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Malaria is a vector-borne infectious disease caused by protozoan parasites of the genus 

Plasmodium. If not treated appropriately, human P. falciparum malaria can quickly become 

life-threatening, leading to an estimated 900’000 annual deaths globally. Key interventions to 

control malaria include prompt diagnosis and effective treatment with artemisinin-based 

combination therapies (ACTs), use of insecticide treated nets by people at risk, indoor 

residual spraying with insecticide to control the vector mosquitoes and intermittent preventive 

treatment for pregnant women (IPTp) and infants (IPTi). 

 

Whether antimalarial treatments are effective or not, depends on parasite and host factors. The 

ability to define resistance leading to treatment failure has been greatly enhanced by our 

understanding of the underlying molecular mechanisms causing resistance in P. falciparum. 

However, the potential contribution of host genetic factors, particularly those associated with 

antimalarial drug metabolism, remains largely unexplored. The same applies for the basic 

mechanisms involved in the pharmacokinetics of antimalarial drugs and the link between 

antimalarial drug pharmacokinetics and treatment outcomes. Thus, the purpose of this thesis 

was to quantify the effects of pharmacogenetics on pharmacokinetics of ACTs. 

 

Between 2007 and 2008, three in vivo studies were performed in Cambodia and Tanzania. 

Patients reporting with fever associated with an infection with Plasmodium falciparum were 

recruited and treated with ACTs according to the national guidelines in the respective country. 

In Cambodia, 64 patients were recruited for the treatment with artesunate–mefloquine and 61 

for the treatment with dihydroartemisinine–piperaquine. In Tanzania, 150 were treated with 

artemether–lumefantrine. Blood samples for the pharmacokinetic analysis were taken before 

treatment and at several time points during and after treatment, e.g. on Days 1, 2 and 7 in all 

studies and in Cambodia also 1 hour after the first dose and on Day 14. 

 

For the analysis of plasma samples collected during our studies, we developed a broad-range 

liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) assay covering 

14 of the currently in-use antimalarial drugs and their metabolites. The assay requires only as 

little as 200 μl of plasma and is a major improvement over previous methods in terms of 

convenience, sensitivity, selectivity and throughput. The method was validated according to 

well-established recommendations. The assay was first used for the analysis of the baseline 

samples collected in our in vivo studies. In all studies more than half of the patients recruited 

had still antimalarials in their blood. Theses findings enabled us to get a better assessment of 
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the antimalarials circulating in the local population, and hence of the drug pressure on the 

parasites in both countries. 

 

Single nucleotide polymorphisms (SNPs) in genes encoding enzymes associated with 

antimalarial drug metabolism, i.e. cytochrome P450 isoenzymes (CYP) and N-

acetyltransferase 2 (NAT2), were analyzed. Based on our previous experience, we developed a 

DNA microarray to affordably generate SNP data. However, after comparison of microarray 

data and sequencing data, we concluded that the major limit of the microarray technology was 

lack of robustness which could not be compensated by superior cost-effectiveness. 

Consequently, the pharmacogenetic profiles of the patients from the three in vivo studies were 

assessed by direct sequencing of genomic DNA. Whereas for most SNPs allele frequencies 

were similar in both populations, we found significant inter-ethnic differences in the 

distribution of genotypes of certain enzymes, namely CYP2D6, CYP3A4/5 and NAT2. Is has 

been shown that the human CYP3A subfamily plays a dominant role in the metabolic 

elimination of more drugs than any other biotransformation enzyme. Therefore, our findings 

might have implications for treatment policies of not only antimalarials and the widely 

introduced ACTs in particular, but any other drugs metabolized by these enzymes. 

 

To quantify the effect of pharmacogenetics on pharmacokinetics of ACTs we developed 

population pharmacokinetic models. The pharmacokinetic parameters we estimated in our 

models were in agreement with those from previous studies. In order to account for parts of 

the inter-individual variability in drug-metabolizing capacity of the liver we included 

pharmacogenetic data as covariate. For artemether, we found that 9% of the inter-individual 

variability in clearance could be explained by the genotype of CYP3A5 (reference allele 

versus variant allele CYP3A5*3). Heterozygous carriers showed a reduction in clearance of 

34%. The alterations in clearance were less pronounced for lumefantrine (increase in 

clearance of 12% in homozygous carriers of variant allele CYP3A4*1B, explaining 2% of the 

inter-individual variability in clearance) and mefloquine (decrease in clearance of 14% in 

carriers of homozygous variant allele CYP3A5*5, explaining 1% of the inter-individual 

variability in clearance).  These data might partially provide an explanation for the differences 

in drug efficacy observed with artemether–lumefantrine combination treatment. 

 

In conclusion, we were able to show that there is a correlation between the pharmacogenetic 

profile of the host and the pharmacokinetics of antimalarial drugs administered in malaria 
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patients. These results suggest that pharmacogenetics could be one of the basic mechanisms 

involved in the pharmacokinetics of antimalarial drugs. The knowledge gained from this study 

could facilitate the selection process of first-line treatment for malaria and would allow dosing 

adaptation based on the pharmacogenetic profile of the population. Such adaptations are 

needed especially in the most vulnerable groups, including infants, pregnant women, and 

those with prevalent co-morbidities, where often therapeutic antimalarial drug concentrations 

over time are not achieved.  
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Malaria ist eine von Vektoren übertragbare Infektionskrankheit, die durch Protozoen der 

Gattung Plasmodium verursacht wird. Wird die Krankheit nicht richtig behandelt, kann die 

humane P. falciparum Malaria schnell lebensbedrohlich werden. Dies führt weltweit jährlich 

zu schätzungsweise 900’000 Todesfällen. Zu den Schlüsselinterventionen gegen Malaria 

zählen die frühzeitige Diagnose und wirksame Behandlung mit einer Kombinationstherapie 

Artemisininderivaten (ACT), mit Insektiziden imprägnierte Bettnetze für Risikopersonen, das 

Sprayen von Insektiziden zur Vektorbekämpfung in Häusern und Hütten sowie die 

intermittierende vorbeugende Behandlung schwangerer Frauen (IPTp) und Kleinkindern 

(IPTi). 

 

Ob eine Malariatherapie wirksam ist oder nicht, hängt sowohl von Parasiten- als auch von 

Wirtsfaktoren ab. Neuste Fortschritte in Genetik und Genomik von Plasmodien haben das 

Verständnis jener Mechanismen enorm verbessert, welche der Resistenzentwicklung in  

P. falciparum zu Grunde liegen. Jedoch ist der potenzielle Einfluss genetischer Faktoren des 

Wirtes, die insbesondere den Metabolismus der Malariamedikamente betreffen, noch 

weitgehend unerforscht. Dasselbe gilt auch für die grundlegenden Mechanismen, die an der 

Pharmakokinetik der Malariamedikamente beteiligt sind, sowie für den Zusammenhang 

zwischen Pharmakokinetik und Behandlungsresultat der Malariamedikamente. Daher besteht 

das Ziel dieser Arbeit darin, die Auswirkungen der Pharmakogenetik auf die Pharmakokinetik 

der ACT zu quantifizieren. 

 

Zwischen 2007 und 2008 führten wir drei in vivo Studien in Kambodscha und Tansania durch. 

Patienten mit Fieber aufgrund einer Infektion mit P. falciparum wurden in die Studie 

eingeschlossen und mit ACT entsprechend der nationalen Therapierichtlinien behandelt. In 

Kambodscha wurden 64 Patienten mit Artesunat–Mefloquin und 61 Patienten mit 

Dihydroartemisinin–Piperaquin behandelt. In Tansania wurden 150 Patienten mit 

Artemether–Lumefantrin therapiert. Für die pharmakokinetische Analyse wurden Blutproben 

vor und zu mehreren Zeitpunkten während sowie nach der Behandlung entnommen, d.h. an 

den Tagen 1, 2 und 7. In den Studien in Kambodscha wurde zudem je eine Probe 1 h nach der 

ersten Dosis und am Tag 14 entnommen.  

 

Für die Analyse der Plasmaproben entwickelten wir ein Verfahren basierend auf 

Flüssigkeitschromatographie und Tandem-Massenspektroskopie (LC–MS/MS) zum Nachweis 

der 14 gebräuchlichsten Malariamedikamente und ihren Metaboliten. Das Verfahren benötigt 
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lediglich eine Menge von 200 µL Plasma und stellt in Hinblick auf Einfachheit, Sensitivität, 

Selektivität und Durchsatz eine deutliche Verbesserung gegenüber älteren Methoden dar. Die 

Methode wurde gemäss gängigen Empfehlungen validiert. Das Verfahren wurde erstmals für 

die Analyse der Proben verwendet, die vor Therapiebeginn in unseren in vivo Studien 

entnommen wurden. In allen drei Studien wiesen mehr als die Hälfte der Patienten noch 

Spuren von Malariamedikamenten im Blut auf. Dies ermöglichte zu erkennen, welche 

Medikamente von der Lokalbevölkerung tatsächlich eingenommen worden waren und 

welcher medikamentöse Selektionsdrucks auf die Parasitenpopulation daraus resultierte. 

 

Zudem wurden Einzelnukleotid-Polymorphismen (SNPs) in Genen analysiert, die Enzyme 

kodieren, welche im Zusammenhang mit dem Metabolismus von Malariamedikamenten 

stehen, d.h. Cytochrom-P450-Isoenzyme (CYP) und N-Acetyltransferase 2 (NAT2). 

Ausgehend von unserer bisherigen Erfahrung entwickelten wir einen DNA-Microarray, um 

SNP-Daten kostengünstig zu generieren. Nach dem Vergleich der Microarraydaten mit den 

Sequenzierdaten mussten wir jedoch feststellen, dass es der Microarraytechnologie an 

Robustheit fehlte. Diesen Mangel konnte selbst eine höhere Kosteneffizienz des Microarrays 

nicht rechtfertigen. Entsprechend wurden die pharmakogenetischen Profile der Patienten aus 

den drei in vivo Studien durch direkte Sequenzierung genomischer DNA bestimmt. Während 

für die meisten SNPs die Allelfrequenzen in beiden Populationen ähnlich waren, fanden wir 

hingegen signifikante inter-ethnische Unterschiede in der Verteilung der Genotypen einzelner 

Enzyme, namentlich CYP2D6, CYP3A4/5 und NAT2. Es wurde gezeigt, dass unter allen 

biotranformierenden Enzymen die Familie der humanen CYP3A eine besonders wichtige 

Rolle bei der metabolischen Elimination der Mehrheit von Medikamenten spielt. Daraus folgt, 

dass unsere Ergebnisse nicht nur für Therapierichtlinien mit Malariamedikamenten und 

speziell für die weit verbreiteten ACTs, sondern auch für zahlreiche andere Medikamente 

wichtige Implikationen haben könnten. 

 

Um den Einfluss der Pharmakogenetik auf die Pharmakokinetik von ACTs zu quantifizieren, 

entwickelten wir populationspharmakokinetische Modelle. Die durch unsere Modelle 

geschätzten pharmakokinetischen Parameter stimmten mit den Literaturwerten überein. Das 

pharmakogenetische Profil wurde als Kovariable in die Modelle aufgenommen, um Teile der 

interindividuellen Variabilität in der metabolischen Kapazität der Leber zu erklären. Für 

Artemether konnten wir 9% der interindividuellen Variabilität der Clearance durch den 

Genotypen von CYP3A5 (Referenzallel versus Variante CYP3A5*3) erklären. Heterozygote 
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wiesen eine um 34% reduzierte Clearance auf. Die Änderungen waren weniger ausgeprägt für 

Lumefantrin (Clearancezunahme um 12% bei homozygoten Trägern des Allels CYP3A4*1B 

und 2% Anteil an der interindividuellen Variabilität der Clearance) und Mefloquin 

(Clearanceabnahme um 14% bei homozygoten Trägern des Allels CYP3A5*3 und 1% Anteil 

an der interindividuellen Variabilität der Clearance). Diese Daten könnten eine Erklärung für 

die beobachteten geographischen Unterschiede in der Wirksamkeit von Artemether–

Lumefantrin liefern. 

 

Zusammenfassend können wir festhalten, dass eine Korrelation zwischen dem 

pharmakogenetischen Profil des Wirtes und der Pharmakokinetik des verabreichten 

Medikamentes in Malariapatienten  besteht. Diese Ergebnisse lassen vermuten, dass 

Pharmakogenetik zu den zentralen Mechanismen gehört, welche die Pharmakokinetik von 

Malariamedikamenten beeinflussen. Die Erkenntnisse aus dieser Studie könnten zukünftig 

beim Entscheidungsprozess helfen, die Mittel der ersten Wahl in der Malariatherapie 

festzulegen. Des Weiteren würden unsere Erkentnisse eine Dosisanpassung aufgrund des 

pharmakogenetischen Profils erlauben. Solche Anpassungen sind insbesondere für gefährdete 

Patientengruppen nötig, wie etwa Kleinkinder, Schwangere und polymorbide Patienten, da bei 

diesen Patienten therapeutische Konzentrationen von Malariamedikamenten über die 

notwendige Zeitspanne oftmals nicht erreicht werden. 
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ACT Artemisinin-based combination therapy 

ADDO Accredited drug dispensing outlet 

AIDS Acquired immunodeficiency syndrome 

AL Artemether–lumefantrine 

AM Artemether 

AM Artemether 

AQ Amodiaquine 

ART Artemisinin 

ARV Antiretroviral 

AS Artesunate 

AS Artesunate  

AUC Area under the plasma concentration time curve 

AX Amount of drug in compartment X 

BW Body weight 

CHUV Centre Hospitalier Universitaire Vaudois, Switzerland 

CID Collision induced dissociation 

CL Clearance 

CNM National Center for Parasitology Entomology and Malaria Control, Cambodia 

CPD Cambodia, Phnom Dék 

CQ Chloroquine 

Ct Concentration at time t 

CV Coefficient of variation 

CVV Cambodia, Veal Veng 

CYP Cytochrome P450 gene 

DAQ Desethyl-amodiaquine 

ddNTP Dideoxynucleotide 

dH2O Deionized water 

DHA Dihydroartemisinin 

DHFR Dihydrofolate reductase 

DHPS Dihydropteroate synthetase 

DLF Desbutyl-lumefantrine 

DNA Deoxyribonucleic acid 

dNTP Deoxynucleotide 

DSS Demographic surveillance system 
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EDTA Ethylenediaminetetraacetic acid 

