 

Total 472 19.5 (17.9) 36.6 
(0.5) 

152 (32.2%) 2.65 (2.44, 2.85) 598 19.7 (18.6) 36.6 
(0.6) 

284 (47.5) 2.88 (2.68, 3.09) 
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Since most of the infections were multiclonal, we could not establish whether the 

observed SNPs in Pfdhfr, Pfdhps, Pfmdr1 and Pfcrt were linked. Nonetheless, we have 

assessed the co-occurrence of mutant alleles per individual samples to give an impression 

on the magnitude of resistance markers in Tanzania. Figure 1 shows that most individuals 

in all 3 communities were predominantly (54 – 74%) harboring parasites with either the 

Pfdhfr 51 Ile, 59 Arg and 108 Asn (triple-Pfdhfr) alone or in combination with  both 

Pfdhps 437 Gly and 540 Glu (quintuple mutant genotype) or Pfdhps 437 Gly and 540 

Glu, separately. The increase in the prevalence of quintuple mutant genotype, was 

significant in Ipinda (X2 = 12.2, p = 0.0005) and Mkuranga (X2 = 4.6, p = 0.033) but did 

not seem to influence, at the same level, the SP treatment failure rates observed in 

respective health facilities. In addition, the ratios of prevalence of quintuple genotype and 

treatment failure rates varied markedly from 0.4 – 1.4 (results not shown). However, 

considering the triple-Pfdhfr mutant genotype alone, whose prevalence is summarized in 

Table 4, we did not observe a significant difference between 2003 and 2004 in any site (p 

> 0.05). This is consistent with the insignificant intra-site differences in SP treatment 

failure rates. The intra-site ratios of triple-pfdhfr to SP treatment failure rates were more 

stable than the inter-site ones (Table 4). The pure dhfr/dhps wild-type genotype observed 

at low levels (4.7 to 15%) in 2003 was almost absent (1% in Mkuranga only) in 2004.  

 

Discussion  

The 2004 in vivo study further reaffirms the high SP treatment failure rate already 

observed in 2003 (Mugittu et al. 2005) in Tanzania. The failure rates established in these 

two years were not significantly different, an observation which was not reflected by the 

prevalence of individual Pfdhfr or Pfdhps mutant alleles that increased drastically (by 0.2 

to 0.47) in their respective communities. Dramatic increase in the frequency of dhfr 108 

Asn allele with the advent of SP usage was also recorded in symptomatic patients in 

eastern Sudan. In addition, higher frequencies of mutant alleles were seen during the dry 

season than during the wet season, most likely reflecting seasonal variation in drug 

pressure and differences in the fitness of resistant and sensitive parasites (Abdel-Muhsin 

et al. 2004).  
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Table 3. Frequency of mutant alleles estimated by Markov Chain Monte Carlo algorithm by taking into account the multiplicity of 
infection in each individual person.  
 

Mut allele Ipinda Mlimba Mkuranga 
 2003 2004 2003 2004 2003 2004 
 N freq (CI) n freq (CI) n freq (CI) n freq (CI) n freq (CI) n freq (CI) 
ATPase6 623 35 0 72 0 31 0 62 0 28 0 60 0 
ATPase6 769 22 0 52 0 15 0 62 0 19 0 38 0 
Pfcrt 152 29 0.03 (0, 0.07) 66 0 29 0.09 (0.04, 0.18) 51 0 29 0 62 0 
Pfcrt 163 29 0.29 (0.19, 0.39) 64 0.17 (0.12, 0.22) 28 0.2 (0.11, 0.31) 60 0.04 (0.01, 0.07) 26 0.24 (0.16, 0.34) 58 0.46 (0.46, 0.47) 
Pfcrt 220 25 0.13 (0.06, 0.23) 61 0.21 (0.16, 0.27) 31 0.43 (0.33, 0.5) 60 0.49 (0.46, 0.5) 23 0.12 (0.06, 0.21) 61 0.34 (0.32, 0.37) 
Pfcrt 271 28 0.43 (0.32, 0.54) 68 0.31 (0.24, 0.37) 31 0.46 (0.39, 0.5) 62 0.74 (0.67, 0.8) 26 0.31 (0.21, 0.41) 63 0.36 (0.29, 0.43) 
Pfcrt 326 25 0.16 (0.08, 0.26) 63 0.15 (0.11, 0.2) 21 0.26 (0.15, 0.38) 62 0.09 (0.05, 0.13) 26 0.2 (0.12, 0.29) 54 0.29 (0.22, 0.37) 
Pfcrt 356 33 0.06 (0.04, 0.08) 65 0.01 (0, 0.03) 16 0 62 0 26 0 62 0 
Pfcrt 371 27 0.36 (0.24, 0.49) 61 0.28 (0.21, 0.36) 23 0.54 (0.4, 0.69) 59 0.74 (0.66, 0.8) 23 0.35 (0.23, 0.48) 49 0.44 (0.36, 0.5) 
Pfcrt 76 31 0.71 (0.61, 0.8) 63 0.49 (0.48, 0.5) 31 0.47 (0.47, 0.48) 61 0.88 (0.82, 0.92) 30 0.62 (0.52, 0.72) 63 0.49 (0.46, 0.5) 
Pfdhfr 108 47 0.49 (0.47, 0.5) 88 0.96 (0.93, 0.98) 33 0.49 (0.46, 0.5) 66 0.89 (0.84, 0.93) 37 0.79 (0.71, 0.87) 77 0.93 (0.89, 0.97) 
Pfdhfr 164 41 0 71 0  29 0 69 0 35 0 66 0 
Pfdhfr 16 51 0.2 (0.14, 0.27) 88 0.12 (0.08, 0.16) 38 0.17 (0.16, 0.17) 69 0.08 (0.05, 0.12) 40 0.16 (0.09, 0.23) 80 0.12 (0.08, 0.17) 
Pfdhfr 51 43 0.49 (0.46, 0.5) 71 0.82 (0.76, 0.87) 28 0.47 (0.41, 0.5) 66 0.8 (0.74, 0.86) 36 0.54 (0.43, 0.65) 69 0.75 (0.68, 0.81) 
Pfdhfr 59 48 0.65 (0.59, 0.70) 77 0.68 (0.63, 0.76) 33 0.56 (0.50, 0.65) 66 0.75 (0.70, 0.83) 37 0.45 (0.34, 0.56) 68 0.65 (0.57, 0.72) 
Pfdhps 437 49 0.24 (0.17, 0.27) 93 0.38 (0.31, 0.44) 32 0.36 (0.25, 0.45) 69 0.37 (0.33, 0.43) 38 0.31 (0.22, 0.4) 79 0.34 (0.27, 0.42) 
Pfdhps 540 51 0.16 (0.1, 0.23) 92 0.42 (0.36, 0.48) 31 0.45 (0.35, 0.5) 71 0.45 (0.38, 0.5) 38 0.06 (0.02, 0.11) 86 0.18 (0.16, 0.2) 
Pfdhps 613 33 0 73 0 21 0 58 0 27 0 54 0 
Pfmdr1 1034 47 0.31 (0.25, 0.35) 79 0.22 (0.17, 0.28) 37 0.41 (0.3, 0.49) 68 0.09 (0.05, 0.13) 32 0.3 (0.21, 0.39) 72 0.36 (0.3, 0.43) 
Pfmdr1 1042 52 0 (0, 0.01) 93 0.01 (0, 0.03) 36 0.02 (0.02, 0.02) 68 0.02 (0, 0.04) 38 0.02 (0, 0.05) 80 0 
Pfmdr1 1246 41 0.03 (0.01, 0.07) 87 0.03 (0.01, 0.05) 32 0.12 (0.11, 0.12) 67 0.03 (0.01, 0.06) 36 0.05 (0.02, 0.1) 81 0.04 (0.02, 0.06) 
Pfmdr1 184 39 0.15 (0.09, 0.23) 75 0.24 (0.18, 0.3) 32 0.16 (0.08, 0.26) 69 0.13 (0.08, 0.18) 36 0.09 (0.04, 0.15) 73 0.06 (0.03, 0.1) 
Pfmdr1 86 41 0.41 (0.38, 0.44) 78 0.42 (0.35, 0.49) 34 0.43 (0.43, 0.43) 70 0.72 (0.65, 0.78) 38 0.46 (0.37, 0.5) 73 0.43 (0.36, 0.49) 

 
Note: Mut = mutant, n samples, Freq = frequency, CI = confidence Interval, Yellow = significant increase in frequency from 2003, 
Blue = significant decrease in frequency.   
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In our study the differences in some frequencies of mutant alleles were big and unlikely 

to have occurred in one year. These differences may partly be attributable to slightly 

different sampling time-frames with different climatic conditions. This could be 

explained by the higher prevalence of asymptomatic infections in the communities in 

2004 than 2003. In addition, some of these differences may be due to some possible 

technical limitations of this new microarray technology. However, we believe that the 

difference in the frequencies of mutant alleles largely represent high selection pressure 

after widespread use of SP in Tanzania.  

 

We observed higher, almost fixed frequencies of Pfdhfr 108 Asn and 51 Ile and 

comparatively lower frequencies of 59 Arg as in Uganda (Francis et al. 2006). This 

observation can be explained by the theory of progressive stepwise occurrence of 

mutations (Plowe et al. 1997; Plowe et al. 1998). 

