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      “.. if the consequences of alternative available strategies cannot be 

predicted to the point where we can effectively discriminate between 

them, there is no rational basis for any kind of choice.”  
 

N. Bailey, 1982          
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Summary 

The consequences of Plasmodium falciparum infections for humans range from self-
limiting asymptomatic parasitaemia to rapid death. Annually, P. falciparum malaria is 
estimated to cause 0.5 billion acute febrile episodes, 2-3 million severe episodes 
warranting hospital admission and one million deaths. This enormous burden 
demands effective control strategies. A number of different interventions are available, 
but policy-makers need a rational basis for discriminating between them.  

The likely consequences of each intervention, or combination of interventions, must be 
considered. Trials can provide estimates of the impact of interventions on acute 
episodes over a short timespan. Predictions are required where field data are not 
available: over longer time periods, for severe outcomes, for many combinations of 
interventions, or for interventions which do not yet exist. A model intended for making 
quantitative predictions of the impact of interventions must relate transmission and 
infection to the key outcomes used by health-planners such as morbidity, mortality and 
cost-effectiveness. It must also allow for dynamic effects on transmission and acquired 
immunity, and incorporate the effect of the health system. Until recently, there was no 
such model. In the past, emphasis had lain with the transmission cycle. In addition, the 
most practical models would be individual-based with high computational demands.  

In response to this need, a stochastic individual-based integrated model has been 
developed at the Swiss Tropical Institute. The core of the integrated model is a 
description of asexual parasite densities, providing a basis for the effects of acquired 
immunity on reducing densities and for the density-based consequences of infection.  
This thesis contributes those elements that consider the immediate consequences of 
human infection: morbidity, mortality and transmission to the vector. The integrated 
model is then applied to questions concerning a new intervention, intermittent 
preventive treatment in infants (IPTi).  

A framework for morbidity and mortality is proposed. The probability of an acute 
febrile malaria episode is related to parasite densities via individual- and time-specific 
pyrogenic thresholds that respond dynamically to recent parasite load. Severe episodes 
result either from overwhelming parasitaemia, or from acute episodes in conjunction 
with a co-morbidity which acts to weaken the host. Both direct and indirect mortality 
were considered. Age-dependent case fatality rates estimated from field data were used 
to quantify the probability of direct mortality. Indirect deaths occur following an acute 
episode with subsequent co-morbidity after the parasites have cleared, or within the 
neonatal period as a consequence of maternal infection. Co-morbidity is assumed to be 
age-dependent. The model components are fitted to field data or to summaries of field 
data, and can simultaneously account for the observed age- and exposure-specific 
patterns of paediatric malaria and malaria-associated mortality.  

The model component for infectivity relates asexual parasite densities to the probability 
of infecting a feeding mosquito, taking into account the delay resulting from the 
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timecourse of gametocytaemia and the need for both male and female gametocytes in 
the blood meal. This component is fitted to data from malariatherapy patients and can 
account for observed patterns of human infectivity. The integrated model is validated 
against published estimates of the contribution of different age groups to the infectious 
reservoir.  

The integrated model, in conjunction with an added component for the action of 
sulphadoxine-pyrimethamine (SP) and site-specific inputs, reproduced the pattern of 
results of the IPTi trials reasonably well. The model was modified to represent different 
hypotheses for the mechanism of IPTi. These hypotheses concerned the duration of 
action of SP, the empirical timing of episodes caused by individual infections, potential 
benefits of avoiding episodes on immunity and the effect of sub-therapeutic levels of SP 
on parasite dynamics. None of the modified versions improved the fit between the 
model predictions and observed data, suggesting that known features of malaria 
epidemiology together with site-specific inputs can account for the pattern of trial 
results. Predictions using the integrated model suggest that IPTi using SP is effective 
over a wide range of transmission intensities at reducing morbidity and mortality in 
infants. The predicted cumulative benefits were proportionately greater for mortality 
and severe episodes than for acute episodes, due to the age-dependent co-morbidity 
functions in the model. IPTi was predicted to avert a greater number of episodes where 
IPTi coverage was higher, the health system treatment coverage lower, and for drugs 
which were more efficacious and had longer prophylactic periods. Additionally, IPTi 
was predicted to have little impact on transmisison intensity.  

This is the first major attempt to model the dynamic effects of malaria transmsission, 
parasitological status, morbidity, mortality and cost-effectiveness using model 
components which were fitted to field data.  The model can be extended to predict the 
dynamic effects of different interventions, and combinations of interventions. The 
ability to compare the likely impact of different interventions on the same platform will 
be a valuable resource for rational decisions about strategies to control the intolerable 
burden of malaria. 



 iii

Zusammenfassung 

Die Folgen einer Infektion mit Plasmodium falciparum beim Menschen reichen von 
einem asymptomatischen Verlauf der Krankheit bis zu einem schnellen Tod. Jedes Jahr, 
so schätzt man, versursacht P. falciparum Malaria ungefähr eine halbe Milliarde akuter 
Fieberepisoden, zwei bis drei Millionen schwere, eine Hospitalisierung nach sich 
ziehende Krankheitsfälle, sowie eine Million Todesfälle. Diese enorme Krankheitslast 
verlangt nach wirkungsvollen Interventionsstrategien. Wohl steht eine Anzahl 
verschiedener Bekämpfungsmethoden zur Verfügung, jedoch benötigen die politischen 
Entscheidungsträger eine rationale Grundlage, um Wirkungsvolle Strategien zu 
entwickeln.  

Die zu erwartenden Folgen einer Intervention oder Kombination von Interventionen 
müssen genau in Betracht gezogen werden. Feldversuche sind in der Lage, die 
Auswirkungen von bestimmten Massnahmen auf die Anzahl akuter Krankheitsfälle 
über kurze Zeiträume abzuschätzen. Modellbasierte Voraussagen sind jedoch immer 
dort vonnöten, wo Daten aus dem Feld nicht erhältlich sind: Um Aussagen über 
längere Zeiträume, schwere Krankheitsverläufe,  Kombinationen verschiedener 
Massnahmen, oder  Massnahmen zu machen, welche sich erst in der Entwicklung 
befinden. Ein Modell zur quantitativen Vorhersage des Effektes von verschiedenen 
Interventionen muss eine Beziehung zwischen Übertragung und Infektion sowie 
denjenigen möglichen Folgen herstellen, welche für Gesundheitsplaner von Interesse 
sind. Dazu gehören Morbidität, Mortalität und Kosteneffizienz. Zudem muss es auch in 
der Lage sein, dynamische Rückkopplungseffekte auf Übertragung und Immunität 
miteinzubeziehen und sollte dabei auch den Einfluss der Gesundheitssysteme 
berücksichtigen. Bis vor kurzem gab es jedoch kein Modell, welches genannte 
Anforderungen erfüllt hätte.  

Aus diesem Grund wurde am Schweizerischen Tropeninstitut ein individuen-basiertes, 
integriertes Modell entwickelt. Herzstück dieser Computersimulation ist eine 
mathematische Beschreibung der Parasitendichte im Blut, welche als Ausgangspunkt 
für die Wirkungen erworbener Immunität  sowie für die klinischen Folgen einer 
Infektion dient. Diese Dissertation trägt jene Teile zu genanntem Modell bei, welche die 
unmittelbaren Folgen einer Infektion im Menschen betrachten: Morbidität, Mortalität, 
und Übertragung auf den Vektor. Das ganze Modell wird am Schluss angewandt auf 
eine neue Intervention, genannt „Intermittent Preventive Treatment in Infants“ (IPTi), 
bei welcher Säuglinge wiederholt präventiv behandelt werden.  

Es wird ein Konzept zur Modellierung von Morbidität und Mortalität unterbreitet. Die 
Wahrscheinlichkeit einer akuten fiebrigen Malariaepisode hängt dabei über 
individuen- und zeitspezifische Fieber-Schwellenwerte von der Parasitendichte ab. 
Diese Schwellenwerte selber wiederum verändern sich dynamisch in Abhängigkeit von 
der Parasitendichte. Schwere Episoden entstehen entweder als Folge einer 
ungewöhnlich hohen Parasitendichte, oder durch Zusammentreffen einer akuten 
Episode mit einer Komorbidität, welche den Patienten zusätzlich schwächt. Sowohl 
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direkte wie auch indirekte Mortalität wurden in Betracht gezogen. Altersspezifische 
Todesraten aus Felddaten wurden benutzt, um die Wahrscheinlichkeiten direkter 
Mortalität zu beziffern. Indirekt verursachte Todesfälle treten im Modell entweder nach 
einer akuten Episode mit darauffolgender Komorbidität auf, oder innerhalb des 
neonatalen Zeitraumes als Folge einer Infektion der Mutter. Der altersabhängigen 
Verteilung von Komorbiditäten wird dabei Rechnung getragen. Die einzelnen 
Modellparameter wurden mit Hilfe von Felddaten geschätzt, sodass das Modell nun 
die beobachteten alterspezifischen Muster pädiatrischer Malaria und malaria-
assoziierter Mortaliät wiedergeben kann. 

Die Modellkomponente für Infektivität des Menschen setzt die Dichte asexueller 
Parasiten im Blut des Menschen in Beziehung zur Wahrscheinlichkeit, eine stechende 
Mücke zu infizieren. Dabei wird sowohl der Verzögerung, welche sich aus dem 
Zeitverlauf der Gametozyten-Entwicklung ergibt, als auch der Notwendigkeit, dass 
männliche und weibliche Gametozyten sich in ein und derselben Blutmahlzeit befinden 
müssen, Rechnung getragen. Die Parameter dieser Komponente wurden aus Daten von 
Malariatherapie-Patienten geschätzt, und das Modell ist in der Lage, die beobachteten 
Muster menschlicher Infektivität wiederzugeben. Das integrierte Modell wurde mit 
Hilfe publizierter Schätzungen des Beitrags verschiedener Altersgruppen zum 
Infektionsreservoir validiert. 

Das Modell, zusammen mit einer hinzugefügten Komponente für die Wirkung von 
Sulphadoxine-Pyrimethamine (SP) und lokalitätsspezifischen Eingabedaten, 
reproduzierte die Resultate der bis heute durchgeführten IPTi-Feldversuche ziemlich 
gut. Das Modell wurde modifiziert, um verschiedene Hypothesen über den 
Wirkungsmechanismus von IPTi wiederzugeben. Diese Hypothesen betrafen die 
Zeitdauer einer Wirkung von SP, das zeitliche Auftreten von Episoden im Verlauf einer  
bestimmten Infektion, den möglichen Nutzen der Vermeidung einer Episode in Bezug 
auf Immunität, und den Effekt von subtherapeutischen SP-Konzentrationen auf die 
Parasitendynamik. Keine der modifizierten Versionen erklärte die Daten besser als das 
ursprüngliche Modell. Die Vorhersagen des integrierten Modells legen nahe, dass IPTi 
mit SP über eine breite Spannweite von Transmissionsintensitäten Morbidität und 
Mortalität bei Kleinkindern wirkungsvoll reduzieren kann. Der vorhergesagte Nutzen 
war im Vergleich grösser in Bezug auf Mortalität und schwere Episoden als für akute 
Episoden, aufgrund der altersabhängigen Komorbiditäts-Funktionen im Modell. Die zu 
erwartende Reduktion in der Anzahl Episoden war umso grösser, je besser die 
Flächendeckung von IPTi, je geringer die Effizienz der örtlichen 
Gesundheitsversorgung, je effektiver und je länger prophylaktisch wirksam die 
verwendete Substanz war. Zudem wurde vorausgesagt, dass die Anwendung von IPTi 
nur einen geringen Einfluss auf die lokale Übertragungsintensität hat. 
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Chapter 1.  Introduction 
 

 

 

1.1 The consequences of Plasmodium falciparum infection in humans  

Plasmodium falciparum is a protozoan parasite, one of four species that account for 
nearly all human malaria infections.1 Of the four, P falciparum causes the majority of 
infections in Africa and is responsible for most severe disease and mortality. 
Approximately 2.2 billion people globally are exposed to the risk of infection.2 

P. falciparum has a complicated life cycle undergoing several transformations and 
involving both human and mosquito hosts (Figure 1.1). Human infection occurs when 
an infectious female Anopheles mosquito feeds on a human, acquiring blood that is 
needed for eggs to develop. Parasites in the salivary glands are transmitted as the 
mosquito injects saliva that acts to inhibit the blood from coagulating. 

The possible consequences of infection are manifold. For the parasite, infection of a 
human host potentially provides a nuturing environment, providing food and enabling 
development and multiplication, and allows onward transmission to mosquitoes.  For 
the human host, the clinical consequences of infection range from self-limiting 
parasitaemia to rapid death. Symptoms common in uncomplicated malaria episodes 
are fever, chills, nausea and flu-like illness. Severe episodes may involve coma or 
impaired consciousness, seizures, respiratory distress and severe anaemia. The reasons 
why infections can lead to different outcomes are not well known, but human genetics 
(for example, the sickle cell trait) and maternal immunity and immunity acquired 
through repeated exposure play a role.  Estimates suggest that, annually, P. falciparum 
malaria directly causes a million deaths, 2-3 million severe clinical attacks, and about 
0.5 billion acute attacks.1,2 Additionally, infection during pregnancy can lead to adverse 
effects both for the mother and fetus. In areas of stable transmission, maternal anaemia 
and fetal growth restriction may occur. In areas of unstable transmission, the effects on 
both mother and infant tend to be more severe.3 Beyond the clinical consequences, 
malaria has been estimated to cost Africa about 12 billion US dollars every year due to 
loss of productivity and tourism.1 The social consequences are less well characterised, 
but it is known that the burden falls disproportionately on the poor and vulnerable.1 
The enormous burden of morbidity and mortality demands effective malaria control 
strategies.  
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Figure 1.1 Life cycle of the parasite Plasmodium falciparum. Source: Wirth, 20024 
 
a. When an infectious mosquito feeds on a human, it injects the parasites in their 
sporozoite form.  The parasites ride the flume of the circulatory system reaching the 
liver within a few minutes. Each Plasmodium invades a different liver cell. Inside the 
hepatocyte, the parasite digests the cell contents and undergoes development, 
multiplying into tens of thousands of merozoites. The cell ruptures after 5-6 days, 
releasing the merozoites into the bloodstream where they quickly invade red blood 
cells (RBC) and multiply via the trophozoite stage. When the RBC bursts, 8-32 
merozoites are released each invading another RBC and the sequence of reproduction 
and release continues. Infected RBCs bind to endothelium or placenta, the adhesion 
prevents them from passing into the spleen where they would be killed. Clinical 
features of malaria, including fever and chills, anaemia and cerebral malaria are 
associated with infected RBC. A small proportion of merozoites develop into immature 
male and female gametocytes. b. A feeding mosquito takes up blood containing male 
and female gametocytes which develop into reproductive cells (gametes) inside the 
mosquito’s stomach. A male gamete fuses with a female gamete to produce a zygote. 
The zygote in turn develops into the ookinete, which crosses the wall of the gut and 
forms a sporozoite-filled oocyst. When the oocyst bursts, the sporozoites migrate to the 
mosquito's salivary glands, and the process begins again.  
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1.2 A choice of malaria control strategies  

There is an array of possible malaria control interventions targeting different stages in 
the complex life cycle of P. falciparum.5 A number have proved efficacious such as 
insecticide-treated nets (ITN), indoor residual spraying (IRS) and artemisinin-based 
combination therapy (ACT). Recent developments suggest promising new 
interventions such as pre-erythrocytic vaccines and intermittent preventive treatment 
in infants and children. Funding for large-scale implementation has been limited, 
however in the past few years the problem of malaria has captured the attention of 
donors such as The Bill and Melinda Gates Foundation and the US President’s Initiative 
and consequently funding has increased substantially. Thus, decision-makers have 
genuine choices and are faced with the problem of choosing between strategies, and of 
avoiding wrong priorities. They need to know which intervention, or combination of 
interventions, is likely to be the most cost-effective both for the rational use of 
currently-available tools and for investing in new tools for the future.  

Information about the likely consequences of an intervention can come from a number 
of different sources. Randomised controlled trials can provide an estimate of the impact 
of interventions over a short timeframe, with a well-controlled delivery system, for 
interventions that already exist.5,6 Malaria intervention trials frequently use acute 
episodes as the primary endpoint, yet the relatively rare outcomes of severe episodes 
and mortality are of greater concern. Monitoring of ongoing programmes takes into 
account the reality of health systems, but may be difficult to interpret if biases cannot 
be ruled out. In addition, it is difficult to field-test a large number of combinations of 
interventions.7 Where data do not exist, predictions are needed in order to make 
comparisons between strategies. The inherent non-linearities mean that predictions are 
hard to make without a formal structure.8 In these circumstances, mathematical models 
are one of the few tools available to decision-makers.  
 
 

1.3 The need for a comprehensive model of malaria epidemiology                                                        

Malaria has been modelled for over a hundred years. For a large proportion of that 
time,  models, including the landmark works of Ross,9 Macdonald10 and Dietz et al,11 
focused on transmission dynamics. They were concerned with the connection between 
entomological circumstances and the parasitological status of a population. They did 
not include the determinants of entomology, the consequences of infections, or the 
social, economic and behavioural factors that modify the parasitology.12 They were 
created to be used for specific questions, such as predicting whether elimination might 
result from given interventions. As hopes for global eradication subsided, public health 
priorities shifted from eradication to control and the reduction of the burden of 
disease.13 Very recently, there has been interest in elimination, however the reduction of 
morbidity and mortality is likely to remain a priority. New models capable of making 
predictions of the impact of a control strategy on morbidity, mortality and cost-
effectiveness are required.  
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A model of the impact of interventions on malaria morbidity and mortality must 
include not only the direct short-term effects, but also the longer-term dynamic effects 
due to changes in the immune status of the population through reduced exposure and 
benefits from lowered transmission intensity.7,14 The effects of a health system on the 
gains expected from an intervention must also be taken into account.  

 “No sensible decision can be made any longer without taking into account not only the 

world as it is, but the world as it will be” Isaac Asimov 

Calls have previously been made for an integrated model.6,8,15,16 Twenty-five years ago 
Bailey suggested a multidisciplinary approach, linking a biomathematical model of 
malaria to an econometric model.15 He observed that a model combining these elements 
would allow clinical and epidemiological knowledge to be translated more effectively 
into the achievement of social goals.15 Others have proposed a focus on interventions 
and decision-making aids.6,8 Although there are many models of transmission or of 
specific aspects of malaria, until recently there has been no model that simultaneously 
captures the dynamics of infection, acquired immunity, parasite densities, the 
consequences of infections (morbidity, mortality and infectivity to mosquitoes), the 
health system and economics.  

In response to the need for an integrated model, the malaria modelling group at the 
Swiss Tropical Institute has developed a set of stochastic simulations that captures all 
of these elements. The details of how the infection process has been modelled are 
reported elsewhere.17,18 This thesis describes those elements of the integrated model that 
consider the immediate consequences of human infection: acute morbidity, severe 
morbidity, mortality and transmission to the vector. 
                                        
 

1.4 The strategy for a new integrated model  

The development of the model followed a strategy. The modular structure allowed the 
concurrent development of components and ensured that the fitting of the model to 
data was feasible in terms of the computational demands and complexity of fitting.  

The core of the model is the specification of the course of infections: a description of the 
asexual blood-stage parasite densities (Figure 1.2). The densities provide a basis for the 
effects of naturally acquired immunity, for accommodating superinfection, and for 
model components for the consequences of infection. Naturally acquired immunity acts 
to reduce density, rather than the duration of infection.7,19,20 High parasite densities are 
a trigger for clinical malaria, and the probability that a mosquito is infected when 
feeding on an infected human depends on the gametocyte density. 
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Figure 1.2 Integrated model components  
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Adapted from Smith et al.5  
 
 

The model is individual-based in that individual humans and individual infections are 
simulated, although individual mosquitoes are not. The model must accurately 
describe immunity to malaria which is partial and gradually acquired21 and which 
provides a basis to incorporate the density-based consequences of infection (clinical 
outcomes and infectivity to mosquitoes). An individual-based approach was chosen 
because it can represent both partial immunity and parasite densities extremely easily. 
Classical mathematical forms would struggle to encompass the required range of 
details.16 However, compartmental models that can incorporate partial immunity have 
been developed. They bridge the gap between Susceptible-Infected-Susceptible and 
Susceptible-Infected-Recovered models either by continuous immunity22 or in discrete 
steps.23  Individual-based models have previously been used to describe malaria 
transmission dynamics.24,25  

The model is stochastic. An individual malaria infection can last many months26, during 
which densities of both asexual parasites and gametocytes vary irregularly as 
consequences mainly of the developmental cycle of the parasite, of immunity, and of 
antigenic variation. These processes are not well understood and the strategy was to 
avoid predicting intermediate variables whose quantitative relationship with 
epidemiological outcomes are uncertain5. Since the course of each infection is different, 
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and the average behaviour is of less importance than the extent of variation, the 
irregularities in parasite densities can be captures as statistical fluctuations.  
Convincing models for individual infections (such as 27,28) have adopted stochastic 
simulation approaches, rather than treating the development of an individual malaria 
infection as a deterministic process. 

“Life is a stochastic process.” Anon 

With an individual-based stochastic model, discrete time is the easiest option. Five days 
was a pragmatic choice for the time interval, as a reasonable common denominator for 
important time periods such as the hepatic stage (five days) and pre-patent blood stage 
(ten days), and also for computational demands.  

The overall strategy sets some general criteria for the model components for the 
consequences of infection. They must use available interconnecting variables as their 
starting point, be individual-based, five-day timestep models, use biologically-plausible 
mechanisms, reproduce age-patterns in available data, be fitted to data and allow 
modification for the effect of interventions.   

 

 

1.5 Applying the model: intermittent preventive treatment in infants 

Intermittent preventive treatment in infants (IPTi) is being considered as a new 
intervention with the potential to reduce the burden of malaria in infants via a simple 
delivery system at low cost. The strategy of IPTi is to give antimalarial drugs during the 
first year of life at the time of routine immunizations, irrespective of whether the 
infants are known to have malaria infections.29 The limited number of doses is intended 
to retain the benefits of weekly or fortnightly chemoprophylaxis whilst avoiding the 
disadvantages: thus reducing malaria morbidity and mortality without incurring 
difficulties in sustainability, accelerating drug resistance or impairing the development 
of natural immunity.  

Six trials of IPTi with sulphadoxine-pyrimethamine (SP) have been completed to date. 
Questions have arisen. The reasons for the variability in the trial estimates of efficacy 
are not known, nor the process by which IPTi might work, nor the likely impact of IPTi 
in different epidemiological settings. This thesis describes the application of the 
integrated model to these questions. The impact of IPTi on drug resistance has been 
considered elsewhere.30,31  
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1.6 Objectives of the thesis  

� Model components for the consequences of infections in the human host which 
can be integrated into a comprehensive model of malaria epidemiology. These 
comprise acute morbidity (Chapter 2), severe morbidity (Chapter 3), and malaria 
mortality (including via maternal infection) (Chapters 3 and 4) and infectivity to 
mosquitoes (Chapter 5). 

 
� The application of the model, with additional components for the effects of SP, 

to simulate the IPTi trials, investigate hypotheses for the mechanism of IPTi and 
make predictions of the impact of IPTi in different settings (Chapter 6). 
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2.1 Summary 

We propose a stochastic model for simulating malaria tolerance. The model relates the 
probability of a clinical attack of malaria to the peripheral parasite densities via a 
pyrogenic threshold that itself responds dynamically to the parasite load. The 
parameters of the model have been estimated by fitting it to the relationship between 
incidence of clinical episodes and the entomological inoculation rate, using age-specific 
incidence data from two villages in Senegal and one village in Tanzania. The model 
reproduces the shifts in age distribution of clinical episodes associated with variation in 
transmission intensity, and in keeping with the data, predicts a slightly higher lifetime 
number of episodes in the mesoendemic village of Ndiop than in the holoendemic 
village of Dielmo. This model provides a parsimonious explanation of counter-intuitive 
relationships between the overall incidence of clinical malaria and transmission 
intensity. In contrast to the theory of endemic stability, recently proposed to apply to P. 

falciparum, it does not assume any intrinsic age dependence in the outcome of infection. 
This model can be used to explore the consequences for predictions of the effects of 
different anti-malarial interventions on the incidence of clinical malaria.  
 