EKBB Ethikkommission beider Basel 

EMIC Explanatory model interview catalogue 

ESI Electrospray ionization 

Ext RE Mean extraction yield 

FA Formic acide 

FDA Food and Drug Administration, United States 

FST Fixation index 

H High 

Hb Hemoglobine 

Het Heterozygous carrier 

HIV Human immunodeficiency virus 

Hom-REF Homozygous carrier of the reference allele 

Hom-VAR Homozygous carrier of the variant allele 

HPLC High performance liquid chromatography 

I Intermediate 

I.S. Internal standard 

IC50 Half maximal inhibitory concentration 

IHI Ifakara Health Institute, Tanzania 

IIV Inter-individual variability 

IPC Institute Pasteur du Cambodge, Cambodia 

IPTp Intermittent preventive treatment for pregnant women 

IQR Inter-quartile range 

ka Absorption rate constant 

ke Elimination rate constant 

kxy Rate constant of transfer from compartment x to y 

L Low 

LC Liquid chromatography 

LF Lumefantrine 

LLC Lower limit of calibration 

LLOQ Lower limit of quantification 

LOD Limit of detection 

M Medium 

ME Mean matrix-mediated ionization 
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MeCN Acetonitrile 

MeOH Methanol 

MF Mefloquine 

MIC Minimal inhibitory concentration 

MPC Minimal parasiticidal concentration 

MQ Mefloquine 

MS Mass spectrometry 

N.A. Not applicable 

NAT2 N-acetyletransferase 2 gene 

NCBI National Center for Biotechnology Information 

OFV Objective function value 

PCL Division of Clinical Pharmacology 

PCR Polymerase chain reaction 

PD Pyrimethamine 

PE Process efficiency 

pfcrt Plasmodium falciparum chloroquine resistance transporter gene 

PPQ Piperaquine 

PQ Piperaquine 

PY Pyronaridine 

Q Intercompartmental clearance 

Q Quinine 

Q1 First quadrupole 

Q2 Second quadrupole 

Q3 Third quadrupole 

QC Quality control 

RBC Red blood cell 

RFLP Restriction fragment length polymorphism 

ROC Receiver operating characteristic 

RT Room temeratur 

S.E. Standard error 

SAP Shrimp alkaline phosphatase 

SD Sulfadoxine 

SD Standard deviation 

SDS Sodium dodecyl citrate 
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SNP Single nucleotide polymorphism 

SP Sulfadoxine–pyrimethamine 

SRM Selected reaction monitoring 

SSC Standard saline citrate 

t½ Terminal half-life 

TB Tuberculosis 

TE Tris-EDTA 

TK Tanzania, Kibaoni 

TPR Trimipramine-D3 

TSQ Triple stage quadrupole 

UGT Uridine diphosphate glucuronosyl transferase 

VX Volume of distribution of compartment X 

WARN Worldwide Antimalarial Resistance Network 

WHO World Health Organization 

X Covariate 

ε Intra-individual (= residual) variability 

η Inter-individual variability 

θ Pharmacokinetic parameter 
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Worldwide malaria burden and global control and elimination strategies 

Malaria is a vector-borne infectious disease caused by protozoan parasites of the genus 

Plasmodium. Human P. falciparum malaria is a deadly disease that puts at risk half of the 

world population, i.e. approximately 3.3 billion people [1]. Of the approximately 900’000 

annual deaths globally from malaria, 98% occur in 30 countries in Sub-Saharan Africa and  

5 countries in Asia [2]. The global strategy to eliminate malaria on long-term bases relies on 

control strategies at the local level trough effective prevention and case management. 

Prevention can be achieved with vector control interventions and intermittent preventive 

treatment for pregnant women (IPTp) and infants (IPTi). Whereas vector control strategies 

aim at reducing transmission and hence the incidence and prevalence of parasite infection and 

clinical malaria, IPTp reduces the impact of placental malaria infection and maternal malaria-

associated anaemia. IPTi relies on reduction of number of infections with simultaneous build 

up of immunity. Early and effective case management of malaria will shorten its duration and 

prevents complications and most deaths from malaria. The main components of effective case 

management are prompt diagnosis and treatment with an appropriate antimalarial [3]. 

 

Antimalarial drugs and treatment outcome 

Treatment with an appropriate antimalarial means that the drug (combination) (i) cures the 

infection by eradicating the infection that caused the illness from the body, (ii) prevents 

progression to severe disease, (iii) prevents additional morbidity associated with treatment 

failure, (iv) reduces transmission of the infection to others by reducing the infectious 

reservoir, (v) prevents the emergence and spread of resistance to antimalarials, (vi) is well 

tolerated, and (iiv) and shows a fast therapeutic response [4].  

 

Currently used antimalarials stem from seven drug classes [5,6]. Table 1 provides a list of 

these drugs, their proposed mode of action and the targeted parasite stages. However, the list 

is not exhaustive, as many more drugs are in clinical development [7].  
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Increasing levels of resistance to conventional antimalarial drugs, such as chloroquine, 

sulfadoxine–pyrimethamine, and amodiaquine, resulted in increasing malaria mortality and 

morbidity. Thus, these monotherapies cannot be considered appropriate antimalarial treatment 

anymore. Consequently, the World Health Organziation (WHO) now recommends that all 

uncomplicated P. falciparum infections should be treated with an artemisinin-based 

combination therapy (ACT) [26]. However, as in all parasitic diseases, treatment outcome in 

malaria depends on both, host and parasite factors, and parasite resistance is not regarded to 

be the only cause of treatment failure. Four basic methods have been routinely used to define 

or monitor response to antimalarial drugs [27,28]: 

 

(1) Assessment of in vivo clinical response [29]. Drug response in vivo generally depends 

on many factors including age [30], disease status [31], pre-existing host semi-

immunity [32], co-morbidity [33-35], concomitant treatment [36,37], environmental 

factors (e.g. food intake [38]), pregnancy [30], and adherence.  

(2) Assessment of susceptibility of the parasite in vitro [39]. In vitro sensitivity 

assessment of P. falciparum strains to antimalarials allows the response of clinical 

isolates to individual drugs to be assessed, unmodified by host factors that could 

influence drug efficacy in vivo. 

(3) Determination of blood/plasma drug concentrations [40]. The achievement of 

therapeutic drug levels in malaria patients is pivotal to curing malaria [40]. Insufficient 

exposure to the administered drug is associated with a risk of failure and resistance 

emergence, and too high levels with a risk of toxicity.   

(4) Characterization of molecular markers of resistance [41]. Described resistance 

mechanisms are mutations in genes and changes in copy number of genes relating to 

the drug’s target or efflux pumps affecting intra parasitic drug concentrations [4]. A 

recently published systematic review and meta-analysis concluded that there is 

evidence that genetic molecular markers of the malaria parasites are related to an 

increased risk of therapeutic failure [42]. 

 

These four strategies used in clinical routine (item 1) and clinical studies (items 1–4) allow to 

account for both, the host and parasite factors responsible for drug response. On the one hand, 

the ability to define resistance has been greatly enhanced by recent advances in Plasmodium 

genetics and genomics [43]. On the other hand, no data on human pharmacokinetics of 
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antimalarials had been available until recently, although these drugs have been used for 

almost 80 years [44]. 

 

Pharmacogenetics and population pharmacokinetics 

The achievement of therapeutic drug levels is of particular interest for antimalarial drugs for 

which a rapid onset of the antiparasitic effect (sufficient Cmax and short tmax) and a slow 

elimination (long t½) to protect against recrudescence are required for successful treatment 

[45]. The analysis of drug absorption, distribution, metabolism, elimination and action is a 

step towards a broader understanding of inter-individual differences in pharmacokinetic and 

pharmacodynamic profiles and consequential treatment failures and adverse drug reactions. 

 

Most therapeutic agents are lipophilic and need to be biotransformed before they can be 

eliminated from the body. Without biotransformation drugs would be cleared more slowly, 

leading to their accumulation and toxicity. Biotransformation can be divided into two steps, 

i.e. metabolic oxidation (phase I) and conjugation (phase II). The isoenzymes of the 

cytochromes P450 (CYP) superfamily have a pivotal role in the oxidative conversion of drugs 

to polar products before elimination [46]. Phase II reaction include methylation, sulphation, 

acetylation, and glucuronidation.  

 

It has been stated that polymorphism of drug-metabolizing enzymes have by far the highest 

impact on inter-individual differences in drug response [47,48]. Mutations in a gene coding 

for a drug metabolizing enzyme can give rise to enzyme variants.  If the mutant allele occurs 

with a frequency of at least 1% in the normal population and causes a different drug response 

or phenotype, this phenomenon is termed a pharmacogenetic polymorphism [49]. Depending 

on the alleles an individual is carrying, the metabolism can be altered. Certain enzyme 

polymorphisms can enhance drug metabolism, whereas others abolish or decrease drug 

metabolism, and frequencies of such polymorphisms vary among different ethnic groups 

[50,51]. As a consequence, ethnicity may have a major impact on drug metabolism and hence 

drug efficacy and safety.  
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Both, CYP and the phase II enzyme N-acetyltransferase-2 (NAT2) are involved in the 

metabolism of various antimalarial drugs. Table 2 lists some of the currently used 

antimalarials and the metabolizing enzymes for which phenotypic and/or genotypic 

polymorphisms have been described [46,52]. However, for some antimalarial drugs the 

metabolic pathway is still not very well known (i.e. piperaquine, pyrimethamine and 

pyronaridine), or they are barely metabolized at all (i.e. atovaquone and doxycycline) [53-58]. 

 

Understanding the causes of ethnic differences in metabolism of antimalarials may promote 

improved understanding of inter-individual differences in the pharmacokinetics and tolerance 

of these antiparasitic drugs. In population pharmacokinetic studies the variability in plasma 

drug concentrations between individuals can be assessed when standard dosage regimens are 

administered. Such studies may lead to a better knowledge on the pharmacokinetic properties 

of antimalarials. They would allow the more precise use of the term "antimalarial drug 

resistance", as it would indicate when treatment failure is not caused by intrinsic parasite 

resistance but is instead the result of inadequate drug levels due to the pharmacogenetic 

profile of the host or other non-genetic modifiers of the pharmacokinetic parameters. We 

know from other studies on infectious diseases such as HIV, tuberculosis and mycoses, that 

genetic variants might predict plasma exposure and failure and/or emergence of drug resistant 

pathogens [80-85].  

 

Objectives  

As stated in the World Malaria Report [26], an essential component of malaria control is 

surveillance of therapeutic efficacy over time in order to revise national drug policies and to 

ensure effective and safe treatment of malaria. Both, drug efficacy and safety, are strongly 

dependent on the achievement of appropriate circulating drug concentration, and insufficient 

exposure is associated with a risk of failure and emergence of resistance (Darwinian selection 

of parasites), whilst too high levels of drug are associated with risk of toxicity. The latter can 

affect adherence and hence also contribute to the emergence of resistance. Since differences 

on ethnicity may have a major impact on antimalarial drug metabolism and hence drug 

efficacy and safety, public health policies for drug use should incorporate pharmacogenetic 

data collected at the population level in the decision process. A deeper insight in the inter-

population distribution of polymorphisms of genes encoding enzymes responsible for 

antimalarial drug metabolism could facilitate the selection of appropriate first-line treatment 

for uncomplicated malaria in a specific population. The study of the pharmacogenetic and 
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pharmacokinetic data in two genetically different populations in South East Asia and African 

(i.e. Cambodia and Tanzania) might lead to a better understanding of the different factors 

influencing treatment outcome in malaria patients.  

 

One way to capture numerous non-synonymous point mutations in the genes which are 

known to be involved in drug metabolism and parasite resistance, and hence response to 

drugs, is to use high throughput systems such as microarrays, especially when a large sample 

size are required.  

 

For the analysis of pharmacokinetic data in a large sample size liquid chromatography–

tandem mass spectrometry method (LC–MS/MS) assays has played an important role in 

pharmacokinetics and metabolism studies at various drug development stages since its 

introduction to the pharmaceutical industry [86]. Thus, LC–MS/MS occurred to be the 

method of choice for this study as analysis can be done rapidly with a minimal effort for 

sample preparation. There is still a lack of a validated LC-MS/MS assay that can be routinely 

used for the simultaneous determination of plasma concentrations of all different kind of 

antimalarial drug combinations. The assay presented here can facilitate the analysis of large 

numbers of plasma samples from pharmacokinetic studies as well as individual clinical 

samples from patients where therapeutic drug monitoring is indicated.   

 

In an individual pharmacokinetic multi-compartmental model a large number of samples are 

necessary in order to estimate all pharmacokinetic parameters. However, in some cases an 

intensive sampling schedule cannot be applied because of logistic reasons, e.g. rural areas in 

developing countries where infrastructure and human resources of the health centres are often 

very limited, and repeated blood sampling in children causes ethical concerns. This problem 

can be overcome by population pharmacokinetic analysis for which sparse data, i.e. 3–4 

samples per patient, is sufficient to estimate the mean kinetic parameters in the respective 

population. Population pharmacokinetics allows both, to measure variability of kinetic 

parameters within the population and to account for it in terms of patient variables, such as 

age, sex, weight or disease state [87]. The analysis of sparse data sets needs more 

sophisticated statistical models than required for classical pharmacokinetic analysis. There is 

a large variety of methods proposed for population pharmacokinetic modelling [88]. 

NONMEM® (eponym of nonlinear mixed-effects model) is a computer package developed by 

Beal and Sheiner and designed to fit general statistical (nonlinear) regression-type models to 
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data [89]. NONMEM® is the most widely used program for the analysis of population 

pharmacokinetic data [87] and it is based on mixed-effects models taking into account 

independent variables like time or dose (so called fixed effects) and kinetic parameters. 

Furthermore, additional variables (so called covariates) such as for instance demographic 

characteristics can be included in the model as part of the fixed effects. The random effects 

include the inter-individual variability and the residual variability. 

 

General goal 

To quantify the effects of pharmacogenetics on pharmacokinetics of artemisinin-based 

combinations in malaria patients. 

 

Research questions 

(1) Is it possible to measure accurately and precisely the plasma concentration of several 

antimalarial drugs in one sample at the same time? 

(2) What are the different pharmacogenetic profiles of the populations in Cambodia and 

Tanzania regarding genes known to govern drug disposition? 

(3) Is there a correlation between the pharmacogenetic profile of the host and the 

pharmacokinetics of antimalarial drugs administered in malaria patients? 