 

Table 4. Ratio of prevalence of triple-Pfdhfr in community /SP failure rate in health 

facility 

Site 2003 2004 

 Triple-

Pfdhfr (%) 

TF (%) Pfdhfr/TF 

ratio 

Triple-

Pfdhfr (%) 

TF (%) Pfdhfr/TF 

ratio 

Ipinda 60.0 33.3 1.8 72.0 31.5 2.3 

Mlimba 71.5 43.3 1.7 74.3 47.3 1.6 

Mkuranga 62.9 49.3 1.2 51.6 44.3 1.2 

Total  63.6 42.2 1.5 72.8 41 1.8 

Note: Triple-Pfdhfr = Pfdhfr 51 Ile, 59 Arg and 108 Asn mutations, TF = treatment 

failure rate 

 

The highly resistant 108 Asn genotype appear first followed by 51 Ile that increases the 

fitness of the double mutant parasite under high drug pressure, by restoration of 

enzymatic activity (Hastings  IM, et al. 2002). Subsequently Pfdhfr 59 Arg and 164 

mutations are driven by drug pressure (Hastings et al. 2005). The Pfdhfr 59Arg seemed to 

modulate the prevalence of triple-Pfdhfr mutation, a genotype that reflected SP failure 
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rates better than any other one in our study. This allele can predict the triple-Pfdhfr 

mutant genotype whereas together with Pfdhps 540 Glu they predict quintuple mutant 

genotype (Kublin et al. 2002). Despite the high SP treatment failure rate and high 

frequencies of other Pfdhfr mutant alleles, the Pfdhfr 164 Leu allele, which was 

previously reported at low levels in Tanzania (Hastings MD, et al. 2002) and Uganda 

(Francis et al. 2006), was not detected in our study. This mutation has consistently not 

been found in Africa (Ochong et al. 2003; Alifrangis et al. 2003; Pearce et al. 2003; 

Mugittu et al. 2004; Wichmann et al. 2003; Bwijo et al. 2003), suggesting that the 

African parasites lack the genetic traits that would conferthe ability to bear the Pfdhfr 164 

mutation (Nzila et al. 2005). 

 

Although we could not assess linkage disequilibrium of the various Pfdhr or Pfdhps 

alleles in our study, prevalence recorded in 2004 in the 3 communities (51.6% - 74%) are 

more or less similar to estimated community frequencies of 0.6 and 0.8 reported in 

northeastern part of Tanzania (Pearce et al. 2003) but are higher than 19.4% and 18.6% 

recorded in 1999 in children < 5 years at health facilities prior to SP adoption (Mugittu et 

al. 2004). Similarly, the prevalence of double-Pfdhps in our study (31% - 45%) are more 

or less similar to 0.43 – 0.64 recorded in northeastern Tanzania (Pearce et al. 2003).  

 

The overall ratio of triple-Pfdhfr mutant allele in communities to treatment failure rates in 

health facilities in 2003 (1.5) and 2004 (1.8) were stable compared to ratios observed 

between sites (1.2 – 2.3). However, the ratios are lower than genotype failure index (GFI) 

reported previously in health facility-based studies in Tanzania (1.96 – 2.1) (Mugittu et 

al. 2004), Uganda (1.9) (Kyabayinze et al. 2003) and Malawi (2.2) (Kublin et al. 2002), 

when triple-Pfdhfr or quintuple mutant genotypes were used as markers of SP resistance. 

On the other hand, the ratios calculated using the quintuple mutant genotype were much 

more variable, indicating lack of correlation between the prevalence of this genotype in 

communities and SP failure rates in their respective health facilities.  
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These observations support previous reports on the inability of the Pfdhps genotype to 

account for P. falciparum in vivo SP (Mugittu et al. 2004; Alifrangis et al. 2003; 

Mutabingwa et al. 2001; Mockenhaupt et al. 2005) or in vitro sulfadoxine or dapsone 

resistance in (Mberu et al. 2002), but contrast another report from Uganda (Dorsey et al. 

2004) and one of our studies in Papua New Guinea (Marfurt et al. , In preparation) that 

showed the principal role of Pfdhps in mediating SP resistance. In general our study did 

not establish a clear relationship between the pattern and profile of molecular markers in 

the community and treatment failure rates in their respective health facilities. However, 

we believe that wider intervals between surveys and inclusion of sites with different SP 

failure rates may help to understand the relationship between the two parameters if triple-

Pfdhfr is used as a marker of P falciparum resistance to SP.  

 

The Pfmdr1 86 Tyr and Pfcrt 76 Thr, the most important determinant of CQ failure rate 

(Djimde et al. 2001), recorded highest frequencies in comparison to other mutant alleles 

in these genes. Their frequencies in 2004 in Ipinda, Mlimba and Mkuranga were much 

lower than >76% and >90%, respectively, recorded in 1999, just prior to CQ withdrawal 

in Tanzania (Schnieder et al. 2002; Ndejembi et al. unpublished data). On the other hand, 

the increase in Mlimba can be partly attributable to the observed rampant and 

uncontrolled use of QN and AQ, drugs whose efficacy is considered to be influenced by 

mutations in Pfmdr (Sidhu et al. 2005) and Pcfrt (Bray et al. 2005) genes. Decline of 

Pfmdr1 86Tyr and Pfcrt 76 Thr alleles has been observed in Malawi (Mita et al. 2003; 

Kublin et al. 2003), China (Liu et al. 1995) and Vietinam (Nguyen et al. 2001; Nguyen et 

al. 2003; Thahn et al. 2001) following withdrawal of CQ use. The recovery of CQ 

sensitivity is attributable to expansion of wild-type allele rather than reversal of mutations 

(Mita et al. 2004). These observations point to the possibility of recycling the limited 

number of safe and cheap drugs as combination partners with artemisinins (Laufer and 

Plowe 2004).  
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Figure 1. SP resistance molecular marker patterns in the catchment areas of health facilities where SP efficacy was conducted. 

Patterns occuring only once are not included
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The absence of ATPase6 769 Asn and 623 Glu alleles in Tanzania suggests that 

artemisinin resistance has not been selected and is in line with a high artemether-

lumefantrine efficacy reported in parts of Tanzania in multi-country studies (Falade et al. 

2005). These observations point to the potential of these markers in monitoring 

emergence of resistance to ACTs after their widespread use in Sub-saharan Africa. Apart 

from one study (Jambou et al. 2005), it has not been widely proven that these mutations 

actually reflect resistance. Thus their value in monitoring P falciparum resistance to 

artemisinin remains to be seen. 

 

Our findings show high frequencies of individual Pfdhfr 51 Ile, 59Arg and 108 Asn and 

prevalence of triple-Pfdhfr and quintuple mutant genotype in the community without a 

clear correlation to SP failure rate in health facilities. However, further studies need to be 

done, preferably in areas with different SP failure rates in order to assess the role of 

triple-Pfdhfr as a community marker for SP resistance. The frequencies of Pfcrt 76 Thr 

and Pfmdr1 86 Tyr have decreased following CQ withdrawal in Tanzania, but seem to be 

influenced by the pattern of QN and AQ use. The lack of ATPase mutant alleles suggest 

that artemisinin resistance has not been yet selected in Tanzania. As the majority of Sub-

Saharan African countries are revising their malaria treatment policy to switch to ACTs, 

DNA microarray technology may provide a suitable tool for simultaneously assessing, on 

a large scale, the emergence and spread of resistance to ACTs and reversal of CQ and SP 

resistance after being withdrawn. However, in order to appreciate parasite genotypic 

dynamics following alteration of drug pressure, the interval between assessments should 

be long enough and consider seasonal genotype dynamics.  
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7 Chapter 7 

7.1 Molecular genotyping to distinguish between recrudescents and 

new infections in treatment trials of Plasmodium falciparum 

malaria conducted in Sub-Saharan Africa: adjustment of 

parasitological outcomes and assessment of genotyping 

effectiveness. 
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Summary 

Molecular genotyping of baseline and post-treatment recurrent Plasmodium falciparum is 

recommended to distinguish recrudescent from new infections. However, genotyping 

performance and adjustment of treatment outcomes have not been evaluated in large field trials. 



   68 

Parasitological outcomes were assessed in 9 double-blinded trials of uncomplicated P. 

falciparum malaria in African children treated with artesunate/placebo plus standard 

monotherapies. Day 28 failure rates were adjusted by stepwise genotyping the P. falciparum 

glutamate rich protein (glurp), merozoite surface protein 1 (msp1) and 2 (msp2). We calculated 

overall and laboratory genotyping performance and compared unadjusted (crude) and PCR-

adjusted outcomes.  3,455 (93.6%) of 3,691 enrolled patients were evaluable by Day 28. 767 

(22%) had post-Day 14 recurrent parasitemias of which 686 could be genotyped: 246 were 

recrudescence, 286 new infections, and 154 unresolved. The overall and laboratory genotyping 

performance were 69 (12-100)% and 78 (50-100)%, respectively. The mean Day 28 crude 

parasitological failure rate was 44 (range 3-87)%. PCR-adjusted rates were 36 (2-86)% if 

unresolved infections were counted as failures or 33 (2-86)% if excluded from analysis. The 

Overall differences between crude Day 28 and Day 14 failure rates was 22% (95% CI 20.3, 24.6) 

but decreased to 14% (12.1, 16.3) (if unresolved infections are counted as failures) or 11% (9.8, 

16.3) if excluded from the analysis. Genotyping refined treatment outcomes but diligence is 

needed in sample collection and analysis to improve its performance. Our findings support the 

WHO recommendation of PCR genotyping in malaria clinical trials and suggest that stepwise 

genotyping of only two loci (msp2 and msp1 or glurp) can reliably discriminate recrudescents 

from new infections.  

 

Keywords: drug trials, molecular genotyping, PCR-adjusted antimalarial treatment outcomes. 

 

Introduction  

In malaria clinical trials post-treatment follow up should be long enough to detect recrudescent 

infections after initial parasite clearance. However, conducting such trials in areas of intense 

malaria transmission poses difficulties in interpreting drug efficacy outcomes because re-

infections occurring during follow up may be interpreted as treatment failures. The optimal 

length of follow up for high transmission areas has not yet been established. With good evidence 

that the previously recommended 14 days protocol underestimates treatment failure rates, an 

extended period of follow up is needed (WHO, 2003; White 2002; Stepniewska et al. 2004). The 

World Health Organization (WHO) now recommends follow up for 28 (for chloroquine and 

amodiaquine) 42 (for sulfadoxine-pyrimethamine and artemether-lumefantrine) and 63 days (for 
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mefloquine), provided polymerase chain reaction (PCR) is available to reliably distinguish 

between new and recrudescent infections (WHO, 2003).   