 

2.2 Introduction 

The clinical outcome of Plasmodium falciparum malaria infection can range from an 
absence of detectable morbidity to rapid death.1 In naive hosts, symptoms occur before 
the first peak of parasitaemia, but untreated infections can persist for many months 
with intermittent periods of acute illness. In malaria-endemic areas of sub-Saharan 
Africa, exposed people are subjected to frequent superinfections, and develop partial 
immunity that leads to control both of parasite densities and to reduction in the 
frequency of clinical episodes. Malaria morbidity is shifted into older ages as 
transmission intensity is reduced.  This has been studied  intensively in two villages in 
Senegal.2,3 In Dielmo, where the annual entomological inoculation rate (EIR) is 
estimated to be approximately 200,3,4 almost all episodes are concentrated in the first 
years of life. In Ndiop, with an annual EIR of 20,5 there is a substantial peak shift, with a 
high incidence in adolescents and adults. In Ndiop, the EIR was detectable only during 
the short rainy season, whereas in Dielmo it was detectable throughout the year. The 
published data from Ndiop and Dielmo do not provide a breakdown of the age-pattern  
in the first year of life. In Idete in Tanzania, where transmission intensity is similar to 
Dielmo,3,6 the incidence of clinical attacks in the first three months of life is very low, 
but increased strongly with age.6 A higher number of lifetime episodes occurred in the 
lower transmission setting of Ndiop compared to Dielmo (even assuming the same life 
expectancy), a pattern seen elsewhere.7 To predict the potential impact of interventions 
that affect parasitaemia, mathematical models are needed that predict not only the 
likely incidence of infections but also how frequently these will result in clinical 
episodes of malaria. 
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There is abundant evidence that most clinical episodes are caused by newly inoculated 
genetically distinct parasites.8,9 One proposed model is that parasite populations are 
structured into a limited number of strains, each stimulating long-term clinical 
immunity.10,11 However most analyses of the population biology of P. falciparum have 
concluded that there is frequent genetic exchange,12-15 many malaria antigens are 
extremely polymorphic,16-18 cross-protection is clearly important, and natural immunity 
to the immunodominant epitopes is not necessarily lifelong.19-21  

The adequate modelling of all these complex immunological phenomena represents a 
major challenge. However epidemiological analyses of the tolerance of parasites can be 
used to predict the likelihood of clinical episodes as a function of densities of peripheral 
parasitaemia without explicitly considering how those densities occur.22-25 In a study 
carried out in Dielmo, where parasitaemia was assessed twice weekly Rogier and 
others estimated well-defined pyrogenic thresholds for different ages of human host.24 
We have now further analysed this data to derive predictions of the thresholds as 
functions of recent levels of parasitaemia, rather than of the age of the host. We have 
linked these predictions to a stochastic model that predicts parasite densities in 
endemic areas as a function of the pattern of transmission26,27 and fitted the model for 
the incidence of clinical episodes to field data from different epidemiological settings in 
Ndiop, Dielmo and Idete. 

The resulting model enables us to predict, for a wide range of malaria transmission 
settings, the occurrence of clinical episodes and to assess the likely effects of 
interventions on the incidence of clinical attacks. 

 

2.3 Methods 

2.3.1 Model for parasite densities 

The starting point for our model for the incidence of clinical malaria is an individual-
based stochastic simulation model for P. falciparum parasitology.26,27  This model makes 
predictions of the parasite density for each member of the simulated population using a 
five-day time step, with the seasonal pattern of the EIR as input. The parasite densities 
are sampled from log normal distributions. We compared the observed parasitological 
data to the predictions of this model for the Ndiop and Dielmo transmission patterns,3,5 
to evaluate its appropriateness as a basis for the predicting clinical episodes in this 
setting. 
 

2.3.2 Model for clinical malaria episodes 

The parasitological simulation includes stochastic variation between individual 
humans in average parasite densities and also stochastic variation around that 
average.26  We model clinical immunity as a function of these stochastically varying 
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parasite densities, and of a set of five parameters that are independent of the individual 
and of the transmission setting.    

To predict the clinical outcome, for each five-day time step we draw five independent 
samples from the simulated parasite density distribution for each concurrent infection 
(to simulate potential daily changes in morbidity status) and consider only the 
maximum, max ( , )Y i t , of the simulated densities to determine whether a clinical episode 

occurred. When the host is infected by several concurrent infections it is likely that one 
of these contributes the bulk of the parasite load, so it is logical to define max ( , )Y i t  as the 

maximum over all infections. 

A simple model is to assume that for each host there is a specific parasite density, or 
pyrogenic threshold, at which symptoms (e.g. fever) are triggered. Rogier and others24 
considered a cohort of the inhabitants of the holoendemic village of Dielmo, Senegal 
and fitted a step function to the probability of fever as a function of parasite density. 
The parasite density at which the step occurs corresponds to the pyrogenic threshold, 
which was shown to vary with age. 

In general, it is not realistic to assume that all individuals of the same age will have 
exactly the same pyrogenic threshold,28-31 so it is more reasonable to expect a sigmoidal 
relationship between the risk of fever and the parasite density than a step function. We 
therefore propose a model in which the probability that an episode occurs in individual 
i, at time t, is related to the parasite density via a function of the following form 
 

max

*

max

( , )
( , )

( , ) ( , )
m

Y i t
P i t

Y i t Y i t
=

+
        (2.1) 

 
where *( , )Y i t , the pyrogenic threshold for individual i at time t, is defined as the 
parasite density at which the probability of a clinical episode reaches 0.5, and max ( , )Y i t  is 

the maximum density during the time interval t (note that we present only the 
formulae for our final choice of models). 

The age pattern in the pyrogenic threshold in Dielmo, together with data derived from 
other study sites,29,32,33 supports the idea that the density of parasites required to 
stimulate acute pathology is higher in individuals who have been recently exposed to 
high parasite densities. This may be a result of stimulation of immune responses to 
toxins released at schizogony, and very likely involves physiological tolerance of 
cytokines.34 The mechanism must be consistent with both rapid acquisition and rapid 
loss of tolerance and cannot be a simple function of antibody against toxin, which have 
a completely different age-pattern from that of the pyrogenic threshold.35  

We model the dynamics of the pyrogenic threshold with a function of the form 
 

( ) ( )
*

* *

1 2

( , )
( , ) ( , ) ( , )

dY i t
f Y i t f Y i t Y i t

dt
ϖ= −       (2.2) 
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where ( )1 ( , )f Y i t  is a function describing the relationship between accrual of tolerance 

and the parasite density ( , )Y i t ; ( )*

2 ( , )f Y i t  describes saturation of this accrual process 

at high values of *( , )Y i t , and the term *( , )Y i tϖ  leads to decay of the threshold with first 

order kinetics. The decay ensures that the model conforms to the epidemiological 
evidence suggesting that parasite tolerance is short lived. 

We define the function ( )1 ( , )f Y i t  in such a way as to ensure that the stimulus is not 

directly proportional to ( , )Y i t but rather that it asymptotically reaches a maximum at 

high values of ( , )Y i t , using 

 

( )1 *

1

( , )
( , )

( , )

Y i t
f Y i t

Y Y i t

α
=

+
.        (2.3) 

 
To ensure saturation of the accrual process, we require that at high values of *( , )Y i t , a 

higher parasite load is required to achieve the same increase by defining 
 

 ( )*

2 * *

2

1
( , )

( , )
f Y i t

Y Y i t
=

+
        (2.4) 

 
Overall therefore we propose the following dynamics for *( , )Y i t  

 

( ) ( )
*

*
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1 2

( , ) ( , )
( , )

( , ) ( , )

dY i t Y i t
Y i t

dt Y Y i t Y Y i t
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where * *

1 2,   ,  and Y Yα  are constants to be estimated. To complete the specification of the 

model, we set the initial conditions to be * *

0( ,0)Y i Y=  at the birth of the host, thus 

defining a further parameter *

0Y . 

 

2.3.3 Data sources 

We fitted the model for acute episodes to two distinct datasets. The first was published 
data on the age pattern of clinical episodes in the villages of Ndiop and Dielmo in 
Senegal.2 The village populations were visited daily to detect and treat any clinical 
malaria attacks (with quinine). Hence, effectively all acute episodes were thought to be 
treated in these villages. In the simulations of Dielmo and Ndiop we assumed that 
there had been no treatment of clinical malaria prior to the start of the follow-up 
period. To ensure that the analysis remains tractable, we approximate the patterns of 
transmission with recurring annual cycles (although there was variation between years 
in the predominant vectors and seasonality of transmission).  
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We also compared the predicted patterns from the simulation model for P. falciparum 
parasitology with those from parasitological surveys in these two villages to evaluate 
its appropriateness as a basis for predicting clinical episodes in this setting. In Dielmo, 
two thick blood smears were prepared per week in each individual from 29 May to 30 
September 1990. In Ndiop, one thick blood smear was prepared per week in each 
individual from 15 July 1993 to 15 January 1994 and one per month from 1 February 
1994 to 15 July 1995. Slides were only declared negative after 200 high-power fields had 
been scanned for parasites. Parasite densities were originally expressed as the 
parasite:leucocyte ratio. To adjust these densities to the same scale as that used in 
fitting the simulation model to other datasets, the parasite:leucocyte ratios were then 
multiplied by a factor of 1,416 to give a notional density in parasites/microliter of 
blood.26  

The model was fitted to a second dataset of age-incidence rates for clinical malaria in 
infants less than one year of age recorded at the health centre in the village of Idete, 
Tanzania, from June 1993 to October 1994.6,25 These data were included to estimate the 
initial conditions (the value of *

0Y ) and to ensure that the model predicts the age pattern 

of acute episodes that is actually observed in infants. For the Idete data we used the 
case definitions and age groups in the paper by Vounatsou and others25 and the annual 
pattern of inoculations reported by Charlwood and others36 as input.  We assume a 
common value of *

0Y  across all sites and therefore require data for infants from only a 

single transmission setting.  
 

 

2.3.4 Implementation and fitting of the simulation model  

To obtain estimates of the five parameters * * *

0 1 2,  ,  ,  ,  and Y Y Yα ϖ  we fitted the model to 

the age-pattern of clinical malaria in all three villages (i.e. Ndiop and Dielmo in 
Senegal, and Idete in Tanzania) and simultaneously to the pyrogenic thresholds for 
Dielmo estimated by Rogier and others24 (Table 2.1).  

For Dielmo and Ndiop we further predicted parasite densities for a sample of 10,000 
individuals over a 10 year period, drawn from the age-groups of interest. For Idete, 
where we were concerned only with infants less than one year of age, we used a sample 
size of 2,000. In each village we assumed a typical sub-Saharan African age-distribution 
taken from the demographic surveillance area that includes Idete.37  

Simulated clinical episodes of malaria occurred with probability ( , )mP i t , which was 

dependent on both the simulated maximum density and the current value of *( , )Y i t  for 

each individual and each five-day time point in the 10-year follow-up period. In the 
simulations of Ndiop and Dielmo we simulated effective treatment of all clinical 
episodes within the five-day period in which they occurred. In the simulation of Idete 
we assumed that some proportion, tP , of the episodes were effectively treated (i.e the 

parasites were cleared within the course of one time interval), and that this proportion 



 17 

corresponded to the proportion of episodes reported to the village dispensary. In Idete 
village, simulated episodes occurring within 30 days of a preceding episode were not 
counted (these have been registered in the surveillance system as recrudescence, rather 
than new episodes). In Ndiop and Dielmo this restriction did not hold.38  

For each simulated individual in each village the model thus predicted the incidence of 
clinical malaria, as a stochastic function of the inoculation rate. These incidences were 
summarised over age groups and compared with the published values.2,25 Similarly, the 
model predicted the pyrogenic threshold, *( , )Y i t , at each time point for each 

individual. The geometric mean of these values was calculated for each age group in 
the simulation of Dielmo village, and the logarithms of these values compared with the 
logarithms of the age-specific pyrogenic thresholds estimated by Rogier and others.24 
Simulated annealing39,40 was used to identify the parameter values that minimised the 
residual sum of squares summed over all three villages and both outcomes for Dielmo.   
The Fisher information estimated from a least squares quadratic fit to the residual sum 
of squares was used to give approximate confidence intervals.  

 

2.4 Results 

The parameter estimates are given in Table 2.1. Our model was able to reproduce the 
age incidence patterns very well considering that only five parameters were fitted 
across three datasets (Figure 2.1).  
 



 
 
 
 
 
Table 2.1 Parameter estimates from the best fitting model* 
Para-
meter 

Meaning of parameter Estimate 95% Confidence 
Intervals 

α  Factor determining increase in *( , )Y i t  143,000 parasites2μl-2day-1 103,000-197,000 

ϖ  Decay rate of pyrogenic threshold 2.5 year-1 2.1-3.0 
*

0Y  Pyrogenic threshold at birth 296.3 parasites/μl 3-30,000 
*

1Y  Critical value of parasite density in determining increase in *( , )Y i t  0.60 parasites/μl 0.17-2.13 
*

2Y  Critical value of *( , )Y i t in determining increase in *( , )Y i t  6.5x103 parasites/μl 5.2x103 - 8.2x103 

tP  Compliance in Idete (proportion of episodes detected and treated)  0.36 0.27-0.48 

*The residual sums of squares for the three datasets were 0.2 (Idete), 4.4 (Ndiop) and 3.4 (Dielmo), computed from 4, 22 and 22 distinct age 
groups, respectively (corresponding to a total of 43 residual degrees of freedom. The residual sum of squares for the pyrogenic threshold for 
Dielmo was 3.3 
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 Figure 2.1 Age incidence curves of clinical malaria  
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 a. Idete (Tanzania). Filled squares = measured incidence of clinical malaria at 
health centre; open squares = model prediction for incidence of clinical malaria 
at health centre; thick line = model prediction for overall incidence of clinical 
malaria. b. Ndiop and Dielmo (Senegal). Thick dotted line = model prediction 
of incidence of clinical malaria in Dielmo; thin dotted line = model prediction 
of incidence of clinical malaria in Ndiop; Thin lines = observed incidence of 
clinical malaria in Ndiop and Dielmo 

  

 
 
The value ofϖ , estimated as 2.5/year, implied that in the absence of stimulation, the 
pyrogenic threshold decays with a half life of 0.28 years. The predicted total numbers of 
episodes up to age sixty were 56 for Ndiop (EIR=20) and 53 for Dielmo (EIR=200), 
compared with the published  overall incidence of clinical malaria cumulative numbers 
of episodes up to the age of sixty of 62 and 43, respectively.2  In the simulations of both 
villages the age of peak incidence was a little younger than in the data. The predicted 
incidence in the youngest individuals was higher in Dielmo, but lower in Ndiop, in 
comparison with the observed values. The extent of the peak shift was similar in the 
model to the data. 

Although the model was not fitted to the patterns of age prevalence and of age density 
in Dielmo or Ndiop, it does make predictions of these quantities which we could 
therefore compare with the observed curves. The predicted age-prevalence curve for 
Dielmo was very similar to that observed (Figure 2.2.a), as were the predicted 
geometric mean densities in children in that village (Figure 2.3a). In adults the model 
predicted rather higher densities than those observed in Dielmo, while for adults in 
Ndiop the model predicted higher prevalence in adults (Figure 2.2b) but lower 
densities (Figure 2.3b) than those observed. This would be expected if the burden of 
malaria is concentrated in a smaller proportion of individuals in Ndiop than in the 
dataset to which the parasitological model was fitted.  A reasonably good fit was 
obtained for the average pyrogenic threshold, but the model did not give a very good 
fit to the age-trend in *( , )Y i t , predicting that the peak was at a greater age than the 

estimates of Rogier and others24 (Figure 2.4). 
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 Figure 2.2 Parasite prevalence by age  
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 a. Dielmo. Points and error bars show prevalence of patent parasitaemia and 
95% confidence intervals determined in surveys from 1990 to 1994. 
Continuous line= model predictions. b. Ndiop. Points and error bars: 
prevalence of patent parasitaemia and 95% confidence intervals determined 
in surveys from 1990 to 1994. Continuous line= model predictions. 
Prevalence is assessed as the proportion of individuals with parasite density 
(simulated or observed) above the actual level of detection used in the field 
study. 
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 Figure 2.3 Geometric mean parasite densities by age  
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  a. Dielmo. Points and error bars show geometric mean and 95% 
confidence intervals of densities of patent parasitaemia determined in 
surveys from 1990 to 1994. Continuous line= model predictions of the 
geometric means. b. Ndiop. Points and error bars show geometric mean 
and 95% confidence intervals of densities of patent parasitaemia 
determined in surveys from 1990 to1994. Continuous line= model 
predictions of the geometric means. 

  

 

 

 Figure 2.4 Pyrogenic threshold in the village of Dielmo, Senegal  
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 Filled circles =pyrogenic threshold by age in Dielmo (results of Rogier and others 24). 
Continuous line= model prediction 

 



 22 

2.5 Discussion 

Our model can reproduce the patterns of the age-specific incidence of acute episodes 
from the three transmission settings.   In particular, we were able to reproduce both the 
shape of the age-specific incidence curves and the total lifetime incidence of acute 
episodes for sites with very different transmission intensities with a model with only 
five parameters.  Within this model, the higher incidence of clinical attacks in older 
individuals in Ndiop than in Dielmo arises both because of lower immunological 
control of asexual blood stages and less clinical tolerance. 

This good fit was obtained despite the use of a parasitological model that only crudely 
reproduces within-host parasite dynamics, since we fitted it to cross-sectional data.26 
Day-to-day variation in parasite densities may be critical in determining levels of 
tolerance, and our model, based on five-day time steps, did not aim to simulate this 
accurately. This may explain why the density of patent parasitaemia did not appear to 
be very important, and may also be the explanation of why we could not obtain a better 
fit for the age-pattern of the pyrogenic threshold. It is possible that the important 
variations in density and levels of tolerance are much more rapid than our model could 
capture, especially if they involve physiological tolerance of cytokines.34 

The relatively poor prediction of parasite prevalence and density in adults in Ndiop is 
possibly because the model assumes the degree of within-village heterogeneity in 
transmission to be the same in each village. Focality of transmission leads to lower 
prevalence but higher densities in those who are infected because of increased levels of 
super-infection. Based on these criteria, transmission in Ndiop appears to be more focal 
than that in the villages to which we fitted the parasitological model.26 Within our 
model effects of focal transmission on incidence of clinical episodes should be only of 
secondary importance because there is little interaction between concurrent co-
infections. Thus, at any given level of immunity the incidence of clinical episodes 
depends primarily on the overall force of infection and not on how the infections are 
distributed between individuals. 

It was not possible to obtain a better fit for infants in Ndiop because the number of 
infection events predicted for this age group by our model of infection27 is less than the 
number of clinical episodes. We have assumed all episodes are immediately treated so 
that no more than one episode can occur for any one infection event, but this was not 
necessarily always the case. We assumed mosquito biting to be proportional to body 
surface area, using Tanzanian anthropometric data to estimate age-specific surface 
areas.41 Different patterns of human growth or mosquito behavior may account for 
some of the discrepancies.   Selection effects that might arise because of differential 
mortality of susceptible individuals are a further factor that we did not take into 
account. 

Our model assumes particular functional forms for the relationships between the 
pyrogenic threshold and the risk of clinical episodes, and the pyrogenic threshold and 
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the parasite density itself. Exploratory analyses indicated that the fitted age-incidence 
relationships are not very sensitive to the exact functional forms used for these 
relationships. Empirical relationships between parasite density and risk of illness 
depend on how the cases are detected. In the studies in Senegal, parasitaemia and fever 
were monitored daily so episodes were generally detected early and this may account 
for the abrupt pyrogenic thresholds reported by Rogier and others 24. More usually, 
fever cases are detected when they report to a health facility, as in the study in Idete.6 
The arrival of the cases at the health facility is at varying intervals after the beginning of 
the episode and this tends to blur the relationship between fever risk and parasite 
density. If fever episodes are detected at household visits, which are carried out at 
intervals of more than a few days at times that are unrelated to the onset of disease, 
then the relationship between parasite densities and fever risk is weaker (e.g.22,42). 

In areas endemic for P. falciparum malaria, the incidence of clinical attacks is highly age 
dependent, with the peak incidence occurring at younger ages the higher the 
transmission. Such peak shifts are not only characteristic for malaria but also for many 
other infectious diseases.43 A superficially similar shift is also seen in patterns of age 
prevalence for P. falciparum,44 but the peak in prevalence is generally reached at an 
older age than that of acute morbidity. Unlike the pattern for clinical episodes, 
reduction in transmission is associated with reduction in infection prevalence over 
almost all of the age range, (although in some age groups there may be a small 
increase). The peak shift in clinical attacks is more pronounced than that in prevalence 
and the incidence of acute malaria attacks in older children and adults can be 
substantially greater at low transmission levels than at high ones (Figure 2.1). 

The observation that reduction in transmission may lead to an increased incidence of 
disease in P. falciparum has been attributed to the phenomenon of endemic stability 
observed with many veterinary pathogens.45 For endemic stability to occur there must 
be at least two processes accounting for the age-incidence curves, one leading to an 
increase in incidence with age in the youngest age groups, and the other to a decreasing 
incidence in older individuals. Coleman and others45 suggest that the first of these 
conditions must be satisfied by a worsening of the outcome of infection with age over 
at least part of the age range. Our model demonstrates that this assumption is not 
necessary, for we explain the initial increase in morbidity with age as a consequence of 
increase in exposure to mosquitoes as the host grows in body surface area.27 Idete, 
Dielmo and Ndiop are all villages with stable endemic P. falciparum. While Ndiop is an 
example of mesoendemicity, contrasting with the holoendemic transmission in Idete 
and Dielmo, it still experiences a much higher EIR than areas of unstable transmission. 
The theory of endemic stability therefore needs adapting for the analysis of the case of 
endemic malaria.  

We propose to use the model component described by equations 2.1 to 2.5 as part of a 
comprehensive model for examining the likely consequences of a wide range of 
interventions, including vaccination. The incidence of acute illness is only one of these 
consequences, which can include severe life-threatening disease, chronic anaemia, and 
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indirect mortality. Even an intervention that leads to an increase in the incidence of 
uncomplicated illness in some age groups might lead to a reduction in mortality or 
severe disease. We know that parasite tolerance and anti-parasitic immunity have 
different dynamics, and may conjecture that they make differential contributions to 
uncomplicated and severe disease respectively.  
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3.1 Summary 

The intensity of Plasmodium falciparum transmission has multifarious and sometimes 
counter-intuitive effects on age-specific rates of severe morbidity and mortality in 
endemic areas. This has led to conflicting speculations about the likely impact of 
malaria control interventions. We propose a quantitative framework to reconcile the 
various apparently contradictory observations relating morbidity and mortality rates to 
malaria transmission. Our model considers two sub-categories of severe malaria 
episodes. These comprise episodes with extremely high parasite densities in hosts with 
little previous exposure, and acute malaria episodes accompanied by co-morbidity or 
other risk factors enhancing susceptibility. In addition to direct malaria mortality from 
severe malaria episodes, the model also considers the enhanced risk of indirect 
mortality following acute episodes accompanied by co-morbidity after the parasites 
have been cleared. We fit this model to summaries of field data from endemic areas of 
Africa, and show that it can account for the observed age- and exposure-specific 
patterns of paediatric severe malaria and malaria-associated mortality in children. This 
model will allow us to make predictions of the long-term impact of potential malaria 
interventions. Predictions for children will be more reliable than those for older people 
because there is a paucity of epidemiological studies of adults and adolescents. 

 

 

3.2 Introduction 

The outcomes of Plasmodium falciparum infections range from self-limiting 
asymptomatic parasitaemia to rapid death. It is not well understood why some 
infections have much worse consequences than others1 and this makes it difficult to 
predict the epidemiological effects of malaria interventions.  

Different outcomes have different age patterns: the more severe the outcome, the 
younger the age group most affected. The age-pattern of each outcome also varies with 
the intensity of transmission.2 In stable endemic areas, the incidence of clinical malaria 
episodes is highest at intermediate levels of transmission.3  Hospital-diagnosed severe 
malaria in children also appears to be most frequent at intermediate transmission,3 but 
in infants shows an increase with transmission intensity,4 as does all cause mortality.5 
Hospital case fatality rates are age-dependent, with the highest rates in young infants 
and older children and a minimum in an intermediate age group.6,7 Malaria-specific 
mortality rates might therefore be expected to show different relationships with age 
and transmission intensity than do morbidity rates. Community-based estimates of 
malaria-specific mortality rates have been estimated using verbal autopsies for a 
number of endemic areas but the relationships with transmission intensity are unclear. 
One reason may be that verbal autopsies have poor sensitivity and specificity for 
malaria.8,9  
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The risk of malaria-diagnosable morbidity and mortality is thought to depend on other 
risk factors such as malnutrition and co-infections. It has been suggested that 
approximately 60% of malaria mortality is attributable to low weight, vitamin A 
deficiency and/or zinc deficiency.10   Eight percent of severe malaria cases in Kenya 
were found to be bacteraemic.11 In addition to causing direct malaria mortality, P. 

falciparum is likely to be a contributory factor in many deaths that would not be 
diagnosed as malaria by a physician.12-14 Many malaria control or local elimination 
programs decreased all-cause mortality by more than the initial estimates of malaria 
specific mortality.15-19 The differential mortality required to explain frequencies of sickle 
cell hemoglobin (HbAS) is substantially greater than that generally attributed to 
malaria alone.14,16,20 However, the relative contribution of this indirect mortality has 
been debated.2,21 

We propose a model to explain these patterns as consequences of two processes with 
different relationships to host age and the level of malaria transmission. The first of 
these is the level of immunity to asexual blood stages of the malaria parasite. The 
second is the chance that the host defences are compromised by some co-morbidity or 
enhanced susceptibility around the time of the clinical malaria attack.  