 

Specific aims 

(A) To develop a LC-MS/MS assay to determine the plasma concentration of the main 

antimalarial drugs currently available in different countries. 

(B) To compare the population’s pharmacogenetic profile of genes encoding for proteins 

relevant for the metabolism of the main antimalarial drugs currently available in 

Cambodia and Tanzania, i.e. isoenzymes of the cytochrome P450 oxidase superfamily 

(CYP) and N-acetyltransferase-2 (NAT2).  

(C) To correlate the pharmacogenetic profile of malaria patients with the 

pharmacokinetics of drugs administered, accounting for variability in usual 

demographic factors such as age, sex, weight etc.  
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Methodology 

Collaborations (aims A,B and C) 

In collaboration with the National Center for Parasitology, Entomology and Malaria Control 

(CNM) of Cambodia, the Pasteur Institute in Cambodia (IPC) and the Ifakara Health Institute 

(IHI) in Tanzania three in vivo treatment studies in malaria patients were performed in 

Cambodia and Tanzania. The LC–MS/MS assay and the population pharmacokinetic models 

were developed at the Division of Clinical Pharmacology of the University Hospital in 

Lausanne, Switzerland.  

 

Ethical considerations (aims A,B and C) 

The in vivo studies were performed according to the WHO guidelines for monitoring malaria 

treatment [90]. All the applied protocols were approved by the ethics committee of the two 

cantons of Basel (Ethikkommission beider Basel) and the responsible local authorities 

(Medical Research Coordination Committee of the National Institute for Medical Research in 

Tanzania and National Ethics Committee for Health Research in Cambodia). Blood samples 

were obtained after written informed consent in the local language (Khmer or Swahili) from 

the participants or their responsible guardians. 

 

Study design (aims A,B and C) 

Between 2007 and 2008, three in vivo studies were performed in Cambodia and Tanzania. 

Patients reporting with fever (axillary temperature above 37.5 °C at admission or history of 

fever in the last 48 hours) associated with an infection with Plasmodium falciparum (between 

1000 and 100’000 asexual parasites per µl blood) were asked to participate in the studies. 

Exclusion criteria were age below the age for which the studied antimalarials were approved 

(1 year for artemether–lumefantrine, 2 years for artesunate–mefloquine and 6 years for 

dihydroartemisinine–piperaquine), pregnancy (in Cambodia only), severe malnutrition 

(weight-for-height below –2 standard deviations of the National Center for Health Statistics 

(NCHS)/WHO reference values in children, body mass index below 16 in adults [91]), 

hemoglobin less than 5 g/dl, severe co-infection with other diseases requiring hospitalization, 

ongoing treatment with antibiotics with antimalarial activity, antimalarial treatment in the 
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previous 28 days, and signs of severe malaria (e.g. cerebral malaria, severe aneamia, renal 

failure, pulmonary oedema, hypoglyceamia, circulatory collapse/shock [90]). The patients 

were treated according to the national guidelines in the respective countries. In Cambodia,  

64 patients were recruited for the treatment with artesunate–mefloquine and 61 for the 

treatment with dihydroartemisinine–piperaquine. In Tanzania, 150 were treated with 

artemether–lumefantrine. Patients willing to participate in the study were seen on several 

follow-up visits (Days 1, 2, 3, 7, 14, 28, and 42 in Tanzania; Days 1, 2, 3, 7, 14, 21, 28, 35 

and 42 in Cambodia). On every visit the patients were asked a few questions about their 

health condition and the history of the disease, axillary temperature and respiratory rate were 

measured and 0.2 mL of blood taken by fingerprick to assess parasite species and density. 

Samples for the pharmacokinetic analysis were taken before treatment (about 5 mL in order to 

have sufficient material also for the pharmacogenetic analysis) and at several time points 

during and after treatment (about 1 mL each time), e.g. on Days 1, 2 and 7 in all studies and in 

Cambodia also 1 hour after the first dose and on Day 14. Age, sex, weight, height, smoking 

status, presence of known renal or hepatic disease, co-medication, actual times of dose intake 

and blood sampling, concurrent intake of food with drug administration were recorded.   

 

Laboratory analysis (aimes A and B) 

To accommodate aim A, a broad-range LC–MS/MS assay covering 14 of the currently in-use 

antimalarial and their metabolites was (CHAPTER 1). The performance of the assay was 

investigated in three in vivo studies in Tanzania and Cambodia where baseline samples from 

patients with Plasmodium falciparum malaria recruited in the study were analyzed 

(CHAPTER 4 and CHAPTER 5) and the pharmacokinetic profile under treatment was 

assessed (CHAPTER 6).  

 

To address aim B, the pharmacogenetic profile of the patients from the three in vivo studies 

was analyzed by direct sequencing of genomic DNA (CHAPTER 2). Furthermore, a DNA 

microarray was developed and the results obtained were compared with those from the 

sequencing (CHAPTER 3). 
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Data analysis (aim C) 

To achieve aim C, the data from the above mentioned studies were included in population 

pharmacokinetic models for the drugs used in the in vivo studies, assessing the 

pharmacogenetic profile as the main covariate (CHAPTER 6).  
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CHAPTER 1  

 

A single LC–tandem mass spectrometry method for the simultaneous 

determination of 14 antimalarial drugs and their metabolites in human 

plasma 
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Abstract 

Among the various determinants of treatment response, the achievement of sufficient blood 

levels is essential for curing malaria. For helping us at improving our current understanding of 

antimalarial drugs pharmacokinetics, efficacy and toxicity, we have developed a liquid 

chromatography–tandem mass spectrometry method (LC–MS/MS) requiring 200 μl of plasma 

for the simultaneous determination of 14 antimalarial drugs and their metabolites which are 

the components of the current first-line combination treatments for malaria (artemether, 

artesunate, dihydroartemisinin, amodiaquine, N-desethyl-amodiaquine, lumefantrine, 

desbutyl-lumefantrine, piperaquine, pyronaridine, mefloquine, chloroquine, quinine, 

pyrimethamine and sulfadoxine). Plasma is purified by a combination of protein precipitation, 

evaporation and reconstitution in methanol/ammonium formate 20 mM (pH 4.0) 1:1. Reverse-

phase chromatographic separation of antimalarial drugs is obtained using a gradient elution of 

20 mM ammonium formate and acetonitrile both containing 0.5% formic acid, followed by 

rinsing and re-equilibration to the initial solvent composition up to 21 min. Analyte 

quantification, using matrix-matched calibration samples, is performed by electro-spray 

ionization–triple quadrupole mass spectrometry by selected reaction monitoring detection in 

the positive mode. The method was validated according to FDA recommendations, including 

assessment of extraction yield, matrix effect variability, overall process efficiency, standard 

addition experiments as well as antimalarials short- and long-term stability in plasma. The 

reactivity of endoperoxide-containing antimalarials in the presence of hemolysis was tested 

both in vitro and on malaria patients samples. With this method, signal intensity of 

artemisinin decreased by about 20% in the presence of 0.2% hemolysed red-blood cells in 

plasma, whereas its derivatives were essentially not affected. The method is precise (inter-day 

CV%: 3.1–12.6%) and sensitive (lower limits of quantification 0.15–3.0 and 0.75–5 ng/ml for 

basic/neutral antimalarials and artemisinin derivatives, respectively). This is the first broad-

range LC–MS/MS assay covering the currently in-use antimalarials. It is an improvement 

over previous methods in terms of convenience (a single extraction procedure for 14 major 

antimalarials and metabolites reducing significantly the analytical time), sensitivity, 

selectivity and throughput. While its main limitation is investment costs for the equipment, 

plasma samples can be collected in the field and kept at 4 °C for up to 48 h before storage at 

−80 °C. It is suited to detecting the presence of drug in subjects for screening purposes and 

quantifying drug exposure after treatment. It may contribute to filling the current knowledge 

gaps in the pharmacokinetics/pharmacodynamics relationships of antimalarials and better 

define the therapeutic dose ranges in different patient populations. 
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1. Introduction 

In the past few years, the therapeutic armoury against malaria has changed dramatically from 

the traditional few, failing single-agent treatments to an unprecedented wealth of antimalarial 

products, basically combinations of artemisinin derivatives with older and newer quinolines 

available either as fixed-dose (artemether/lumefantrine, artesunate/amodiaquine, 

artesunate/mefloquine, dihydroartemisinin/piperaquine), co-blistered or individually 

formulated products (artemisinin-based combination therapies, ACTs) [4,29,92,93]. More 

drugs are in the Research & Development pipeline. 

 

However, essential data on the disposition of the products in use are lacking especially in 

children with malaria [40]. In addition, the majority of these drugs have not been developed 

with respect to the selection of doses and dosing regimens based on stringent 

pharmacokinetics–pharmacodynamics relationships. This means that we have inadequate 

information on the appropriate dosing and levels they generate in patients for the currently 

recommended regimens. As a consequence, some patients or patient categories may be 

underdosed (resulting in treatment failures and promoting parasite resistance) or overdosed (a 

cause of toxicity). 

 

One of the obstacles to obtaining this information has been the lack of sensitive, reliable, 

robust analytical methodologies. Ideally, the assay should be able to extract and detect several 

drugs and their main metabolites simultaneously with no limitation for drug classes. The 

availability of such techniques would result in an overall reduction in analytical time and 

costs while allowing screening and monitoring drug intake in clinical and epidemiological 

studies. 

 

High performance liquid chromatography (HPLC) is widely used and relatively economical 

but has limitations—mostly related to the choice of the detector relative to the chemical class 

of the drug, sensitivity and throughput, as frequently encountered with the unspecific UV or 

spectrofluorimetic detection [94-98]. Few of the methods developed so far aim at detecting a 

range of antimalarials, including an HPLC-UV method for sulfadoxine, pyrimethamine, 

chloroquine, amodiaquine and desethylamodiaquine from whole blood using liquid–liquid 

extraction, reversed-phase chromatography and UV detection [98], and a HPLC-ECD method 

with simultaneous extraction and quantification with an electrochemical detector operating in 

the reductive mode for artesunate/dihydroartemisinin and mefloquine [99] or oxidative mode 
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for amodiaquine [100]. Equally limited is the experience with liquid chromatography coupled 

to mass (LC–MS) or triple stage tandem mass spectrometry (LC–MS/MS), mostly aimed at 

detecting a single or few antimalarials generally belonging to a single chemical class [58,101-

130]. 

 

Triple stage mass detection qualifies for the measurement of arrays of structurally unrelated 

antimalarial agents as well as their metabolites in a single analytical run. 

Here, we describe a sensitive LC–MS/MS method for the simultaneous analysis in a small 

volume of plasma of the major antimalarial agents currently used as drug combinations 

(artemether, artesunate, lumefantrine, piperaquine, pyronaridine, amodiaquine, chloroquine, 

mefloquine, quinine, sulfadoxine and pyrimethamine) as well as some of their active 

metabolites (dihydroartemisinin, desbutyl-lumefantrine, desethyl-amodiaquine). 

 

2. Experimental 

2.1. Chemicals and reagents 

Dihydroartemisinin (DHA) and artesunate (AS), arthemether (AM), lumefantrine (LF) and 

desbutyl-lumefantrine (DLF), mefloquine hydrochloride (MF), sulfadoxine (SD), 

pyrimethamine (PM), piperaquine phosphate (PQ) were kindly provided by Abbott AG 

(Liestal, Switzerland), Novartis Pharma SAS (Rueil-Malmaison, France), Novartis Pharma 

AG (Basel Switzerland), Roche (Hoffmann-la Roche Pharma Research, Basel, Switzerland), 

and Sigma-tau (Pomezia, Roma, Italy), respectively. Pyronaridine (PY) was offered by Dr. 

Sergio Wittlin (Swiss Tropical Institute, Basel) and desethyl-amodiaquine (DAQ) standard 

was a gift from Prof. Giovanni Di Perri (Sezione di Malattie Infettive, Università Degli Studi 

di Torino, Italy) and RCC Ltd. (Füllinsdorf, Switzerland) via the Antimalarial Drug 

Resistance, Global Malaria Program (Dr. Pascal Ringwald, WHO, Geneva). Chloroquine 

diphosphate (CQ), amodiaquine dihydrochloride dihydrate (AQ), quinine hydrochloride 

dihydrate (Q) were purchased from Sigma–Aldrich (Schnelldorf, Germany). The internal 

standards (I.S.) artemisinin (ART) and trimipramine-D3 (TPR) were obtained from Sigma–

Aldrich (Schnelldorf, Germany) and Cerilliant Corporation (Round Rock, TX, USA), 

respectively. Chromatography was performed using Lichrosolv® HPLC-grade acetonitrile 

(MeCN) purchased from Merck (Darmstadt, Germany). Ultrapure water was obtained from a 

Milli-Q® UF-Plus apparatus (Millipore Corp., Burlington, MA, USA). Ammonium formate 
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was purchased from Fluka (Buchs, Switzerland). Formic acid (98%) and methanol for 

chromatography Lichrosolv® (MeOH) were purchased from Merck (Darmstadt, Germany). 

All chemicals were of analytical grade. 

 

Blank plasma used for the assessment of matrix effect and for the preparation of calibration 

and control samples were isolated (1850 × g, 10 min, +4 °C, Beckman Centrifuge, Model 

J6B) from outdated blood donation units from the Hospital Blood Transfusion Centre 

(CHUV, Lausanne, Switzerland) or from blood withdrawn from patients with Vaquez 

Disease. 

 

2.2. Equipment 

The liquid chromatography system consisted of Rheos 2200 quaternary pumps, equipped with 

an online degasser and a HTS PAL autosampler (CTC Analytics AG, Zwingen, Switzerland) 

controlled by Janeiro-CNS software (Flux Instruments, AG, Thermo Fischer Scientific Inc., 

Waltham, MA). Separations were done on a 2.1 mm × 50 mm Atlantis® dC18 3 μm analytical 

column (Waters, Milford, MA, USA) and placed in a thermostated column heater at 25 °C 

(Croco-Cil, Cluzeau Info Laboratory, Courbevoie, France). The chromatographic system was 

coupled to a triple stage quadrupole (TSQ) Quantum Ion Max mass spectrometer (MS) from 

Thermo Fischer Scientific, Inc., equipped with an electro-spray ionization (ESI) interface and 

operated with Xcalibur 2.0 software (Thermo Fischer Scientific Inc., Waltham, MA). 