 

Many Plasmodium falciparum genes show extensive genetic polymorphism which can be used 

for genetic finger printing. High polymorphism has been shown in msp1, msp2 and glurp genes 

in different geographical locations in malaria endemic areas (Felger et al. 1994; Babiker et al. 

1997; Snounou et al. 1999; Peyerl-Hoffmann et al. 2001; Magesa et al. 2001; Aubouy et al. 

2003). Therefore, these loci have been used in many trials to distinguish recrudescence from new 

infections. Because of their extensive polymorphism, it is highly unlikely for a patient in areas of 

intense transmission to become newly infected with a parasite possessing an identical genotype 

during follow up because this probability is the product of individual allele frequencies of each 

allele of the three genes (Snounou and Beck, 1998). Therefore, by comparing the genotypes of 

these three loci together at baseline and at the time of parasite recurrence, recrudescent can be 

distinguished reliably from new infections (Snounou and Beck, 1998; Viriyakosol et al. 1995; 

Beck, 1999; Greenwood, 2002).  

 

Recurrent parasites can be potentially classified into four categories based on the degree of 

allelic matching: (i) all alleles in the baseline and recurrent parasites are identical, (ii) some 

alleles are missing in the recurrent parasites (iii) recurrent parasites contain alleles identical to 

those at baseline with additional/new ones not observed at baseline (iv) alleles in the baseline 

and recurrent parasite samples are different. It is generally accepted that categories (i - iii) and 

(iv) represent recrudescent and new infection, respectively (Magesa et al. 2001; Snounou and 

Beck 1998; Basco and Ringwald 2000; Brockman et al. 1999; Basco et al. 2002; Ranford-

Cartwright et al. 1997; Happi et al. 2004). However, some investigators (Cattamanchi et al. 

2003; Kyabayinze et al. 2003) consider that category (iii) represents a new infection because of 

the appearance of new alleles.   

 

Despite the widespread use of molecular genotyping in clinical trials, questions remain regarding 

its effectiveness and usefulness in determining/adjusting drug failure rates in large field trials. 

Here we assess these parameters using the P. falciparum loci glurp, msp2 and msp1 to 

differentiate recurrent parasites in a series of randomized, clinical trials in Sub-Saharan Africa 
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(Adjuik et al. 2002; Adjuik et al. 2004; Priotto et al. 2003; von Seidlein et al. 2000; Sirima et al. 

2003; Obonyo et al. 2003; Gil et al. 2003).  

 

Methods 

Study Areas and Design  

Randomized, double blind, placebo controlled, efficacy trials were conducted in Burkina Faso, 

Gabon, The Gambia, Sao Tomé, Senegal, Uganda, Malawi and Kenya [(at Kenya Medical 

Research Institute (KEMRI) and African Medical Research Foundation (AMREF)]. Children 

with acute, uncomplicated falciparum malaria received active artesunate (4mg/kg/d x 3d) or 

placebo plus one of the following: amodiaquine [AQ (30 mg/kg total dose)], chloroquine [CQ 

(25 mg/kg total dose)], or sulfadoxine [(25 mg/kg total dose)/pyrimethamine (S/P)]. In the S/P 

trials, an additional arm consisted of one day of artesunate/placebo (Tables 1 and 2). Treated 

patients were followed up for 28 days. End points were the crude (unadjusted) and PCR-adjusted 

Day 28 parasitological failure rates. Recurrent parasitemias occurring before or on Day 14 were 

considered as treatment failures without genotyping, whereas those occurring beyond Day 14 

were genotyped to distinguish recrudescence from new infections. Patients who were 

randomized wrongly or lost to follow up were excluded from the analysis. Study site 

characteristics and further methodological details are described elsewhere (references cited 

above). Ethical approvals were obtained from the relevant local ethics committees and from the 

WHO. Prior to recruitment of children informed consents were obtained from their parents or 

guardians. 

 

Collection of blood samples and preparation of blood smears  

Finger prick blood samples were collected on Days 0, 7, 14 21 and 28 onto Isocode stixs® 

(Schleicher & Schull, Dassel, Germany). The Isocode stix® were air-dried, placed in self sealing 

plastic bags with desiccant, and stored under ambient conditions until used. Concurrently, thick 

and thin films were prepared, Giemsa–stained, examined and reported as the number of parasites 

per microlitre, assuming a total white cell count of 8,000 per µl.  
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DNA extraction and molecular genotyping 

Sample analysis was centralized at two laboratories in order to limit inter-laboratory variability 

(Farnert et al. 2001) and to speed-up analysis. Blood samples from Burkina Faso, The Gambia, 

Sao Tomé, Senegal, Uganda, Malawi and Kenya-KEMRI were processed and analyzed at Ifakara 

Health Research and Development Centre (IHRDC) laboratory in Tanzania whereas those from 

Kenya-AMREF and Gabon were analyzed at Tübingen University laboratory in Germany. At 

both sites template DNA was extracted from Isocode stix® according to the manufacturer’s 

protocol. Paired samples (Day 0 and Day of recurrence after Day 14) were genotyped by 

analyzing region II of glurp, block 3 of msp2 (3D7 and FC27 allelic families), and block 2 of 

msp1 (K1, MAD20 AND RO33 allelic families), according to previously published methods 

(Felger et al. 1994; Viriyakosol et al. 1995).  

 

At IHRDC PCR amplifications were done using an MJ Thermal Controller PTC-100TM (MJ 

Research Inc. Watertown, USA). A Biometra Uno II thermal cycle (Biometra, Göttingen, 

Germany) was used at Tübingen. Primary PCR reactions were multiplexed with glurp, msp1 and 

msp2 whereas nested PCR amplifications were done separately for each locus. The primary and 

nested amplifications were carried out in 20µl and 30µl reaction volumes using 5µl of template 

DNA and 2µl of primary PCR product, respectively. For glurp and msp2 one nested PCR 

amplification reaction for each locus was done whereas three nested reactions were done for 

msp1 for the detection of K1, MAD20 and RO33 allelic families. Each reaction contained 1x 

PCR buffer (Gibco BRL®), 0.125mM of each dNTP, 0.4 units of Taq DNA polymerase (Gibco 

BRL®) and 0.25mM of each primer. All Primers and reference DNA were obtained from Malaria 

Research and Reference Reagents Resource Centre (MR4). The oligonucleotide primers have 

been described elsewhere (Snounou et al. 1999; Foley et al. 1992). Temperature cycling 

parameters were: initial denaturation at 94ºC for 5 minutes followed by 30 cycles of denaturation 

at 94ºC for 1 minute, annealing at 55ºC for 2 minutes (for primary PCR) or 58ºC for 2 minutes 

(for nested PCR) and extension at 72ºC for 2 minutes. The last extension cycle was prolonged for 

10 more minutes. 10µl of msp2 PCR product were digested with 3 units of Hinf III for 2.5 hrs at 

37ºC and the resulting fragments were resolved on 10% polyacrylamide gels. The glurp and 

msp1 PCR products were directly resolved on 2% agarose gel. For better comparison of 

fragments paired samples were loaded side by side. Gels were stained with ethidium bromide, 
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visualized under UV illumination and photographed. Gels photographs were scored (distinction 

of recrudescence from re-infections) by visual comparison of DNA fragments on baseline and 

recurrent samples. 

 

Definitions of recrudescent, new and unresolved infections  

Recurrent infections were genotyped in a stepwise approach. At IHRDC laboratory sample pairs 

were sequentially genotyped by initially amplifying glurp (step 1) followed by msp2 (step 2) and 

lastly by msp1 (step3). The sequence of analysis at Tübingen University laboratory was msp2 

(step 1) then msp1 (step 2), and finally glurp (step 3). At both laboratories, only the samples 

provisionally classed as recrudescence were further analyzed for the next locus; new and 

unresolved recurrent infections were not analyzed further (Figure 1). A recurrent parasitaemia 

was considered as a recrudescence whenever pre-treatment alleles were also found in recurrent 

samples, whether the two allelic patterns were completely identical, or recurrent sample had 

missing or additional alleles with respect to baseline. A recurrent parasitaemia was considered as 

a new infection if the allelic pattern for any one of the loci differed completely between the pre-

treatment and the recurrent sample. An “unresolved” result was recorded when we could not 

amplify and therefore failed to genotype any one locus (Snounou and Beck 1998).  

 

Definitions of genotyping performances  

Overall genotyping performance for differentiating post-Day 14 recurrent parasitemias = number 

of post-Day 14 recurrent parasitemias with a PCR result / total number of post-Day 14 recurrent 

cases. Laboratory genotyping performance = number of post-Day 14 recurrent parasitemias with 

a PCR result / total number of recurrent paired samples analyzed. 

  

Data analysis 

Data were analyzed using Stata v 8.0 (Stata Corporation Inc, Texas, USA). Day 28 

parasitological failure rates are reported as crude (without PCR-adjustment) or PCR-adjusted 

treatment failure rates. The latter have been reported in two ways by (i) classifying all unresolved 

recurrent infections as failures or (ii) excluding them from the analysis. In the calculation of the 

adjusted failure rates, all new infections were classified as 'non failures' and counted in the 

denominator with those remaining aparasitaemic throughout follow up.   
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Figure 1. Stepwise genotyping of P. falciparum in paired [Day 0 and Day of recurrent (Day 15 - 28)] samples. Only paired samples 

provisionally classified as recrudescence by one locus were further analyzed for the next locus. The rest were definitively classified as 

either new infections or unresolved and excluded from further analysis. 