To predict the long-term impact of potential interventions on P. falciparum malaria, 
there is a need for dynamic models linking severe and fatal malaria to transmission.14 
We now incorporate our proposal for the causes of severe malaria and malaria 
attributable mortality into a simulation model of malaria transmission, parasitaemia 
and acute morbidity. We fit the model to published data and show that the apparently 
conflicting observations relating morbidity and mortality rates to malaria transmission 
can be reconciled within a coherent framework that corresponds to current knowledge 
of malaria biology.  
 

 

3.3 Methods 

3.3.1 Model 

Severe malaria episodes We consider severe malaria episodes as those events that 
would have led to an admission diagnosis of severe malaria, had the patient presented 
to a health facility. The probability that a clinical malaria episode occurs in individual i 
at time t, ( , )mP i t , depends on both the simulated parasite density, ( , )Y i t , and the 

modelled pyrogenic threshold *( , )Y i t  (Chapter 2). These episodes (A, Figure 3.1) 

include a subset that are severe (B, Figure 3.1).  
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 Figure 3.1 Classes of malaria morbidity and mortality 
 A: All clinical malaria episodes. B: Severe malaria. Episodes in class B1 arise 

because of hyper-parasitaemia; those in class B2 because of co-morbidity or 
enhanced susceptibility. C: Direct malaria mortality. Deaths in classes C1 and C2 
arise from severe malaria episodes B1 and B2..  

D: Indirect malaria mortality. These are deaths that would not be diagnosed as 
malaria deaths but would not have occurred without malaria exposure.  D1 
represents deaths resulting from pre-natal exposure of the mother; D2 represents 
subsequent deaths where an acute malaria episode is a contributing factor in 
conjunction with non-malaria morbidity 

 
 
 
We propose that severe malaria episodes can occur as a result of one or other of two 
distinct processes (B1 and B2). These categories do not necessarily correspond to any of 
the specific syndromes of severe malaria.  

One subset of the severe malaria episodes (B1, Figure 3.1) comprises those that occur 
when the host experiences an overwhelming parasite density. We define H( , )i t  to be 

the clinical status of individual i at time t, 
1
( , )BP i t  to be the probability that a clinical 

malaria episode in individual i at time t is severe as a result of this process, and specify 
this probability using 
 

1 *

( , )
( , ) Pr(H( , ) B | H( , ) A)=

( , ) ( , )1

1

max
B

B max

Y i t
P i t i t i t

Y i t Y i t
= ∈ ∈

+
  (3.1) 

 
where ∈  indicates membership of a set, P indicates probability, and |  is the symbol for 

conditional probability. * ( , )
1B

Y i t  is then a critical value and ( , )maxY i t  is the simulated 

maximum of daily parasite density measurements in individual i at 5-day time interval 
t. We evaluate the fit of two possible algorithms for 

1

* ( , )BY i t : 
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(i) We propose that the parasite density required to cause a severe episode is some 
multiple, sα , of that required to cause an uncomplicated episode in the same individual 

at the same timepoint, i.e. * *( , ) ( , )
1B sY i t Y i tα= , where *( , )Y i t  is the previously defined 

pyrogenic threshold for individual i at time t (Chapter 2).  

(ii) Whereas the concept of a pyrogenic threshold for uncomplicated clinical episodes of 
malaria is widely accepted, the pathogenesis of severe malaria may differ from that of 
uncomplicated episodes, so it is not obvious that the critical level of parasitaemia for 
severe malaria is related to *( , )Y i t . We therefore also considered a model in which 

severe episodes of class B1 arise when a single host- and exposure-independent critical 
parasite density is exceeded, i.e. *

1B
Y  is a constant over all individuals and time points. 

The second, non-intersecting, subset of severe malaria episodes (B2) occur when an 
otherwise uncomplicated malaria episode happens to coincide with some other insult 
(e.g. a bacterial infection, malnutrition or anaemia2), which occurs with risk ( ( , ))F a i t , a 
function of the age ( , )a i t  of individual i at time t.  We considered three proposals for 

the age profile of these non-malaria insults (Appendix 3.A). 

We assume that, conditional on the age of the host, the risk of an acute malaria attack is 
independent of the risk of such an insult, but that the risk of severe malaria does 
depend on ( ( , ))F a i t . The probability that an episode belonging to class B2 occurs at 

time t, conditional on there being a clinical episode at that time is 
2
( , )BP i t  defined as 

 

2 2( , ) Pr(H( , ) B | H( , ) A)BP i t i t i t= ∈ ∈       (3.2)  

 
and calculated as 
 

2
( , ) ( ( , ))BP i t F a i t= .      (3.3) 

 
The age and time specific risk of severe malaria morbidity conditional on a clinical 
episode is then given by  
 

2 2
( , ) ( , ) ( , ) ( , ) ( , )

1 1B B B B BP i t P i t P i t P i t P i t= + −    (3.4) 

 
The term 

2
( , ) ( , )

1B BP i t P i t  is subtracted to avoid double-counting of that small proportion 

of episodes that qualify as severe by both definitions. Thus the unconditional risk of a 
severe malaria episode is ( , ) ( , )B mP i t P i t  where ( , )mP i t  is the probability of a clinical 

episode (Chapter 2).  
 

Direct malaria mortality We refer to deaths resulting from episodes of either class B1 or 
B2 as direct malaria mortality (classes C1 and C2 in Figure 3.1). We assume that 48% of 
severe malaria episodes present to hospital (Appendix 3.B) and that this applies equally 
to both class B1 and class B2 episodes. Age-specific hospital case fatality rates were 



 34 

taken from those reported from Tanzania.7 We assume that these hospital case fatality 
rates remain the same, even if the case mix of type B1 and B2 severe malaria episodes 
varies between transmission settings.  

The mortality risk for a severe episode at age a  in the community ( )cQ a , is estimated 

with 

 

1

1

( )
( )

1 ( ) ( )

h
c

h h

Q a
Q a

Q a Q a

ϕ
ϕ

=
− +

,                                         (3.5) 

 

where ( )hQ a  is the reported hospital case fatality rate at agea , and 1ϕ  is the estimated 

odds ratio for death in the community compared to death in inpatients. Malaria 
mortality is then predicted by the sum of the hospital and community malaria deaths. 
We estimate 1ϕ  by fitting to malaria-specific mortality rates. 

Indirect malaria mortality. In addition to the direct malaria mortality C1 and C2 we 
need to model additional, indirect, malaria deaths in order to replicate the association 
between all-cause mortality and the entomological inoculation rate (EIR), specifically in 
infants.  We define as indirect malaria deaths those that would not have occurred in the 
absence of prior malaria exposure, but where the terminal illness would not have been 
diagnosed as malaria by a competent physician. We do not classify deaths in class C2 as 
indirect mortality because we consider a death in the same five-day interval as a 
precipitating clinical malaria episode to be diagnosable as malaria.  

In the cases of indirect deaths, we propose that malaria exposure acts to enfeeble the     
individual, leading to subsequent mortality. These deaths would be prevented if 
malaria was removed, and so should be included in predictions of the potential impact 
of malaria interventions.  

We consider two distinct classes of indirect mortality (Figure 3.1). D1 comprises 
neonatal mortality resulting from maternal infection during pregnancy. The model we 
use to predict the incidence of such deaths is considered in Chapter 4. D2 comprises 
post-neonatal indirect mortality that is provoked by an acute attack of malaria, which 
together with other co-morbidity or enhanced susceptibility leads to subsequent death.  
The insults contributing to a death in class D2 could be sequential or they could occur 
together. Since this makes little difference to the predicted incidence, for mathematical 
convenience we use a model analogous to that for severe malaria in class B2.  In this 
model an event in class D2 is instigated at time t, conditional on there being a clinical 
episode at that time, with probability 

2
( , )DP i t  defined as 

 

2 2( , ) Pr(H( , ) D | H( , ) A)DP i t i t i t= ∈ ∈     (3.6) 

 
and calculated as 
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 

      (3.7) 

 
where DQ  is the limiting value of 

2
( , )DP i t  at birth. The deaths in class D2 are simulated 

as occurring 30 days after time t.  This allows for the possibility that the host dies of an 
event in class C1 or C2 before the indirect death occurs.  
 

 

 

3.3.2 Data and fitting of the model 

Severe morbidity. Data on the relative incidence of severe malaria in children across 
different transmission intensities have been collated by Marsh and Snow.6 They 
summarize the relationship between severe malaria hospital admission rates and P. 

falciparum prevalence in children less than nine years of age. To obtain a continuous 
function relating hospital incidence to prevalence, we linearly interpolated between 
data points. To convert the hospital incidence rates to community severe malaria 
incidence, we divided the hospital admission rates by the assumed proportion (48%) of 
severe episodes presenting to hospital (Appendix 3.B). To fit our model to this 
relationship we ran our simulation model of P. falciparum incidence, parasitology and 
clinical episodes, and assumed one of the models for severe malaria described earlier in 
this chapter, with the published transmission patterns for all the sites in Table 3.1 as 
input. We compared the predicted absolute incidence of severe malaria with the value 
on the interpolated curve corresponding to the predicted prevalence for the simulated 
site. 

More detailed age-specific severe malaria hospital admission rates are published for 
five of these sites which have varying transmission intensities, together with the 
parasite prevalence in children aged 1-9 years.4 We summarized the patterns of 
incidence by age in 1-4, and 5-9 year-old children, compared to 1-11 month-old infants 
by calculating the relative risks. To fit our model to these data, we chose sites to 
represent the transmission settings on the basis of their predicted prevalence. Four sites 
were chosen, a fifth could not be matched to the very low transmission setting with 2% 
prevalence (Bakau, The Gambia). 
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Table 3.1 Sites used for fitting the model for the incidence of severe malaria* 

   Entomology  EIR data  

   reference Year EIR  

  Burkina Faso     

     ITC control 22,23 1994-95 389  

     Karangasso 24 1985 244  

     Kongodjan 25 1984 133  

     Ziniare 26 1994-95 70  

  Burundi     

     Gihanga 27 1983 205  

     Katumba 27 1982 13.6  

  Kenya     

     Chonyi 28,29 1992-93 50  

     Kilifi North 28,29 1992-93 10.5  

     Kilifi Town 28 1990-91 2.8  

     Saradidi 30 1986-87 239  

  Senegal     

     Bandafassi 31,32 1995-96 363  

     Mlomp 31,32 1995 30  

     Niakhar 33 1995 11.6  

  Tanzania     

     Namawala 34 1990-91 329  

     Yombo 35 1992 234  

  The Gambia     

     Areas I-V 36,37 1991 †  

     Farafenni 36 1987 8.9  

  Others     

     Bo, Sierra Leone 38 1990-91 34.7  

     Ganvie, Benin 39 1993-95 11  

     Manhica,Mozambique 40 2001-02 38  

     Matsari, Nigeria 20 1971 68  

     Navrongo, Ghana 41 2001-02 418  

*EIR = entomological inoculation rate; ITC = control group of randomized trial of  
insecticide-treated nets.  †Five sites with annual EIR between 1 and 10.  
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For both sets of sites we simulated the incidence of severe malaria using a version of 
the model without effects of treatment of uncomplicated malaria episodes or any 
malaria mortality. The simulated population was stable in size, and the age-distribution 
was fixed to be approximately the same as Ifakara, Tanzania using the algorithm 
reported elsewhere.40  

We simultaneously fitted our models to both the absolute incidence of severe malaria in 
children less than nine years of age and the age-specific relative risks by weighted least 
squares of the log-transformed rates, where the weights were chosen so that the two 
analyses were weighted approximately equally.  

Simulated annealing42,43 was used to identify the parameter values that minimized the 
weighted residual sum of squares. Approximate confidence intervals were obtained by 
estimating the Fisher information for the parameters from a least squares fit of local 
quadratic approximations to the (stochastic) log likelihood. In addition to considering 
the formal model fit, we also assessed the biological plausibility of the models and the 
predictions for the age groups for which we had no data. 
 

Direct malaria mortality The odds ratio for death of a case in the community relative to 
that in hospital, 1ϕ , was estimated by fitting the malaria-specific mortality rates in 

children less than five years of age predicted by the severe malaria models above 
assuming the published hospital case fatality rate. The data were derived from verbal 
autopsy (VA) studies in sites with prospective demographic surveillance and were 
adjusted for the effect of malaria transmission intensity on the sensitivity and 
specificity of the cause of death determination.44 Sites with both VA data and seasonal 
patterns of the EIR (Table 3.2) were used for estimating 1ϕ . The fitting algorithm was 

the same as for the severe malaria model and we assume that there was no effective 
treatment of uncomplicated malaria episodes. 
 

Indirect malaria mortality The deaths in class C predicted by the model could not 
account for the relationship observed between EIR and infant mortality,5 and we 
propose that the difference is due to deaths in class D2. We assembled a library of sites 
for which entomological data was collected at least monthly and all-cause infant 
mortality rates (IMR) were available (Table 3.2). We use the entomological data as input 
and estimate DQ  and the infant mortality that is independent of malaria nQ  by the same 

fitting algorithm that was used for the severe malaria and direct mortality components. 
The model for indirect mortality is conditional on our models for severe malaria and 
direct malaria mortality, and assumes no effective treatment of uncomplicated malaria 
episodes.  
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Table 3.2. Sites used for fitting the model for direct and indirect malaria mortality 
 Estimated malaria 

mortality (< 5 year 
old)44* 

 All-cause IMR† 

   Site, Country Year Deaths/1000 
person years 

 Ref for 
IMR 

Year IMR/1000 
livebirths 

Area V, The Gambia -   45 1992 83 
Farafenni, The Gambia 1988-90 9.4  -   
Kilifi North 1991-93 9.2  -   
Bo, Sierra Leone 1990 12.8  46 1990 74 
Karangasso, Burkina 
Faso 

-   47 1986-88 121 

Yombo, Tanzania 1992-94 22.1  35 1992-94 131 
Niakhar, Senegal 1990-95 10.9  48,49 1995-99 80 
Manhica, Mozambique -   49  78.5 
Navrongo, Ghana 1990 9.3  49  111.9 
Bandafassi, Senegal 1984-89 5.9  49  124.9 
Mlomp, Senegal -   32 1995 61 
Saradidi, Kenya 1997 20.8  50 1981-82 109.4 
Kongodjan, Burkina 
Faso 

1982-86 2.2  -   

Namawala, Tanzania -   51 1997 95.2 
* Used for direct malaria mortality model. † Used for indirect malaria mortality model. IMR = 
all-cause infant mortality rate /1000 livebirths 

 

 

Since a study found no clear relationship between all-cause mortality for children aged 
1-4 years and transmission intensity,5 we did not use data for children over one year of 
age to estimate the parameters of the model for indirect mortality.  
 
 

3.4 Results 

Severe malaria We compared the best-fitting models of the two forms proposed (Table 
3.3). Both models produced similar predictions (Figure 3.2). Both gave a good fit to 
most of the data, and in particular they reproduced the decrease in incidence with 
transmission intensity in highly endemic areas.  
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 Figure 3.2 Model predictions of the incidence of severe disease compared with 
observed data 
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♦ a. Model 1; b Model 2. ─●─: data reported by Marsh and Snow.6 The hospital incidence 
rates have been divided by 0.48 to provide estimates of the incidence in the community. 

 

 

 

 

 

 

Neither model reproduced the sharp peak in incidence associated with a prevalence of 
just under 20%, which is most pronounced in the rate reported from a hospital in 
Ethiopia. Model 1, with the severe malaria threshold as a multiple of the individual’s 
pyrogenic threshold, had a better fit (weighted residual sum of squares 3.35 versus 
8.97). However, it predicted a rather high incidence of severe episodes in adults (for 
whom few data are available52) (Figure 3.3) and this in turn lead to estimates of malaria 
mortality rates that exceed recorded all-cause mortality rates in some age groups.49  
 
 



 

Table 3.3. Parameter estimates with 95% confidence intervals 

 Model 1 Model 2 

Severe malaria model parameters 

   Threshold density multiplier (Model 1);  
   Threshold (Model 2) 

sα  983  (518, 1869) *

1B
Y  

784,000 (530,000, 1162,000) 

   Prevalence at birth of co-morbidity  
   contributing to severe episodes  

0F  0.127 (0.060, 0.258) 0F  0.092 (0.074, 0.127) 

   Critical age for co-morbidity (years) *

Fa  0.078 (0.053, 0.113) *

Fa  0.117 (0.086, 0.160) 

   Weighted residual sum of squares  3.35  8.97  
 
Malaria mortality model parameters 

   Odds ratio for case fatality in the community    
   compared to in hospital 

1ϕ  2.00 (1.33, 5.26) 1ϕ  2.09 (1.31, 7.63) 

   Weighted residual sum of squares  3.24  3.68 
 
Indirect malaria mortality model parameters 

   Non-malaria intercept for infant mortality rate nQ  58.2 (30.5, 111.0) nQ  49.5 (33.3, 73.8) 

   Prevalence at birth of co-morbidity 
   contributing to indirect mortality  

DQ  0.018 (0.006, 0.047) DQ  0.019 (0.010, 0.037) 

   Weighted residual sum of squares  0.31  0.33 
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 Figure 3.3 Predicted incidence of severe malaria in adults 20-39 years of age by 

transmission intensity 
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 ───: Model 1; ---- Model 2;  The seasonality of transmission follows that of Namawala in 
Tanzania,34 scaled to sum to different values of infectious bites per person per year. 

 
 
 
Predicted mortality rates in older age-groups were lower with model 2. The 
assumption of a constant parasitaemia threshold for severe malaria in model 2 is also 
more attractive because of the evidence that total parasite biomass is critical in 
precipitating severe malaria episodes.53 The estimate of this threshold of 784,000 
parasites/μl is high, but within the range observed in severe malaria patients. We do 
not attach much credibility to the precise value of this threshold since our simulation 
model only reproduces distributions of parasite densities very approximately.40  

Model 2 reproduces the age-patterns from the four sites with different transmission 
intensities reasonably well (Figure 3.4). The proportion of predicted severe malaria 
cases that belong to class B2 in this model increases with transmission intensity because 
the infections tend to occur at younger ages (Figure 3.5).  
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  Figure 3.4 Age-specific incidence of severe malaria  
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  a. Community incidence rates calculated from the hospital data 
reported by Snow and others4 by dividing by the notional 
hospital attendance rate of 0.48. b. Predicted incidence rates from 
model 2 for the four scenarios chosen on the basis of similar 
parasite prevalence values (1-9 years) to the sites above. 

  

 
 
 
 Figure 3.5 Percentage of severe malaria episodes arising due 

to age-dependant cofactors (B2) by transmission intensity 
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 These predictions are from model 2 and include all age groups. 
The seasonal pattern of transmission intensity follows that of 
Namawala in Tanzania,34 scaled to sum to eight different values 
of infectious bites per person per year.  

 

 

Direct malaria mortality To reconcile the field estimates of malaria-specific mortality 
rates with either model for severe malaria, odds ratios of approximately 2 were 
estimated for case fatality in the community compared with in hospital (Table 3.3). The 
predicted age-specific community case fatality is shown in Figure 3.6.  
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 Figure 3.6. Case fatality rates by age  
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─●─: reported hospital case fatality rates7 ------: case fatality in the 
community obtained using the estimate from model 2    

 

 
Empirical malaria mortality rates for children less than 5 years are shown in Figure 3.7, 
together with the predictions for the same sites using the severe malaria model that we 
have adopted (model 2). Both the observed data and predictions show no obvious 
trend with transmission intensity, and there is a large variation between the sites in the 
verbal autopsy-based rates. The predicted malaria mortality rates show a clear increase 
with transmission intensity in infants and no apparent trend for 1-4 year-old children 
for both models (Figure 3.8a and b). Using the severe malaria model with a multiplier 
for the pyrogenic threshold (model 1), adults 20-39 years of age had a rather high 
predicted malaria mortality rate (Figure 3.8c). This is a result of the high predictions for 
incidence of severe malaria with this model.  
 

  Figure 3.7. Direct malaria mortality in children under five years of age  
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  ■ Observed malaria-specific mortality in children under 5 years44 (error bars 
are 95% confidence intervals);  ◊ Model predictions. Predictions and observed 
data for the same sites are vertically aligned since they have the same 
transmission intensity.  
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 Figure 3.8. Predicted malaria-specific mortality rates by transmission intensity  

D
ea

th
s/

10
00

p
er

so
n 

ye
ar

s

Infectious bites per person per year

25
In

fa
nt

 d
ea

th
s/

10
00

 li
ve

bi
rt

hs

5

10

15

20

a

5
6
7
8
9

b

.5

1

1.5

2

2 5 10 20 50 100200400

c

2 5 10 20 50 100200400

 
 a. infants; b. children 1 to 4 years of age; c. adults 20-39 years of age.  

──: model 1; ---- model 2. The seasonal pattern of transmission intensity follows that of 
Namawala in Tanzania,34 scaled to sum to different values of  infectious bites per person per year 

 

 
 
 
 

Indirect malaria mortality We estimate that in the absence of P. falciparum, the IMR for 
the sites included in the analysis, nQ , would average about 50 per 1000 live-births 

(Table 3.3) but this quantity was estimated very imprecisely, since the parameters DQ  

and nQ  are highly correlated.  

There was an association between the observed all-cause IMR and transmission 
intensity, as previously reported using broader inclusion criteria5 (Figure 3.9). The 
predicted IMR for these sites using model 2 (incorporating the effects of severe malaria 
and malaria mortality models as above) reproduces this apparent trend.  
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  Figure 3.9. Observed and predicted infant mortality rates  
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  ■ Infant mortality rates from field data; ○ Predictions using model 2  
 

Predictions of indirect malaria mortality for different age groups show similar patterns 
with transmission intensity to those of the direct malaria mortality (Figure 3.10). 
Although the deaths in infants tend to increase, this is not the case for either direct or 
indirect malaria mortality for older age groups. Taking all age groups together, the 
ratio of indirect: direct malaria deaths was 0.6 for an EIR of 5, this increased to 1.4 for 
an EIR of approximately 100 and did not increase further for higher transmission 
intensities.  
 
 

 Figure 3.10. Predicted mortality rates by transmission intensity  
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 a. Direct malaria mortality b. Indirect malaria mortality. Age groups: ---- 
0-1; ───1-4; ……5-20; ─ ─ 20-39 years. Predictions from model 2 using as 
input the seasonal pattern of inoculations for Namawala, Tanzania, scaled 
to different numbers of infectious bites per person per year. 
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3.5 Discussion 

Our model replicates reasonably well the associations of severe malaria incidence and 
transmission intensity in sub-Saharan Africa.  Severe episodes resulting simply from 
very high parasite densities (B1 in Figure 3.1) most clearly represent malaria-specific 
morbidity. These are more frequent at moderate levels of transmission and account for 
the peak in the incidence of paediatric severe malaria at intermediate levels of 
transmission. Within our model, this is mainly because maternal immunity helps to 
control the first infections at very high levels of transmission, so that the initial 
infections are less well controlled if they occur later in life.40  

The patterns of events in classes B1 and B2 with age and with transmission have 
similarities to those described for severe malaria anaemia, and for patterns for cerebral 
malaria54 respectively. However, our simple structure for the different classes of events 
does not aim to map onto the pathophysiology of these syndromes. Recent work has 
suggested that the different syndromes of severe malaria are overlapping.55 A major 
uncertainty lies in the choice between models 1 and 2 for the relationship between 
parasite density and severity of disease. This is likely to have an important effect on our 
predictions of the impact on interventions that affect blood stage densities, and points 
to a gap in our knowledge of pathogenesis. The fitting of these models suggests that a 
substantial proportion of severe malaria episodes involve age-dependent co-factors that 
are concentrated in the youngest children.  This is consistent with the fact that these 
children have the least immunity to other infections and are also at high risk of 
nutritional problems.    