 

2.3. Solutions 

2.3.1. Mobile phase and solution for extracts reconstitution 

The mobile phase used for chromatography was 20 mM ammonium formate in ultrapure 

water (buffer A) and acetonitrile (solvent B), both containing 0.5% formic acid (FA). A 

mixture of MeOH/20 mM ammonium formate 1:1 (volume/volume, v/v), adjusted to pH 4.0 

with FA was used for the reconstitution of extracted plasma samples prior to their LC–

MS/MS analysis. Solvents were regularly prepared for each series of analysis and stored in 

the dark at +4 °C prior use. 
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2.3.2. Internal standard, calibration standards and quality controls (QCs) solutions 

A stock solution of trimipramine-D3 (TPR) 1 μg/ml in MeOH and a stock solution of 

artemisinin 100 μg/ml were diluted with MeOH to obtain a working I.S. solution at 100 and 

2000 ng/ml, respectively. 

 

Standard stock solutions of antimalarial drugs (depicted in Figure 1) were prepared in solvents 

indicated in Table 1. The stock solutions were stored in polypropylene flasks with caps tightly 

wrapped and protected from light and stored at +4 °C. Appropriate volumes of stock solutions 

were serially diluted with H2O/MeOH 3:1 as indicated in Table 1 to obtain a single working 

solution of antimalarials at concentrations ranging from 0.006 to 100 μg/ml. Finally this 

working solution was diluted 1:20 (i.e. 5%) with blank plasma to obtain the calibration 

samples from 0.3 to 5000.0 ng/ml and the corresponding four quality control (low (L), 

intermediate (I), medium (M) and high (H) QCs) samples from 0.9 to 3750 ng/ml. All 

solutions were prepared according to the recommendations on bioanalytical methods 

validation stating that the total added volume must be ≤10% of the biological sample volume 

[131]. The calibration standard and control plasma samples were stored as 200 μl-aliquots at 

−80 °C prior to analysis.  
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Figure 1. Chemical structures of antimalarials, some of their metabolites, and the I.S. 

trimipramine (D3) (1, piperaquine, PQ; 2, N-desethyl-amodiaquine, DAQ; 3, chloroquine, 

CQ; 4, amodiaquine, AQ; 5, pyronaridine, PY; 6, quinine, Q; 7, sulfadoxine, S; 8, 

pyrimethamine, PM; 9, mefloquine (only one stereo-isomer is shown), MF; 10, α-

dihydroartemisinin, α-DHA; 11, β-dihydroartemisinin, β-DHA; 12, artesunate, AS; 13, 

artemisinin, AS; 14, artemether, AM; 15, desbutyl-lumefantrine, DLF; 16, lumefantrine, LF). 

Shown according to order of elution during the chromatographic separation (Figure 2a and b). 
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2.4. LC–MS/MS conditions 

The mobile phase was delivered using a stepwise gradient elution program: 2% of acetonitrile 

(solvent B) at 0 min, 59% of B at 10 min and 68% of B at 17.0 min with a flow rate of 

0.3 ml/min. The second part of the run included 4 min of rinsing (68% B with 0.4 ml/min) and 

a re-equilibration step to the initial solvent up to 21 min. Moreover, three blank samples were 

analysed immediately after the high calibration level to eliminate potential memory effect 

from basic drugs (see below). The thermostated column heater was set at 25 °C and the 

autosampler was maintained at 10 °C. The injection volume was 10 μl. 

 

The LC–MS/MS conditions were as follows: ESI in positive mode; capillary temperature 

350 °C; in source collision induced dissociation (CID) 10 V; tube lens range voltage 37–

110.37 V; spray voltage 4 kV and sheath and auxiliary gas (nitrogen); sheath gas pressure 

35 psi and auxiliary gas pressure 10 (arbitrary units), respectively. The Q2 collision gas 

(argon) pressure was 1 mTorr (0.13 Pa). MS acquired in selected reaction monitoring (SRM). 

The determination of optimal potential settings and MS/MS transitions were chosen by direct 

infusion of each compound solution separately into the MS/MS detector at a concentration of 

1 μg/ml in 1:1 of MeOH/buffer A. The selected m/z transitions and the collision energy for 

each analyte and I.S. are reported in Table 2. 

 

The first (Q1) and third (Q3) quadrupoles were set at 1 amu mass resolution (full-width half-

maximum = 0.7). Scan time and scan width were 0.05 s and 0.5 m/z, respectively, and each 

chromatographic peak was the result of at least 15 scans. MS acquisitions were done in 

centroid mode. Two distinct segments of data acquisition were programmed in the positive 

mode: the first acquisition segment from 0 to 7.5 min, and a second segment from 7.5 to 

17.0 min. Chromatographic data acquisition, peak integration and quantification were 

performed using the QUAL and QUAN browser of Xcalibur software package (version 2.0) 

(ThermoQuest, Thermo Fischer Scientific Inc., Waltham, MA). 

 

2.4.1. Blood samples collection for antimalarial drugs determination 

Blood samples were obtained from patients treated with ACTs for uncomplicated falciparum 

malaria as part of a multicountry pharmacokinetic study approved by the National Ethics 

Committee for Health Research in Cambodia and the National Institute for Medical Research 

in Tanzania. Written informed consent was obtained from all patients. Approximately 1 ml of 
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venous blood was collected from patient using Vacutainer™ tubes (BD, Franklin Lakes, NJ, 

USA) just before treatment initiation on Day 0, Days 1 and 2 (i.e. trough levels), and 

thereafter on Day 7. In Cambodia, two additional samples were taken on Day 0 approximately 

1 h after the first dose, and on Day 14. Samples were gently inverted 8–10 times for careful 

homogenization with the anticoagulant (EDTA). A small volume of whole blood (200 μl) was 

transferred into a 1.8 ml Nunc or Greiner CryoTube and placed in liquid nitrogen at −190 °C 

in Cambodia and in a −80 °C freezer in Tanzania. The remaining whole blood was 

centrifuged at ambient temperature for 15 min with a manual centrifuge in Cambodia, and for 

10 min in an electrical centrifuge (approximately 1650 × g) in Tanzania. The plasma and 

remaining red-blood cells were placed in liquid nitrogen at −190 °C or in a −80 °C freezer. In 

Cambodia, the samples were transferred in a −80 °C freezer within 1 week. Samples from 

both countries were subsequently shipped on dry ice to the CHUV laboratory in Switzerland 

and stored at −80 °C prior to analysis. 

 

2.4.2. Selection of the reconstitution solvent 

During the initial development of the method, the following solvents were evaluated for the 

reconstitution of the plasma extract residue: MeOH/ammonium formate 20 mM (pH 4.0) 

60:40, 50:50 30:70, 20:80. Among the solvent mixtures tested, the 50:50 provided the best 

chromatographic behavior and peaks area intensity overall for the 14 antimalarials/ 

metabolites and the two I.S., and was consequently used thereafter throughout the method 

validation and subsequent patient samples determination. 

 

2.4.3. Plasma sample extraction procedure 

Plasma aliquots (200 μl) were mixed with a 100 μl-volume of I.S. solution (100 ng/ml 

trimipramine-D3 and 2000 ng/ml artemisinin) and vortex-mixed. The resulting sample was 

subjected to protein precipitation with acetonitrile (700 μl) and carefully vortexed-mixed. The 

mixture was finally centrifuged at 4 °C for 10 min at 20,000 × g (14,000 rpm) on a benchtop 

Hettich® Centrifuge (Benchtop Universal 16R centrifuge, Bäch, Switzerland). The 

supernatant (900 μl) was transferred into a polypropylene tube and evaporated to dryness 

under nitrogen at room temperature. The solid residue was reconstituted in 150 μl 

MeOH/ammonium formate 20 mM 1:1 adjusted to pH 4.0 with formic acid and vortex-mixed 

and centrifuged again under the above-mentioned conditions. The 130 μl supernatent was 
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introduced into 200 μl glass HPLC microvials maintained at +10 °C in the autosampler rack 

during the entire LC–MS/MS analysis. 

 

2.5. Quantification 

2.5.1. Calibration curves 

Quantitative analysis of the 14 antimalarials/metabolites was performed using the internal 

standard (I.S.1 = trimipramine-D3) method. Each level of the calibration curve was measured 

with two sets of calibrators: one at the beginning and the second at the end of the run. 

Calibration curves were established with calibration standards prepared with plasma isolated 

from outdated transfusion blood (see Sections Sections 2.6.4 and 3.5, matrix effect). 

 

Eight-point calibration standard curves were calculated and fitted either by 1/x or 1/x2 

weighted quadratic regression, or quadratic log–log regression, when appropriate, of the peak-

area ratio of antimalarials/metabolites to I.S., versus the concentrations of the respective 

antimalarials/metabolites to I.S. in each standard sample. To determine the best weighting 

factor, concentrations were back-calculated and the model with the lowest total bias across the 

concentration range was considered the best suited. The calibration for the 14 antimalarials/ 

metabolites was established over the range reported in Table 1. The standard curve was 

chosen to cover the range of concentrations expected in patients. 

 

2.6. Analytical method validation 

The method validation procedure was based on the recommendations published on-line by the 

Food and Drugs Administration (FDA) [131] as well as on the recommendations of the 

Conference Report of the Washington Conference on “Analytical Methods Validation: 

Bioavailability, Bioequivalence and Pharmacokinetic studies” [132] and the Arlington 

Workshop “Bioanalytical Methods Validation – A revisit with a Decade of Progress” [133]. 

More recent recommendations from Matuzewski et al. were also considered [134,135]. 
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2.6.1. Accuracy and precision 

Replicate analysis (n = 6) of quality control samples at 4 concentrations (low (L), 

intermediate (I) medium (M) high (H), see Table 3) were used for the intra-assay precision 

and accuracy determination. Of importance, the concentration selected for the low (L) QC 

sample corresponds to 3 times the respective lower limits of quantification (i.e. the lower 

calibration level) kept in the finalized method, in accordance to the FDA recommendations 

[131]. For artemether, no intermediate QC control samples were used. The four 

concentrations were chosen to encompass the whole range of the calibration curve 

corresponding to the drug levels anticipated to occur in most patient samples. Inter-assay 

accuracy and precision were determined by repeated analysis performed on six different 

occasions. The concentration in each sample was determined using calibration standards 

prepared on the same day. The precision was calculated as the coefficient of variation (CV%) 

within a single run (intra-assay) and between different assays (inter-assays), and the accuracy 

was calculated as the bias or percentage deviation between nominal and measured 

concentration. 

 

During the initial routine analysis of patient samples, duplicate control samples at three 

concentration levels (I, M and H) were assayed. To comply with FDA recommendations [131] 

an additional QC at a concentration corresponding to 3 times the LOQs, designated low (L) 

QC sample, was thereafter added (see Table 3). The analytical series were considered valid 

and accepted only if the percentage of deviation (bias) between theoretical and back-

calculated (experimental) concentrations for each calibration level and quality control samples 

were within ±15%, and <20% at the limit of quantification (defined as the lowest calibrator). 
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2.6.2. Lower limit of quantification and limit of detection 

The lowest levels chosen for calibration curves were selected initially to reflect the lowest – 

clinically relevant – concentrations expected be occur in patients, based on published 

pharmacokinetic data. However, it was observed that our LC–MS/MS instrument was able to 

attain far higher sensitivity levels. Thus, LOQ values have been determined by establishing 

calibration curves using for the lowest calibration samples standard serial dilutions (3/4 and 

½) of the low standard samples of our first calibration curves and were analysed in triplicates 

(i.e. those samples were used and integrated for the establishment of the calibration curves). 

Back-calculated values of the lowest calibration samples with a bias and CV% below ±20%, 

enables to determine the LOQ values, in accordance with the documents mentioned above 

[131,132]. The LLOQ concentrations were finally selected as the lowest levels of the 

calibration curves established during the analytical method validation. The limit of detection 

(LOD) was defined as the concentration that produced a signal three times above the noise 

level of a blank preparation. 

 

2.6.3. Stability of antimalarials/metabolites 

Stability studies of antimalarials/metabolites included: 

 

(a) Stability of plasma spiked with antimalarials/metabolites kept at room temperature 

(RT) and in the fridge at +4 °C: the concentrations of antimalarials/metabolites were 

measured immediately after preparation and after being left at room temperature (RT) 

and at +4 °C up to 48 h. Antimalarials/metabolites concentrations variations were 

expressed as a percentage of the initial concentration measured at T = 0. 

(b) Stability of plasma samples after multiple freeze-thaw cycles: QCs at I, M and H 

levels of antimalarials/metabolites underwent three freeze-thaw cycles. Frozen 

samples were allowed to thaw at room temperature for 3 h and were subsequently 

refrozen during approximately 24 h. Antimalarials/metabolites levels were measured 

in aliquots from the three consecutive freeze-thaw cycles. 

 

In all experiments, room temperature corresponds to the usual temperature of 24–25 °C of the 

Hospital Laboratory at CHUV, Lausanne, Switzerland. 
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2.6.4. Matrix effect, extraction yield and overall recovery 

In the initial step of method validation, the matrix effect was examined qualitatively by the 

simultaneous post-column infusion of the 14 antimalarials/metabolites and I.S. into the 

MS/MS detector during the chromatographic analysis of 6 different blank plasma extracts. 

The standard solution of all analytes at medium QC concentrations, containing also 100 ng/ml 

for TPR (I.S.1) and 2000 ng/ml for ART (I.S.2), was infused at a flow rate of 10 μl/min 

during the chromatographic analysis of blank plasma extracts from 6 different sources. The 

chromatographic signals of each selected MS/MS transition were examined to ascertain that 

no signal perturbation (drift or shift) of the MS/MS signal was present at the analyte’s 

retention time. 

 

Subsequently, the quantitative determination of the matrix effect, and the determination of its 

variability were also assessed. Three series of QC samples at I, M, and H in duplicates were 

prepared as followed: 

 

(A) Pure standard solutions samples in MeOH/buffer A 1:1 directly injected onto column. 

(B) Plasma extract samples from 6 different sources, spiked with antimalarials/metabolites 

and I.S after extraction. 

(C) Plasma samples from 6 different sources (same as in B) spiked with drug standards 

solution and I.S. before extraction. 