 

564 pairs of recurrent infections Results 122 pairs of recurrent infections

   182(32.3%) new infections 49(40.2%)

Step 1 glurp    105(18.6%) unresolved 11(9.0%) msp2

   277(49.1%) recrudescences 62(50.8%)

41(14.8%) new infections 18(29.0%)

Step 2 msp2 46 (16.6%) unresolved  2(3.3%) msp1

190(68.6%) recrudescences  42(67.7%)

12(6.3%) new infections 0(0%)

Step 3 msp1 4(2.1%) unresolved 0(0%) glurp

174(91.6%) recrudescences 42(100%)

IHRDC laboratory Tübingen University laboratory 
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Multinomial logistic regression was used to assess the effect of parasitemia on the outcome of 

resolved (successful) or unresolved (unsuccessful) genotyping at different PCR-end points. For 

the purpose of summarizing the results we have pooled proportions across the study sites. 

Differences between unadjusted and adjusted treatment failure rates were calculated with 95% 

confidence intervals. 

 

Results  

Treatment outcomes, genotyping performance and adjustment of treatment failure rates. 

A total of 3,691 patients were recruited of which 236 (6.4%) were lost to follow up or withdrawn 

from study. Thus 3,455 (94%) patients were evaluable patients on Day 28; 1,937 (56%) showed 

treatment successes and 1,518 (44%) were failures of which 767 occurred after Day 14. 81 

(11%) pairs of post-Day14 recurrences were not genotyped because they had one or both 

samples missing. Hence a total of 686 paired samples were genotyped: 246 (36%) were classed 

as recrudescence, 286 (42%) as new infections, and 154 (22%) [8 (5.2%) baseline and 146 

(94.2%) recurrent samples]  could not be resolved (Figure 2) because of failure to either extract 

or amplify DNA. The overall genotyping performance ranged from 12 - 100% across the sites 

(average 69%) and the laboratory performance from 50-100% (average 78%) (Table 1). 

 

Table 2 summarises the Day 14 (crude) and 28 (crude and PCR-adjusted) failure rates and their 

differences. The pooled crude Day 28 parasitological failure rate was 44% (95% CI: 43.2, 44.8). 

The PCR-adjusted failure rates including unresolved as failures or excluding them from analysis 

rates were 36% (95% CI: 35.2, 36.8) or 33% (95% CI: 32.2, 33.8), respectively. The two pooled 

PCR-adjusted failure rates differed by 3% (95% CI: 1.8, 3.8). The pooled Day 14 failure rate was 

22% (95% CI: 21.3, 22.7). The crude and two PCR-adjusted Day 28 failure rates were 22% (95% 

CI: 20.3, 24.6), 14% (95% CI: 12, 16.3), and 11% (95% CI: 12.1, 16.3) respectively higher, than  

the pooled Day 14 failure rate. 
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Figure 2. Clinical trial and molecular genotyping profiles. 
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751 parasitaemia 1937

767

Missing sample pairs

81

Evaluable D15-D28

686

Unresolved Resolved

154 532

Recrudescences New infections

246 286

 

 

Differentiating recurrent parasitemia by stepwise genotyping of loci  

At total of 564 and 122 paired samples were sequentially genotyped at IHRDC and Tübingen 

University laboratory, respectively. Similar proportions of recrudescences were identified at the 

two sites in all three steps. However, twice as much (29%) reinfection were identified by msp1 at 

step 2 at Tübingen University than at IHRDC (14.8%). A total of 141/564 (25.2%) and 13/122 

(10.7%) recurrent infections were unresolved at IHRDC and Tübingen University laboratories, 

respectively. The geometric means parasitaemia of the resolved infections were 23,940 (95% CI: 

21,783, 26,312) at baseline (day 0), 5,135 (95% CI: 3972, 6637) at day 21 and 5,256 (95% CI: 

3,734, 7,399)  at day 28 whereas the corresponding means for unresolved infection were 21,624 

(95% CI: 17,944, 26,060),  976 (95% CI: 586, 1,625) and 957 (95% CI: 490, 1,867) (Figure 3). 

Logistic regression analysis indicated that for every unit increase in the log of the parasite count, 

the odds of a resolved infection to that of unresolved (as baseline) increased by 29% (OR 1.29, 

95% CI: 1.20 1.39, p < 0.001), pointing to a relationship between higher parasite count and 

success in amplifying DNA, hence resolving the recurrent infection.  
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Table1. Treatment outcomes and performance of molecular genotyping in ACT trials conducted in Sub-Saharan Africa 

Country Regimen n  D28 CR(%) Failure rate >D14 recurrences Genotyping results Genotyping Performance 

        ≤D14 FR >D14 

FR 

Complete 

pairs  (%) 

Incomplete 

Pairs (%) 

Rc Ni Unres  Overall  Laboratory 

Burkina Faso  CQ 142 27(19) 90(63) 25(18) 24(96) 1(4) 6(25) 7(29) 11(46) 13/25(52) 13/24(54) 

Burkina Faso  CQ+AS 145 71(49) 27(18) 47(32) 47(100) 0(0) 7(15) 25(53) 15(32) 32/47(68) 32/47(68) 

Gabon  AQ 98 70(71) 10(10) 18(18) 17(94) 1(6) 12(71) 4(24) 1(6) 16/18(89) 16/17(94) 

Gabon  AQ+AS 94 82(87) 2(2) 10(11) 10(100) 0(0) 4(40) 4(40) 2(20) 8/10(80) 8/10(80) 

Kenya-Amref AQ 183 75(41) 48(26) 60(33) 57(95) 3(5) 32(56) 22(39) 3(5) 54/60(90) 54/57(95) 

Kenya-Amref AQ+AS 180 123(68) 17(9) 40(22) 38(95) 2(5) 24(63) 10(26) 4(11) 34/40(85) 34/38(89) 

Kenya-Kemri SP 189 68(36) 49(26) 72(38) 67(93) 5(7) 23(34) 36(54) 8(12) 59/72(82) 59/67(88) 

Kenya-Kemri SP+1AS 191 77(40) 32(17) 82(43) 77(94) 5(6) 21(27) 42(55) 14(18) 63/82(77) 63/77(82) 

Kenya-Kemri SP+3AS 192 100(52) 18(9) 74(39) 66(89) 8(11) 13(20) 40(61) 13(20) 53/74(72) 53/66(80) 

Malawi  SP 129 36(28) 61(47) 32(25) 26(81) 6(19) 8(31) 6(23) 12(46) 14/32(44) 14/26(54) 

Malawi  SP+1AS 138 48(35) 40(29) 50(36) 45(90) 5(10) 21(47) 11(24) 13(29) 32/50(64) 32/45(71) 

Malawi  SP+3AS 134 94(70) 7(5) 33(25) 30(91) 3(9) 10(33) 9(30) 11(37) 19/33(58) 19/30(63) 

Sao Tomé CQ 191 24(13) 153(80) 14(7) 13(93) 1(7) 8(62) 3(23) 2(15) 11/14(79) 11/13(85) 

Sao Tomé CQ+AS 194 109(56) 32(17) 53(27) 44(83) 9(17) 20(45) 13(30) 11(25) 33/53(62) 33/44(75) 

Senegal  AQ 156 123(79) 10(6) 23(15) 12(52) 11(48) 4(33) 4(33) 4(33) 8/23(35) 8/12(67) 

Senegal  AQ+AS 159 130(82) 12(8) 17(11) 4(24) 13(76) 1(25) 1(25) 2(50) 2/17(12) 2/4(50) 

The Gambia SP 193 173(90) 10(5) 10(5) 10(100) 0(0) 5(50) 5(50) 0(0) 10/10(100) 10/10(100) 

The Gambia SP+1AS 187 171(91) 7(4) 9(5) 5(56) 4(44) 3(60) 2(40) 0(0) 5/9(56) 5/5(100) 

The Gambia SP+3AS 187 181(97) 2(1) 4(2) 3(75) 1(25) 1(33) 2(67) 0(0) 3/4(75) 3/3(100) 

Uganda  SP 144 55(38) 62(42) 27(18) 27(100) 0(0) 9(33) 5(19) 13(48) 14/27(52) 14/27(52) 

Uganda  SP+1AS 113 32(28) 45(38) 36(31) 35(97) 1(3) 9(26) 17(49) 9(26) 26/36(72) 26/35(74) 

Uganda  SP+3AS 116 68(59) 17(15) 31(26) 29(94) 2(6) 5(17) 18(62) 6(21) 23/31(74) 23/29(79) 

Total   3455 1937(56) 751(22) 767(22) 686(89) 81(11) 246(36) 286(42) 154(22) 532/767(69) 532/686(78) 

Note: n = sample size; FR = Failure rate; D = Day; Rc = recrudescence; Ni = new infection; Unres = unresolved; 1As = one day artesunate; 3AS = three days daily artesunate; AQ = amodiaquine; CQ = chloroquine; SP = 

sulfadoxine-pyrimethamine; KEMRI = Kenya Medical Research Institute; AMREF = African Medical Research Foundation.; Performance - Overall  = number of post-Day 14 recurrent parasitemias with a PCR result / total number 

of post-Day 14 recurrent cases; Performance - Laboratory = number of post-Day 14 recurrent parasitemias with a PCR result / total number of paired samples analyzed
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Discussion 

In the clinical trials reported previously (Adjuik et al. 2002; Adjuik et al. 2004; Priotto et 

al. 2003; von Seidlein et al. 2000; Sirima et al. 2003; Obonyo et al. 2003; Gil et al. 

2003), a 28 day follow up was used to assess drug efficacy. In these studies we genotyped 

post-Day 14 recurrent parasites to distinguish recrudescent from new infections, and 

adjusted treatment outcomes accordingly. To limit inter-laboratory variations (Farnert et 

al. 2001) sample processing and analysis was done at only two laboratories. 