We assumed the same age dependence in co-morbidity in estimating the contribution 
of malaria to indirect deaths (D2 in Figure 3.1) and thus the effects of co-morbidity 
dominate those of high parasite densities in determining the impact of P. falciparum on 
all-cause  mortality in the youngest children. The strong age dependence is supported 
by ecological comparisons of all-cause mortality rates and malaria transmission 
intensity, where there is no clear association after the first year of life.5  It is also in 
agreement with analyses of HbAS frequencies that have suggested that indirect malaria 
mortality is likely to be concentrated in the youngest children.20    

Clinical malaria episodes are also more concentrated in younger children as the 
transmission intensity increases (Chapter 2). Therefore, within our model, the 
probability that these risks coincide to cause either severe malaria episodes (B2) or 
subsequent indirect mortality (D2) increases with transmission level.  We used clinical 
malaria episodes for the predisposing factor for indirect deaths, but it is also possible 
that symptomless parasitaemia plays this role.21  

The model points to other important areas of uncertainty.  Malaria in adults is an 
example of this. It is generally thought that severe malaria occurs only infrequently in 
adults in the stable endemic conditions prevailing in much of Africa6,52 and although 
severe malaria is commonly diagnosed in African adults, many of these represent 
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misdiagnoses.56,57 In a  randomised trial, insecticide-impregnated nets did not reduce 
mortality in Ghanaian adults, suggesting that malaria is not a major cause of death in 
this age group.58 However, immunologically naive adult visitors to endemic areas are 
highly susceptible and major epidemics with high case fatality may occur in areas of 
initially low transmission to which malaria returns after having been nearly 
eliminated.59,60 A recent observational study in an endemic area of Papua New Guinea 
suggested that mosquito nets have a substantial effect in reducing all-cause mortality in 
adults in an area of moderate transmission.61 These results suggest that malaria may be 
an important cause of adult mortality in areas of low endemicity.  

We expect that severe malaria is infrequent in those adults with a substantial history of 
exposure to P. falciparum because they control parasite densities and thus rarely 
develop any acute clinical episodes. Major epidemics should not occur as a rebound if 
malaria control is abandoned in areas of very high previous exposure because of 
persistence of immunity against asexual stages of the parasite. In contrast, people who 
become infected with P. falciparum after spending most of their lives without being 
exposed are highly susceptible to severe episodes. Current efforts to control malaria 
may lead to sustained reductions in malaria transmission without eliminating the 
parasite, and this could place many older children and adults in this position. The 
shape of our function for co-morbidity is critical in our predictions of the public health 
burden that this implies. If co-morbidity follows the strong increase in infectious 
disease mortality with age that is observed in adults, then we would predict thath in 
low and unstable transmission settings where most adults never acquire much 
immunity P. falciparum may be an important cause of mortality in elderly people. There 
is a need to test whether this is the case.  

There are many other factors influencing the risk and outcome of severe malaria that 
we have not been able to consider explicitly. These include effects of host genetic 
markers and of seasonality.12 In addition, field estimates of malaria morbidity and 
mortality rates are unavoidably plagued by effects of attendance bias and diagnostic 
uncertainties. The empirical basis for estimating the effect of in-patient care on case 
fatality rates is particularly weak. There are estimates of four relevant quantities, the 
hospital case fatality rate,6,56 the overall malaria mortality rate,44 the proportion of 
malaria deaths that seek care in health facilities62 and the per capita admission rates for 
severe malaria.6 However, these do not provide a basis for convincing estimation of the 
case fatality rate in the community. This adds considerable uncertainty when our 
model is used to estimate the likely public health impact of improving curative 
services.63  

In the context of recent developments in malaria control64-66 there is a need for 
comparisons of the likely epidemiological impact of different intervention strategies. 
Randomized controlled trials provide a solid basis for predictions of the short-term 
impact but these cannot necessarily be extrapolated beyond the time horizon of the 
trial, which is rarely more than 1-2 years. Adverse consequences resulting from 
interference with the acquisition of natural immunity may take much longer than this 
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to become apparent, and the full impact of malaria interventions on human-vector 
transmission is also only likely to be seen over longer periods. The model we propose 
represents a first step towards making predictions of longer term effects that can allow 
for these factors.  

 

Appendices 

3.A Candidate functions for co-morbidity contributing to type 

B2 severe malaria , ( ( , ))F a i t  

We considered three proposals for the age pattern of events that, when co-incident with 
a malaria attack lead to a severe episode (Figure 3.11). Infectious disease morbidity in 
rural African sites decreases strongly over the first few years of life so we require that, 
at least over this period, ( ( , ))F a i t  should be a decreasing function of the age a(i,t) of 

individual i at time t.  
 
(i) A simple proposal is an exponential decay with age 
 

( )1 2( ( , )) exp ( , )F a i t a i tβ β= −  where 1β  and 2β  are constants.  

 
 
(ii) A second proposal is a hyperbolic curve  

0

*

( ( , ))
( , )

1
F

F
F a i t

a i t

a

=
 

+  
 

     (3.8) 

 
where *

Fa and 0F are constants.  

 
(iii) An alternative is to use an empirical function. We explored a function based on the 
first principal component of the life tables for demographic surveillance sites in 
predominantly rural communities in Africa.49 This curve decreases with age in very 
young children but increases with age in adults. We expect this to represent mainly the 
age-pattern of infectious disease mortality (excluding that due to human 
immunodeficiency virus), but it is not necessarily an appropriate curve to represent the 
age-pattern of relevant co-morbidity. We scale the risk of an insult that would convert 
an uncomplicated episode to a severe attack by assuming in our model that                    
 

( )
2 3logit ( , ) ( ( , )) .BP i t F a i t β= +     (3.9) 
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 Figure 3.11. Proposals for age-profile of co-morbidity risk for 
type B2 severe malaria 
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 ─ ─ : Negative exponential function (i) 

───: Hyperbolic function (ii) 
……: Empirical mortality data (iii) 
 

 

 

The age patterns were best reproduced using the hyperbolic curve (option ii), and thus 
this proposal is adopted as part of the model. The estimates for *

Fa and 0F are given in 

Table 3.3. We assumed the same function for co-morbidity contributing to indirect 
deaths (equation 3.7). For this, we estimate the prevalence at birth of co-morbidity, DQ , 

but the same value for *

Fa was used because we fit the indirect model only to infant data 

which does not give information about the decrease of the function with age (Table 3.3).  
 

 

 3.B The effect of the health system on the case fatality rate 

The evidence base for estimating the effect of in-patient care on case fatality rates is 
weak, largely because the incidence of severe episodes and case fatality in the 
community are not known. Formulae for the community case fatality rates can be 
derived from the overall incidence of severe malaria, proportion of cases admitted to 
hospital and the hospital case fatality rates (Table 3.4). For simplicity, they ignore age 
and season dependence and consider very approximate average rates for children.  
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Table 3.4 Case fatality rates for severe malaria 
    Die Survive Total   

   Health facility 
h hQ P  ( )1 h hQ P−

 hP    

   Community 1

1

( )

1

ϕ
ϕ

−

− +
h B h

h h

Q P P

Q Q
 

1

(1 )( )

1 ϕ
− −
− +

h B h

h h

Q P P

Q Q
 B hP P−    

   Total 
C
P  B C

P P−  B
P    

 
h

Q = hospital case-fatality rate*;
h

P :=incidence of hospital admissions for malaria;
B

P = 

overall severe malaria incidence; 
C
P = overall incidence of malaria mortality*; 1ϕ  ratio 

of odds of community death to in-patient death. * indicates quantities for which we 
have reasonable estimates. The frequency of hospital admission per capita in rural 
Africa generally declines steeply with distance from the hospital, so the applicability 
of estimates to the whole district served is questionable.  

 
 
The in-patient case-fatality rate in rural hospitals in sub-Saharan Africa,

h
Q , is relatively 

well defined at about 0.1 (Figure 3.6). Paediatric hospital admission rates for the studies 
reported by Marsh and Snow4,6 (Figure 3.2) average approximately 30/1000 person-
years, and overall malaria mortality rates (from VA studies) is approxiamtely 10 per 
100044 (Figure 3.7). Combining 1

h
Q =  with the ratio of inpatient admissions to overall 

malaria deaths, / 30 /10 3
h c

P P = = , gives an estimate of /
h c h

Q P P , the proportion of deaths 

that occur in hospital, of 0.3. This is similar to the results of a retrospective study of 
VAs in Tanzania62 that found that about 33% of children less than five years of age who 
died of malaria had attended hospital at some time during their terminal illness, 
though the proportion who died there was lower. 

In rural sub-Saharan Africa, since many hospitals are difficult to reach and often 
provide poor standards of care, attendance is likely to be even less frequent than in the 
Tanzanian study where public health services have a relatively high ratio to 
population. However in the research settings that contributed most of the VA and 
hospital data (many of them the same sites) hospital attendance rates may have been 
higher. In view of this, we assume that the proportion of cases treated is / 0.48

h B
P P = , 

in agreement with the proportion of severe episodes receiving in-patient treatment in 
the model of Goodman and others.67 Using the formulae in Table 3.4, this gives an 
estimate of 31% for the case fatality rate in the community, corresponding to this level 
of treatment (arrows in Figure 3.12) and 21% for the overall case fatality rate. This 
implies that the health system prevents about 33% of malaria deaths. This compares 
with an estimate of 44% for the proportion of (all cause) deaths prevented by a good 
Kenyan district hospital.68 
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 Figure 3.12 Effects of community case fatality rate on proportion of severe 
cases 
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 The arrows indicate that effective treatment of 48% of severe episodes 
corresponds to a community case fatality rate of 31% under the 
assumptions given above. All values based on an assumption of an 
average in-patient case-fatality rate of 0.1. 

 

Line style Proportion of deaths  

in in-patients /
h h c

Q P P  

Ratio of in-patient admissions to 

overall malaria deaths /
h C

P P  

 0.1 0.9 

 

______ 0.3 2.1 

 

 
------ 0.5 3.3 

 
 
 
We used the same figure of / 0.48

h B
P P =  to obtain an estimate of 1 2.09ϕ = , for the ratio 

of odds of community death to inpatient death by fitting our stochastic model to verbal 
autopsy data adjusted for sensitivity and specificity (section 3.3).  

Irrespective of the proportion of episodes resulting in admission, the low values of 1ϕ  

that we propose at first sight appear to indicate that in-patient treatment has little 
benefit. The reality is undoubtedly more complex than this simple model. We 
dichotomised clinical malaria into severe and uncomplicated classes and assumed each 
class to be homogeneous in prognosis. In practice there is a continuous range of 
severity and inpatients are likely to disproportionately represent the most severe cases, 
many of whom arrive at health facilities when it is too late for treatment to be effective. 
This selection bias leads to an underestimate of the benefit of seeking treatment. 
Treatment may be life-saving even when administered less than optimally or based on 
imperfect diagnoses. Contact is made with formal health facilities at some stage during 
the terminal illness in many more cases than those who die in hospital.62 For every case 
that dies despite making contact with the health services, many more may be saved. 
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4.1 Summary  

Estimates of the impact of Plasmodium falciparum infections during pregnancy on 
neonatal mortality have not taken into account how this varies with the level of malaria 
endemicity and thus do not indicate the possible effects of malaria control strategies 
that reduce transmission. We now review the relevant literature and propose a 
mathematical model for the association between P. falciparum transmission and 
neonatal death.  

The excess risk of neonatal mortality in malaria-endemic areas appears to be insensitive 
to the intensity of P. falciparum transmission over a wide range of endemicity. Moderate 
reductions in the overall level of malaria transmission in endemic areas are therefore 
unlikely to significantly reduce neonatal mortality. The magnitude of the excess risk is 
very uncertain because existing estimates are heavily dependent on the questionable 
assumption that the effects are mediated by birth weight. Accurate prediction of the 
impact of malaria control measures targeted at pregnant women requires direct 
estimates of malaria-attributable neonatal mortality rates.  
 

 

4.2 Introduction  

In endemic areas, infants are at high risk of Plasmodium falciparum mortality, and there 
is a strong association between all-cause infant mortality and malaria transmission 
intensity.1 Infections received in early infancy are unlikely to result in death;2 however 
maternal infections during the first, and to a lesser extent later, pregnancies increase the 
risk of mortality in the newborn.3-5  

The indirect mortality due to maternal infection could affect estimates of the impact of 
a malaria intervention. It may not, in the short-term, be amenable to interventions 
targeted at infants. Nevertheless, effective malaria control may reduce transmission in 
the community and therefore might be expected to reduce the risk of such mortality. As 
one component of a project to develop a comprehensive simulation of the likely impact 
of potential malaria vaccines delivered to infants via the expanded program on 
immunization,6 we develop a model for the relationship between malaria transmission 
and indirect mortality in the neonatal period (birth to 28 days). Most deaths due to 
post-natal malaria infection occur after the first month of life and a model for these is 
described in Chapter 3. The magnitude of the impact of maternal malaria infection on 
neonatal mortality is unclear, as is the mechanism by which it occurs.5,7 There is little 
data with which to make direct estimates, due in part to the enormous sample size 
requirements. In the absence of such data, previous studies have used estimates of the 
effect of maternal malaria on birth weight, and combined these with independent 
measures of the association between low birth weight and mortality. The resulting 
estimates apply either to all endemic areas in Africa taken together, or to a single site 
(Table 4.1).   
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Table 4.1. Estimates of neonatal and infant mortality due to malaria in pregnancy 
derived using birth weight measures 

 Primigravidae Multigravidae All gravidities 

 Reference %† Rate‡ %† Rate‡ %† Rate‡ 
 Neonatal mortality       

 Greenwood and 
others8§¶ 

42%  6%    

 Goodman and others9§ 24% 11 - -   
 Guyatt and Snow 200110# 18%   7 - - 11% 4 

        
 Infant mortality       
 Greenwood and 

others8§¶ 
18% 14 4% 2   

 Guyatt and Snow10# 10%   8 -  6% 4 
 Steketee and others11** -  -  3-8% - 
 Murphy and Breman12# -  -  - 3-17 
 †Estimated percentage of mortality attributable to malaria in pregnancy. ‡Estimated 

deaths per 1000 live births attributable to malaria in pregnancy. § Estimates are 
based on the changes in the proportion of low birth weight8 or in mean birth 
weight9  associated with anti-malarial drugs during pregnancy in clinical trials. 
¶Estimates apply to The Gambia, all the other estimates apply to sub-Saharan 
Africa. #Estimates are based on observational studies of maternal infection and low 
birth weight. ** 8% is a composite of 18% and 4% from Greenwood and others.8 3% 
is derived from the estimated reduction in low birth weight associated with clearing 
placental and peripheral parasites, and does not include anaemia. The perinatal 
mortality rate for countries with a Human Development Index between 500 and 800 
has been estimated13: non-endemic countries had a mean perinatal mortality rate of 
30/1000 and endemic countries, 50.5/1000.  

 
Previous estimates of the impact of P. falciparum malaria on neonatal mortality have not 
considered how it varies with the level of transmission. Forecasting the effects of 
malaria control in endemic areas needs estimates not only of the average contribution 
of malaria to neonatal mortality, but also of the quantitative relationship between 
transmission intensity and neonatal mortality. In order to estimate this relationship, we 
have now summarized available data from clinical trials on birth weight, from 
between-site comparisons for sites with either entomological or prevalence data 
together with estimates of mortality, and from observational studies and reviews. We 
have used these summaries to develop a simple model of neonatal mortality due to 
malaria in pregnancy over a range of transmission intensities.  
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4.3 Methods  

Our model relates neonatal mortality resulting from malaria infection during 
pregnancy to the age-specific prevalence of P. falciparum in the general population. This 
allows it to be integrated into a comprehensive simulation6 and uses our parasitological 
model14,15 as a foundation. We model neonatal mortality rather than perinatal mortality 
(28 weeks gestation to 7 days after birth) so that the predictions can be included in 
disability-adjusted life year calculations.16 However, we acknowledge that the increased 
risk of mortality associated with maternal infection is not necessarily confined to the 
neonatal period.  

There is little data with which to directly relate the risk of indirect malaria neonatal 
mortality to P. falciparum prevalence in young adults. Where available we used proxy 
variables for the exposure or outcome, which lead us to consider separately the 
relationship between malaria infection in primigravidae and neonatal mortality and the 
relationship between parasite prevalence in young adults in the general population and 
primigravidae. We focus on primigravidae because they suffer the most pronounced 
effects and have the most data available, and we compute the overall impact on the 
neonatal mortality rate by assuming that 30% of livebirths are born to primigravidae.  
 

 

Relationship between malaria infection among primigravidae and 

neonatal mortality 

Data summaries Data summaries were used to provide information on the relationship 
between malaria infection among the population of primigravidae and the risk of 
neonatal mortality. We used various sources of information on malaria infection during 
pregnancy, for both the EIR and P. falciparum prevalence. In order to dissect the 
observed association between infant mortality and transmission intensity1 into neonatal 
and post-neonatal mortality, we carried out a literature search for sub-Saharan Africa 
sites with information on both the EIR and neonatal or post-neonatal mortality rates. 
The mortality rates were not parity-specific.   

In addition, birth weight has been previously used as a proxy in a number of studies 
estimating mortality in the newborn (Table 4.1) using both observational data and data 
from controlled clinical trials of anti-malarial drugs in pregnancy. We use data from the 
trials and assume that, for a particular trial setting, the difference in mean birth weight 
between the intervention and control groups is an approximate measure of the impact 
that malaria infection in pregnancy has on birth weight. Although women are not 
necessarily 100% protected from malaria throughout their pregnancy, the drugs have a 
large impact on peripheral and placental prevalence.17  To examine the association 
between the estimated birth weight difference and EIR, we matched entomological data 
to the sites of the trials.  
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We also examined meta-analyses of perinatal mortality rates by maternal peripheral 
parasite prevalence in malaria-endemic areas,13 of birth weight by childhood parasite 
prevalence,18 and of birth weight by placental prevalence.19  
 

Model From the analyses of neonatal mortality and transmission intensity (Results 
section 4.4) using the data summaries above, we propose that the risk of neonatal 
mortality attributable to malaria in pregnancy,

PG
µ , saturates at low transmission levels. 

Therefore we propose a relationship for primigravidae between the prevalence 
PG

x  and 

the neonatal mortality rate
PG

µ  of the form  

 

max *
1 exp PG

PG

PG

x

x
µ µ

  
= − −  

  
  (4.1)  

 

where maxµ and *

PGx  are constants, and which satisfies the additional constraint that in 

the absence of malaria 0PGµ = . We use an estimate of the efficacy of anti-malarial drugs 

in pregnancy20 to assign a value of 
max 0.011µ =  (11/1000 livebirths among 

primigravidae). To compute the overall effect on the neonatal mortality rate we assume 
that 30% of livebirths are born to primigravidae and thus our model predicts an overall 
risk of malaria-attributable neonatal mortality of 0.3 PGµ . 

 

 

Relationship between the prevalence of P. falciparum in the general 

population and prevalence in primigravidae 

We relate the prevalence of P. falciparum in primigravidae to the age-specific prevalence 
in the general population. We use data from a review of 27 cross-sectional studies 
comparing the peripheral prevalence either at antenatal attendance or at delivery in 
primigravidae and multigravidae.5 We approximate the prevalence in multigravidae by 
that of the general population of the same age. We could find little evidence to support 
this assumption, but it is not a critical assumption for the model predictions and we 
believe it to be a closer approximation than using the prevalence in the general 
population for that in primigravidae directly. We fit a statistical model to estimate the 
prevalence in primigravidae from that in multigravidae. The predicted prevalence in 
primigravidae, PGx , is constrained to be zero when MGx , the prevalence in 

multigravidae, is zero. To allow PGx  either to increase or saturate at high values of MGx  

we fit a curve of the form 
 

*

1
1

1

PG

MG

MG

x
x

x

= −
 

+  
 

  (4.2) 
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where *

MGx  is a critical value of MGx . This model was fitted in WinBUGS 1.4.21  

The proportions of women with placental and peripheral parasitaemia at delivery are 
approximately equal in the same settings,5 even though in individual women 
peripheral blood slides are not a good indicator of placental infection.22,23  

 

4.4 Results 

The relationship between malaria infection in primigravidae and 

neonatal mortality 

As reported by Hyder and others,24 we found few reported neonatal mortality rates 
from sub-Saharan Africa and we could locate entomological data for only those given 
in Table 4.2. Among these sites there is no evidence of an association between neonatal 
mortality and malaria transmission intensity (Figure 4.1a), yet such an association is 
evident for both post-neonatal and overall infant mortality (Figure 4.1b and c).  We 
acknowledge that there are many differences other than malaria transmission intensity 
between the studies included in the ecological comparison of mortality rates, and there 
may be an association between malaria transmission and other diseases, availability of 
effective treatment, or poverty that may serve to overestimate or underestimate the 
effect of maternal malaria infection. We conclude that the relationship of transmission 
intensity with the risk of neonatal mortality is much weaker than that with post-
neonatal mortality, although there are few reported post-neonatal mortality rates from 
settings with entomological data.  

 



Table 4.2. All-cause neonatal, post-neonatal and infant mortality rates from sites with entomological data* 

Study site Reference for 
entomology 
data 

Year of 
entomol-
ogy data 

EIR Mortality 
data 
reference 

Year of 
mortality data 

Number 
of 
livebirths 

Neonatal 
mortality 
rate 

Post-
neonatal 
mortality 
rate 

Infant 
mortality 
rate 

Areas I-V, The 
Gambia 

 25 1991 3.7  26 1992 3063 35.9 43 83 

Upper River 
Division, The 
Gambia 

 25 1991 5.3  27 1989-93 26894 37.7 42.4 80.2 

Farafenni, The 
Gambia 

 28 1987 8.9  29 1984-87 610 52.5 - - 

Niakhar, Senegal  30 1995 11.6  31 1995-99 5997 31 48 80 
Kilifi, Kenya  32 1997-98 20  33 1999-2003 2189 29.7 - - 
Bo, Sierra Leone  34 1990-91 34.7  35 1990 <100 - - 74.0 
Mlomp,Senegal  36 1995-96 30  36 1995 - - - 61 
Mlomp, Senegal  36 1995-96 30  37 1985-89 917 36 - - 
Manhica, 
Mozambique 

Aponte J (pers 
comm.) 

 38  31 1998-99 1280 - - 78.5 

Yombo, Tanzania  38 1992 234  38 1992-94 1130 25.7 -  131.0 
Saradidi, Kenya  39 1986-87 239  40 1981-83 1168 36.8 72.8 109.4 
Karangasso,  41 1985 244  42 1986-88 - - - 121 
Nyanza-Lac, Burundi  43 1990-91 312  43 1990-91 813 - - 108 
Bandafassi, Senegal  36 1995-96 363  44 1989-92 1448 71 - - 
Bandafassi, Senegal  36 1995-96 363  31 1995-99 2122 - - 124.9  
Namawala, Tanzania  45 1990-91 329  46 1902 1902 - - 95.2 
Navrongo, Ghana  47 2001-02 418  31 1994-99 20462 - - 111.9 
Muheza, Tanzania  48 1987-88 639  49 1992-93 361 11.1 121.9 133 
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 Figure 4.1. Mortality rates by transmission intensity 
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We found no evidence of an association between the estimated effect of anti-malarial 
drug interventions on birth weight and EIR (Figure 4.2). The overall pattern observed 
may be biased by confounders such as drug resistance. Since none of the trial settings 
had a very low transmission intensity, this is not inconsistent with a review of studies 
where the proportion of low birth weight (<2500g) babies was lower for studies set in 
areas with an EIR<1 compared with settings with an EIR≥1. However, among settings 
with EIR≥1 there was no clear association.18  

We conclude that there is little or no association between neonatal mortality and 
transmission intensity once the transmission is above a very low level. This lack of an 
association enables us to infer that there can be little association also between the 
prevalence in primigravidae and neonatal mortality.  The prevalence of P. falciparum in 
young adults is itself insensitive to transmission intensity.50 
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 Figure 4.2. Estimated effect of anti-malarial drug interventions on birth weight 

b

0

10

20

30

at
tr

ib
u

ta
bl

e 
ri

sk
 o

f L
B

W
 (%

)

20 20010 10050

EIR (Infectious bites per person per year)

a

-400

-200

0

200

400

600

d
if

fe
re

nc
e 

in
 m

ea
n 

bi
rt

hw
ei

gh
t (

g)

20 20010 10050

 
 a. Estimated mean change in birth weight due to intervention. b. Excess risk of low 

birth weight (LBW) (%LBW in controls-%LBW in drug group). Data from 10 trials 
comparing anti-malarial drug use to control either placebo or no drug controls29,51-59 
were analyzed. Trials were not included if they compared multiple drugs with no 
inactive control 60-62 or could not be matched to entomologic data.63 The estimates refer 
to primigravidae, or primigravidae and secundigravidae together in the case of one 
trial. ♦=chloroquine; ■=dapsone-pyrimethamine. ▲=sulphadoxine-pyrimethamine; ● 
=pyrimethamine. The error bars show the 95% confidence intervals. 

 

Our conclusion is supported by reviews of related outcomes and prevalence. A review 
of observational studies that found that there was no obvious linear trend between 
perinatal mortality (28 weeks gestation to the first 7 days) and maternal peripheral 
parasite prevalence in endemic areas.13 The association between the proportion of 
primigravidae with placental parasitaemia and birth weight is weak (Figure 4.3) after 
accounting for highly influential points (data from Brabin and others19), although this 
may be confounded by the inclusion of studies from South East Asia.  
 