 

The recovery and ion suppression/enhancement of the MS/MS signal of drugs in the presence 

of plasma matrix (i.e. matrix effect) was assessed by comparing the absolute peak areas of 

analytes either solubilised in MeOH-buffer (ammonium formate 20 mM, pH adjusted to 4.0 

with formic acid) 1:1 (A), or added after (B) and before (C) extraction of 6 different batches of 

plasma, based on the recommendations proposed by Matuszeski et al. [135]. 

 

The extraction yield of antimalarials/metabolites and I.S. were calculated as the absolute 

peak-area response in processed plasma samples spiked with drugs before extraction I 

expressed as the percentage of the response of the same amount of drugs added into blank 

plasma extracts after the extraction procedure (B) (C/B ratio in %). The matrix effect was 

assessed as the ratio of the peak areas of analytes added into blank plasma extracts after the 

extraction procedure (B) to the peak areas of pure analytes solubilised in MeOH–ammonium 
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formate 20 mM pH 4.0 1:1 (A) (B/A ratio in %). The overall recovery of 

antimalarials/metabolites and I.S. was calculated as the ratio of absolute peak-area response of 

antimalarials either in processed plasma samples spiked with drugs before extraction (C) to 

the peak areas of analytes solubilised in MeOH–ammonium formate 20 mM pH 4.0 1:1 (A) 

(C/A ratio). Recovery studies were done with plasma from 6 different sources spiked with 

drugs at the concentrations reported in Table 5. 

 

The results normalized with the signal of I.S. (i.e. B2 and C2), used as an index of actual 

injection volume are also reported in Table 5. 

 

Finally, we have performed further standard-addition experiments using 16 patients samples 

(8 from Tanzania and 8 from Cambodia, on Coartem® and MF/AS ACTs regimens, 

respectively). Patients plasma samples were divided in two aliquots, one for direct analysis 

and the second was spiked with nominal amount of antimalarial drugs/ metabolites (diluted in 

plasma) prior to quantification. In the second aliquots, the experimental and expected 

concentrations (i.e. measured in patients in the first aliquot, plus added amount) were 

compared. The results are given in Table 6. 

 

2.6.5. Analytical issues with endoperoxide antimalarials in hemolysed plasma samples 

Recently, Lindegardh et al. reported the occurrence of analytical problems with an LC–

MS/MS method for DHA and AS related to the compounds’ potential reactivity with 

hemoglobin (Hb) and hemolytic products in clinical samples, and the deleterious impact of 

the presence of organic solvent during the extraction procedure [102]. In that context, we 

carried out the following additional experiments focusing specifically on endoperoxide-

containing antimalarials: 

 

(a) Impact of the presence of organic solvent on the assay of endoperoxide drugs in 

hemolysed plasma: Using our extraction procedure, we compared the intensity of ART 

(artemisinin = I.S. at 2000 ng/ml) either solubilized in MeOH (i.e. as in the I.S. 

solution used in our proposed extraction method (cf. Section 2.3.2) or in plasma, and 

then added to plasma in the absence (usual calibration) and in presence of 0.2% 

hemolysed red-blood cells (RBC) (of note, 0.2% RCB gives a dark orange appearance 

to plasma). The addition of 100 μl of ART solution (2000 ng/ml) to 200 μl of control 
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or hemolysed plasma yields a final ART concentration of 667 ng/ml. The solution of 

ART in plasma was prepared using a concentrated ART solution in MeOH:H2O 1:1 

further diluted 1/20 with plasma, yielding a MeOH content of 2.5% in the I.S. 

solution, and 0.6% in the final plasma sample. Plasma and methanolic working 

solutions of DHA, AS and AM were prepared in the same way and were also added to 

control plasma or hemolysed plasma (0.2% hemolysed RBC) to reach a final 

concentration of 500 ng/ml. Samples were vortex-mixed and processed according to 

the extraction method given in Section 2.4.3. The intensities of artemisinin derivatives 

in control and hemolysed plasma were compared with respect to the MeOH used for 

diluting working solutions. 

(b) Evaluation of extraction methodology: We compared our extraction procedure (protein 

precipitation, supernatant evaporation and reconstitution in buffer/MeOH (Method A) 

cf. Section 2.4.3) with the method in Lindegardh et al. for DHA and AS (i.e. protein 

precipitation and direct supernatant injection, Method B) [102]. ART was added as a 

100 μl methanolic solution (2000 ng/ml) to 200 μl plasma calibration samples. DHA, 

AS and AM calibration samples were prepared as reported in Section 2.3.2. The signal 

intensities for ART, DHA, AS and AM in plasma calibration samples were determined 

using both extraction methods in the absence (usual calibration) and in the presence of 

0.2% hemolysed RBC. Signal intensities for endoperoxide antimalarials are expressed 

as the mean percentage of the calibration samples prepared in plasma with no RBC, 

used as control (100%). In addition, we also measured the signal intensity obtained for 

the I.S. trimipramine-D3. 

(c) Experiments with malaria patients plasma samples: While analysing clinical samples 

from malaria patients, we noticed that a few samples, some of them with overt 

hemolysis, showed a drop in the signal intensity (expressed as peak areas) of the I.S. 

ART in comparison to the calibration samples. Specifically, these very samples had 

been collected at least 18 h (mean 22 h) after the last AS intake and had therefore no 

detectable levels of AS and DHA left. Remnant plasma aliquots from these selected 

blank malaria samples (n = 35) were reanalyssed after the addition of DHA, AS and 

AM (500 ng/ml, prepared as in Section 2.3.2) using our proposed extraction 

methodology and the addition of ART 2000 ng/ml as I.S. The respective signal 

intensity of ART, DHA, AS and AM in these malaria samples were compared to those 

obtained after addition of the same solutions of DHA, AS and AM and the I.S. ART to 

10 blank malaria patients samples without any signs of hemolysis, analysed in 
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duplicate, used as control (100%) (i.e.: hemolysis could be excluded in these malaria 

plasma samples because the signal intensity of the I.S. ART was the same as that 

measured in calibration levels analysed simultaneously). 

 

2.6.6. Dilution effect 

Some patient samples were found to contain drug concentrations exceeding the highest level 

of the calibration curve (see Table 1). To ascertain whether the dilution of these samples prior 

to a subsequent analysis could affect the accuracy of the drug determination, a blank plasma 

sample was spiked with antimalarials at a concentration exceeding by two-fold the highest 

calibration level. The sample was thereafter analysed in duplicate after a three-fold dilution to 

bring the concentration within the calibration range. Dilution was carried out with blank 

plasma. Calculated and expected concentrations were compared. 

 

2.6.7. Selectivity 

The assay selectivity was assessed by analysing extracts from ten batches of blank plasma 

extracts from different sources. 

 

2.6.8. Memory effect 

With instruments of increasing sensitivity, the carry-over or memory effect has emerged as a 

problem, potentially influencing the accuracy at low levels found at the end of the dosing 

period of observation. The carry-over effect was assessed by determining the peak area of 

analytes at the expected retention time in series of MeOH/buffer A 1:1 solution after the 

analysis of the highest calibration plasma sample. The signal was expressed as the percentage 

of the absolute signal in the highest calibrator. 

 

3. Results and discussion 

3.1. Chromatograms 

The proposed method enables the simultaneous quantification by liquid chromatography 

coupled with tandem MS/MS in 200 μl plasma aliquots of most of the currently available and 
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newly introduced artemisinin-based antimalarial combinations and their active metabolites 

(Figure 1). A chromatographic profile of a calibration plasma sample containing all 

antimalarials/metabolites at concentrations corresponding to one fourth of the highest 

calibration levels is shown in Figure 2 (a and b) in the positive mode, during the 2 acquisition 

segments 0–7.5 and 7.5–17 min, respectively, using the Selected Monitoring Reaction Mode 

and the gradient program given in Section 2.4. The respective retention times of antimalarial 

drugs and the I.S. trimipramine-D3 are reported in Table 2. The separation is satisfactory for 

all considered analytes. Importantly, amodiaquine and its active metabolite N-desethyl-

amodiaquine are eluted at 4.51 and 4.75 min, respectively, and no reciprocal signal cross talk 

is observed at the chosen m/z transition at 328.3 → 283.0 m/z and 356.3 → 283.1 m/z, 

respectively. 

 

Though all antimalarials/metabolites and the I.S. trimipramine-D3 were eluted within 17 min, 

a relatively prolonged rinsing step of 4 min at a flow rate of 0.4 ml/min was introduced to 

eliminate the memory effect observed with the basic compounds in the initial set-up of the 

method. The rinsing step was followed by the column-conditioning step with the initial 

solvent composition (98/2 solvent A/solvent B) at a flow rate of 0.4 ml/min (3 min). 

 

Figure 3 shows the signals at all selected m/z transitions when a single solution containing all 

antimalarials/metabolites/I.S. was continuously infused post-column directly into the MS/MS 

detector during the chromatographic analysis of six different blank plasma extracts. The 

signals at the m/z transition showed a remarkably similar pattern, with all traces being 

essentially superimposable. Even though no noticeable matrix effect (no drifts or shifts of the 

signals) was observed at the respective retention time of the antimalarials, metabolites and I.S. 

peaks (shown in the chromatographic profile) in this perfusion experiment, some matrix 

effects were, however, found as reported in the experiments below (see Section 3.5). 

 
Figure 4 shows the chromatographic profiles of a plasma sample obtained from an 18-year-

old female patient (TK010) from Tanzania receiving Coartem® (one tablet contains 20 mg 

arthemether and 80 mg lumefantrine, Novartis, Basel, Switzerland) divided in six doses of  

4 tablets. The plasma level of artemether, DHA, desbutyl-lumefantrine and lumefantrine 

measured on Day 2, 9 h after last drug intake (i.e. fourth dose) were 17, 26, 80, and 

9923 ng/ml, respectively. On Day 7, the levels of artemether and DHA were below the LOD 

while the long-acting drugs lumefantrine and its metabolite desbutyl-lumefantrine measured 

106 h 35 min (ca 4.5 days) after the last drug intake (sixth dose) were 805 and 28 ng/ml, 
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respectively (chromatogram not shown). The chromatogram in Figure 5 was obtained from a 

35-year-old male patient from Cambodia (CP046) on an ACT regimen of 

artesunate/mefloquine 600/1250 mg divided in 3 daily doses (200/500 mg on Days 0 and 1, 

and 200/250 mg on Day 2). The blood sample was taken 1 h 09 min after the first dose. 

Measured plasma concentrations were 134, 239 and 82 ng/ml for artesunate, DHA and 

mefloquine, respectively. Of note, the “blank” base-line plasma taken in this patient prior to 

the first dose administration was found to already contain 55 ng/ml of mefloquine, indicating 

that this patient had previously taken an antimalarial drug at his own initiative (chromatogram 

not shown). 

 
Figure 6 shows the chromatographic profile from a plasma collected in a 46-year-old male 

patient from Tanzania (TK098) 12 h 47 min after his second dose of Coartem® showing a 

concentration of 7.1, 6.7, 16.1 and 3551 ng/ml of artemether, DHA, desbutyl-lumefantrine 

and lumefantrine, respectively. Interestingly, the analysis revealed that this patient had also 

previously taken quinine, sulfadoxine and pyrimethamine before the medical visit, with 

plasma levels of 1105, 22,899 and 4.9 ng/ml, respectively. 
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Figure 2. Chromatogram of the high quality control sample containing each 

antimalarial drugs at concentration reported in Table 1 (100 and 2000 ng/ml of 

internal standards), showing the first and second segments, at 0.0–7.5 and 7.5–

17.0 min, respectively. 
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Figure 2. Continued. 
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Figure 3. Chromatogram of six blank extract with post-column infusion of a 

calibration sample at medium QC concentration of each analysed drug and 100 

and 2000 ng/ml of internal standards. Positive mode (first and second segments) 

is shown. 
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Figure 3. Continued. 
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Figure 4. Chromatogram of plasma of a patient receiving artemether and 

lumefantrine (as Coartem® formulation; details in the text). 

 

 

 

 
Figure 5. Chromatogram of plasma of a patient receiving artesunate and 

mefloquine (details in the text). 
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Figure 6. Chromatogram of plasma of a patient receiving artemether and 

lumefantrine (as Coartem® formulation; details in the text). Samples analysis 

reveals also the presence of quinine, and pyrimethamine/sulfadoxine (details 

in the text). 
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3.2. Internal standard and calibration curve 

Ideally, deuterated analogues or homologues of the antimalarials or their metabolites would 

be the first-choice standards but these were not available to us and do not always compensate 

for the matrix effect [104]. Thus, a number of chemical compounds, unlikely to be found in 

patients but sharing some structural/chemical similarities with these antimalarials (i.e. 

aromatic heterocyclic amine linked to alkylamine, highly bound to plasma proteins), were 

evaluated as potential internal standards. Among them, trimipramine-D3 was selected because 

it had a satisfactory chromatographic profile, with a negligible memory effect and, as a 

deuterated labeled compound, it is unlikely to be present in patients. For the quantification of 

the artemisinin derivatives AM, AS and DHA, the natural product artemisinin has been used 

as the I.S. in several assays [116] and was initially considered in our method as an additional 

I.S. for this class of compounds. It was found at an early stage of development that 

trimipramine-D3 was also suited for artemisinin drugs, without affecting the accuracy and 

precision of the assay and with the advantage of a single I.S. for all antimalarials. In fact, 

ART, even though structurally related to DHA, AS and AM, was found not to closely mimic 

the reactivity of its hemisynthetic derivatives towards Hb (see below Section 3.8) and may 

spuriously affect analytical results when used as I.S. in the presence of slightly hemolytic 

plasma sample, such as those from some malaria patients. Moreover, previous/concomitant 

self-treatment with Artemisia annua herbal preparations (containing artemisinin) cannot be 

ruled out, and thus can also be detected with the proposed method. Having artemisinin as a 

second I.S. may be useful to identify situations (hemolysis) whereby the potential reactivity of 

hemoglobin towards endoperoxide-containing drugs may affect signal intensity and thus 

measured blood levels (see below Section 3.8) [136]. Interestingly, an AM metabolite – not 

yet identified – was detected at ca 8.0 min in patient’s samples in the transition of m/z 

283 → 247 chosen for artemisinin (Figure 4 and Figure 6). 