 

Our findings show that the overall effect of molecular genotyping as a tool for 

differentiating recurrent parasitaemia was reasonable (69%) and the laboratory 

performance better (78%). In most sites the differences between crude and the two PCR-

adjusted treatment failure rates were appreciably high (> 10%). The mean difference 

between the two Day 28 PCR-adjusted failure rates was small (3%), suggesting that the 

inability to resolved some recurrent parasitaemias in these trials did not have a significant 

effect on the adjusted efficacy rates. Nevertheless, study denominators became 

progressively smaller as data were lost: 3,691 (recruited), 3,455 (evaluated at Day 28), 

3,374 (PCR-adjusted with unresolved infections counted as failures), 3,220 (PCR-

adjusted with unresolved infections excluded from the analysis). This represents an 

overall loss of about 13% of data, comprising of 6% lost to follow up and 7% lost during 

PCR genotyping. In general, there was wide inter-study variance in genotyping 

performance and differences between crude and adjusted treatment failure rates. These 

observations highlight the need for diligence in field sample collection, laboratory 

analysis, and for vigorous quality control measures throughout the data generation 

process. 
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Table 2: PCR-adjustment of parasitological failure rates in ACT trials conducted in Sub-Saharan Africa  

Country Regimen D14 FR  (CI) D28 FR Failure Rate Differences 

   Crude (CI) Adjusted 1 

(CI) 

Adjusted 2 

(CI) 

D28 Crude - 

D14 

D28 Adjusted 

1 -  D14 

D28 Adjusted 

2 - D14 

D28 Adjusted 1 –

D28 Crude  (Diff1) 

D28 Adjusted 2 – 

D28 Crude (Diff2) 

Diff-1 – Diff-2 

Burkina-Faso CQ 63(59.7,66.3) 81(77,85) 76(72.3,79.7) 74(70.2,77.8) 18(7.9,28.1) 13(2.9,23.5) 11(2.1,23.9) 5(-4.4,14.4) 7(-2.9,16.9) 2(-1.9,5.9) 

Burkina-Faso CQ+AS 18(14.7,21.3) 51(47,55) 34(30.3,37.7) 26(22.1,29.9) 33(22.6,43.4) 16(5.6,26) 8(6.2,25.8) 17(5.7,28.3) 25(13.9,36.1) 8(1.3,14.7) 

Gabon  AQ 10(5.9,14.1) 29(24.1,33.9) 26(21.5,30.5) 26(21.5,30.5) 19(8.2,29.8) 16(5.2,26.6) 16(5.4,26.6) 3(-9.5,15.5) 3(-9.5,15.5) 0(-3.4,3.4) 

Gabon  AQ+AS 2(-2.1,6.1) 13(8,18) 9(4.5,13.5) 7(2.4,11.6) 11(3.6,18.4) 7(-0.4,13.4) 5(1.1,12.9) 4(-4.9,12.9) 6(-2.6,14.6) 2(-2.4,6.4) 

Kenya-Amref AQ 26(23.1,28.9) 59(55.4,62.6) 47(43.7,50.3) 46(42.7,49.3) 33(23.5,42.5) 21(11.5,30.6) 20(11.4,30.6) 12(1.8,22.2) 13(2.8,23.2) 1(-3.8,5.8) 

Kenya –Amref AQ+AS 9(6.1,11.9) 32(28.4,35.6) 26(22.7,29.3) 24(20.7,27.3) 23(15.1,30.9) 17(9.1,24.6) 15(9.5,24.5) 6(-3.4,15.4) 8(-1.3,17.3) 2(-1.7,5.7) 

Kenya-Kemri SP 26(23.1,28.9) 64(60.5,67.5) 45(41.8,48.2) 43(39.7,46.3) 38(28.8,47.2) 19(9.8,28.4) 17(9.5,28.5) 19(9.2,28.8) 21(11.1,30.9) 2(-3.7,7.7) 

Kenya-Kemri SP+1AS 17(14.1,19.9) 60(56.5,63.5) 38(34.8,41.2) 33(29.7,36.3) 43(34.2,51.8) 21(12.2,29.7) 16(12.3,29.7) 22(12.2,31.8) 27(17.2,36.8) 5(-1.2,11.2) 

Kenya-Kemri SP+3AS 9(6.1,11.9) 48(44.5,51.5) 27(23.8,30.2) 22(18.7,25.3) 39(30.8,47.2) 18(9.8,25.5) 13(10.7,25.3) 21(11.5,30.5) 26(16.6,35.4) 5(-1.1,11.1) 

Malawi  SP 47(43.5,50.5) 72(67.8,76.2) 67(63.1,70.9) 64(59.9,68.1) 25(13.7,36.3) 20(8.7,31.5) 17(8.1,31.9) 5(-6,16) 8(-3.4,19.4) 3(-1.2,7.2) 

Malawi  SP+1AS 29(25.6,32.4) 65(60.9,69.1) 57(53.2,60.8) 53(49.1,56.9) 36(24.7,47.3) 28(16.7,39.6) 24(16.1,39.9) 8(-3.9,19.9) 12(-0.2,24.2) 4(-1.2,9.2) 

Malawi  SP+3AS 5(1.6,8.4) 30(25.8,34.2) 23(19.2,26.8) 16(12,20) 25(16.5,33.5) 18(9.5,25.9) 11(10.6,25.4) 7(-3.4,17.4) 14(4,24) 7(1.8,12.2) 

Sao Tomé AQ+AS 17(14.1,19.9) 44(40.5,47.5) 37(33.8,40.2) 33(29.8,36.2) 27(18.2,35.8) 20(11.2,28.7) 16(11.4,28.6) 7(-2.8,16.8) 11(1.3,20.7) 4(-0.1,8.1) 

Sao Tomé CQ 80(77.1,82.9) 87(83.5,90.5) 86(82.8,89.2) 86(82.8,89.2) 7(-0.4,14.4) 6(-1.4,13.5) 6(-1.6,13.6) 1(-5.8,7.8) 1(-5.9,7.9) 0(-1.4,1.4) 

Sénégal AQ 6(2.8,9.2) 21(17.1,24.9) 19(15.5,22.5) 16(12.4,19.6) 15(7.6,22.4) 13(5.6,20.2) 10(6.1,19.9) 2(-6.9,10.9) 5(-3.6,13.6) 3(0.1,5.9) 

Sénégal AQ+AS 8(4.8,11.2) 18(14.2,21.8) 18(14.5,21.5) 17(13.5,20.5) 10(2.7,17.3) 10(2.7,17.3) 9(2.8,17.2) 0(-8.4,8.4) 1(-7.4,9.4) 1(-0.1,2.1) 

The Gambia SP 5(2.1,7.9) 10(6.5,13.5) 8(4.8,11.2) 8(4.8,11.2) 5(-0.3,10.3) 3(-2.3,8) 3(-2,8) 2(-3.8,7.8) 2(-3.8,7.8) 0(-2,2) 

The Gambia SP+1AS 4(1.1,6.9) 9(5.5,12.5) 7(3.8,10.2) 7(3.8,10.2) 5(0.1,9.9) 3(-1.9,7.5) 3(-1.5,7.5) 2(-3.4,7.4) 2(-3.4,7.4) 0(-2,2) 

The Gambia SP+3AS 1(-1.9,3.9) 3(-0.5,6.5) 2(-1.2,5.2) 2(-1.2,5.2) 2(-0.8,4.8) 1(-1.8,3.5) 1(-1.5,3.5) 1(-2.2,4.2) 1(-2.2,4.2) 0(-1.4,1.4) 

Uganda  SP 42(38.7,45.3) 62(58,66) 55(51.3,58.7) 51(47.2,54.8) 20(7.4,32.6) 13(0.4,25.8) 9(0,26) 7(-5.6,19.6) 11(-1.9,23.9) 4(-1.2,9.2) 

Uganda  SP+1AS 38(34.2,41.8) 72(67.5,76.5) 56(51.9,60.1) 52(47.7,56.3) 34(23.2,44.8) 18(7.2,29.3) 14(6.3,29.7) 16(5.1,26.9) 20(8.7,31.3) 4(-2.3,10.3) 

Uganda  SP+3AS 15(11.3,18.7) 41(36.5,45.5) 26(21.9,30.1) 22(17.8,26.2) 26(14.8,37.2) 11(-0.2,21.4) 7(0.7,21.3) 15(2.8,27.2) 19(6.9,31.1) 4(-3,11) 

Mean    22(21.3,22.7) 44(43.2,44.8) 36(35.2,36.8) 33(32.2,33.8) 22(20.3,24.6) 14(12,16.3) 11(9.8.1,16.3) 8(6,10.6) 11(8.7,13.4) 3(1.8,3.8) 

 

FR = Failure rate; CI = Confidence Interval; Adjusted 1 =  failure rate with PCR-unresolved recurrences counted as failure; Adjusted 2  = failure rate with  PCR unresolved recurrences excluded from the 
analysis; D = Day; Diff = Difference; 1As = one day artesunate; 3AS = three days daily artesunate; AQ = amodiaquine; CQ = chloroquine; SP = sulfadoxine-pyrimethamine; KEMRI=Kenya Medical 
Research Institute; AMREF = African Medical Research Foundation. 
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The mean difference in failure rate between the Day 14 and Day 28 was 11% if 

unresolved are excluded from analysis or 14% if classified as failures. These broad 

differences might reflect the underlying levels of parasite resistance to the drug given in 

combination with of artesunate. They tended to be smaller with drug regimens that were 

either highly effective (e.g. S/P in the Gambia) or ineffective (e.g. chloroquine in Sao 

Tomé) and broader with regimens of intermediate efficacy (e.g. S/P in Malawi); while 

such regimens appear effective at Day 14, recrudescence is detected by Day 28. 