 Figure 4.3. Placental prevalence and birth weight   
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  Data for primigravidae from Brabin and others.19  
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These observations contribute only to the shape of our model of the relationship of 
malaria-attributable neonatal mortality with transmission. Since the malaria-
attributable neonatal mortality rate in primigravidae, PGµ , appears to be independent of 

the transmission intensity across the settings for which we have data, we were not able 
to use a formal fit to data to obtain estimates of the parameters maxµ  and *

PGx  (equation 

5.1). We follow Goodman and others20 in assigning a value of max 0.011µ = (11/1000 

livebirths among primigravidae). Since saturation seems to occur at lower prevalence 
than any measured in endemic areas the data only suggest a rough idea of the upper 

limit of the quantity *

PGx . In the absence of more relevant data, we set * 0.25PGx = .  

 

Relationship between the prevalence of P. falciparum in the general 

population and prevalence in primigravid women 

We relate the prevalence of infection in primigravidae, PGx , to that in the 

multigravidae, MGx  (equation 4.2). We obtained a good fit to relationship between PGx  

and MGx with a value of *

MGx = 0.19 (95% confidence interval = 0.16 – 0.23), which 

corresponds to the observation that PGx  and MGx are approximately proportional when 

both are low, but as prevalence increases in multigravidae, it approaches 100% in 
primigravidae and cannot continue to be proportional (Figure 4.4).  

 

 Figure 4.4. Relationship between peripheral prevalence at 
delivery in primigravidae and multigravidae 
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 The points represent cross-sectional surveys collated by Brabin and 
Rogerson.5 The fitted line corresponds to the model of equation 5.2.  

 

 

 

To compute the overall effect on the neonatal mortality rate, we assume that 30% of live 
births are born to primigravidae and thus our model predicts an overall risk of malaria-
attributable neonatal mortality of 0.3 PGµ . Assuming MGx  to be equivalent to the 



 69 

prevalence of patent P. falciparum in adults aged 20 to 24 years in the general 
population, we can thus combine equations 4.1 and 4.2 to obtain predictions of the 
malaria-attributable neonatal mortality rate as a function of prevalence as shown in 
Figure 4.5. Our model predicts very little effect of transmission intensity on neonatal 
mortality.  
 
 
 Figure 4.5. Predicted malaria attributable neonatal mortality rate as a 

function of prevalence in the general population aged 20-24 years 
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4.5 Discussion 

Although P. falciparum infections during pregnancy in primigravidae have an 
important impact on the newborn, we found little or no association between neonatal 
mortality and malaria transmission intensity in stable transmission areas.  

This lack of association with transmission intensity is to be expected, if, as is likely, 
most women in these areas are infected at some stage in their pregnancy, and also that 
immunity to pregnancy-associated malaria is gained through relatively few infections. 
Despite problems with the sensitivity of histology,64 the proportion of placenta with 
histological evidence of active or past infection is very high even in endemic areas with 
relatively low transmission: in primigravidae in Kilifi, Kenya it was 77%23 and in The 
Gambia it was 76%.65 A subset of parasites expressing particular cytoadherence 
properties are thought to account for much of the pathology of malaria in pregnancy.66-

68 It has been suggested that a single infection with such a phenotype may be sufficient 
to stimulate an immunological reaction,5 although this is not known. This may both 
explain why the adverse consequences of maternal infection mainly occur in first, and 
to a lesser extent second, pregnancies, and why the intensity of superinfection appears 
to have little effect.  
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The model would predict little change in mortality from a decrease in transmission 
intensity unless it reaches a very low level. Trials of insecticide-treated nets provide 
some data: while increased birth weight was observed in areas with low transmission 
(Thailand and The Gambia),69,70 results from areas with more intense transmission are 
mixed. No impact was observed in Kilifi, Kenya and Navrongo, Ghana,23,71 but a 
reduction in the proportion of low birth weight babies was found in Western Kenya.72 
However, the transmission intensity after the introduction of the nets would be more 
relevant than the baseline transmission intensity.  

Since there is considerable uncertainty about the patho-physiology of the effects of P. 

falciparum infection on neonatal mortality, we attempted to avoid assumptions about 
mechanisms in formulating our predictive model. However, all the available estimates 
of this effect (Table 4.1), including the one we use, depend on associations with birth 
weight and assume that the risk of death in babies of the same birth weight is the same 
whether their mothers had placental malaria or not, and that the relevant effect on the 
birth weight distribution can easily be summarized either by the mean or by the 
proportion of birth weights below a standard cut-off. Both these assumptions have 
been questioned.17,73 If the full distribution of birth weights is available this should be 
analyzed as a mixture of the predominant normal distribution and a residual 
distribution in the form of a tail at low birth weights.74 It is the relative size of this 
residual distribution that is the feature associated with mortality.73 Comparison of three 
birth weight distributions from areas of high, medium, and low transmission settings 
suggest that the overall mean and size of the residual tail may move in tandem.75 This, 
however, is very indirect support for models that assume the maternal effect to be 
adequately captured by simple summaries of the effect on birth weight when there is 
not even convincing evidence of that birth weight is on the causal pathway between 
maternal infection and neonatal death.  

An additional highly uncertain element of our model is the value of 0.25 assigned to the 
parameter *

PGx . *

PGx  determines the prevalence at which neonatal mortality saturates, 

and data from endemic areas provide only an approximate idea of the upper limit of 
this quantity because saturation seems to occur at a lower prevalence than any 
measured in endemic areas. This is one of several reasons why our model is in any case 
unlikely to be appropriate in areas of unstable transmission such as South East Asia. In 
such areas, the impact of malaria in pregnancy on the mother is likely to be more 
severe, and thus the risk associated with individual infections may be higher. In stable 
endemic areas, acute effects on the mother are less frequent64,76 presumably because of 
immunity that has already been acquired prior to pregnancy.   

A comprehensive model for the effects of malaria in pregnancy would also need to 
address the question of the timing and intensity of the infections. Babies born during 
the rainy season were lighter than those born during the low transmission periods in 
The Gambia and Mali.26,29,77 Maternal malaria infection is likely to contribute to this, but 
the implications for neonatal mortality are unclear. We also do not consider the effects 
of infection with human immunodeficiency virus (HIV). The prevalence of HIV in 
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women varies between countries in sub-Saharan Africa,78 and HIV infection is 
associated both with an increased prevalence of malaria parasitaemia during 
pregnancy for all gravities79-81 and with increased rates of adverse perinatal outcomes.82  

We are not in a position to provide good estimates of the potential impact of 
interventions (such as intermittent preventive treatment or vaccination) targeted at 
pregnant women. This is for two reasons. Firstly, we consider only the impact on the 
infant and not the health effects for the mother which may be substantial83 (though the 
prevalence of anaemia in pregnancy is considered by our model of anaemia84). 
Secondly and most importantly, there is an unacceptable level of uncertainty associated 
with estimates of malaria in pregnancy associated neonatal mortality that depend on 
the assumed relationship with birth weight. The burden of neonatal mortality caused 
by P. falciparum will remain highly uncertain so long as we are dependent on indirect 
assessments. 

Despite these uncertainties, we propose that our model is adequate for predicting the 
effects of preventative interventions targeted at infants and children or the general 
population on the risk of neonatal mortality associated with maternal infection, and we 
propose to incorporate equations 4.1 and 4.2 into our general model of the 
epidemiology of P. falciparum.6 The main predictions relating to neonatal mortality are 
already evident and are clearly insensitive to the uncertainties documented above. We 
predict that interventions targeted at infants such as vaccination would have to reduce 
the infectious reservoir to very low levels to affect indirect neonatal mortality.  
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5.1 Summary 

We describe a statistical model for the relationship between asexual parasite densities 
of Plasmodium falciparum and the infectivity of the host to mosquitoes. The model takes 
into account the delay between asexual parasitaemia and infectivity resulting from the 
time course of gametocytaemia. It also allows for the need for the blood meal to contain 
gametocytes of both sexes if infection is to take place. We show that by fitting this 
model to data from malariatherapy patients it can explain observed patterns of 
infectiousness of the human host and is consistent with distributions of gametocyte 
densities in malariatherapy patients.  

By integrating this model into an individual-based simulation of human populations 
exposed to endemic P. falciparum transmission, we are able to predict the contributions 
of different host age groups to the infectious reservoir. Comparison of model 
predictions with published estimates of this quantity confirms that infected adults 
hosts are likely to make a significant contribution to the reservoir of transmission, and 
points to the need for improved population-based estimates of this age-dependence in 
infectivity of humans in endemic areas.  
 

5.2 Introduction 

Transmission of malaria from humans to the vector occurs when a female anopheline 
imbibes the sexual stages of the parasite (gametocytes) that arise as a result of 
developmental switching of a small proportion of the population of erythrocytic 
parasites. However not all anophelines feeding on gametocyte-infected hosts become 
infected and cryptic gametocytaemia can result in mosquito infections.1,2 Oocyst rates in 
mosquitoes in endemic areas can be similar regardless of whether gametocytes or 
trophozoites are detected in the human host. Some studies have found little or no 
relationship of infectivity with gametocyte densities3,4 while others found these to be 
related.5,6 In artificially-induced infections, on average, infectivity to vectors rapidly 
reaches a persistent low but non-zero level as the infection proceeds.7 However the 
decrease in infectivity is by no means as steep as that in measured gametocyte 
densities. There is a general decline in infectiousness with age but even highly immune 
hosts contribute to the infectious reservoir.8,9  

Community effects of vaccines or of other interventions targeting the human host (herd 
immunity) result either directly or indirectly from changes in infectivity. To understand 
these, mathematical models are needed. Infectivity of the human host is a key 
determinant of the intensity of malaria transmission, but in contrast to field data, 
models of malaria transmission dynamics have generally assumed that the probability 
of transmission to a vector is equal across all infected humans and throughout the 
course of infection,10 or that complete transmission-blocking immunity is acquired as a 
result of repeated exposure.11  
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As one component of a project to develop simulation models for the potential impact of 
a malaria vaccine, we now develop a new model for infectivity. We avoid directly 
incorporating the poorly understood processes of gametocytogenesis and the 
subsequent fate of gametocytes. Instead, we implicitly model gametocytogenesis by 
estimating infectivity from analyses of the association between lagged asexual blood 
stage densities and infectivity. We use data from deliberate infection of human subjects 
with Plasmodium falciparum between 1940 and 1963 as a treatment for tertiary syphilis7,12 
and fit a statistical model to these data to estimate the relationship between recent 
asexual parasitaemia and infectivity.  

 

5.3 Methods  

5.3.1 Model for infectivity as a function of parasite density 

We define ( , )i tϒ  as the density of asexual parasites in patient i that gave rise to the 

gametocytes present at time t. Our stochastic simulation model of malaria 
epidemiology13,14 uses five-day time steps. To incorporate transmission to the vector 
into this model, we propose that ( , )i tϒ  should be estimated as a weighted sum of the 

asexual parasite densities measured 10, 15 and 20 days prior to the feeding experiment. 
Thus if 1β ,

2
β and

3
β are constants, then 

 

1 2 3
( , 15)( , 10)( , ) ( , 20)Y i tY i ti t Y i tββ β − +− +ϒ = −      (5.1) 

 
This quantity is constrained to be zero when there is no history of patent infection in 
the last 20 days, or when patent infection first arose in the last five-day time period. We 
justify the choice of the lag periods of 10, 15 and 20 days by observing that previous 
analyses of gametocyte dynamics in the same malariatherapy patients suggested that 
gametocytes spend an average of 7.4 days sequestered before appearing in the 
peripheral circulation and have a subsequent mean circulation time of 6.4 days.15  

We considered a number of models for infectivity. In our preferred model, the ratio of 
functional female gametocytes per blood meal to ( , )i tϒ  is log normally distributed, 

with some geometric mean, ρ , so that the density of functional female gametocytes in 

the host blood, ( , )gy i t , is related to ( , )i tϒ  by  

 
2ln( ( , )) ~ Normal(ln( ( , )), )g gy i t i tρ σϒ       (5.2) 

 
For a mosquito to become infected with P. falciparum, it must imbibe at least one female 
and one male gametocyte in the same blood meal. We assume that functional 
gametocytes are those able to give rise to sporozoites. We define *

gy to be the density of 

female gametocytes necessary for infection of the mosquito, corresponding to 1 
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functional gametocyte per blood meal. The probability that at least one functional 
female gametocyte is taken up is then *Pr( ( , ) )g gy i t y>  and it follows that 

 

( )

( )

*

*

*

ln ( , ) ln( )
Pr( ( , ) )

ln ( , )
                         

g

g g

g

g

i t y
y i t y

i t

ρ

σ

ρ
σ

 ϒ −
> = Φ  

  

 ϒ
= Φ + 

  

      (5.3) 

 
where Φ  is the percentile of the cumulative standard normal distribution, and 

( ) ( )( )* *ln ln /g gyρ ρ σ= −  is a constant which depends on the volume of the blood meal, 

the viability of the gametocytes, and the variability in the system. If the volume of the 
blood meal is assumed to be 3 lµ 16 (and there is assumed to be no concentration of 

erythrocytes in  these species17,18), then the ratio of the functional female gametocyte 
density to ( , )i tϒ  is given by / 3ρ .  

If the sex-ratio of functional male to female gametocytes is 1:1, then the probability that 
at least one functional male gametocyte is taken up is also *Pr( ( , ) )g gy i t y> , and the 

probability that a mosquito is infected with both male and female gametocytes is 
* 2Pr( ( , ) )g gy i t y> . The number of mosquitoes out of a batch of ( , )fedn i t  mosquitoes fed on 

patient i, at time t, that are infected follows a Binomial distribution 

 

( )* 2( , ) ~ ( , ), Pr( ( , ) )inf fed g gn i t Binomial n i t y i t y>      (5.4) 

 
Our estimate of the proportion of mosquitoes feeding on individual i at time point t 
that would become infected, ( , )mI i t , is then the expected proportion from this binomial  

 
( , )

( , )
( , )

inf

m

obs

n i t
I i t E

n i t

 
=  

 
.         (5.5) 

 
 

5.3.2 Data and model fitting 

We fitted the model given by equations 5.1-5.5 to archive data provided by Dr. W. 
Collins (Centers for Disease Control, Atlanta) collected by the United States Public 
Health Service in South Carolina and Georgia between 1940 and 1963. At that time, 
malariatherapy was a recommended treatment of neurosyphilis.12 We obtained archive 
data for 392 patients inoculated with varying species, strains and parasite stages of 
Plasmodium. In each case, densities of asexual parasitaemia and of gametocytaemia 
were recorded on a daily basis. Batches of between 5 and 60 caged Anopheles 

quadrimaculatus or An. albimanus mosquitoes were allowed to feed on gametocytaemic 
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patients and then kept to allow oocysts to develop in the midgut before dissection to 
record infection status. Details of the methods have been previously published.12  

We excluded patients inoculated or co-inoculated with Plasmodium species other than 
P. falciparum and those who were inoculated for a second time or who were treated 
with any of the antimalarial drugs used and those with insufficient data. We initially 
explored various possible predictors of the proportion of the mosquitoes that became 
infected. These comprised day since first parasitaemia, fever, the concurrent asexual 
parasite density, and the history of parasitaemia for the preceding 40 days. To maintain 
compatibility with our population model of asexual parasitaemia,13 we simplified the 
history by considering parasite density only at five-day intervals.  

The model described by equations 5.1 - 5.5 was selected as the most appropriate on the 
basis of these exploratory analyses. We treated it as a hierarchical Bayesian model, and 
fitted it using the Metropolis-Hastings algorithm in the program WinBUGS version 
1.4.19 1β  was fixed at a value of 1 and we used imprecise log normal prior distributions 

for 2β  and 3β , and a gamma prior for 21/ gσ . 

 

5.3.3 Age-pattern of infectivity  

Field estimates of the relative contribution to the infectious reservoir by different age 
groups have been made for settings in Liberia,9 The Gambia,8 Tanzania,8 western 
Kenya,20 Papua New Guinea21 and Cameroon.22  The estimates from Africa are based on 
feeding of insectary An. gambiae, while those from Papua New Guinea used a colony of 
An. farauti. 

To validate our model against these data we simulated the epidemiology of malaria in 
field settings with entomological data using our stochastic simulation model.13,14,23  This 
model makes predictions of parasite densities using a five-day time step assuming an 
annually recurring stable pattern of transmission as input. We used this model to 
implement an individual-based simulation of a population of at least 10,000 simulated 
individuals exposed from birth to the local transmission patterns. For each individual 
and time point during the year we use equations 5.1-5.5 to make predictions of ( , )mI i t .  

There is evidence that the risk of being bitten by an anopheline is approximately 
proportional to body size.24 To allow for this, we make an estimate of the contribution 
to the infectious reservoir for age group j, weighted proportionately to ( ( , ))A a i t , the 

estimated body surface area of the host, where ( , )a i t is the age of individual i at time t.14 

The proportion of infectiousness contributed by group j is then 
 

( )
( )

,

,

( ( , )) ( , ) ( , )

( ( , )) ( , )

m j

i t

m

i t

A a i t I i t J i t

A a i t I i t
=
∑

∑
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where ( , ) 1jJ i t =  if individual i is in age group j at time t, and ( , ) 0jJ i t =  otherwise, and 

where the summations are over the whole simulated population and a whole year of 
follow-up time.  
 

5.4 Results 

5.4.1 Data description 

Seventy one patients with 730 feeding experiments (median of 4 experiments per 
individual (90% central range = 1-29) were included in the analyses. A total of 22,431 
mosquitoes were analyzed (median of 28 mosquitoes per experiment, 90% central range 
= 5-60).  

A total of 562 (77%) of blood slides were positive for P. falciparum 10 days prior to the 
feeding experiments, with median density 1,792 parasites/μL (90% central range=30-
25,990). Parasite prevalence and densities on the other days analysed were comparable. 
A total of 565 (77%) of the 730 samples on the day of the feeding experiment were 
gametocytaemic, with median gametocyte densities of 110 (90% central range 10-3330).  
Overall, 5420 (24%) out of 22431 mosquitoes became infected. However there was 
considerable variation in the observed proportions of mosquitoes infected in any one 
experiment (Figure 5.1). For the simulation model, we aimed to describe the average 
relationship between asexual parasite density and infectivity as accurately as possible 
for all values of the parasitaemia history.  
 
 
 Figure 5.1. Boxplot of the proportion of mosquitoes infected in the experiments 

for each category of asexual parasitaemia   
 

 (a) 10 days previously, (b) 15 days previously, (c) 20 days previously  
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 The box indicates the 25th and 75th percentiles and the central line is the median. The upper 

whisker extends to the largest value below the 75th percentile plus the box height multiplied 
by 1.5. Similarly for the lower whisker. Values outside the whiskers are plotted individually.  
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In analyses that considered only single predictors of the proportion of mosquitoes 
infected, asexual parasitaemia 20, 15, 10 and 5 days previously and the reciprocal of 
days since first parasitaemia were found to be most closely related to the proportion of 
mosquitoes that are infected. In multivariable models, the effects of parasite density 
five days previously and the reciprocal of time since first asexual parasitaemia did not 
improve the fit.  
 

5.4.2 Model for infectivity 

We rejected a number of models for infectivity before selecting the model given by 
equations 5.1 to 5.5. Fixed effects models that ignored variation between patients or 
samples in the relationship predicted very high proportions of infected mosquitoes for 
hosts with a history of high parasite densities. There is substantial variation in 
infectivity in the data even at high values of the weighted sum of asexual parasitaemia 
( , )i tϒ  (Figure 5.1) and models with fixed effects of the weighted sum of asexual 

parasitaemia gave a better fit only if there was allowance for overdispersion in 
infectivity. However allowing for overdispersion in the response led to problems of 
convergence, with the estimates of random effects highly correlated with those of 
( , )i tϒ .  

Our preferred model (equations 5.1 to 5.5) introduces random variation into the 
explanatory variable, ( , )i tϒ , intended to simulate random variation in the process of 

gametocytogenesis. The fit was good (Figure 5.2 and Table 5.1) except at very high 
values of the weighted sum of asexual density ( , )i tϒ . There is little data at these high 

values, and although proportions of 100% infected mosquitoes were observed in almost 
one-third of the experiments with the highest 5% of values of ( , )i tϒ , there was also 

considerable variation, with some proportions as low as 17%. This variation coupled 
with the relatively small amount of data makes it difficult to specify a model which fits 
well in this range.  
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 Figure 5.2.  Relationship of infectivity to weighted sum of asexual 

densities , ( , )i tϒ  
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 The thin line represents the estimated probability that the mosquito is infected 

with a female gametocyte, *Pr( ( , ) )g gy i t y> , and the thick line is the estimated 

probability of infection with both male and female gametocytes, 
* 2Pr( ( , ) )g gy i t y> . Circles represent the mean proportion of mosquitoes infected 

within categories of the weighted asexual parasite sum.  

 

 
 
 
Table 5.1. Parameter estimates 

 Description Point 
Estimate  

95% 
Credible 
interval 

    

1β  Effect of asexual density (lag 10 days) on 
expected gametocytaemia 

1 Fixed* 

2β  Effect of asexual density (lag 15 days) on 
expected gametocytaemia 

0.46  0.38 – 0.55 

3β  Effect of asexual density (lag 20 days) on 
expected gametocytaemia 

0.17  0.13 – 0.23 

ρ  Location parameter for the distribution of the 
ratio of gametocytes to asexual parasites 

0.00031  0.00027 - 
0.00036 

gσ  Standard deviation of the distribution of the 
ratio of gametocytes to asexual parasites 

3.91 3.72 – 4.10 

*To ensure identifiability 
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5.4.3 Gametocyte densities 
 
From equation 5.2  it follows that 
 

2
( , )

ln ~ Normal(ln( ), )
( , )

g

g

y i t

i t
ρ σ

 
 ϒ 

       (5.6) 

 
To test this assumption of log-normality, we plotted the logarithm of the ratio of the 
observed density of female gametocytes ( , )fy i t  to the weighted sum of the asexual 

parasite densities (Figure 5.3a).  
 

 

 Figure 5.3. Distribution of the observed density of female gametocytes  
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 a. Histogram of ln( ( , ) / ( , ))fy i t i tϒ , the logarithm of the observed ratio of the 

density of female gametocytes to the weighted sum of asexual parasite densities. 
b. Normal quantile plot of ln( ( , ) / ( , ))fy i t i tϒ . For each data point ( , )x y , y is the 

observed value and x  is the value expected for the same quantile of the 
corresponding normal distribution. Points lying along the straight line indicate 
that the data fits a normal distribution.  

 

 
 
The observed distribution of this ratio is somewhat truncated because the limit of 
detection in the malariatherapy dataset was 10 gametocytes/μl. However, the normal 
quantile plot (Figure 5.3b) suggests that the log-normal approximation is roughly valid, 

with a mean of approximately -5 for ( )ln ( , ) / ( , )fy i t i tϒ .  

Thus, on average ( , ) ( , ) exp( 5)fy i t i t≈ ϒ − , and the expectation of the normal distribution 

in equation 5.6 is 
 

( , ) exp( 5)
ln ln( )

( , )

g

f

y i t
E

y i t
ρ

  −
≈      

.       (5.7)  
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Using our best estimate of ρ  (Table 5.1), and scaling per microlitre, this gives an 

approximation for the proportion of gametocytes that are functional of 
( , ) /(3 ( , )) exp(5) / 3 0.015g fy i t y i t ρ≈ ≈ . 

 
 

5.4.4 Age pattern of infectivity 

The field estimates of the relative contribution of different age groups to the infectious 
reservoir are presented in Table 5.2. Using the transmission patterns for Ifakara and 
Farafenni, we estimated the relative contributions from our model predictions. The 
field studies make the assumption that people of different ages are equally frequently 
bitten by mosquitoes. Thus the most comparable estimates are those not weighted by 
body surface area. The unweighted contributions that we predicted are shown for 
Ifakara, and these are similar to those from the field study.8 Weighting the 
contributions of different ages of hosts to the infectious reservoir proportionately to the 
estimated surface area of the host as well as to the representation of the age-group in 
the population led to higher predicted contributions from adults.  