 

For all antimalarials, calibration curves over the entire ranges of concentrations in Table 1 

were satisfactory described by either 1/x2 or 1/x weighted quadratic regression, or quadratic 

log–log regression, of the peak-area ratio of antimalarial to I.S., versus the concentrations of 

the respective antimalarials/metabolites in each standard sample. The dynamic ranges can be 

considered satisfactory and span from 600 (AQ and DAQ) to 5000 (CQ, Q and MF). Over the 

considered concentration range, regression coefficient r2 of the calibration curves were always 

greater than 0.99 with back-calculated calibration samples within ±15% (±20% at LLOQ). 
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3.3. Precision, accuracy, LLOQ and LOD 

Precision and accuracy determined with the L, I, M and H QC samples are given in Table 3. 

The levels of control samples were selected to reflect the low, medium and high range of the 

calibration curves chosen to encompass the clinical range of concentrations found in patients’ 

plasma. The mean intra-assay precision was similar over the entire concentration range and 

always less than 14.3%. Overall, the mean inter-day precision was good, with CVs within 

3.1–12.6%. The intra-assay and inter-assay deviation (bias) from the nominal concentrations 

of each analysed antimalarials/metabolites QC were comprised between −9.1 and +13.0%, 

and −9.0 to +6.2%, respectively. 

 

The results of the determination of LLOQ and LOD of antimalarials drugs in plasma are 

shown in Table 4. By analysing in triplicate plasma samples spiked with decreasing 

concentrations, the lowest achievable LOD among the considered antimalarials was obtained 

for DAQ at 10 pg/ml. The lowest LOQ was obtained for AQ and DAQ at 0.15 ng/ml, 

corresponding to an amount of 1.5 pg of drug into the 10 μl-injection volume. 

 

Of note, the chosen levels of the calibration samples were selected initially to encompass the 

relevant range of concentrations presumably present in the plasma samples collected in this 

prospective field clinical study where antimalarials levels were determined in plasma samples 

taken at predetermined time after drug intake. With rare exceptions, all plasma drug levels in 

this study are above the lowest calibration levels. While validating the method, however, it 

was observed that the performance of our tandem MS/MS detector was such to attain lower 

detection and quantification limits, well below the clinically relevant range of antimalarial 

drugs concentrations established during the validation procedure. These results are reported in 

Table 4. 
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3.4. Stability of antimalarials/metabolites in plasma 

The stability of antimalarials/metabolites QCs in human plasma samples left at room 

temperature (RT) was ascertained up to 48 h. The variation over time of each drug levels was 

mostly comprised within the ±15% of starting concentrations indicating that, taking into 

account the analytical variability, antimalarials are stable, with the notable but expected 

exception of DHA and AS showing at RT a significant decrease of −15, −48 and −75%, and 

−12, −23 and −48% from the initial levels after 8, 24 and 48 h at RT, respectively (Figure 7, 

RT). By contrast, DHA and AS levels were remarkably stable in plasma samples left during 

the same period in the fridge at 4 °C (Figure 7, 4 °C). This indicates that in field trials, after 

blood centrifugation without delay, plasma can be conveniently stored at 4 °C up to 48 h prior 

to final storage at −80 °C. This good stability of DHA and AS in the plasma at 4 °C was 

observed irrespectively of the presence of other antimalarials during the in vitro experiments. 

Interestingly in separate in vitro experiments at RT (data not shown), significant differences 

in the rate of decrease in AS and DHA levels were observed amongst the different plasma 

sources used in the in vitro experiments. Variability in plasma esterases concentrations or 

activity are probably involved in AS decay. During the analysis in the laboratory, plasma 

samples were never allowed to stay more than 1 h at room temperature prior to extraction, 

indicating that under such conditions the stability of antimalarials/metabolites in plasma is 

such that the accuracy is not likely to be notably affected. 

 

 
Figure 7. Comparison of stability of DHA and AS in plasma at RT and +4 °C (horizontal 

lines correspond to ±15% of initial values). 

 

The variation of antimalarials/metabolites concentrations after one and two freeze-thaw cycles 

was less than −15.5% after 2 cycles. For some antimalarials (amodiaquine, quinine and 

sulfadoxine at the medium QC level; artemether, desbutyl-lumefantrine and lumefantrine at 

85



the low QC concentrations) an apparent increase of about 12% was observed after 2 cycles. 

After 3 cycles, significant loss of lumefantrine (−19%) and desbutyl-lumefantrine (−30%) 

were observed for the high QCs. Thus, samples containing lumefantrine/desbutyl-

lumefantrine are apparently vulnerable to multiple freeze-thaw cycles. When repetitive 

analyses of samples are considered, it is advised to distribute plasma aliquots in separate vials 

to be defrozen only once. 

 

Of note, we have also investigated the stability of antimalarial drugs in dried plasma extracts 

samples (in case samples could be processed on-site up to the stage of the solid dried residues 

and shipped at room temperature), and in blood at +4 °C and at RT. However, the 

determination of antimalarials/metabolites stability was obscured by the antimalarial drug 

distribution in and out red-blood cells (RBC) which occurred for some antimalarials in these 

in vitro experiments. A comprehensive analysis of antimalarials stabilities in various 

biofluids, and antimalarials drugs handling in and out RBC, and the effect of temperature, is 

outside the scope of the present article and will be reported elsewhere. 

 

3.5. Matrix effect and recovery 

Among the solvent mixtures tested (mentioned in Section 2.4.2), the best overall recovery for 

the 14 antimalarials/metabolites was obtained after acetonitrile precipitation of plasma, 

followed by evaporation of the supernatant solution and reconstitution of the dried extracts in 

MeOH/buffer A 1:1 mixture. 

 

Matrix effect was examined by the simultaneous post-column infusion of 

antimalarials/metabolites and I.S. into the MS/MS detector during the chromatographic 

analysis of six different batches of blank plasma extracts from blood donors. As exemplified 

in Figure 3, no significant drifts or shifts of the selected transition signals were apparent 

during the chromatography of the six blank matrices at the retention time of the  

14 compounds (Table 2). Of note, AM and DLF were eluted at 13.07 and 13.11 min just after 

a small drop in the selected transition signal appearing between 12.90 and 13.05 min which 

should therefore not affect AM and DLF signal intensity: this drop was reproducible between 

plasma batches and, because all calibration are prepared in plasma, will correct for any 

possible matrix effect. 
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Co-eluting matrix components may nevertheless reduce or enhance the ion intensity of 

analytes, possibly affecting the reproducibility and accuracy of the assay. Consequently, for 

the sake of validation, all standard calibrations and quality control samples have been 

prepared by spiking drugs in human plasma. 

 

The assessment of the matrix effect (Table 5) was quantified as the peak-area response of 

analytes added to blank plasma extracts (i.e. B, drugs added after extraction), expressed as the 

percentage of the response of standard solution of drugs directly injected onto the column (A) 

(ratio B/A, in Table 5). A value above or below 100% for the matrix effect indicates an 

ionization enhancement or suppression, respectively. The results indicate that co-eluting 

plasma matrix components appear to reduce the ion intensity for DLF and LF to about 22% 

and 27% for DLF and LF, respectively. This is due to the fact that both LF and DLF in 

MeOH/buffer A (1:1) solution had comparatively a very intense signal. Accordingly, these 

high signal areas of pure LF and DLF negatively affect overall recovery and efficiency. 

However, the extraction recovery (C/B) was not affected as the results showed an excellent 

sensitivity, comparable to or even better than lumefantrine and desbutyl-lumefantrine LOQ 

values reported to date (Table 4, [95]). The problem of ion suppression for LF using LC–MS 

has been already reported producing notably spurious pharmacokinetic results necessitating 

samples re-analysis by HPLC UV [38]. Keeping this in mind, we put a lot of effort to 

optimize gradient elution for LF and DLF with a relatively “flat” gradient pattern in the 

second part of the program (i.e. 59 → 68% organic between 10 and 17 min) for controlling 

elution of DLF and LF at a time were the matrix effect would be minimal, or at least for 

which the variability would be reduced. Finally, the peak intensity obtained with pure 

piperaquine and pyronaridine standards (signals A) were obtained using a new LC column 

after conditioning and equilibration of long enough duration (i.e. after about 40 analyses). 

After prolonged use, some decrease in the intensity of pyronaridine and piperaquine occurred, 

without affecting, however, their excellent signal in spiked plasma samples. 

 

The analytical recovery was calculated in a similar way, but considering drugs response/I.S. 

ratio instead, before (C2) and after (B2) the extraction procedure (ratio C2/B2, in Table 5). 

Taking into account the I.S. response enables to correct for the occurrence of variation over 

time in the MS/MS spectrometer performance and injection volume. As indicated in Table 5, 

the extraction recovery for the two I.S. trimipramine-D3 and artemisinin was essentially 

identical and above 95%. The analytical recoveries achieved were always >78.1% for all 
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antimalarials. The overall recovery given in Table 5 (column C/A) was obtained as the peak-

area response of analytes spiked into plasma samples before the extraction procedure I, such 

as calibration and control samples, expressed as the percentage of the peak area of pure drug 

standard solution (A) directly injected into the column. This overall recovery (i.e. process 

efficiency) takes into account the extraction yield and the matrix effect: for example, DHA 

has a mean matrix-mediated ionization decrease down to about 85% (Table 5, column ME) 

which, combined with a mean extraction yield of 96% (Ext RE, Table 5), gives an overall 

recovery (process efficiency, PE) around 82%. Overall, these results indicate that even though 

no apparent matrix effect was observed in the infusion experiment (Figure 3a and b), matrix 

components do influence the overall process efficiency. This was especially noticeable for 

lumefantrine and desbutyllumefantrine, requiring therefore the preparation of calibration and 

control samples in plasma matrix reflecting at best the composition of the samples to be 

analysed. Most importantly, it is not so much the matrix effect per-se that must be reduced 

than its variability. As shown in Table 5, the variability of the matrix effect of 6 different 

plasma matrices never exceeded 11.3%, demonstrating indeed that the proposed extraction 

procedure is able, if not to eliminate, at least to normalize and standardize the matrix effect. 

 

Finally, our standard addition experiments (reported in Table 6) performed with DHA, 

lumefantrine and mefloquine using the malaria patient plasma itself indicate a good 

correspondence between experimental and expected concentrations in the spiked aliquots, 

with deviations comprised within ±15% in 31 out of 32 measurements. These experiments 

have therefore allowed to ascertain that (i) any possible unrecognized matrix effect (caused by 

differences in plasma composition due to altered physio-pathological conditions associated 

with malaria) is adequately either circumvented or normalized using our proposed extraction 

method and (ii) any unrecognized metabolites are not markedly influencing the analytes 

signal intensity, at least for the drugs for which clinical samples were available. This 

demonstration was especially important for lumefantrine, for which ion suppression has been 

previously reported to be an issue [38]. 

 

3.6. Dilution effect 

After the three-fold dilution of the spiked plasma with antimalarials at a concentration 

exceeding by two-fold the high calibration level, the deviation (bias) from the expected 

concentrations was less than 12.5% for all drugs. This indicates that plasma samples 
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containing antimalarials above the high level of calibration can be adequately diluted with 

blank plasma prior to the LC–MS/MS analysis. 

 

3.7. Analytical issues with artemisinin drugs in hemolysed samples 

3.7.1. Impact of the presence of organic solvent on the assay of endoperoxide drugs in 

hemolysed plasma 

With our extraction methodology, the signal intensity of artemisinin added as I.S. to 

hemolysed plasma (0.2% RBC) was decreased by ca. −20% in the presence of 0.2% 

hemolysed RBC, irrespective of whether the ART solution was added as a “free” 

aqueous/methanolic solution, or “shielded” as a protein-bound form solubilized in plasma 

(p = 0.26, Student t-test) (see Figure S1, upper left, MeOH versus plasma solution (Annex)). 

This indicates that, with our proposed method, the presence of MeOH in the ART solution 

does not account per se for the drop of ART measured in hemolysed plasma (see below). For 

DHA, AS and AM at 500 ng/ml, the nature of the solvent used for their solubilization in the 

working solutions has also little impact on the very small decrease in their signal intensities in 

hemolysed plasma (Figure S1) (p = 0.6, 0.62, 0.43, for DHA, AS and AM, respectively, 

solubilized in MeOH versus in plasma). Of note, the higher reactivity of ART towards Hb is 

unlikely to be explained by differences in the degree of plasma protein binding which is 

similar for ART, DHA and AM (85–88%, 93%, 95–98%), respectively [137-139]. Indeed, 

AS, even though significantly less bound to plasma proteins (62–81% [139]) was no more 

reactive than DHA and AM. Thus, the higher reactivity of ART with Hb is most probably 

related to intrinsic differences related to its chemical characteristics. 

 

3.7.2. Evaluation of sample extraction methodology 

The results of the comparative study of the stability of arteminisin compounds in calibration 

samples in the presence or absence of Hb, are shown in Figure S2, using either (A) our 

proposed method (protein precipitation, supernatant evaporation and reconstitution) or (B) 

protein precipitation and direct supernatant injection. Again, the signal of artemisinin was 

similarly decreased by ca 20–25% (p < 0.001 Student t-test) in the presence of 0.2% 

hemolysed RBC with both extraction methods (Figure S2: ART, upper left, method A versus 

B). Using method B (direct supernatant injection) also the signals of DHA, AS and AM were 
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significantly decreased in hemolysed plasma in comparison to those added to pure control 

plasma (p < 0.001, p < 0.01 and p < 0.02, for DHA, AS and AM, respectively). By contrast, 

with method A (supernatant evaporation and reconstitution), DHA, AS and AM were found to 

be remarkably stable in the presence of 0.2% RBC: their signal intensities in hemolysed 

calibration samples were not significantly different from controls and within the analytical 

variability (mean difference compared to control non-hemolysed plasma: −2.3% (p = 0.17); 

−2.9% (p = 0.16), and −1.3% (p = 0.73) for DHA, AS and AM, respectively) (Figure S2: 

columns A). These experiments indicate that, in the presence of Hb in plasma, the evaporation 

and reconstitution in buffer/MeOH after protein precipitation used in our method appears to 

be essential steps to eliminate components affecting DHA, AS, and AM signal intensities 

during the subsequent LC–MS/MS analysis. These results confirm Lindegardh et al. [102] 

finding that the analysis of DHA and AS with direct plasma supernatant injection after plasma 

protein precipitation was particularly vulnerable to the presence of Hb and RBC components. 

Other factors, including the chromatographic conditions (stepwise flow gradient program on 

reverse-phase column whereby DHA and AS are eluted with a 100% organic solvent 

(MeOH/I 75:25) washing) may have contributed to the size of the effect seen. The inherent 

vulnerability of this method was then corrected by the same group in a follow-on paper by a 

preliminary clean-up by SPE on reverse-phase packing material [101]. 