 

Figure3. Geometric mean parasitaemias at baseline (day 0) and recurrence (day 21 and 

28) in resolved and unresolved infections 
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These data reemphasize the importance of an extended follow up so that policy makers 

are reliably informed of drug efficacy. Similarly, PCR-adjusted clinical data are essential 

to avoid discontinuing a drug that appears to have low efficacy on Day 28 because of a 

high rate of new infections. Admittedly, we might have underestimated the rate of new 

infections by regarding all recurrent parasiatemias observed on or before day 14 as 
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treatment failure. The pre-patent period of P. falciparum is known to be between 6-12 

days. Hence, within 14 days of treatment, there would be time for parasites either 

inoculated after treatment or sequestered in the liver at the time of treatment to emerge. 

Without genotyping such infections may wrongly be regarded as being due to treatment 

failure. A detailed assessment of pre- and post-Day 14 rates of genotypically new 

infections and its implication in assessment of drug efficacy in the Ugandan study has 

been done and will be published separately. 

 

In our study, laboratory failure (22%) was a more important cause of loss of genotyping 

data than field sample collection (11%). Nearly all unresolved infections (94.8%) were 

due to failure to extract or amplify DNA in recurrent samples, whose parasitaemias were 

on average 5-folds lower than those of the resolved recurrent infection samples. This, 

together with the simple DNA extraction method adopted (simply boiling the Isocode 

stix®), may have resulted in low DNA yield and/or persistence of PCR inhibitors which 

compromised PCR performance. A higher yield might have been obtained using an 

advanced method of extracting DNA. Even if DNA is successfully extracted, PCR may 

fail to detect all genotypes present in a mixed-clones infection both at baseline and at the 

time of parasite recurrence because some might be present below PCR detection level 

(Jafari et al. 2004) or might be sequestered. However, some evidence indicates that 

symptomatic infections are less complex than asymptomatic ones. A study by Irion et al. 

(1998) found that less than 2% of recrudescent genotypes were absent on Day 0 but were 

detected on Day 3. Similarly, Farnert and Bjorkman (2005) detected the same genotypes 

in consecutive samples obtained every 12 hours for at least three days post treatment. 

These observations suggest that single time-point samples may reliably represent all 

subpopulations present in asymptomatic infections prior to treatment.  

 

A further complication in the interpretation of paired genotyping data arises from 

infections with new parasites possessing identical genotypes to those present on Day 0, 

leading to an erroneous diagnosis of recrudescence. However, in endemic areas the 

probability of this occurrence is rather low and negligible when two or more 

discriminatory markers are being used. We believe that this theoretical possibility does 
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not affect the interpretation of our findings because we observed a high overall rate 

(42%) of new infections (different genotypes). Nonetheless, all these weaknesses point to 

the need for some caution in interpreting PCR-adjusted treatment outcomes. 

 

Molecular genotyping of P. falciparum msp1, msp2 and glurp has been used to 

differentiate recurrent parasites in both longitudinal surveys and randomized trials in 

Africa and Asia (Basco and Ringwald 2000; Brockman  et al. 1999; Basco et al. 2002; 

Ranford-Cartwright et al. 1997; Happi et al. 2004; Cattamanchi et al. 2003; Kyabayinze 

et al. 2003; Irion et al. 1998). However, the interpretation of genotyping data varies. In 

longitudinal studies examining the dynamics of malaria infections (i.e. the acquisition of 

new or loss of old parasites), new infections are always recorded if a new allelic pattern is 

detected even when alleles from prior infection/s persist. This contrasts with drug 

efficacy studies in which this finding indicates a failure of the drug to clear an infection 

present before treatment. Such cases are classified as recrudescence.  

 

Our stepwise approach shows that genotyping a third marker (msp1 at IHRDC or glurp at 

Tübingen University) added limited discriminatory power over the two markers. Thus in 

resource-constrained malaria endemic countries only two markers may be enough to 

discriminate recrudescents from re-infections in malaria clinical trials. Cattamanchi et al. 

(2003) suggest even the use of msp2 alone based on reported 89% concordance with all 

three makers. Admittedly, stepwise genotyping may result in considerable proportions of 

unresolved infections if robust methods for DNA extraction are not used. On the other 

hand, genotyping all three loci is expensive and may not be feasible in large-scale trials. 

Thus based on our experience, stepwise genotyping of only two loci (msp2 and msp1 or 

glurp) coupled with use of more advanced DNA extraction methods seems a reasonable 

compromise.  

 

In summary, genotyping improved the accuracy of determining the parasitological failure 

rates. However, the genotyping performance varied markedly between studies, 

emphasizing the need for diligence in sample collection in the field and processing in the 

laboratory. Our findings support the use of molecular genotyping in prolonged efficacy 
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studies and suggest that stepwise genotyping of only two markers can be used reliably in 

resource constrained countries. Distinction of recrudescence from new infection will 

provide policy makers with optimal efficacy data for making evidence-based decisions on 

malaria treatment strategies.  
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8 Chapter 8 

8.1 Molecular genotyping in a malaria treatment trial in Uganda - 

unexpected high rate of new infections within two weeks after 

treatment.  
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Abstract  

Polymerase chain reaction (PCR) genotyping of malaria parasites in drug efficacy trials 

helps differentiate reinfections from recrudescences. A combination therapy trial of one 

(n = 115) or three (n = 117) days artesunate (1AS, 3AS 4mg/kg/day) plus 

sulfadoxine/pyrimethamine (SP) versus SP alone (n=153) was conducted in Mbarara, a 

mesoendemic area of western Uganda. All paired recurrent Plasmodium falciparum 

parasitaemias on Days 7, 14, 21 and 28 post treatment were genotyped by PCR 

amplification and analysis of glutamate rich protein (glurp) and merozoite surface 

proteins (msp) 1 and 2 genes to distinguish recrudescent from new infections. 156 (1AS = 

61, 3AS = 35, SP alone = 60) of 199 paired recurrent samples were successfully analysed 

and were resolved as 79 recrudescences (1AS = 32, 3AS = 8, SP = 39) and 77 as new 

infections (1AS = 29, 3AS = 27, SP = 21). The ratios of proportions of new to 

recrudescent infections were 0.2, 0.9, 1.4, and 1.9 on Day 7, 14, 21, and 28, respectively 

(P <0.001, χ2 test for linear trend). Unexpected high new infection rates were observed 

early in follow up on Days 7 [5/26 (19.2%)] and 14 [24/51 (47.1%)]. These results impact 

significantly on resistance monitoring and point to the value of genotyping all recurrent 

infections in antimalarial trials. 

 

Introduction 

The World Health Organisation (WHO) in vivo antimalarial efficacy testing protocol is 

instrumental in assessing and monitoring the emergence and extent of parasite resistance 

to antimalarial drugs (WHO, 1973). The current WHO in vivo protocol for high 

transmission areas recommends 28 days of follow-up, stipulating that recurrent parasites 

should be genotyped by polymerase chain reaction (PCR) to distinguish recrudescent 

from new infections (WHO, 2003; WHO, 2006). The ability to discriminate newly 

acquired infections by comparison of baseline and recurrent parasite genotypes allows a 

more accurate estimate of the true levels of treatment failures. However, due to resource 

constraints in malaria endemic areas, genotyping all recurrent infections, particularly in 

large trials, is expensive and may not be feasible. To compensate for such limited 

recourses, correction of treatment outcome could be done by only genotyping post-day 14 

recurrences whilst assuming that most recurrent parasites before or on Day 14 are likely 
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to be due to recrudescences. This strategy was adopted for a series of WHO/TDR 

coordinated clinical trials assessing artesunate in combination with standard antimalarial 

drugs for the treatment of paediatric falciparum malaria in several African countries, 

including Burkina Faso, Gabon, The Gambia, Sao Tomé, Senegal, Uganda, Malawi and 

Kenya (Adjuik et al. 2002; Adjuik et al. 2004; Priotto et al. 2003; von Seidlein et al. 

2000; Sirima et al. 2003; Obonyo et al. 2003; Gil et al. 2003). Herein, we report the PCR 

defined reinfection rates on Days 7, 14, 21 and 28 in the Ugandan efficacy trial (Priotto et 

al. 2003) and assess its effect on the efficacy outcome.   

 

Methodology  

Brief description of the study 

A 28 days antimalarial combination efficacy trial was conducted in Mbarara District 

Hospital in Uganda, an area of seasonal, mesoendemic malaria using artesunate (AS 

4mg/kg/day)/placebo plus standard dose sulfadoxine/pyrimethamine (S/P) for treating 

acute uncomplicated, falciparum malaria in children: S/P alone (n=168), S/P+AS 3 days 

(n=126), S/P+AS 1 day (n=126). The trial profile and clinical findings are detailed in 

Priotto et al. 2003.  

 

PCR amplification 

Blood for PCR analysis was collected onto Isocode stix® (Schleicher & Schull, Dassel, 

Germany) on Days 0, 7, 14, 21, and 28 and DNA extracted following the manufacturer's 

instructions (i.e. washing and boiling of Isocode stix®). P. falciparum in paired samples 

collected on Days 0 and any day (7, 14, 21 or 28) of recurrent parasitaemia were 

genotyped by analysing the glurp, msp 1 and 2 loci. PCR amplifications were done at 

Ifakara Health Research and Development Centre (IHRDC) laboratory using an MJ 

Thermal Controller PTC-100TM (MJ Research Inc. Watertown, USA). Primary glurp, 

msp1 and msp2 PCR reactions were multiplexed whereas nested PCR amplifications 

were done separately for each locus. The primary and nested amplifications were carried 

out in 20µl and 30µl reaction volumes using 5µl of template DNA and 2µl of primary 

PCR product, respectively. All oligonucleotide primers and reference DNA were 

obtained from Malaria Research and Reference Reagents Resource Centre (MR4). The 
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oligonucleotide primers have been described elsewhere (Felger et al. 1994; Irion et al. 