Table 5.2. Estimated contributions of different age groups to the infectious reservoir for P. falciparum 

 Site Age group (years) Details 
  <1 1-4 5-9 10-19 ≥20  

Farafenni, The 
Gambia8 

- 17.5 21.7 22.2 37.9 Membrane feeds of blood from gametocyte carriers 

Ifakara, Tanzania8 - 30.9 25.2 15.7 28.1 Membrane feeds of blood from gametocyte carriers  

Kano, Kenya20 - 38.1 33.9 11.7 16.3 Direct feeds on an unselected population sample 

Madang, Papua New 
Guinea21 

- 21.0 30.7 28.3 6.0 Direct feeding of random population sample  

Field estimates 
of % 
contribution of 
different age 
groups* 

Madang, Papua New 
Guinea21 

- 53.0 7.6 31.0 10.4 Direct feeding of gametocyte carriers 

        

Mean of ( , )mI i t (%) 8.0 13.0 7.0 4.0 3.0 Assuming Ifakara (Idete) transmission pattern25 

% of total population 3.0 10.1 14.6 24.7 47.6 From Drakeley and others8 

4.8 26.3 20.5 19.8 28.6 Not weighted by body surface area 

Model estimates 
for Ifakara 
(Idete) 

Model-based 
estimate of % of 
infectious reservoir 

1.7 14.2 16.3 25.0 42.9 Weighted by body surface area 

 Model-based 
estimate of % of 
infectious reservoir  

0.3 7.9 13.6 30.7 47.5 Assuming Farafenni transmission pattern26 weighted 
by body surface area 

* A population-based study in two villages in Cameroon22 suggests a similar pattern with age and transmission intensity, using  
different age groups. 
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The studies of Drakeley and others8 investigated infectivity using feeds only on blood 
from demonstrable gametocyte carriers, and this makes it difficult to be confident in 
comparing the results with our population-based estimates. The assumption that 
individuals without detectable gametocytes do not transmit to mosquitoes is 
questionable. However the estimated contributions of different age-groups were 
similar to those for Ifakara in settings where population-based assessments have been 
carried out. The general pattern in our simulations was in agreement with the data: at 
higher transmission (as in Kano, Kenya) the contribution of the younger age groups 
was increased, and at lower transmission (as in Farafenni, or in Papua New Guinea) the 
older age groups are predicted to be relatively more important.  

 

5.5 Discussion 

We have fitted a statistical model to describe the relationship between P. falciparum 
asexual parasite densities and infectivity. The model makes use of the requirement for 
infectivity, that both male and female gametocytes must occur in the same blood meal, 
to provide an explanation for the non-linear relationship between infectivity and 
gametocyte densities in the malariatherapy dataset.7  

We developed this model specifically for inclusion in our mathematical model of 
populations exposed to endemic P. falciparum transmission, and this dictated some 
simplifications. To correspond to our simulations we used a five-day time step, which 
makes less use of the available data than would a model based on shorter time 
intervals. We also avoided directly fitting a model to gametocyte densities because we 
required a model for infectivity as a function of asexual parasite densities.  

The latter simplification allowed us to avoid any strong assumptions about the 
problematical relationship between observed and functional gametocytaemia or about 
the poorly understood factors affecting gametocytogenesis.27,28 Our examination of the 
distribution of gametocyte densities confirmed that our model for gametocyte densities 
is a reasonable approximation. Our estimate for the percentage of gametocytes that are 
functional is low, in agreement with  estimates from life tables29,30 which indicate that 
many parasites are killed between the macrogamete and oocyst stages. 

We assumed a 50:50 ratio of functional male:female gametocytes. The median 
proportion of male gametocytes recorded in the malariatherapy dataset was 0.43 with a 
90% central range of 0-1, while other studies have found lower proportions 
(approximately 0.25) of male gametocytes.31-33 However male gametocytes produce 
more gametes than female gametocytes,27 and thus perhaps *

gy  for male gametocytes 

should be lower than for female gametocytes, compensating for any imbalance in the 
sex ratio. We considered the sensitivity of ( , )mI i t , the proportion of mosquitoes feeding 

on individual i at time t who become infected, to variations in the ratio of functional 
male:female gametocytes. ( , )mI i t  showed little sensitivity to variations in the assumed 

sex ratio of gametocytes over a wide range. This supports the claim that the sex ratio of 
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gametocytes is unlikely to be of major importance in determining infectivity;27 and 
studies to date have shown little or no effect of sex ratio on infectivity.34-37  

We do not consider heterogeneity between individuals or parasite clones in their innate 
propensity to produce gametocytes because our interest focuses on overall infectivity. 
Moreover, we ignore any direct effects of fever on infectivity38 and of drug treatment on 
gametocytaemia. These effects are likely to be of epidemiological importance mainly in 
low transmission areas.  

To apply our model to endemic areas in Africa, we must make several further 
simplifications. The malariatherapy experiments used An. quadrimaculatus and An. 

albimanus in controlled conditions, which differ from African field conditions where the 
main vectors are An. funestus and the An. gambiae complex. We consider the extent to 
which our approach leads to an overall bias in the estimates of the proportion of 
mosquito bites resulting in infections of the vector in a separate paper.39  

We also assume that the relationship between asexual parasitaemia and infectivity in 
adults infected for the first time can be generalized to those with varying levels of 
acquired immunity, which entails assuming that there is no acquisition of transmission-
blocking immunity and no effect of antibodies to gametocytes. This is supported by our 
finding that the model predicts age patterns that concur with those from field data. 
Although children have often been thought to contribute most of the malaria 
transmission to vectors because of their higher parasite densities, those studies that 
have estimated the contributions of different ages of hosts to the infectious reservoir 
have found that adults make a substantial contribution (Table 5.2).  

Our model supports the conclusions of these field studies and indeed suggests that the 
contribution of adults has been underestimated because of the usual assumption that 
each potential host is bitten equally frequently. This corroborates the assumption that 
transmission-blocking immunity does not markedly increase with age, and that 
naturally acquired immune responses to gametocytes are also not of epidemiological 
importance. However, these conclusions rest on a limited evidence base. There is a 
need for improved population-based estimates of age- and exposure- dependence in 
the infectivity of humans to mosquitoes in endemic areas.  
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6.1 Summary 

Trials of intermittent preventive treatment against malaria in infants (IPTi) using 
sulphadoxine-pyrimethamine (SP) have shown promising results in reducing clinical 
malaria episodes. The impact of IPTi in different epidemiological settings and over time 
is unknown and predictions are hampered by the lack of knowledge about how IPTi 
works. We investigated mechanisms proposed for the action of IPTi and made 
predictions of the likely impact on morbidity and mortality. 

We used a comprehensive model of malaria epidemiology to simulate recently 
published trials of IPTi using SP with site-specific characteristics as inputs. This 
baseline model was then modified to represent hypotheses concerning the duration of 
action of SP, the temporal pattern of fevers caused by individual infections, potential 
benefits of avoiding fevers on immunity and the effect of sub-therapeutic levels of SP 
on parasite dynamics. The baseline model reproduced the pattern of results reasonably 
well. None of the models based on alternative hypotheses improved the fit between the 
model predictions and observed data suggesting that the pattern of trial results can be 
accounted for by differences between the trial sites together with known features of 
malaria epidemiology. 

Predictions suggest that IPTi would have a beneficial impact over a wide range of 
transmission intensities. IPTi was predicted to avert a greater number of episodes 
where IPTi coverage was higher, the health system treatment coverage lower, and for 
drugs which were more efficacious and had longer prophylactic periods. The predicted 
cumulative benefits were proportionately greater for severe malaria episodes and 
malaria-attributable mortality than for acute episodes in the settings modelled. Modest 
increased susceptibility was predicted between doses and following the last dose, but 
these were outweighed by the cumulative benefits. The impact on transmission 
intensity was negligible.  

 
6.2 Introduction 

Intermittent preventive treatment in infants (IPTi) involves giving antimalarial drugs at 
scheduled times during the first year of life, irrespective of whether the infants have 
malaria infections.1 The limited number of doses is intended to retain the benefits of 
weekly or fortnightly chemoprophylaxis whilst avoiding the disadvantages: thus 
reducing malaria morbidity and mortality while minimising difficulties in 
sustainability, accelerating drug resistance or impairing the development of natural 
immunity.  

IPTi trials to date have shown a strong, albeit variable, protective efficacy against 
clinical episodes of malaria in the first year of life.2 How the impact of IPTi varies over 
time and in different epidemiological settings is unknown. Prediction is hampered by 
the lack of knowledge of both how IPTi works and the extent to which different trial 
characteristics may account for the variability in the observed estimates. Trial 
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characteristics which have been highlighted are levels of drug resistance, transmission 
intensity, seasonality, IPTi schedule, and other interventions for malaria control (such 
as insecticide-treated nets (ITN) and treatment coverage).2-4 We use these characteristics 
as inputs to a stochastic simulation model of malaria epidemiology. We then modify 
this model to represent hypotheses that have been proposed for the mechanism of IPTi 
to investigate which of these hypotheses are consistent, and which cannot be 
reconciled, with the observed trial results. The hypotheses, defined in section 6.3, 
concern the duration of action of SP, the temporal pattern of fevers caused by 
individual infections, the potential benefits for acquired immunity of avoiding episodes 
and the effect of sub-therapeutic levels of SP on parasite dynamics. We then use the 
model which best fits our criteria to make predictions of the impact of IPTi in different 
epidemiological settings and with varying drug characteristics. 
 

6.3 Methods 

Model 1 (Baseline model): Model of malaria epidemiology taking into 

account between-trial differences 

We combine our model of malaria epidemiology with an added component for the 
action of SP5 and input the different trial characteristics such as transmission intensity 
and treatment coverage. This allows us to see if the between-trial differences in 
combination with this model can account for the heterogeneity in observed efficacy 
estimates. 
 
Model for malaria epidemiology 

The model is individual-based and stochastic, and is fully described elsewhere 
(Appendix A.1).6 Briefly, there is a simulated population of individuals who are 
updated at five-day timesteps via model components representing new infections, 
parasite densities, acquired immunity, morbidity, mortality and infectivity to 
mosquitoes (Figure 6.1). The course of parasite densities over an infection are described 
by averaged empirical data (described in 7). Immunity to asexual parasites is derived 
from a combination of cumulative exposure to both inoculations and parasite densities, 
and maternal immunity.7 The inclusion of acquired immunity allows us to model 
potential effects of IPTi on immunity through loss of exposure. The probability of a 
clinical attack of malaria depends on the current parasite density and a pyrogenic 
threshold (described in Chapter 2). The pyrogenic threshold responds dynamically to 
recent parasite load, increasing or saturating through exposure to parasites and 
decaying with time, and thus is individual- and time- specific. Severe malaria can arise 
in two ways, either as a result of overwhelming parasite densities or through 
uncomplicated malaria with concurrent non-malaria co-morbidity (Chapter 3). 
Mortality can be either direct (following severe malaria) or indirect (uncomplicated 
malaria in conjunction with co-morbidity, or during the neonatal period as a result of 
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maternal infection (Chapter 3). The parameter values for this model were estimated by 
fitting to data from a total of 61 malaria field studies of various different aspects of 
malaria epidemiology,8,9 and are given in Appendix A.1. 
 

 

 Figure 6.1 Simplified processes in the baseline model 
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Simulation of sulphadoxine-pyrimethamine and drug resistance  

  
The benefits of SP depend on a combination of the drug concentration and the 
frequency of mutations conferring drug resistance present in the population,5 however 
the exact time-course and killing action of SP is not known.10 Hastings and Watkins 
quantify the chances of failing treatment with correct dosing for dihydrofolate 
reductase (dhfr) wildtype, 108, doubles, triples at  0, 0, 0, 50% respectively, while 
periods of preventive effect are 52, 12, 12, 2 days.5 We simulate the action of SP 
according to these numbers rounded to the 5 day time steps used by the simulation 
model.  Although dhps mutations have been isolated at the sites, they are not 
considered in this study.  
 

Simulation of clinical episodes 

 
The primary trial outcome was clinical episodes, defined as detected fever or history of 
fever together with parasitaemia, and infants were regarded as not at risk for the 
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following 21 days.3 In our simulations, only fevers presenting for treatment were 
counted as episodes and the infant was classified as not at risk for the following 4 five-
day periods.  
 

Model 2: Alternative time duration for SP action 

The duration of the prophylactic period for SP is not well established. We vary the 
duration of SP action from the baseline model, which has a prophylactic period of 50 
days for wildtype infections,5 to 30 days. This alternative time period was chosen 
because drug concentrations of sulfadoxine and pyrimethamine alone decline log-
linearly, but in combination they are synergistic and an isobologram suggests that there 
is a sharp drop in SP action after approximately a month.11 Observations from field 
studies also suggest that the apparent effect of SP lasts for roughly one month.12-14 
Simulated infections are either sensitive or resistant, and the resistant infections are 
unaffected by drug treatment. 
 
 

Model 3: The timing of episodes produced by a single infection 

In non-immune adults inoculated with P. falciparum as treatment for neurosyphilis, 
untreated infections can persist for many months, during which clinical attacks recur at 
irregular intervals15 (Figure 6.2). The infections cleared or prevented by IPTi would 
therefore have caused repeated fevers, some of which could have occurred 3 months or 
more after infection.  
 
 Figure 6.2 Timing of fevers* resulting from single infections in 334 

neurosyphilis patients 
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 *One fever counted per five-day interval. This data was collected by the 

United States Public Health Service in South Carolina and Georgia 
between 1940 and 1963 and was provided by Dr W Collins (Centers for 
Disease Control and Prevention, Atlanta, GA).  
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The timing of fevers is not well characterized by the baseline model which tends to 
produce too little variation, missing both early and late fevers. We therefore use an 
alternative, simple simulation model based on the empirical timing of fevers to 
examine whether the temporal pattern of fevers resulting from individual infections 
can account for the pattern of trial results for episodes.  

Model 3 is different to the other models in that it is not based on model 1, other than 
the algorithms for the number of infections producing blood-stage parasites in each 
infant.16 For each successful infection, we randomly selected one of the 334 
malariatherapy patients’ timing of fevers. Concurrent infections did not interact and 
there was no acquired immunity. SP was assumed to act in the same way as for the 
baseline model.  
 
 

Model 4: High parasite densities may not be efficient for acquiring 

immunity 

Overwhelming parasite densities may not contribute as much to the accrual of 
immunity as would the same total number of parasites experienced in smaller doses 
over a longer period of time. Such densities cause fever, and the fever itself may also 
hinder the acquisition of immunity, possibly through the loss of T- and B-cells. We 
modify the baseline model to reduce the contribution of parasite density to acquired 
immunity in the presence of a fever.  

In the baseline model (model 1), immunity is modelled as a function of both the 
number of distinct infections that the individual has experienced and his or her 
cumulative parasite load. The cumulative exposure to parasites for individual i of age a 
at time t, ( , )yX i t , is defined as the cumulative sum of daily densities of asexual 

parasites/microlitre of blood since birth up to time t. This can be partitioned into the 
cumulative sum up to time t-1, the previous five-day time-step, and the sum of the 
densities over the last five days, 

5 ( , )Y i t , 

 
1

5( , ) ( , ) ( , )
t

y
t a

X i t Y i d Y i tτ τ
−

−
= +∫      

 
For model 4, we include a parameter 

fβ which fixes the contribution of the current 

density as 
5 ( , )Y i t  if a malarial fever is absent 

0( 1)fβ = = , but may differ from this if a 

fever is present. 
 

1

5( , ) ( , ) ( , )
t

y f
t a

X i t Y i d Y i tτ τ β
−

−
= +∫  

 
We fitted the new parameter 

fβ  to the same datasets used to fit model 1, 

simultaneously with the previously defined parameters.6,8 These parameters estimates 
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are given in Appendix A.1. To calculate ( , , )yX i j t  to correspond to the published 

model,7 we subtract the contribution of infection j to avoid double-counting.  
 
 

Model 5: Surviving infections are attenuated by SP allowing extended 

low-level exposure beneficial to stimulating immunity 

Waning drug concentrations or partial drug resistance may allow parasites to survive 
in the presence of SP whilst restricting their growth.5 This may allow an extended time 
for the immune system to mount a response to the parasite, which could facilitate the 
development of immunity to malaria.17,18 It is not known if attenuated infections can 
lead to enhanced immunity in this way, although there is some experimental data from 
mice that suggests that this may be possible.19 Low levels of blood stage infection in 
humans can induce immunity.20 We hypothesize that infections beginning when SP 
concentrations have decreased to sub-therapeutic concentrations have reduced 
densities and longer durations compared to when there is no SP, and that this enhances 
the development of immunity. 

We modify the baseline model so that a simulated infection beginning within a window 
period after SP treatment has a longer duration and lower densities. The window 
period begins as the prophylactic action ends, and the duration depends on the dhfr 
mutations assigned to the simulated infection (wildtype: 10 days; 108/double/triple: 30 
days). We simulate parasite densities in the same way as for the baseline model, except 
that we reduce all densities from the infection by a third and extend the duration by a 
factor of 3. This value was arbitrarily chosen to represent an upper limit for plausible 
values. The potential consequence of model 5 is to increase the amount of time that an 
infant has low-level parasitaemia, which in turn increases the time that the pyrogenic 
threshold is high. 
 
 

Data sources: The field trials  

A model of IPTi should capture the approximate time-course of efficacy of IPTi trials. 
The most detailed, standardised age-groups are those provided by a systematic 
analysis of six IPTi trials using SP3 (Table 6.1). For practical reasons, we omit studies 
not included in this report.21-24 All six included trials were carefully conducted and 
independently monitored.3  

A critical input for the models is transmission intensity. Reported seasonal 
entomological inoculation rates (EIR) and/or age-prevalence curves were available from 
three trial sites (Manhiça, Ifakara and Navrongo),13,25-27 but not for the remaining three 
(Tamale, Kumasi and Lambaréné).28-30 Thus the formal comparison of models and 
empirical data was restricted to simulations from the former three trials, whilst the 
latter were used to validate model output against general patterns in the trial results.  
 



Table 6.1. Study sites and trial characteristics  
 Schellenberg et al25,26 Chandramohan et al13 Macete et al27 Kobbe et al29 Mockenhaupt et al30 Grobusch et al28 

 

Study site Ifakara, Tanzania Navrongo, Ghana Manhiça, 
Mozambique 

Kumasi, Ghana Tamale, Ghana Lambaréné, 
Gabon 

Pattern of seasonality§ Perennial  Marked seasonality Perennial  Perennial  Perennial Perennial 
Study period 1999-2001 2000-2004 2002-2005 2003-2005 2003-2005 2002-2006 
Transmission Intensity 
(Infectious bites/adult/year) 

2931 in 1999-2000 41832 in 2001-02 38 in 2001-02 approx 400 NK (high) Approx 50 

ITN coverage 
Untreated net coverage 

67% 
 

17%   0% 
15% 

20% 
20% 

<1% 
<1% 

  5% 
85% 

Day 14 ACPR* (95% CI) 66% (55,76)33 78% (69, 85)34 83% (73, 90)35 ‡ 86%(79,91)36  79% (64,90) †37 
Trial characteristics 

Primary outcome: Protective 
efficacy first dose to 12 mo3 

 58.8 (40.9, 71.3) 29.3 (17.3, 39.6) 20.1 (2.0, 34.9) 20.9 (8.9, 31.3) 33.3 (20.7, 43.9) 22.0 (-25.4, 
51.5) 

Number of infants enrolled 
(placebo/active) 

351/350 1242/1243 755/748 535/535 600/600 595/594 

Level of randomisation Individual Community Individual Individual Individual Individual 
Schedule of IPTi doses 
(months) 

2, 3 and 9  3, 4, 9 and 12  3, 4 and 9  3,9 and 15 3,9 and 15 3,9 and 15 

Mean age at doses (months) 2.2, 3.3 and 9.2  3.0, 4.0, 9.5 and 12.6  3.3, 4.4, 9.4 2.8 2.4, 8.1, 14.3 3.1,9.3, 15.3 

Coverage 100%, 95%, 84% 95%, 95%, 90%, 91%. 100%,96%,91% 100%,100%,99% 100%,98%,98%  

Method of case detection Passive  Passive  Passive  Passive+Active 
 (monthly) 

Passive+Active (3-
monthly) 

Passive+Active 
(monthly) 

First-line treatment 
Rescue treatment 

SP 
quinine 

CQ and SP 
quinine 

CQ or SP + AQ 
quinine 

Artesunate+AQ Artesunate 
 

Artesunate 
(+AQ) 

Routine iron supplementation Yes Yes No No No No 
*ACPR=adequate parasitological cure rates in clinical cases (6 months – 5 years, or <5 years) †Children aged 1-10 years 
 ITN=insecticide treated net. NK=not know; § Roca-Feltrer et al, in prep 
‡ 79% infants with triple dhfr and/or dhps mutations at IPTi-3 29  
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For some age-groups, efficacy estimates for episodes defined with two different 
parasite density cut-offs are available: fever plus parasitaemia of any density, and fever 
plus high parasite density. In most cases there is little difference.3,13,25-27 However, a 
discrepancy arises in Navrongo3,13 for children over one year of age where the 
estimated efficacy for high density episodes (≥5000/μl) suggests an increase in episodes 
in the IPTi group compared to the placebo group which is not apparent for episodes 
with parasitaemia of any density. In this case, we use the high density definition 
because it is likely to be more specific in a high transmission area and as age 
increases.38,39 
 

 

Specifying model input values for the trial sites 
 
Transmission intensity, seasonality and ITN use 

We based our model inputs on the published data for seasonality and transmission 
intensities (Table 6.1). In Ifakara, the extensive coverage of insecticide-treated nets 
(ITNs) may have substantially decreased transmission from the reported EIR of 30 per 
year. Our baseline model does not explicitly include a component for the impact of 
ITNs, this is currently being implemented.40 However the most relevant consequence 
for modelling trials of IPTi would be the reduction in transmission to the infants. It is 
likely that ITN use would also decrease onward transmission, but is not expected to 
alter the sporozoite load of an infectious mosquito, nor would a lower sporozoite load 
be likely to lead to less severe outcomes in humans.41-43 

For the Ifakara trial, we gauged the effective overall EIR by comparing observed age-
prevalence44,45 and age-incidence curves for uncomplicated episodes44 and malaria 
hospital admissions46 to simulated age curves for a range of annual EIR values. The 
best-fitting age patterns were produced by an EIR of approximately 4. We also 
considered the effects of decreasing transmission intensity and reduced seasonality.46 
Decreasing transmission has been proposed as a possible explanation for the high 
protective efficacy estimates observed in the Ifakara trial.47 For Manhiça and Navrongo, 
we did not adjust the overall EIR for ITN use. The inputs for the Manhiça field site have 
been previously characterized for the baseline model.48 We validated our input EIR 
value for Navrongo by comparing the simulated age-prevalence curve against two sets 
of survey data.7,49 In addition, we restricted the simulations for Ifakara to infants who 
reached 2 months of age between August and April in order to correspond to the 
recruitment period.  
 

Treatment of clinical episodes  

Only simulated fevers presenting for treatment were counted as episodes and the 
infant was classified as not at risk for the following 4 five-day periods to correspond to 
the trial definitions.3 The proportion of malaria fevers that presented for treatment in 
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the trials is unknown. We estimated this proportion by assuming that fevers were 
treated with a constant probability. We adjusted this probability until our simulations 
of the time to first treated episode matched the published Kaplan-Meier curves for the 
placebo groups. The closest matches were found for Ifakara, Manhiça and Navrongo 
using 20%, 4% and 7% respectively. The value of 4% in infants in Manhiça was similar 
to the previous estimate of 5% for children 1-4 years in a vaccine trial.48 The pattern of 
the estimates is plausible because the Ifakara study area was centred around a town 
with relatively good access to the health facility whereas the other trial settings were 
rural. We assumed that 48% of the severe episodes presented for treatment in all trials 
(Chapter 3).  

Clinical episodes presenting for treatment were given SP in Ifakara and SP with 
chloroquine (CQ) in Navrongo (Table 6.1). In Manhiça, the national policy changed 
from CQ to amodiaquine (AQ) plus SP during the course of the trial. We simulate CQ 
and SP as clearing all infections, sensitivity analyses show that this assumption is not 
critical. The rescue treatment in the Ifakara, Manhiça and Navrongo trials was quinine 
which was given if the infant was admitted to hospital with malaria, presented within 2 
weeks of an IPTi or placebo dose, or presented within 14 days of receiving SP. We 
simulate quinine as clearing all infections within a five-day time-step.  
 
Frequencies of dhfr mutations 

Each simulated infection was assigned a genotype (dhfr wildtype, 108 or double 
mutations, or triple mutations). The frequency of dhfr mutations in each trial site is 
uncertain. Fourteen day adequate clinical and parasitological cure rates (ACPR) are 
available (Table 6.1), but they underestimate the true failure rate.10,50 It is not possible to 
determine by how much the rate is underestimated for an individual site because the 14 
day parasitological failure rates have a low predictive value.50,51 Estimating dhfr 

genotype frequencies from data on the prevalence of mutations in infected humans is 
also difficult, because a combination of mutations may be formed in various ways 
when there are multiple infections. We aim to determine only whether the trial results 
can be reproduced for a reasonable assumed value of the frequency of dhfr mutations 
combined with the baseline model, and so we simulate the trials over a range of 
assumed frequencies. The lower bound of this range was provided by converting the 
lower confidence interval of the 14 day failure rates into dhfr genotype frequencies 
using simulations of the trials which had reported the 14 day failure rates. The value 
producing the best-fitting predictions within this range was chosen.  
 