 

The signal of trimipramine-D3 (TPR) was insensitive to the presence of Hb, using our 

methodology (Figure S2 upper right: TPR method A), but decreased (as well as piperaquine, 

data not shown) when using the direct supernatant injection (Method B). This substantiates 

the choice of TPR as the I.S. for all compounds and highlights the critical importance of the 

evaporation step and reconstitution in buffer/MeOH after protein precipitation to the 

standardization of sample extracts injected into the LC–MS/MS. 

 

3.7.3. Experiments with malaria patients plasma samples 

In Figure S3, the hemolysed malaria patients samples have been classified according to the 

percentage reduction in signal intensity of the I.S. ART, used as a surrogate for the presence 

of Hb in comparison to the mean signal intensity of ART in 10 blank malaria patients samples 

without hemolysis. In the addition experiments performed with hemolysed plasma samples 

from malaria patients, the intensity of ART (I.S., 667 ng/ml) as well as DHA, AS and AM 

spiked at 500 ng/ml are shown in Figure S3. A significant drop in ART signal intensity was 
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visible, as expected (see above), and was more pronounced (down to 65%) with increasing 

evidence of hemolysis in comparison to control (p < 0.0001). Of note, visual examination of 

plasma samples with a −25% to −50% reduction in ART signal were frankly red. By contrast, 

the DHA did not appear to be significantly affected by Hb or possible hemolytic compounds 

in the group of hemolysed malaria patient samples showing a reduction in ART signal of as 

much as −15 to −25% (p = 0.16, in comparison to control). In the same latter group of 

samples, AS and AM were slightly more sensitive to the presence of Hb (Figure S3) and their 

signal intensities were reduced to 91 ± 9% and 92 ± 7% of that of non-hemolysed controls 

patient samples, a small, albeit significant, decrease (p < 0.01). However, given the ±15% 

allowances in analytical variability these decreases are unlikely to impact to a clinically 

relevant extend the accuracy of bioanalysis of AS and AM of samples in case of the presence 

of low levels of Hb. Further detailed investigations on the stability of endoperoxide 

antimalarials in the presence of Hb are ongoing in our laboratory but are outside the scope of 

the present report. 

 

3.8. Selectivity 

No peaks from endogenous compounds were observed at the drugs retention time in any of 

ten blank plasma extracts evaluated. The product ion monitoring was chosen, given its relative 

abundance, while avoiding possible structural analogies with other drugs or fragments 

analysed. Every channel was simultaneously observed, and we never saw any selectivity 

problems or cross talk signal at the retention time of interest between acquisition channels. 

This was examined in details for instance for the m/z transition chosen for amodiaquine and 

N-desethylamodiaquine, and for DHA/AS/AM and artemisinin. 

 

3.9. Memory effect 

A critical issue for the analysis of some basic antimalarials (PQ, PY, DLF, LF) analysis was 

their tendency to get adsorbed by reverse-phase octadecyl-based chromatographic packing 

materials, resulting in a “memory” effect. Most of the carry-over could be eliminated by 

programming a relatively prolonged rinsing period after each analysis. With this approach, the 

carry-over effect ascertained by sequential injection of 10 μl of MeOH/buffer A 1:1 solution 

after the analysis of the high calibrator was demonstrated to be minimal. After the first 

following injection, the memory effect was below 0.1% except for piperaquine, lumefantrine, 
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desbutyl-lumefantrine, chloroquine, pyronaridine and quinine which showed signals 

corresponding to a carry-over of 0.219, 0.193, 0.161, 0.127, 0.125 and 0.106% of the peak 

areas of the highest calibration levels, respectively. In the following second and third injection 

of the blank solution, the highest observed carry-over corresponds to 0.098 and 0.07% of the 

high calibration levels, respectively. Thus, by measure of precaution, the analyses of 3 blank 

samples were programmed after the high calibration samples, prior to the first analysis of 

patients’ samples. 

 

3.10. Clinical applications 

This analytical method proved reliable and sensitive for monitoring concentrations of 

antimalarial/metabolites in plasma isolated from patients (see examples in Figure 4, Figure 5 

and Figure 6). It is being used in a field study done by the Swiss Tropical Institute in 

collaboration with the National Center for Parasitology, Entomology and Malaria Control and 

the Pasteur Institute of Cambodia, and with the Ifakara Health Institute in Tanzania. This 

study addresses the influence of host pharmacogenetic factors on plasma concentrations of 

antimalarials and their consequences on clinical responses and toxicities. Our method is being 

applied to the measurement of plasma levels of artesunate, DHA, mefloquine and piperaquine 

and artemether, DHA, lumefantrine, desbutyl-lumefantrine. 

 

4. Conclusion 

This analytical method offers advantages over previously published methods in terms of 

convenience (a single extraction procedure for 14 major antimalarials and metabolites 

reducing significantly the analytical time), sensitivity, selectivity and throughput. Mass 

spectrometry has already been used in malaria, but so far limited to single or chemically 

related compounds, and in some cases compromised by ion suppression, a recently identified 

problem [103,104]. Here, ion suppression and potential matrix effects have been 

comprehensively investigated (see Table 5 and Figure 3) following the FDA’s guidelines 

[131] and the recommendations of Matuszewski et al. [135]. 

 

Developing an analytical method for the simultaneous determination of as many as  

14 antimalarials/metabolites in the same chromatographic run was a challenge because current 

antimalarial drug combinations (ACTs) comprise both basic lipophilic drugs and structurally 
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unrelated artemisinin derivatives with distinctly different chromatographic behaviour, 

lipophilicity and ionization efficiency. Among the various column types tested (i.e. X-Terra, 

Symmetry, etc.) the Atlantis-d18 (Waters) performed best in terms of retention time and peak 

shape reproducibility and robustness. The use of this column permitted in particular a reliable 

chromatographic elution of pyronaridine and piperaquine, which tended to be eluted 

unretained (i.e. running near the solvent front) onto some of the columns tested, or appearing 

as erratic broad-shape peaks, which precluded accurate quantification. Careful control of the 

solution A (pH 2.8) with addition of 0.5% formic acid and of the gradient elution program of 

the mobile phase is mandatory for standardizing each drug’s peak shape and retention time. 

Retention time reproducibility is particularly important, as two segments of data acquisition 

are programmed in the positive mode detection for the simultaneous analysis of 

antimalarials/metabolites in the same run. Given the number of analytes in the proposed 

method, an increase in the number of MS/MS transitions recorded simultaneously would 

result in reduced sensitivity because of the time required for data acquisition at each of the 

selected MS/MS transition channels. To circumvent this limitation, two consecutive sets of 

MS/MS transitions in the positive mode were programmed during the analytical run (see 

Section 2.4). 

 

The lack of deuterated antimalarial derivatives may be regarded as a limitation of our 

analytical method. However, they are generally not accessible; making them available would 

resolve questions on matrix effect interferences and, more generally, facilitate analytical 

routine. So far though, to the best of our knowledge, of the nearly 30 LC–MS/MS methods 

published for the assay of single or a few chemically related or unrelated antimalarials, only 

very few have used deuterated analogues as I.S., and this only the more recent antimalarials 

[101,102,104,140,141]. 

 

More generally, with the LC–MS/MS technology, one will always be confronted with the 

residual uncertainty as to the potential influence of unknown, or known, but generally not 

available, metabolites of antimalarial drugs. Making standard substances (e.g. relevant 

metabolites, available deutered I.S.) available through a centralized warehouse would be 

extremely useful for analytical standardization and cross-validation worldwide. This is 

probably an aspect worth being addressed by initiatives like the World Antimalarial 

Resistance Network (WARN) [40]. 
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A solvent at pH 4.0 for the reconstitution of dried plasma residues was suited to both the basic 

antimalarials (expected to be in their protonated form as their pKa’s range 8–9) and 

artemisinin compounds, which were found to be stable at this pH. Acidic pH (i.e. EtOH-0.1% 

glacial acetic acid 1:1) has already been used to solubilise artemether and DHA [116]. 

 

Concerning recovery, the volume of MeOH and buffer pH 4.0 1:1 chosen for the 

reconstitution of dried extracts aimed at achieving the lowest possible limit of quantification 

given the wide differences in the solubilities in organic solvents and buffers, polarity and ES 

ionization performance of the 14 analytes. Given the large number of compounds, this 1:1 

ratio was a compromise that takes into account the clinically relevant plasma target 

concentrations for each antimalarial and metabolite. Overall, the precision and the accuracy of 

the low calibration sample were, for all antimalarials, within the ±20% limit recommended by 

the FDA and the Washington and Arlington Conference Reports [131-133]. Most importantly, 

the LLOQs were far below the clinically relevant levels obtained in patients, and either 

similar to (piperaquine, DHA, artesunate, arthemether) or better than (pyronaridine, 

mefloquine, desethyl-amodiaquine, desbutyl-lumefantrine, lumefantrine) previous methods 

(see Table 4, and references cited therein). The proposed method enables to quantify, 

depending on the drug analysed, as little as 1.5–12.5 pg on-column, thus allowing to detect 

the “tail” of the levels produced by the long-acting drugs (lumefantrine, piperaquine, 

pyronaridine, quinine, mefloquine, sulfadoxine-pyrimethamine), and to quantify drug levels at 

critical time-points, such as for instance 7 days after treatment start (which was found to 

correlate with exposure and treatment outcome in the case of lumefantrine) [40], and 

references cited therein]. The availability of very sensitive LC–MS/MS methods is critical to 

determining accurately the terminal half-life of slowly eliminated antimalarials, such as 

piperaquine [142]. 

 

With regard to the instability of endoperoxide antimalarials in the presence of hemoglobin, 

our experiments done with control and hemolysed plasma from uninfected and malaria 

patients indicate that artemisinin added as I.S. appears to be comparatively more vulnerable 

than DHA, AS and AM to the presence of hemoglobin. This makes ART unsuited as a formal 

I.S. in case of hemolytic samples but a sensitive surrogate for hemolysis. In fact, with an 

alternate methodology recently reported elsewhere by our group [136], ART may indeed be 

used as I.S. for the analysis of hemolysed plasma samples: since artemisinin compounds are 

reported to react with (ferrous) Fe2+ – but not ferric (Fe3+) – heme from Hb [141], the addition 
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of sodium nitrite, a known methemoglobin-forming agent [143] to hemolysed plasma samples 

prevent most of the apparent DHA or AS degradation in hemolysed samples and, importantly, 

to the same proportion as ART added as I.S. 

 

For these reasons, and since stable isotopes-labeled compounds were not available as I.S. to 

us during the course of this analytical development, we had trimipramine-D3 as I.S. for this 

broad-range analysis, as it does not react with Hb and is particularly well suited for the other 

antimalarial drugs considered in this analysis (i.e. lipophilic alkylamines). 

 

The main shortcoming of LC–MS/MS is the high acquisition and maintenance costs, which 

makes it unaffordable for many clinical or academic research laboratories, particularly in 

malaria endemic countries, thus limiting its spread and applicability. It is therefore certainly 

of importance to also address the problem of the more appropriate procedure for samples 

collection in field conditions. In that context, we have demonstrated that all drugs (i.e. 

including artemisinin drugs) are stable for up to 48 h in plasma stored at 4 °C (Figure 7, 

4 °C). Therefore, samples can be collected in the field, and easily kept and transported to the 

nearest laboratory where they can be frozen and stored until assayed or further shipped to 

their final destination. 

 

This broad-range LC–MS/MS method is suited for detecting drug use in a population (e.g. 

upon enrolment in a trial or to assess real antimalarial drugs consumption) and measuring 

drug exposure in treated patients and will help improving our understanding of antimalarial 

drugs pharmacokinetics, efficacy and toxicity. This is of particular relevance in this era of 

antimalarial combination therapies and co-morbidities (notably HIV co-infection and potential 

drug-drug interactions with concomitant medication, notably antiretroviral drugs.) Building 

upon previous analytical and population pharmacokinetics expertise with antiretrovirals 

[144,145] a better knowledge on the actual antimalarials plasma exposure and more precise 

definition of the pharmacokinetic/pharmacodynamic relationships will ultimately result in a 

more precise definition of the therapeutic ranges for the different drugs in different patient 

populations. The methodology presented here allows the measurement of total antimalarial 

drugs levels in plasma whereas the site of their antimalarial activity is expected to be mostly 

within erythrocytes. To that endeavour, we are currently attempting to further develop the 

LC–MS/MS assay to measure free and total levels in whole blood and red-blood cells. 
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CHAPTER 2  

 

Single nucleotide polymorphisms in cytochrome P450 isoenzyme and  

N-acetyltransferase-2 genes in malaria patients from Cambodia and 

Tanzania – potential explanation for the lower efficacy of artemether–

lumefantrine in Cambodia 
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Abstract 

One of the most important control measures in malaria is prompt diagnosis and treatment with 

an effective and safe combination of antimalarial drugs. The analysis of genetic 

polymorphisms in drug metabolizing enzymes is a step towards a broader understanding of 

inter-individual differences in pharmacokinetic and pharmacodynamic profiles and 

consequential treatment failures and adverse drug reactions. We analysed in this study allele 

frequencies of single nucleotide polymorphisms (SNPs) in genes encoding enzymes involved 

in the metabolism of antimalarials, namely cytochrome P450 isoenzymes (CYP) and N-

acetyltransferase-2 (NAT2), in samples from Cambodia and Tanzania. Major differences were 

found in allele frequencies of CYP2D6, CYP3A4, CYP3A5, and NAT2. The wide difference in 

CYP3A4*1B allele frequency between the two populations presents a potential explanation for 

the lower efficacy of artemether–lumefantrine in Cambodia and highlights the importance of 

pharmacogenetic considerations in the decision-making process of first-line treatment policies 

for specific populations. 

 

Introduction 

One of the most important control measures in malaria is prompt diagnosis and treatment with 

an effective and safe combination of antimalarial drugs. Both drug efficacy and safety are 

strongly dependent on the achievement of appropriate circulating concentrations under 

treatment, with insufficient exposure associated with a risk of failure and resistance 

emergence, and too high levels with a risk of toxicity.  