1998; Snounou et al. 1999). Temperature cycling parameters were: initial denaturation at 

94ºC for 5 minutes followed by 30 cycles of denaturation at 94ºC for 1 minute, annealing 

at 55ºC for 2 minutes (for primary PCR) or 58ºC for 2 minutes (for nested PCR) and 

extension at 72ºC for 2 minutes. The last extension cycle was prolonged for 10 minutes. 

10µl of msp2 PCR product were digested with 3 units of Hinf III for 2.5 hrs at 37ºC and 

the resulting fragments were resolved on 10% polyacrylamide gels. The glurp and msp1 

PCR products were directly resolved on 2% agarose gel. For better comparison of 

fragments paired samples were loaded onto the gels side by side. Gels were stained with 

ethidium bromide, visualized under UV illumination, photographed and discrimination 

done as described. 

 

Definitions of recrudescent and new infections and data analysis 

A recurrent parasitaemia was classified as a recrudescence (true failure) if the following 

conditions were met: (i) all alleles of the three loci in the baseline and recurrent 

parasitaemia were identical, (ii) a sharing of baseline and recurrent alleles but with some 

missing alleles in the recurrent parasitaemia, and (iii) a sharing of baseline and recurrent 

alleles but with new alleles in recurrent sample that were not observed at baseline. A 

recurrent parasitaemia was classified as a new infection or treatment success, if the allelic 

pattern for any one of the loci differed completely between the baseline and recurrent 

samples (Snounou and Beck 1998). The clinical and molecular genotyping data were 

analysed using Stata v 8.0 (Stata Corporation Inc, Texas, USA)  

 

Results 

Of the 373 patients who completed the 28 days follow-up 190 had recurrent 

parasitaemias. All these recurrent parasitaemias were genotyped by PCR amplification to 

distinguish recrudescence from reinfection. Table 1 provides a summary of genotyping 

results per treatment arm. PCR was unresolved for 34 patients due to 8 incomplete paired 

samples and failure to extract/amplify DNA on 26 recurrent samples. The proportions of 

new infections on Days 7, 14, 21, 28 were 5/26 (19.2%), 24/51 (47.1), 29/50 (58%) and 

19/29 (65.5%), respectively. The corresponding values for the recrudescences were 21 
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(80.8%), 27 (52.9%), 21 (42%), and 10 (34.5%). Figure 1 illustrates proportions of new 

and recrudescent infections on Days 7, 14, 21 and 28. The ratios of proportions of new to 

recrudescent infections were 0.2 (19.2:80.8), 0.9 (47.1:52.9), 1.4 (58:42), and 1.9 

(65.5:34.5), on Days 7, 14, 21, and 28, respectively. The χ2 test for linear trend was 12.8 

(P <0.001), demonstrating a linear increase in the odds ratios on Days 14, 21 and 28 

compared to Day 7. The frequencies of new infections increased over time (i.e. lowest on 

Day 7, highest on Day 28) but with high rates on Days 7 and 14. The effect of the 29, pre 

Day 14, new infections is to lower the overall failure rate (all three arms combined) by 

7.8% (29/373) by counting unresolved PCR data as failures, or by 8.6% (29/339), if 

unresolved PCR data are excluded. 

 

Table 1. Distribution of  recrudescences, new infections and unresolved recurrent 

infections in a cohort of Ugandan children treated for Plasmodium falciparum malaria.  

  

Genotyping status SP SP+1AS SP+3AS Total 

Recrudescence 39 32 8 79 

New infection 21 29 27 77 

Unresolved 14 11 9 34 

Total 74 72 44 190 

 

Note: SP = sulfadoxine-pyrimethamine, 1AS = one day artesunate, 3AS = three days 

artesunate.  

 

Discussion 

In the artesunate based combination therapy trials conducted by WHO in Sub-Saharan 

African countries only post-day 14 recurrent parasitaemias were genotyped to distinguish 

recrudescent from new parasites and treatment failure rates adjusted accordingly. In the 

present study we genotyped all recurrent parasitaemias observed on Days 7, 14, 21 and 

28 from one site, Mbarara, Uganda, in order to assess pre- and post- Day 14 re-infection 

rates. We observed unexpectedly high frequencies of genotypically new infections on 

Days 7 (~19%) and 14 (~47%). Although the entomological inoculation rate was not 

measured in this study, cumulative re-inoculations during follow-up have resulted in 

these new infections which represent an important fraction of the total number of 
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recurrent parasitaemias. Given that the prepatent period for P. falciparum is 6-12 days, 

and that pyrimethamine has weak causal prophylactic activity, parasitaemias detected on 

Days 7 or 14 after initial parasite clearance may represent early new infections. 

Therefore, the assumption that recurrent parasitaemias on Days 7 and 14 in high 

transmission areas are due to recrudescence and, therefore, should be excluded from 

genotyping assays may be erroneous. These findings strongly suggest that genotyping 

should also be conducted on recurrent parasitaemias recorded before and on Day 14.  

 

Figure 1. Distribution of PCR-determined recrudescence vs. new infections during follow 

up in Ugandan children with uncomplicated falciparum malaria treated with either 

artesunate or placebo plus standard dose sulfadoxine/pyrimethamine.  
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Characterizing these early recurrences may change substantially our appreciation of drug 

efficacy. By taking these new infections into account, the overall failure rate fell by ~7 - 

8%. This change could have a profound effect on deciding drug policy if the efficacy of a 

given drug is not deemed to have reached a predefined threshold for changing drug 

policy. The using of PCR-corrected efficacy end points in malaria drug trials has become 

standard practice but there are variations in the way that the PCR data have been 
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interpreted (Basco et al. 2002; Basco and Ringwald 2000; Brockman et al. 1999; 

Cattamanchi et al. 2003; Magesa et al. 2001; Ranford-Cartwright et al. 1997; Happi et al. 

2004). This calls for a standardised genotyping protocol for areas of intense malaria 

transmission.  

 

It has been speculated that new infections might already be present during the clinical 

presentation but sequestered and not detected by PCR only to be picked up at the time of 

recurrence. Although this might indeed occur in few cases ample evidence exists that 

clinical episodes are less complex. A study by Irion et al. (1998), found that less than 2% 

of recrudescent genotypes were absent on Day 0 but were detected on Day 3. Similarly, 

Farnert and Bjorkman (2005) detected the same genotypes in consecutive samples 

obtained every 12 hours for at least three days post treatment in Swedish non immune 

travelers who acquired falciparum malaria in Africa. These observations suggest that 

single time-point samples may reliably represent all subpopulations present prior to 

treatment. A further complication in the interpretation of paired genotype data arises from 

infections with new parasites possessing identical genotypes to those present on Day 0, 

leading to an erroneous diagnosis of recrudescence. However, in endemic areas the 

probability of this occurrence is rather low and negligible when two or more 

discriminatory markers are being used. We believe this theoretical possibility is not an 

important consideration in the interpretation of our findings because we observed a high 

rate (~33%) of new infections (different genotypes) within the first 14 days of follow up.  

 

In our study, laboratory failure to amplifly/detect parasite genetic material in the 

recurrent samples was the main cause of the loss of genotyping data. This PCR failure is 

highly attributable to the low parasite densities in the recurrent samples coupled with a 

less invasive/rigorous DNA extraction method consisting of simple washing and boiling 

of the Isocode stix®. The performance and use-effectiveness of PCR genotyping will be 

detailed in a general report on the combination therapy trials that will be published 

separately. 
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The definition of drug resistant malaria and the reporting of drug efficacy data are 

becoming more complicated with our better understanding of P. falciparum molecular 

genetics, seasonal variations in malaria transmission, drug pharmacokinetics (e.g. longer 

follow up is required for long half life drugs) and the intrinsic parasiticidal effects of 

antimalarial drugs (White 1998). Further studies are needed to assess the importance of 

genotyping recurrent parasitaemias observed between Day 7 and 14 and how this might 

refine the current WHO definitions of late clinical and parasitological failures. More 

robust definitions will be beneficial to policy makers. 
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9 Chapter 9 

9.1 General discussion and conclusion  

9.1.1 Assessment of SP efficacy and role of SNPs in resistance 

Tanzania mainland revised malaria treatment policy in 2001, switching the first line drug 

from CQ to SP.  The baseline studies conducted prior to this change, using the 1996 

WHO 14 day, then standard protocol, showed that by the time the change was made, SP 

failure rate and molecular markers of resistance were already prevalent, probably because 

SP had been used as second line drug for many year in Tanzania. Therefore, it was 

predicted that the useful therapeutic life (UTL) of SP in Tanzania would be compromised 

shortly after widespread use of the drug. These findings provided policy makers with 

evidence on which SP was adopted as an interim first line antimalarial drug, as a rescue 

measure while combination therapies were being evaluated for long-term use.  

 

Two to three years later, SP efficacy monitoring studies using the 28 days 2002 WHO 

protocol recorded unacceptably high failure rates. Restricting the analysis to outcomes at 

day 14 led indeed to misleadingly high efficacies, 85.2% and 86.3% in 2003 and 2004, 

respectively. Similarly, using short follow-up period, other studies recorded efficacies as 

high as 90.8% in Tanzania (Lemnge et al. 2005) and 83% in Malawi (Plowe et al. 2004). 

Longer follow-up periods and clearance of both parasitaemia and symptoms are the most 

accurate determinants of the intrinsic resistance of the parasite to a drug (Sibley and Hunt 

2003; Stepniewska et al. 2004). Therefore, it follows that the decision to switch to SP 

may have been based on under-estimated efficacy levels and insufficient evidence. Had 

the baseline SP efficacy assessment been based on the 28-Day protocol, higher failure 

rates would have been recorded and probably Tanzania would not have opted for SP. 