 

Scenarios used for predicting the impact of IPTi outside of the trial 

settings 

We predicted age-specific protective efficacy and cumulative protective efficacy up to 
the age of four years.  
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We define the cumulative protective efficacy as /
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where c  is the cumulative number of episodes in the IPTi ( i ) or placebo ( p ) groups 

and pyar are the person-years at risk.  

We also predicted the number of acute episodes, severe episodes and combined direct 
and indirect malaria deaths that would be averted for a period of 20 years following the 
introduction of IPTi in a population aged 0 to 90 years. We assumed a reference 
scenario with IPTi doses at 3, 4 and 9 months and then changed the values of different 
variables one by one to investigate their effects on the predicted impact (Table 6.2). The 
simulations were based on a population of 200,000 individuals, with an approximately 
stationary age-distribution matching that of the demographic surveillance site in 
Ifakara, Tanzania, in 1997-99.52  
 
Table 6.2. Variables that vary between scenarios** 
Variable  Description  Levels 
Intensity of 
 transmission 

 Infected bites per adult per year 
prior to the introduction of IPTi‡ 

 High transmission: 200 
Moderate transmission: 100 
Reference: 21 

Low transmission: 6 
Treatment 
coverage 

 Proportion of malaria fevers 
treated  

 4%, 30% 

Drug 
resistance 

 Frequency of 3 different 
genotypes  

 100%, 0%, 0% 
80%, 10%,10% 

20%, 40%, 40% 
0%, 0%, 100% 

Prophylactic 
period 

 Time in days that drug clears 
blood-stage infections for each 
of the 3 different genotypes † 

 0,0,0 days (treatment only) 
50, 10, 0 d (corresponds to SP) 
100, 20, 0 days 

IPTi schedule  Age at doses   3, 4 and 9 months 

Single doses 1.5-24 months* 
IPTi coverage  Proportion of eligible infants 

receiving all 3 IPTi doses 
(coverage with first, second and 
third dose) 

 89% (95%,95%,99%) 

50% (79%,79%,79%) 
100% (100%,100%,100%) 

** One variable was varied at a time. In each scenario, the variables not being evaluated were 
fixed at the reference levels (indicated in bold). ‡The seasonality follows that of Namawala, 
Tanzania.53 Each simulation assumes a recurring pattern of the vectoral capacity. †The 
proportion of infections cleared by the genotypes are set at 100%,100% and 50%. *We 
investigated the effect of age at dose by simulating a single IPTi dose at varying ages. 
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6.4 Results 

Comparison of models with different mechanisms for IPTi  

The agreement between the baseline model predictions and observed trial estimates 
was generally good (Figure 6.3 and Table 6.3).  However, the continued positive 
protective effects of IPTi observed in Ifakara between doses and after the last dose were 
not fully captured. The Ifakara trial results for the periods between doses and after the 
last dose could be matched by reducing the transmission intensity as found in another 
study 47, but only if the intensity was reduced by at least 70% in the second year.  
 
 
 Figure 6.3. Comparison of trial estimates and baseline model predictions of 

protective efficacy of IPTi with SP against clinical episodes, by age group  

protective efficacy (%)
-50 0 50 100

Manhiça

Ifakara

Navrongo

0 24
months

Age groupObserved and predicted efficacy by age group

 
Left side 

 
 

Right side 

     Trial estimate with 95% confidence interval           Baseline model 
predictions. Protective efficacy = percentage reduction in incidence 
of clinical episodes in IPTi group compared to placebo group 
The age groups that the morbidity surveillance refers to are 
illustrated. The arrows point to the scheduled ages at IPTi doses.  
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Table 6.3. Model fit for acute episodes assessed by weighted sums of squares  

 Description of 
model 

Navrongo Manhiça Ifakara  Total 

       
Model 1 Baseline 0.618 0.046 0.239  0.903 
Model 2 30 day SP action 0.557 0.039 0.386  0.982 
Model 3 Repeat episodes 1.515 0.534 0.089  2.138 
Model 4 Avoiding fevers 0.699 0.043 0.180  0.922 
Model 5 Attenuated 

infections 
2.845 0.423 0.128  3.396 

 We calculated the squared difference between the trial estimate and the 
predicted protective efficacy, weighted them by the number of person years at 
risk/100 and summed them to give a measure of the goodness-of-fit. A smaller 
value indicates a better fit. The three trials with EIR measurements were 
formally used to test the models, the remaining three were used only to 
validate the model output against general patterns in the trial results. 

 

 
 
We compared the fit of the different models using weighted sums of squares (Table 
6.3).  None of the alternative models substantially improved agreement over that of the 
baseline model. However, models 2 and 4 also produced predictions which fell within 
the confidence intervals of the estimates of protective efficacy obtained in the trials (not 
shown) and could not be ruled out as providing an explanation for the effects of IPTi. 
Altering the duration of SP action (model 2) improved the fit slightly in the case of 
Navrongo and Manhiça, but reduced the fit for Ifakara, in comparison to the baseline 
model. Overall, however, the predictions were similar to those of the baseline model 
which can most likely be attributed to the similarity of the assumed action of SP since 
only the duration was altered.  The predictions made by model 4 (where fevers 
penalized the acquisition of immunity) did not substantially differ from those of model 
1. The greatest difference was seen in the results for Ifakara, where the assumption of 
benefits to acquired immunity from avoiding fevers increased the predicted efficacy 
between doses and after the last dose. Models 3 and 5 both incorporated processes to 
lengthen the duration of SP action beyond the duration of active drug concentrations.  
Their results were not consistent with Navrongo trial estimates, since they failed to 
capture the lack of effect of IPTi between doses and after the last dose. However, these 
models best predicted the high efficacy estimates observed between doses and after the 
last dose in the Ifakara trial. 
 
Model 1 also adequately predicted the impact of IPTi on hospital admissions (Table 
6.4).  
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Table 6.4. Observed and predicted protective efficacy of IPTi for severe episodes 
presenting for treatment  
 Observed hospital 

admissions with 
parasitaemia  

Observed all-
cause admissions 
 

Predicted admissions 
due to severe malaria 
(model 1) 

   
 first dose - 12months  
Ifakara 58.5 (28.7, 75.8) 29.2 (6.6, 46.2) 48.7 
Navrongo 50.2 (22.6, 68.0) 17.7 (-0.1, 32.3) 32.9 
Manhiça 22.5 (-16.0, 48.2) 24.6 (7.2, 38.7) 30.0 
    
 5 months after last dose  
Ifakara 15.3 (-65.0, 56.5) -4.9 (-47.1, 25.2) 18.5 
Navrongo -14.2 (-95.9, 33.4) -16.3 (-53.0, 11.6) 0.04 
Manhiça -32.0 (-114,  18.2) 8.1 (-25.7, 32.8) -1.7 
    

 
 
We also compared the output of the baseline model with the three trials not included in 
the formal comparison. They reported efficacy estimates in line with the Manhiça and 
Navrongo trials. Only previously unobserved features were used for further validation 
of the baseline model. In the trial in Kumasi,29 IPTi doses were given at 3, 9 and 15 
months of age. Kumasi villages with higher incidence of malaria in the placebo group 
show a linear increase in observed protective efficacy in the following 6 months.54 
Model 1 did not reproduce this result. Our simulated protective efficacy showed either 
no change or a slight decrease over a wide range of incidence values. The observed 
association may be due to different health system coverage in the different villages,55 or 
the additional influence of increased acquired immunity on SP efficacy.54 Alternatively, 
the observation may be due to different specificities of case definitions in the different 
villages.54 The model would be able to capture the effect of treatment coverage if it is 
known, but at present is unable to capture the effect of increased immunity on SP 
action or effects of different specificities since non-malaria fevers are not modelled. 
Model 1 also did not fully capture the large negative efficacy observed for severe 
malarial anaemia in the post-intervention period in the trial in Tamale.30    
 
 

Predicted impact of IPTi using the baseline model 

Predicted patterns of protective efficacy by age were similar for acute malaria episodes, 
severe episodes and malaria-attributable mortality using model 1 (Figure 6.4a), with a 
small negative efficacy after the final dose for all outcomes. The slight delay in the peak 
protective efficacy for mortality is due to the inclusion of indirect malaria deaths, which 
occur as a result of an acute episode in conjunction with a co-morbidity and occur 30 
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days after the acute episode (Chapter 3). In contrast, the cumulative protective efficacy 
varied by outcome in the settings modelled (Figure 6.4b), at four years of age, the 
greatest effect was on mortality, followed by severe episodes. This is due partly to 
different predicted age-distributions of episodes in the placebo group and partly to age-
dependent components in the model for severe episodes and mortality. The cumulative 
efficacy did not fall below zero for this or any of the other scenarios we have simulated. 
 
 
Figure 6.4 Predicted protective efficacy and cumulative protective efficacy by age  
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 a. Predicted efficacy by age. b., Predicted cumulative efficacy by age for the reference 

scenario (Table 6.2) using model 1. IPTi doses were given following an EPI schedule at 3, 
4 and 9 months of age. Dotted line=clinical malaria episodes; dashed line=severe 
episodes; solid line=malaria-attributable mortality. 

 

 
 

The predicted number of episodes averted increased steadily over 20 years from the 
introduction of an IPTi programme (Figure 6.5). The linear increase reflects the 
negligible impact of IPTi on transmission and the short-term effects of IPTi in 
individuals. The predicted number of clinical episodes averted was greatest for 
moderate transmission settings (Figure 6.5a), but the number of deaths averted was 
greatest for higher transmission settings (Figure 6.5c). The number of deaths averted 
was greater for settings with a lower proportion of fevers treated and for IPTi drugs 
with a longer prophylactic period (Figure 6.5). Higher IPTi coverage and greater drug 
efficacy (or lower drug resistance) were also predicted to avert a greater number of 
episodes (not shown).  The small predicted negative efficacy following the last dose as 
shown in Figure 6.4 was reduced both in settings where the impact of IPTi was less, 
such as with low drug efficacy or a high proportion of treated fevers, and in settings 
where there was low transmission intensity and thus little acquired immunity.  
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Figure 6.5 Predicted number of episodes averted by time since start of IPTi programme 
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Variables not being evaluated were fixed at the reference levels defined in Table 6.2 
 
 
We simulated the number of episodes averted for varying Expanded Programme on 
Immunization (EPI) schedules (not shown). Predictions suggested that the spacing of 
doses was important, with a greater number of episodes averted for doses at 4, 6, 9 
months compared to 4, 5, 9 months.  For simplicity, we show the effect of age at the 
time of doses by simulating a single dose although the number of episodes averted 
with a single dose is lower than with the three dose schedule. A single SP dose was 
predicted to have a beneficial impact for all of the transmission intensites and ages up 
to 24 months. The age at which the maximum number of acute episodes and deaths 
were averted for a single SP dose was approximately 5 months for both high and 
moderate transmission intensities, but there is no obvious peak within the first 24 
months for low transmission intensities (Figure 6.6). For severe episodes, two peaks are 
apparent for the high and moderate transmission intensities. These reflect a shift 
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between two types of severe malaria in the model. At younger ages, the majority of 
severe episodes averted are caused by an acute episode in conjunction with co-
morbidity, and at older ages, overwhelming parasitaemia. For a single dose at older 
ages, the number of episodes averted by a single dose is greater for moderate 
transmission intensities. At low transmission intensities, it is been proposed that doses 
at later ages would avert the greatest number of episodes,56 and our predictions are 
consistent with this. However, there is greater uncertainty in our predictions for low 
transmission intensities due to the effects of heterogeneity.6,8 
 
 
 
 
 Figure 6.6 Predicted number of episodes averted per 1000 population over 20 

years by a single dose of IPTi by age at dose: a) acute episodes b) severe 
episodes c) malaria-attributable mortality 
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6.5 Discussion 

Trial-specific inputs together with the baseline model reproduced the pattern of trial 
results reasonably well. Although there was no clear ‘best model’, none of the 
alternative models substantially improved agreement. This indicates that known 
features of malaria epidemiology together with the duration of SP action can account 
for the trial results and the variability between them. However, other hypotheses 
involving interactions between drug concentrations and acquired immunity or fevers 
and acquired immunity could not be ruled out as possible mechanisms.  

Predictions using the baseline model suggest that IPTi using SP is effective over a wide 
range of transmission intensities at reducing malaria clinical episodes and malaria-
attributable mortality in infants. Small negative protective efficacy values were 
predicted for a short time following the prophylactic periods, but these were 
outweighed by the cumulative benefits. The predicted short-term impact of IPTi on an 
individual’s level of immunity and negligible effect on transmission intensity produced 
a steady rate of cases averted in the community over time from the start of an IPTi 
programme. IPTi was predicted to avert a greater number of episodes where IPTi 
coverage was higher, the health system treatment coverage lower, and for drugs which 
were more efficacious. A greater number of episodes were also averted with longer 
drug prophylactic periods, agreeing with considerations that the prophylactic period is 
important for IPTi.57 The predicted reductions in mortality were not as large as those 
observed with ITN programmes or interruption of transmission. IPTi has a similar 
effect on severe episodes as a pre-erythrocytic vaccine with assumed characteristics,58 
but a much lower impact on uncomplicated episodes. This is likely to be due to the age-
distribution of episodes and the longer-lasting effect of the pre-erythrocytic vaccine. 
The predictions also point to when IPTi is likely to not be useful. The number of cases 
averted is predicted to be fewer where IPTi coverage is lower, the health system 
treatment coverage is higher, and for short-acting drugs. At very low transmission 
intensities the predicted number of cases averted is few, however the model is likely to 
be less reliable at low transmission intensities6,8  and so it is not easy to determine a 
transmission intensity below which IPTi is not useful.  

This study offers possible explanations for the very strong positive protective efficacy 
observed in the Ifakara trial between doses and following the last dose. Three models 
produced predictions consistent with the observed results (Table 6.3), two describing a 
process for the continued positive benefits of IPTi, either by enhancing the acquisition 
of immunity (model 5) or by clearing infections which may have caused future clinical 
episodes (model 3), and model 1 in conjunction with sharply decreasing transmission. 
Neither model 3 nor 5 reproduced the results from the other sites as well as model 1. In 
the case of model 5, it is not easy to see why enhancing immunity should work only at 
low transmission intensities. However, it is possible that effects resulting from the 
timing of episodes (model 3) are only apparent at low transmission intensities. They 
may be otherwise obscured by processes such as interactions between infections or 
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acquired immunity. However, it is also possible that infections have shorter durations 
in infants than in adults.59 Model 1 was able to reproduce the Ifakara trial results only if 
the initial EIR of 4 decreased by 70% or more in the second year. This is a substantial 
decrease and it is not known whether the transmission intensity did decrease so 
markedly over the study period (1999-2001). The incidence of uncomplicated episodes 
halved between 1995 and 2000.46 Decreasing transmission intensity was shown to be 
consistent with the Ifakara results in another modelling study, but also required a 
substantial decrease of 22% per month.47 Although the causes underlying the Ifakara 
results remain unknown, it seems reasonable that transmission intensity, either low or 
decreasing, is likely to have played a role. The potential contribution of the high 
coverage of ITNs to the large impact of IPTi in Ifakara has been noted elsewhere.60  

The predicted impact on indirect malaria mortality was greater than that on direct 
malaria mortality. The predictions for indirect malaria mortality, and to a lesser extent, 
severe episodes rely on age-dependent co-morbidity functions. In a trial setting with 
access to good health care, the age-pattern of comorbidity may be quite different to that 
implicitly assumed by our models, which were fitted to other datasets (Chapter 3). In 
this case, the impact of IPTi on severe malaria and malaria-attributable mortality would 
be expected to be lower. Reductions in mortality have not been observed in the field 
trials reported to date, but the trials were not powered for this outcome. 

This is the most comprehensive model to date, but still has certain limitations. The 
model predictions are unlikely to be reliable for low transmission intensities due to 
factors such as micro-heterogeneity and in-migration,8 and thus it is difficult to 
determine the range of transmission intenities where IPTi is not useful.  

We were unable to capture the effects of drug levels on parasite population dynamics 
by the current within-host model which relies on empirical averaged parasite densities. 
A within-host model which will capture immune development more explicitly is in 
preparation, and will include several immune responses, fevers and antigenic variation. 
It will also allow a more realistic model of the action of SP.  

The model component for the action of SP was compatible with our model of malaria 
epidemiology. It is a simple model derived from dose-response curves and 
isobolograms.5 SP is assumed to act on the infection, either clearing it or not. This 
model would be unable to account for certain observed effects such as density-
dependent cure rates or effects of acquired immunity. A more refined model would 
allow the drug concentrations to affect individual parasites. Such a model has been 
formulated by Gatton and colleagues.61  All SP models to date have been constructed 
using data on SP concentrations in adults. There is evidence that SP is cleared more 
quickly in children and requires a greater dose per kilogram to reach the same 
concentrations,62 but little is known about infants. Data on the pharmacokinetics of SP 
in infants and the impact on infections with dhfr and dhps mutations are needed.63 
Adverse side-effects of SP are beyond the scope of this model. Although very rare, 
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these have been reported.29 The model also does not incoporate the effect of IPTi on 
levels of drug resistance, which has been modelled elsewhere.64,65 

We did not include the impact of IPTi on anaemia in our model. Whilst anaemia is an 
important consequence of malaria, the lack of knowledge about the dynamic effects of 
malaria and anaemia on one another limits our ability to construct a satisfactory model. 
We have previously used a model relating anaemia to the population prevalence of 
parasitaemia66 to predict the impact of pre-erythrocytic vaccines.58 However, in the case 
of IPTi, the short-term blood-stage effects of the drugs and use of iron supplementation 
in some of the trials rendered this model unsuitable. A model of anaemia may be able 
to account for the severe malarial anaemia rebound which was observed in the trial in 
Tamale.30 

In conclusion, several models reproduced the trial data adequately so a single clearly 
preferred hypothesis for the secondary effect of IPTi on anti-malarial immunity cannot 
be identified. The previously published model adopted as our baseline model,6 with 
additional components for the action of SP, can reproduce the trial results using known 
features of malaria epidemiology. We propose that this model is suitable for making 
predictions of the impact of IPTi. These predictions suggest that IPTi would have a 
beneficial impact across a wide range of settings. These analyses contribute to a 
growing database of the likely effectiveness of different malaria control strategies 
generated using this common simulation platform.8 
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Chapter 7: Discussion  

    

 

The development of an integrated model of malaria was motivated by the need for 
predictions of the likely impact of interventions. This is the first major attempt to model 
the dynamic effects of malaria transmsission, parasitological status, morbidity, 
mortality and cost-effectiveness using model components fitted to field data. This 
thesis contributes the elements that consider the immediate consequences of human 
infection: uncomplicated morbidity, severe morbidity, mortality and transmission to 
the vector. The integrated model was also applied to specific questions concerning one 
potential intervention, IPTi.   

A detailed discussion on the findings was given in each chapter. In this discussion, the 
model components are set in context and strengths and limitations are discussed with 
an emphasis on the special features of models of downstream events. 
 

 

 

7.1 The context of the models 

7.1.1 Integrated models 

There is no other malaria model which combines parasitology, burden of disease, 
health systems, transmission and economics. The integrated models that exist mostly 
fall into two categories. Those in the first category are constructed by combining 
biological components, for example embedding a within-host model into a population 
model,1 including both human and mosquito populations,2 or incorporating both 
biological and environmental components.3 Whilst these models extend the scope of 
biological models, they do not include morbidity, mortality or cost-effectiveness. These 
measures are, however, included in the second category of integrated models,4-7 which 
aim to predict the epidemiological impact and cost-effectiveness of different 
interventions. The models are constructed by combining empirical estimates of the 
effectiveness of interventions (often as a percentage reduction), studies on disease 
burden, and unit costs. There is no explicit consideration of the dynamics of 
transmission and immunity, in particular the loss of population immunity which 
results from reduced exposure.8 One previous model does straddle biology and 
economics, combining a model of the transmission of drug resistant parasites with 
economic data.9 
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7.1.2 Models of acute malaria episodes  

There are few mathematical models of morbidity and mortality due to malaria.1,10 This 
may be partly due to the focus on transmission of early models of malaria, and partly 
because the mechanisms are  unclear.11 Some models incorporate fever, and these vary 
widely in both their purpose and in the platform on which the fever component rests. 
The primary purpose of some of these models is to investigate the effect of fever on 
parasite dynamics due to temperature-induced mortality.12-14 Others explored the 
nature of acquired immunity.15-17 Some, including the component reported in Chapter 3, 
make predictions of the impact of interventions on morbidity.18,19  

An early model by Aron assumed that there was a class of susceptibles who became ill 
on infection.16 The assumption that non-immunes experience symptoms immediately 
following successful blood-stage infection is contradicted by data from deliberate 
infection of patients with P. falciparum as therapy for neurosyphilis. Subsequent models 
have used a pyrogenic asexual density threshold. Initially, a constant pyrogenic 
threshold was used.15,18 An analysis suggesting that pyrogenic thresholds increase 
during the course of an infection prompted time-specific pyrogenic thresholds to be 
incorporated into a model investigating antigenic variation.20 Wide variation between 
individuals prompted individual-specific thresholds in a model describing the first 
wave of parasitaemia.19 These were estimated by fitting the model to each individual in 
turn. The model component in Chapter 2 has a pyrogenic threshold which responds 
dynamically to the parasite load, and is therefore both individual- and time-specific. 

 

7.1.3 Models of severe malaria episodes 

Only three previously published models describe the processes leading to severe 
malaria.  Gupta and others assumed that severe malaria occurs following successful 
blood-stage infection in non-immunes, and that immunity is acquired after a number of 
infections.  They concluded that whilst strain-transcending immunity was important 
for non-cerebral severe malaria,21 cerebral malaria was a discrete syndrome caused by a 
discrete set of P. falciparum antigenic types for which strain-specific immunity is 
important.22 Again, the assumption that non-immunes experience symptoms 
immediately following successful blood-stage infection is contradicted by the malaria 
therapy data. The notion of distinct syndromes in severe malaria has been questioned,23 
as has the structuring of parasite populations into a limited number of strains (Chapter 
2).    

Dietz and others19 added a component for severe morbidity  to their within-host model 
of the first wave of parasitaemia. The incidence of severe malaria was assumed to be 
related to a large parasite biomass, and a common threshold of asexual parasite density 
was used for all patients. The model described in Chapter 3 incorporates two processes 
for severe malaria. One is a large parasite biomass (related to asexual parasite density) 
similar to the model by Dietz and others. The other is a novel process allowing the 
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recognition that severe malaria may be triggered by an uncomplicated malaria episode 
in conjunction with co-morbidity.  
 
 

7.1.4 Models of malaria-associated mortality 

Malaria mortality has been incorporated into simple models of the impact of an 
intervention. The models combine estimates of the effectiveness of an intervention from 
clinical trials or other field data, estimates of the disease burden and unit costs to 
estimate the reduction in morbidity, mortality and the cost-effectiveness of an 
intervention.5,6,24 These models do not consider the dynamics of transmission and 
immunity, and thus ignore feedbacks such as a reduction in transmission and loss of 
population immunity. Recently, Hastings and others constructed models which predict 
direct and indirect malaria mortality from the frequency of a mutation encoding drug 
resistance.25 

The model components described in Chapters 3 and 4 includes both direct (following 
an episode of severe malaria), and indirect mortality (where the host is weakened by 
comorbidity, or via maternal infection). By specifying the processes leading to death, 
the integrated model has the advantage of being able to predict effects of interventions 
where estimates of the impact are not available and to take dynamic effects into 
account.  

Models of neonatal mortality are few and have been reviewed in Chapter 4. They 
depend heavily on birth weight as a mediating variable, but with present data this is 
difficult to avoid. Chapter 4 provides a review of the evidence of neonatal mortality 
due to maternal infection across a wide range of transmission intensities. Recent 
analyses have added to the information available on the association between maternal 
infection and infant mortality,26 and the timing of infections and adverse birth 
outcomes.27 
 
 

7.1.5 Models of infectivity of humans to mosquitoes  

As an essential part of the transmission cycle, infectivity of humans to mosquitoes has 
attracted more attention than morbidity and has long been incorporated into models of 
malaria transmission. Early compartmental models define a fixed period of human 
infectivity.28,29 Dietz and colleagues30 allows differences between classes of human hosts 
in infectiousness: individuals classed as immune are not infective to mosquitoes, and 
positives can be  infective or non-infective  (infective positives convert to non-infective 
positives). An individual-based model by Gu et al 2 allows the probability of infecting a 
feeding mosquito to be less than 1. Infectivity was fixed at probability c, after the 
incubation period.  

These models do not incorporate the wide variation in infectivity observed in the 
malariatherapy experiments both between individuals and over the course of an 
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infection. Densities are an obvious way of incorporating this variation and since 
infection of the mosquito requires gametocytes to be taken up in a blood meal, the 
process is likely to be density-driven. Gametocyte densities themselves have been 
included in some models either as the focus31 or as part of the parasite dynamics.32 A 
recent model by Gatton and colleagues33 relates asexual parasite densities to 
subsequent infectivity by explicitly modelling gametocytogenesis. The components for 
gametocytes and subsequent infectivity were added to their individual-based stochastic 
within-host model.20 Stochasticity is included at three points: the conversion rate of 
asexual parasites to gametocytes follows a lognormal distribution, as does the lifespan 
of gametocytes, and the number of gametocytes ingested by the mosquito follows a 
negative binomial distribution. In comparison, the model component described in 
Chapter 5 does not explicitly include gametocytogenesis. Instead it was modelled 
implicitly by estimating infectivity from analyses of the association between lagged 
asexual densities and infectivity. This allows us to avoid modelling unnecessary 
variables which have an uncertain quantitative relationship with infectivity, and 
implicitly takes into account the timecourse of gametocytaemia. Stochasticity is 
introduced both via the stochasticity already present in the parasite densities and via a 
lognormal distribution for the ratio of functional female (or male) gametocytes per 
blood meal to the weighted sum of asexual parasite densities. Both models address the 
need for both a functional male and female gametocyte to be taken up in the blood 
meal. The males and females are assumed to be independently distributed in the blood, 
but this may not be the case.34  
 
 

7.2 Strengths and limitations of model components for 

downstream events 
 
Many features of the model components are both strengths and limitations. 

 

7.2.1 Integration into a comprehensive model 

Whilst each component contributes a novel sub-model, a great strength of this work is 
that the components are integrated into a comprehensive model. The whole is greater 
than the sum of its parts: together the components provide the power and flexibility to 
provide predictions of key indicators of interest to programme planners of the impact 
of many different types of interventions on a common platform. The model can also 
suggest where to look for counter-intuitive effects.  

The scope of the predictions is not unlimited. The model does not incorporate 
interactions with specific other diseases, such as HIV. It is unable to forecast effects of 
an intervention beyond those on malaria, for example the effect of DDT on the 
environment. It does not predict social outcomes, such as equitable access to health 
care, nor does it take into account spatial information. Very recently, there has been 
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some interest in the goal of elimination. It is not advisable, however, to use this model 
to make predictions of whether malaria interventions might lead to elimination in an 
area. There are factors, such as microheterogeneity in transmission and in-migration, 
which are not accounted for in the model but which become increasingly important in 
low transmission settings. In addition, much of the data used for estimating the 
parameter values came from areas with medium or high transmission intensities.  

A potential disadvantage to an integrated model is that it can be perceived to be 
complicated. Adding even very simple sub-models together can produce a model 
which is difficult to conceptualise. The cut-off for deeming a model too complicated is 
highly individual. A complicated model can lead to a lack of acceptance,35 and can 
deter questions and hide crucial assumptions.36,37 It may be difficult to identify the 
drivers of an effect other than by making predictions.  
 

 

7.2.2 Fitting the model to data 

All of the parameters in the model were fitted to data to ensure that the elements of the 
model conform as far as possible to reality and to minimise uncertainty in the 
predictions. This is a substantial improvement over most malaria models. There have 
been only limited efforts to optimize models of malaria by formal fitting to data, most 
models being superficially validated against field observations. The model by Dietz 
and others30 was the first fitted to data.38 Cancre and others39 used MCMC methods to 
fit parameters to the model by Struchiner and others.38 

Fitting the integrated model to data presented several challenges. One source of 
difficulty was gaps in the data available such as the unknown burden of malaria in 
adults, the lack of direct data on malaria-attributable neonatal mortality, the absence of 
a proxy variable for immunity and uncertainty in health system parameters. In 
addition, many sites with carefully collected information on morbidity or prevalence 
could not be matched exactly to entomological data.  

The second obstacle was the enormous computational power required to estimate the 
parameters of the stochastic simulation model. Some components could be fitted to 
data without requiring other parts of the model and thus were relatively 
straightforward. The components for infectivity (Chapter 5) and malaria-attributable 
neonatal mortality (Chapter 4), as well as anaemia40 were estimated in this way. 
However, where simulations were necessary, the computational demands were much 
greater. Harnessing sufficient power to fit the parameters was achieved by distributed 
computing, initially using computers within the Swiss Tropical Institute and later 
through volunteer computing via the internet. This is described in detail elsewhere.8,41 
The parameter estimates from the different methods of fitting are given in Appendix 
A.1. Overall, they did not differ substantially. A probalistic sensitivity analysis of the 
parameter estimates is currently underway.  
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Whilst the problem of sufficient computational power has been solved, other issues 
remain. Parameters of the components can be fitted simultaneously but it is unclear 
how best to weight the different outcomes of parasite prevalence, densities, multiplicity 
of infections, incidence of acute and severe episodes and mortality. Currently they each 
have approximately equal weight. The best algorithm for fitting is also unclear.8 Many 
diverse fields such as fisheries42 and climate modelling face the same challenge of 
fitting to data on multiple outcomes, and this is an active area of research in 
computational sciences.  

Finally, estimating parameters for biologically plausible models can lead to 
collinearity.43 It was found, when fitting the indirect mortality component, that the 
parameter values for non-malaria infant mortality and the co-morbidity prevalence at 
birth were highly correlated.  

 

7.2.3 Heterogeneity 

Important patterns at the community level derive ultimately from differences among 
individuals.11,37 Although the model is an individual-based one, it was fitted to 
aggregated data. The predictions for an aggregated number of simulated individuals fit 
well to the data, however the extent to which variations in longitudinal patterns from 
individuals are captured has not yet been investigated. Some heterogeneity between 
simulated individuals arises because of effects of host age, seasonality of transmission 
and propensity for high parasite densities and stochasticity additionally occurs 
throughout the model. Further sources of heterogeneity are not included. Stochastic 
models can easily capture heterogeneity in transmission between hosts by sampling 
from distributions without explicitly stating what the sources of variation are. A 
component for between-individual micro-heterogeneity in transmission has been 
recently developed.44  

Heterogeneity in single variables is known to have important effects for modelling such 
as sustaining parasites in a population.11,36,45,46 Heterogeneity can also bias predictions of 
the impact of interventions.35,47 A recent paper showed that there were differential 
effects of heterogeneity in biting rates on R0 depending on the population size.48  

A myriad of heterogeneities affect malaria epidemiology, falling into roughly into four 
categories (i) heterogeneity of transmission; (ii) biological heterogeneity of the host in 
susceptibility and response to malaria infection49-52; (iii) heterogeneity in host 
behaviour, including quality of housing, use and knowledge of protective measures 
such as ITNs and treatment-seeking strategies; and (iv) heterogeneity in the risk of co-
morbidity and nutrition.  

Heterogeneities in the four categories are unlikely to be uncorrelated. A factor, such as 
socio-economic status (SES), may be associated with several different types of 
heterogeneity.  SES can influence transmission through quality of housing, knowledge 
of protection measures and use of ITNs.53,54 Risks of co-morbidity and malnutrition may 
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be associated with SES.55 SES may influence treatment-seeking behaviour. Amongst 
carers of children in rural Tanzania, treatment-seeking and knowledge of danger signs 
were worse in poorer families.56 Such inequalities tend to persist over time.57  

The effects of multiple sources of heterogeneity on models for predicting the effects of 
interventions are not established. It is not known whether the effect of heterogeneity in 
biting rates between individuals on R0 is altered in the presence of other kinds of 
heterogeneity. This is likely to depend on the extent to which they covary. Covariance 
between the four categories is plausible, and the degree to which it occurs likely to vary 
from site to site. An analysis of the effect of heterogeneity in parameters of the 
Macdonald model on the estimation of R0 reported a change in R0 if a parameter co-
varied with a second parameter.35 R0, however, may not be the most important measure 
unless elimination is under consideration. 

More generally, covariation may describe sub-groups within a population. Ignoring 
this structure may create problems for an integrated model when estimating the 
parameters of the individual components, or when simulating an intervention trial 
since different subgroups can respond differently to an intervention (for example58). A 
sub-population may be reached neither by the health system nor by any of several 
interventions. Further work is needed to determine the circumstances under which 
multiple covarying sources of heterogeneity may affect conclusions from a 
comprehensive model about the impacts of different interventions. 
 

 

7.2.4 Validation  

The model has been validated to a limited extent. The validation criteria were aimed at 
both the individual model components and the model predictions of the impact of an 
intervention. 

Validation of the model components was possible for some outcomes. For example, the 
model component for infectivity was constructed using the malariatherapy data and 
then validated against field data (Chapter 5). In other cases, however, all the available 
relevant data was used for fitting the component parameters, such as for morbidity and 
mortality (Chapters 2, 3 and 4). Even where validation criteria are aimed at a particular 
component, they were frequently conditional on other components such as 
parasitology. 

The model predictions have been validated against data from trials of interventions. 
The model has reproduced the results from the trial of a pre-erythrocytic vaccine59 and 
the IPTi trials (Chapter 6). Although important for gaining credibility, the process of 
comparing model output to trial data is limited for validation.60 Parts of the model may 
well be conceptually acceptable even though the integrated model is unable to 
reproduce the trial results. Conversely, the integrated model may be validated even 
though parts of the model are unsound.61 The best model in terms of formulation may 
not be the best-fitting model, as found by Nedelman who fitted the Garki model and 
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several variants to the Garki data.62 A further problem when using trial data to validate 
the model output is that the required model inputs, such as transmission intensity, may 
not be known. They are a prerequisite for validation.63 In Chapter 6, the characteristics 
of some IPTi trial sites could not be determined. This uncertainty made it less likely that 
a model could be rejected on the grounds of fit since a range of values was simulated 
for the uncertain inputs such as the frequency of drug resistant infections. Others have 
found similar problems. Najera used the Macdonald model to help plan a field trial of 
interventions, but found that most of the necessary input variables were lacking or not 
sufficiently known.64 
 

 

7.3 Implications of the application of the model to IPTi   
 
The application of the integrated model to IPTi demonstrates that, with site-specific 
inputs, the model can reproduce the results of several trials and that it can provide 
information and observations which are potentially useful to decision-makers. 
Although more than one hypothesis remains in contention, it was shown that no 
interactions between SP concentrations, fever and acquired immunity need be assumed 
to reproduce the observed pattern of trial results. Predictions suggest that IPTi with a 
reasonably efficacious long-acting drug would be effective in a wide range of 
epidemiological settings. To complement these results, predictions of cost-effectiveness 
are planned, as well as a comparison of the effectiveness of IPTi and seasonal IPTc in 
different settings. In the longer-term, predictions of IPTi should be integrated with 
those of other interventions to be able to inform an integrated malaria control 
programme.  

The predictions were influenced by the individual model components. The differing 
predicted cumulative efficacy of IPTi on different outcomes was driven by the age-
dependent co-morbidity functions for both severe malaria and indirect mortality. 
Avoiding an acute episode during ages when the risk of co-morbidity is highest 
reduced the cumulative risks. The model predicts little impact on transmission 
intensity; the infants contribute little to the infectious reservoir because they make up a 
small percentage of the population, and have a low parasite prevalence and small body 
size.   

The study was conducted under the co-ordination of the IPTi Consortium. The 
consortium was formed to develop and co-ordinate a research and implementation 
agenda that would resolve outstanding scientific questions about IPTi and move the 
intervention into policy and practice. Alongside other evidence of the suitability of 
IPTi, modelling can play a role in evaluating applicability, but timing, communication 
and overcoming resistance to modelling are crucial to whether decision-makers can 
fully capitalise on these results.  
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7.4 Outlook 
 
The model components described here contribute to the most comprehensive 
integrated model of malaria to date. The modular structure of the integrated model 
allows all of the model components to be improved and extended in the future. Models 
for vector control, within-host parasite dynamics, heterogeneity, drug resistance, decay 
of acquired immunity are all in development. The model will be further validated and 
improved as an iterative process. 

The model has been applied to IPTi in this thesis, and to pre-erythrocytic vaccines.65,66 It 
can be easily adapted to predict the dynamic effects of different interventions, and 
different combinations of interventions. The accumulating collection of predictions will 
be a valuable resource for a rational basis for decisions about malaria control strategies. 
Bringing about a sustained reduction in the intolerable burden of malaria is long 
overdue, and the model makes a contribution to achieving this goal.  
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Appendix A.1 

 

Equations and parameter estimates  

of the integrated model of malaria epidemiology 
 
 

Infection of the human host1 

( , )aE i t , the age-adjusted EIR for individual i at time t, is given by 

 

max

( ( , ))
( , ) ( )a max

A a i t
E i t E t

A
=        (A.1) 

 
where, ( ( , ))A a i t is the average body surface area estimated for an individual of age 

( , )a i t  and maxA  is the average surface area of people aged 20 years or more in the same 

population. Emax (t) refers to the usual measure of the EIR computed from human bait 
collections. The force of infection is then 
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where * *, , , ,imm p pS X E Sγ ∞  are constants (Table A.1) and 
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X i t E i dτ τ
−

= ∫ .       (A.3) 

 
The number of infections ( , )h i t  introduced in time step t, is distributed as 

 
( , ) ( ( , ))h i t Poisson i tλ∼        (A.4) 

 

Characteristics of the simulated infections2 
 

Each new infection j, initiated in individual i at time 0t  is assigned a duration of maxt , 

sampled from 
 

( )maxln ( , ) ~ (5.13,0.80)t i j Normal      (A.5) 
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The log density in the absence of previous exposure at each time point, 

max0,1,..., ( , )t i jτ =  of the infection j in host i is then normally distributed with 

expectation 
 

( )( )0 maxln( ( , , )) ln ( ) ln ,Gy i j d i yτ τ τ= +      (A.6) 

 
where ( )max,Gy τ τ  is an empirical description of malariatherapy patients from the 

Georgia hospital and d(i) represents between-host variation drawn from a log-normal 
distribution with variance 2

iσ . 

 
We measure exposure to asexual blood stages with 
 

0,
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t t

y
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X i j t Y i d y i j dτ τ τ τ
−

= −∫ ∫     (A.7) 

 
where ( , )Y i τ  is the total parasite density of individual i at time τ  and ( , , )y i j τ  is the 

density in individual i for infection j at time τ , and 
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The expected log density for each concurrent infection is then 
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where M(t) is the total multiplicity of infection and  
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and *

yX , *

hX , xD , *

ma , and mα , are further constants.  

 
Variation within individual hosts is quantified by a term 2 ( , , )y i jσ τ , where 
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and 2

0σ  and *

vX  are constants (Table A.1). The simulated densities are specified using 

 
2ln( ( , , )) ~ ( (ln( ( , , ))), ( , , ))yy i j Normal E y i j i jτ τ σ τ    (A.14) 

 
The total density at time t in host i is then the sum of the densities of the various co-
infections j i.e. 
 
( , ) ( , , ( , ))

j

Y i t y i j i jτ=∑       (A.15) 

 

 

Model for infectivity of the human host (Chapter 5 and Killeen and others3) 

Let 
 

1 2 3
( , 3)( , 2)( , ) ( , 4)Y i tY i ti t Y i tββ β − +− +ϒ = −      (A.16)  

 
where t is in five-day units, and  
 

2ln( ( , )) ~ Normal(ln( ( , ))), )g gy i t i tρ σϒ     (A.17) 

 
where 2

1 2 3
,, , , g
ββ β ρ σ  are constants (Table A.1). Define 
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where Φ  is the cumulative normal distribution. Then the proportion of mosquitoes that 
are infected feeding on individual i at time t is 
 

 
2

*( , ) Pr( ( , ) )m g gI i t y i t y = >        (A.19) 

 
and the probability that a mosquito becomes infected at any feed is 
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where η  is a constant scale factor. 

 
Define (0) ( )u tκ  as the value of ( )u tκ  in the simulation of an equilibrium scenario to 

which an intervention has been applied. Let (0)

max ( )vE t l+  be the corresponding 

entomological inoculation rate. (1) ( )u tκ  and (1)

max ( )vE t l+  are the corresponding values for 

the intervention scenario. Then 
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where vl  corresponds to the duration of the sporogonic cycle in the vector, which we 

approximate with ten days. ( (0) (0)

max ( ) / ( )v uE t l tκ+  is the total vectorial capacity). 

 

Acute morbidity (Chapter 2) 

An episode of acute morbidity occurs in individual i, at time t, with probability 
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where *Y  is the pyrogenic threshold and maxY  is the maximum density of 5 daily 

densities sampled during the 5-day time interval t. The pyrogenic threshold evolves 
over time via 
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with the initial condition * *

0( ,0)Y i Y=  at the birth of the host and * *

1 2,  ,  ,  and Y Yα ϖ  are 

constants. 
 
We consider two different classes of severe episodes, B1 and B2. 

1
( , )BP i t  is the 

probability that an acute episode is a class B1 severe episode and is specified using 
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where *

1B
Y  is a constant and H( , )i t  is the clinical status. 
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The second, non-intersecting, subset of severe malaria episodes (B2) occur when an 
otherwise uncomplicated malaria episode happens to coincide with some other insult, 
which occurs with risk 
 

 0
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F
F a i t

a i t
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=
 

+  
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      (A.25) 

 
where 0F  is the limiting value of ( ( , ))F a i t  at birth, and *

Fa  is the age at which it is 

halved.  
 
The probability that an episode belonging to class B2 occurs at time t, conditional on 
there being a clinical episode at that time is 

2
( , )BP i t  where 

 

2 2( , ) Pr(H( , ) B | H( , ) A) ( ( , ))BP i t i t i t F a i t= ∈ ∈ =    (A.26) 

 
The age and time specific risk of severe malaria morbidity conditional on a clinical 
episode is then given by 
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Mortality (Chapters 3 and 4) 

Malaria deaths in hospital are a random sample of those severe malaria cases deemed 
to be admitted, with age-dependent sampling fraction ( )hQ a , the hospital case fatality 

rate, derived from the data of Reyburn and others.4 
 
We estimate the severe malaria case fatality in the community, ( )cQ a  for agegroup a  

with 
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,                                                               (A.28) 

 

where 1ϕ , the estimated odds ratio for death in the community compared to death in 

in-patients, is an age-independent constant and ( )hQ a  is the hospital case fatality rate. 

Malaria mortality is the sum of the hospital and community malaria deaths. The risk of 
neonatal mortality attributable to malaria (death in class D1) in first pregnancies is set 
equal to 0.3 PGµ  where PGµ  is given by 
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max *
1 exp PG

PG

PG

x

x
µ µ

  
= − −  

  
,          (A.29) 

 
where PGx  is related to MGx , the prevalence in simulated individuals of age 20-24 years 

via  

*

1
1

1

PG

MG

MG

x
x

x

= −
 

+  
 

                                                                                 (A.30)  

 

and *

MGx and *

PGx  are constants (Table A.1).  

 
An indirect death in class D2 is provoked at time t, conditional on there being a clinical 
episode at that time, with probability 

2
( , )DP i t  where 

 

2 2( , ) Pr(H( , ) D | H( , ) A)DP i t i t i t= ∈ ∈  and 

2

*

( , )
( , )

1

D
D

F

Q
P i t

a i t

a

=
 

+  
 

            (A.31) 

 
where DQ  is limiting value of 

2
( , )DP i t  at birth and *

Fa  is a constant. Deaths in class D2 

occur 30 days (6 time steps) after the provoking episodes.  
 

Anaemia75 

 
The prevalence of anaemia, ( , )Ap a t , in age group with mid-age a, at time t is specified 

by 
 

( ) * ( , )
logit ( , ) ( , ) log( )

* * ( , )

a2 P P
A a0 I P

P

a p a t
p a t p a t a

a a p p a t

β β
β β= + + +

+ +
           (A.32) 

 
 
where ( , )Pp a t  is the prevalence of patent parasitaemia in the age group and 

0β , Pβ , *p , a1β , *a , Iβ  are constants. 

 



Table A.1. Model parameter values 

Parameter Description Units/ 

dimension 

Published 

values, 

2006‡ 

Values 

Ch. 6* 

model 1 

Values 

Ch 6* 

model 4 

S∞  Lower limit of success probability of inoculations at high ( , )aE i t   Proportion 0.049 0.049 0.049 
*E  Critical value of ( , )aE i t  Inoculations/ 

person-night 
0.032 0.032 0.032 

immS  Lower limit of success probability of inoculations in immune 
individuals 

Proportion 0.14  0.14  0.14  

pγ   Steepness of relationship between success of inoculation and ( , )pX i t   Dimensionless 
constant 

2.04  2.06 2.04 

*

pX  Critical value of cumulative number of entomological inoculations  Inoculations 1514.4  2801.5 2116.3 
*

hX  Critical value of cumulative number of infections Infections 97.3 97.8 94.8 
*

yX  Critical value of cumulative number of parasite days Parasite-
days/μl x 10-7 

3.5 13.8 6.5 

*

vX  Critical value of cumulative number of infections for variance in 
parasite densities 

Infections 0.92 0.92 0.92 

*

ma  Decay of maternal protection Per year 2.53 2.59 2.51 

xD  Effect of concurrent co-infections Infections 0 0 0 

1β  Effect of asexual density (lag 10 days) on expected gametocytaemia 
(fixed) 

Dimensionless 1  1  1  

2β  Effect of asexual density (lag 15 days) on expected gametocytaemia Dimensionless  0.46   0.46   0.46  

3β  Effect of asexual density (lag 20 days) on expected gametocytaemia Dimensionless  0.17   0.17   0.17  
ρ  Location parameter for the distribution of the ratio of gametocytes to 

asexual parasites 
Dimensionless 0.00031 0.00031 0.00031 

η  Scale factor for probability that a mosquito becomes infected at any 
feed 

Dimensionless 0.56 0.56 0.56 

      



 
Parameter Description Units/ 

dimension 

Published 

values, 

2006‡ 

Values 

Ch. 6* 

model 1 

Values 

Ch 6* 

model 4 

gσ  Standard deviation of the distribution of the ratio of gametocytes to 
asexual parasites 

Dimensionless 3.91  3.91 3.91 

α  Factor determining increase in *( , )Y i t  Parasites2μl-

2day-1 
143,000  157,000 179,000 

ϖ  Decay rate of pyrogenic threshold Year-1 2.5  2.5 2.5 
*

0Y  Pyrogenic threshold at birth Parasites/μl 296.3  328.1 244.3 
*

1Y  Critical value of parasite density in determining increase in 
*Y  Parasites/μl 0.60  0.60 0.59 

*

2Y  Critical value of *( , )Y i t  in determining increase in *( , )Y i t  Parasites/μl 6502.3  6502.3  6502.3  

fβ  Contribution of five day parasitaemia to acquired immunity in the 
presence of a fever 

Proportion - - 0.80 

*

1B
Y

 
Parasitemia threshold for severe episodes type B1  Parasites/μl 784,000  347,000 258,000 

0F  Prevalence of co-morbidity/susceptibility at birth relevant to severe 
episodes (B2) 

Proportion 0.092 0.099 0.094 

*

Fa  Critical age for co-morbidity Years 0.117 0.116 0.119 

1ϕ  Case fatality for severe episodes in the community compared to 
hospital 

Odds ratio 2.09 2.07 2.09 

nQ  Non-malaria intercept for infant mortality rate Deaths/1000 
livebirths 

49.5 50.6 52.0 

DQ  Co-morbidity intercept relevant to indirect mortality Proportion 0.019 0.018 0.017 
*

MGx  Critical value of the simulated prevalence for ages 20-25 years Proportion 0.19 0.19 0.19 

maxµ  Upper limit of risk of neonatal mortality in primigravidae  Proportion 0.011 0.011 0.011 
*

PGx  Critical value of prevalence for neonatal mortality risk Proportion 0.25 0.25 0.25 

0β  Intercept Log odds -6.13 -6.13 -6.13 

      



      
Parameter Description Units/ 

dimension 

Published 

values, 

2006‡ 

Values 

Ch. 6* 

model 1 

Values 

Ch 6* 

model 4 

Pβ  Effect of parasite prevalence Log odds 12.5 12.5 12.5 

*p  Critical value of parasite prevalence Proportion 2.84 2.84 2.84 

a1β  Magnitude of age effect Per year 3.14 3.14 3.14 

*a  Critical age  Years 3.66 3.66 3.66 

Iβ  Age-prevalence interaction effect Log odds -0.75 -0.75 -0.75 

 
‡ Parameter values were estimated separately for each outcome, and in some cases were conditional on the values of parameters in 
model components (Am J Top Med Hyg 2006, Suppl 2). 
* Parameter values for variables marked with † were estimated simultaneously using distributed computing via the internet. They 
were harvested on 8 August 2007 from malariacontrol.net 
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