Alternatively, if the baseline data represented the true SP failure rates, then observation 

of > 40% SP failure rate only 2 -3 years after widespread use of the drug confirms the 

postulated rapid spread of resistance to SP in high transmission areas. In any case, the 

clinical and molecular findings in the 2003/2004 studies provided comprehensive 

evidence of  increasing resistance to SP and fully justify the decision of the Ministry of 
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Health in Tanzania to review the current malaria treatment policy in favor of AL 

combination therapy. 

 

This study broadly and deeply investigated the potential of SP resistance markers in 

predicting treatment outcomes (using symptomatic children < 5 years in health facilities) 

and resistance levels in the health facilities (using asymptomatic infections in the 

communities). In assessing the relationship between frequency of SP markers of 

resistance and SP failure rate, we adopted the GFI concept (Djimde et al. 2001b), as used 

in predicting CQ treatment failure. It should be noted that direct comparison of molecular 

data collected prior to and after adoption of SP can only be done with caution since the 

study designs and SNP detection methods used in the two studies are different. However, 

preliminary verification showed a very high agreement between PCR-RFLP and DNA 

microarray obtained data (Crameri et al. unpublished data). Therefore, assuming that the 

profile of mutant genotypes in symptomatic children in the health facility reflects that in 

their respective communities (as determined by Marfurt et al. unpublished data), these 

findings show a rapid increase in the levels of Pfdhfr and Pfdhps mutant genotypes in 

Tanzania after only a few years of SP use. However, because of the under-estimated SP 

failure rates in the baseline studies, these changes cannot be regarded as consistent with 

the observed change in SP failure rate from 14.4% in 1999 to 41% in 2004.  

 

The drastic increase in individual Pfdhfr and some Pfdhps mutant alleles in the 

communities between 2003 and 2004 did not reflect the insignificant changes in SP 

failure rates. Accumulation of mutations in Pfdhfr and Pfdhps confers increased 

resistance to SP (Plowe et al. 1997). Therefore, the correlation of SP failure rate to 

molecular markers of resistance is customary assessed by using a combination rather than 

individual of mutations. The quintuple mutant genotype was shown to be important 

predictor of SP failure in Malawi (Kublin et al. 2002), Uganda (Kyabayinze et al. 2003) 

and Nigeria (Happi et al. 2005). However, this genotype did not seem to be correlated to 

SP treatment failure in both health facility- and community based studies, therefore, may 

not be useful in the surveillance of dynamics of SP resistance in Tanzania.  

 



   102 

Two previous studies in Tanzania named triple-Pfdhfr mutant genotypes as the main 

predictor of resistance (Mutabingwa et al. 2001) or early warning tool (Alifrangis et al. 

2003). The GFI (1.96 – 2.1) calculated in these studies by using triple-mutant genotype at 

health facilities closely matched those reported by using quintuple mutant genotype in 

Uganda (1.9) Kyabayinze et al. 2003 and Malawi (2.2) (Kublin et al. 2002). However, the 

ratios of prevalence of the triple-Pfdhfr mutant genotype in the catchment areas and their 

respective SP failure rates are more variable (1.2 – 2.3) than the GFIs obtained 

exclusively from health facility-based data. The relationship between SP resistance 

markers and SP treatment failure observed in the two studies is not consistent and 

unclear. However, the little evidence of relationship gathered pointed to triple-Pfdhfr 

mutant genotype as an important molecular marker for monitoring the dynamics of SP 

resistance. Its high prevalence in both 2003 and 2004 was consistent with high SP failure 

rates in these two years.  

 

The observed poor association between molecular markers of resistance and SP treatment 

failure rate can be attributable to a number of factors. The outcome of antimalarial 

treatment depends on many factors, such as the host’s age, immunity, and nutritional 

status, and parasite’s genotype, its parasite density and drug-related factors. It has been 

shown that the risk of treatment failure is inversely proportional to transmission intensity 

and was not explained by differences in molecular markers of antimalarial drug resistance 

(Francis et al. 2006).  

 

Contrary to SP resistance markers, the frequencies of the main mediators of CQ 

resistance (Pfcrt 76 and Pfmdr1 86 Asn) recorded in our study are lower than those 

reported (Schneider et al. 2002; Ndejembi et al. unpublished data) prior to CQ 

withdrawal in Tanzania. In addition, between 2003 and 2004 the Pfcrt 76 also showed a 

decreasing trend in Ipinda and Mkuranga communities. However, it increased in Mlimba, 

consistent with an increase in Pfmdr1 86 Try allele whose frequency in the former sites 

did not change significantly. The increase in Mlimba may be promoted by uncontrolled 

use (through prescription or self-medication) of QN and AQ for uncomplicated malaria in 

the area.  
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The lack of ATPase6 mutant genotype, despite the reported uncontrolled use of 

artemisinin monotherapy in urban Dar es Salaam (Kachur et al. 2006), an area close to 

Mkuranga (Coast Region) sites, suggest that resistance to artemisinin has not been 

selected in Tanzania. This is consistent with high (~94%) AL parasitological cure rates 

recorded in a part of the Coast Region in Tanzania (Falade et al. 2005). These 

observations support the Ministry of Health’s decision to adopt this combination as first 

line treatment for uncomplicated and further encourages rational use of AL and 

discourages the use of artemisinin monotherapy in order to prevent development of 

resistance. 

 

 The capacity to detect many SNPs in many resistance conferring genes makes DNA 

microrarray technology a potential tool for monitoring dynamics of antimalarial drug 

resistance. The majority of Sub-Saharan African countries are revising their malaria 

treatment policy to switch to ACTs. The DNA microarray technology may provide a 

suitable tool for simultaneously assessing, on a large scale, the spread of resistance to 

ACTs and reversal of CQ and SP resistance after being withdrawn. However, the interval 

between assessments should be long enough to better appreciate parasite genotypic 

dynamics following alteration of drug pressure. Reemergence of sensitivity points to the 

possibility of recycling the limited number of safe and cheap drugs as combination 

partners with artemisinins (Laufer and Plowe 2004).  

 

Admittedly, this new promising technology is in its infancy stage. There is still a need to 

further validate its field applicability, both in high and low transmission areas where MOI 

differs. Due to time constraints post-PCR detection of SNPs in Pfcrt 71, 74, 75 and 

Pfdhps 436, 581, 640 and 645 was not optimized. Therefore, these mutations, which are 

deemed of less importance in resistance, were not analyzed. There is a need to optimize 

post-PCR parameters that would enable detection of all P. falciparum resistance-

associated mutations in order to improve the comprehensiveness of the technique in the 

community-based surveillance of resistance. 
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9.1.2 Distinction of recrudescent from new infections 

The molecular genotyping of post day 14 recurrent infection from WHO combination 

therapy trials was centralized at only two places in order to avoid inter-laboratory 

variations. The stepwise genotyping protocol which excludes new infections detected by 

any one marker distinguished recrudescence with high precision than would have been 

using another protocol (Ranford-Cartwright et al. 1997; Happi et al. 2004; Cattamanchi 

et al. 2003; Magesa et al. 2001) in which a new infection must be recorded by all three 

markers. However, controversy surrounds the interpretation of genotyping data when a 

recurrent sample contains additional allele(s) not seen in admission sample. In 

longitudinal studies examining the dynamics of malaria infections (i.e. the acquisition of 

new or loss of old parasites), new infections are always recorded if a new allelic pattern is 

detected even when alleles from prior infection/s persist. This contrasts with drug 

efficacy studies in which this finding indicates a failure of the drug to clear an infection 

present before treatment. Therefore, in this study such cases were classified as 

recrudescence.  

 

Molecular genotyping refined treatment outcomes. The performance of the system was 

better but varied markedly between studies, pointing for diligence both in the field and 

laboratory data generation processes. In most sites, the differences between crude and the 

two PCR-adjusted treatment failure rates were appreciably high (> 10%). Additional 

genotyping of pre-Day 14 recurrences in Uganda site identified many more new 

infections and further reduced the PCR-adjusted parasitological failure rate by 8%. Thus 

the assumption that most pre Day 14 recurrences are due to recrudescence may be 

erroneous. Therefore, the study recommends that all recurrent infections in malaria 

treatment trials/studies in high transmission areas should be genotyped. Although the 

mean difference between the two Day 28 PCR-adjusted failure rates (including or 

excluding unresolved infections) was small (3%), there is a need for further studies to 

establish the best way of treating unresolved recurrent infections.  
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9.2 Recommendations 

The high SP failure rates fully substantiate the revision of malaria treatment policy in 

Tanzania. These findings further stress that, for drugs with long half-life such as SP, 

establishment of cut-off points for policy change in high transmission areas should 

consider both clinical and parasitological responses beyond day 14.  

 

 More studies need to be done to assess the applicability of triple-Pfdhfr mutant genotype 

in community-based approach for monitoring dynamics of SP resistance in Tanzania. 

However, it should also be born in mind that the majority of the community 

asymptomatic infections were multiclonal. Therefore, estimation of correct proportions of 

various genotypes is complex. Unless linkage disequilibrium is assessed, the observed 

combination genotypes in this study may be slightly exaggerated. Therefore, the 

relationship needs to be re-assessed after establishing the linkage disequilibrium of the 

observed alleles. For a fruitful fight against development and spread of resistance, there is 

need for active involvement in creating awareness to the general community on the 

rational use of antimalarials and abidance to national policy 

 

Stepwise genotyping may result in considerable proportions of unresolved infections if 

robust methods for DNA extraction are not used. On the other hand, genotyping all three 

loci is expensive and may not be feasible in large-scale trials. Hence stepwise genotyping 

of only two loci (msp2 and msp1 or glurp) coupled with use of more advanced DNA 

extraction methods seems a reasonable compromise. This approach need to be validated 

and considered for adoption as a standard integral part in malaria efficacy studies. 
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