 

The analysis of genetic polymorphisms in genes encoding proteins and enzymes involved in 

drug absorption, distribution, metabolism, elimination and action is a step towards a broader 

understanding of inter-individual differences in pharmacokinetic and pharmacodynamic 

profiles and consequential treatment failures and adverse drug reactions. It has been stated 

that polymorphism of drug-metabolizing enzymes have by far the highest impact on inter-

individual differences in drug response [47]. Depending on the alleles an individual is 

carrying, the metabolism can be altered. Certain enzyme polymorphisms can enhance drug 

metabolism, whereas others abolish or decrease drug metabolism, and frequencies of such 

polymorphisms vary among different ethnic groups [50,51]. As a consequence, ethnicity may 

have a major impact on drug metabolism and hence drug efficacy and safety. This might be of 
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particular interest for antimalarial drugs where a rapid onset of the antiparasitic effect 

(sufficient Cmax and short tmax) and a slow elimination (long t½) to protect against 

recrudescence are required for successful treatment. A deeper insight in the inter-population 

variability in the profile of genes encoding enzymes responsible for antimalarial drug 

metabolism could facilitate the selection of appropriate first-line treatment for uncomplicated 

malaria in a specific population.   

 

For this study, we have chosen two populations reported to differ in their clinical response to 

current antimalarial treatment, namely to artemisinin-based combination therapies (ACTs). In 

Tanzania, the in vivo efficacy of ACTs have been reported to be excellent [146], whereas 

from Cambodia decreasing efficacies were reported with artemether-lumefantrine [147]. We 

have investigated single nucleotide polymorphisms (SNPs) in genes of the phase I 

cytochrome P450 enzyme family (CYP) and the phase II N-acetyltransferase-2 (NAT2) in 

malaria patients from Cambodia and Tanzania. Both, CYP and NAT2 are involved in the 

metabolism of various antimalarial drugs. The responsible enzymes with established 

polymorphisms are CYP2A6 and CYP2B6 for the artemisinins, CYP2C8 for amodiaquine, 

chloroquine and dapsone, CYP2C9 and NAT2 for dapsone and sulfamethoxazole, CYP2C19 

for dapsone and proguanil, CYP2D6 for chloroquine and halofantrine, CYP3A4 for the 

artemisinins, chloroquine, dapsone, halofantrine, lumefantrine, mefloquine, primaquine and 

quinine, and CYP3A5 for β-arteether, artemether, chloroquine, mefloquine, quinine and 

sulfadoxine [37,44,52,59-79]. However, for some antimalarial drugs (i.e. piperaquine, 

pyrimethamine and pyronaridine) the metabolic pathway is still not very well known, or they 

are barely metabolized at all (i.e. atovaquone and doxycycline) [53-58]. 

 

Materials and methods 

During an in vivo drug efficacy study in patients with uncomplicated malaria of all age, 

venous blood samples (anticoagulated using EDTA) were obtained after informed consent 

from 125 patients in Northern and Western Cambodia (64 in 2007 at Phnom Dék Health 

Centre, Rovieng district, Preah Vihear province, and 61 in 2008 at Pramoy Health Centre, 

Veal Veng district, Pursat province) and 149 patients in Central Tanzania (in 2008 at Kibaoni 

Health Centre, Kilombero district, Morogoro region).  
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Study population in Cambodia 

In Cambodia more than 90 % of the people are Khmer ethnic. The ethnic minorities include 

Chinese, Chams (Muslim descendants of Cham refugees who fled to Cambodia after the fall 

of Champa), Khmer Loeu (collective term for Mon-Khmer or Austronesian speaking hill 

tribes), and Vietnamese. In the Preah Vihear and Pursat province Khmer Loeu people form 

the most represented minority and they tend to live in separate villages. 

 

Study population in Tanzania 

The study in Tanzania was conducted at Kibaoni Health centre in Ifakara town in Kilombero 

districts. The town lies in the flood plain of the Kilombero river valley at approximately  

36.41 degrees East and 8.8 degrees South. The total population of the study area is 

approximately 90 000. The inhabitant of the Kilombero river valley live in widely scattered 

households in the rice field plains. Most people are subsistence farmers of various ethnic 

groups and recently highly mobile pastoralist ethnic groups , i.e. Masaai, Barbaig and 

Sukuma, have immigrated in the area.  

 

Laboratory procedures 

Whole blood samples from Cambodia where immediately stored in liquid nitrogen for one 

week and then transferred into a -80°C freezer. In Tanzania, samples were kept on ice for no 

longer than 6 h after withdrawal and then stored in a -80°C freezer. Genomic DNA was 

extracted from 200 μl whole blood using the QIAamp 96 DNA Blood Kit (QIAGEN GmbH, 

Germany) according to the manufacturer’s instructions.   

 

Pharmacogenetic analysis 

Target genes with SNP known to alter enzyme activity involved in the metabolism of 

antimalarial drugs were selected for the analysis. This information was obtained from the 

Human Cytochrome P450 (CYP) Allele Nomenclature Committee (http://www.cypalleles. 

ki.se/), and the Consensus Human Arylamine N-Acetyltransferase Gene Nomenclature (http:// 

louisville.edu/medschool/pharmacology/NAT.html). Selected target sequences containing the 

respective SNPs in CYP and NAT2 genes were amplified by polymerase chain reaction (PCR) 
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using primers shown in Table 1. The following SNPs were selected: CYP2A6*2 (479T>A, 

L160H), CYP2B6*5 (1459C>T, R487C), CYP2B6*6 (only 516G>T, Q172H, also called 

CYP2B6*9), CYP2C8*3 (only 416G>A, R139K), CYP2C9*3 (1075A>C, I359L), CYP2C9*5 

(1080C>G, D360E), CYP2C19*3 (636G>A, W212X), CYP2D6*4 (1846G>A, splicing 

defect), CYP2D6*10 (100C>T and 4180G>C, P34S and S486T), CYP2D6*17 (1023C>T and 

2859C>T, T107I and R296C), CYP3A4*1B (-392A>G), CYP3A5*3 (6986A>G, splicing 

defect), NAT2*5 (341T>C, I114T), NAT2*6 (590G>A, R197Q), NAT2*7 (857G>A, G286E), 

and NAT2*14 (191G>A, R64Q). The reverse primer for CYP2D6*10 (100C>T) and the 

forward primer for CYP2D6*17 (1023C>T) contained a mismatch at the second position at 

the 3’ end in order to avoid amplification of the pseudogene CYP2D7. For the PCR 1 μl of 

purified DNA was mixed with 24 μl of the PCR master mix. The PCR master mix contained 

2.5 μl 10 × reaction buffer B (Solis BioDyne, Estonia),  2.5 μl 10 × solution S (Solis 

BioDyne, Estonia), 2.5 μl primer mix (see Table 1, each primer 10 μM in 1 × Tris-EDTA, 

Operon Biotechnologies GmbH, Germany), 2 – 3 μl MgCl2 25mM (according to Table 1, 

Solis BioDyne, Estonia), 2.5 μl dNTP mix (each nucleotide 2mM in Tris-HCl 10 mM, pH 7.4, 

GE Healthcare, Switzerland) and 0.4 μl FIREPol DNA polymerase 5 U/µl (Solis BioDyne, 

Estonia) and dH2O (Milli-Q Advantage A10, Millipore AG, Switzerland) was added up to 24 μl. 

The PCR protocol was 3 min at 96 °C followed by 40 cycles (30 sec at 96 °C, 1 min 30 sec at 

56 – 64 °C according to Table 1 and 1 min 30 sec at 72 °C) with a final elongation for 10 min 

at 72 °C. The PCR products were then sent to Macrogen, Ltd., Korea for purification and 

sequencing using the PCR primers highlighted in bold and listed in Table 1. 

 

Data analysis 

Sequences were analysed using the ABI Prism AutoAssembler version 1.4.0 (Applied 

Biosystems) for assembly. The genotype of each patient was then assessed visually. Hardy-

Weinberg equilibrium was tested using the chi-square Hardy-Weinberg equilibrium test 

calculator for biallelic markers of the Online Encyclopedia for Genetic Epidemiology studies 

(http://www.oege.org). Differences of allele frequencies between populations were tested 

using 2 × 2 tables and Fischer’s exact test. A Bonferroni correction for multiple comparisons 

was performed for both tests and a P-value of <0.003 was considered significant. The fixation 

index (FST) was calculated using Arlequin version 3.1 [148] in order to measure population 

differentiation based on the investigated SNPs.  
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Table 1. Primers, MgCl2 [μl] for the master mix and annealing temperature [°C] used to 

amplify target sequence in cytochromes P450 isoenzyme genes and N-acetyltransferase 2 

genes.  

SNP Primer  
MgCl2 

[μl] 

T 

[°C] 

Forward 5’-TCTCTCTCTCTACCTCGACAT-3’ 
CYP2A6*2 

Reverse 5’-GTTCCTCGTCCTGGGTGTT-3’ 
3 64 

Forward 5’-CCAGAAGACATCGATCTGAC-3’ 
CYP2B6*5 

Reverse 5’-TCTCTCAGAGGCAGGAAGTT-3’ 
2 64 

Forward 5’-TGAGTGATGGCAGACAATCACA-3’ 
CYP2B6*6 

Reverse 5’-CAAGTTGAGCATCTTCAGGAACT-3’ 
2 64 

Forward 5’-CTAAAGGACTTGGTAGGTGCA-3’ 
CYP2C8*3 

Reverse 5’-CAGGATGCGCAATGAAGACC-3’ 
2 64 

Forward 5’-CTGGTTTATGGCAGTTACACATT-3’ 
CYP2C9*3/*5 

reverse 5’-GAGAAAGTCCAGTTAAACTGCC-3’ 
2 64 

forward 5’-GGGAATTCATAGGTAAGATATTA-3’ 
CYP2C19*3 

reverse 5’-GGAGTGATATAAGCACGCTTTG-3’ 
2 56 

forward 5’-CCGCCTTCGCCAACCACT-3’ 
CYP2D6*4 

reverse 5’-CCCTGCAGAGACTCCTCGGT-3’ 
2 64 

forward 5’-CCCATTTGGTAGTGAGGCAGGT-3’ CYP2D6*10 

(100C>T) reverse 5’-CCCCTTCTCAGCCTGGCTTCTTG-3’ 
2 64 

forward 5’-AGCCACCATGGTGTCTTTGCT-3’ CYP2D6*10 

(4180G>C) reverse 5’-TTGCCCTGAGGAGGATGATC-3’ 
2 64 

forward 5’-CGCGAGGCGCTGGTGACCAA-3’ CYP2D6*17 

(1023C>T) reverse 5’-CCAGCTCGGACTACGGTCATCAC-3’ 
2 64 

forward 5’-GACTCTGTACCTCCTATCCACGTCA-3’ CYP2D6*17 

(2850C>T) reverse 5’-TCCCTCGGCCCCTGCACTGTTT-3’ 
2 64 

forward 5’-CTCACCTCTGTTCAGGGAAAC-3’ 
CYP3A4*1B 

reverse 5’-ATGGCCAAGTCTGGGATGAG-3’ 
2 64 

forward 5’-TGGAGAGTGGCATAGGAGATAC-3’ 
CYP3A5*3 

reverse 5’-CCATACCCCTAGTTGTACGACACA-3’ 
2.5 64 

forward 5’-GGGATCATGGACATTGAAGCATATT-3’ 
NAT2 

reverse 5’-ACGTGAGGGTAGAGAGGATATCTG-3’ 
2 64 

 Primers highlighted in bold were used for sequencing. 
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Ethical approval 

All the applied protocols were approved by the ethics committee of the two cantons of Basel 

(Ethikkommission beider Basel) and the responsible local authorities (Medical Research 

Coordination Committee of the National Institute for Medical Research in Tanzania and 

National Ethics Committee for Health Research in Cambodia). Blood samples were obtained 

after written informed consent in the local language (Khmer or Swahili) from the participants 

or their responsible guardians. 

 

Results  

We have sequenced amplified PCR fragments flanking relevant SNPs in CYP and NAT2 

genes from 125 Cambodian and 150 Tanzanian malaria patients. Allele frequencies were 

calculated for each population and each SNP (Tables 2 and 3) however, sequence data were 

not always available for all samples.  

 

Most allele frequencies were found to be in Hardy-Weinberg equilibrium. However, in the 

Tanzanian study population CYP2B6*5 and CYP2D6*4 and in the Cambodian study 

population CYP2B6*5, CYP2C9*3, CYP2D6*10 (4180G>C), and CYP2D6*17 (2850C>T) 

were found not to have Hardy-Weinberg proportions.  

 

No mutation was observed in both populations for CYP2A6*2 and CYP2C8*3. Furthermore, 

in Tanzania no mutation was observed in CYP2C9*3 but the mutation was found at a 

frequency of 6.56% in Cambodia. The reverse was observed for CYP2C9*5 and in 

CYP2D6*4 which were not mutated in Cambodia whilst both genes were found mutated at 

low frequencies in Tanzania (0.76% and 4.1%, respectively). CYP2D6*17 showed no 

mutation in Cambodia but was found at high frequencies mutated in Tanzania (20.26%) 

(Table 2). 

 

High frequencies of mutated alleles were observed in both populations for CYP2B6*6, 

CYP2D6*10, and NAT2*6, whereas CYP2B6*5 and CYP2C19*3 were found only at low 

frequencies mutated in both populations.  
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Major differences in frequencies of mutated alleles between both populations was observed 

for CYP2D6*10 (60.56% to 6.62%), CYP3A5*3 (64.52% to 18.40%), and NAT2*7 (20.49% 

to 2.36%) all showing high frequencies of mutation in Cambodia but low frequencies in 

Tanzania. In contrast, CYP2D6*17 (7.69% to 60.64%), CYP3A4*1B (3.72% to 73.51%), 

NAT2*5 (6.56% to 36.36%), and NAT2*14 (2.48% to 14.54%) showed lower mutation 

frequencies in Cambodia than in Tanzania.  

 

Differences in frequencies were found significant in 11 SNPs and no significant differences 

were observed in 7 SNPs (Tables 2 and 3). The FST- value was 0.16033 at 5 % significance 

level.  

 

105



Table 2. Allele frequencies in cytochrome P450 isoenzyme genes in Cambodia and Tanzania.  

Cambodia Tanzania 
 

n % SNP χ2 Pχ n % SNP χ2 Pχ 
PF 

T/T 123 148

T/A 0 0 CYP2A6*2 

A/A 0 

0.00   

0 

0.00    

C/C 116 145

C/T 2 1 CYP2B6*5 

T/T 3 

3.31 66.52 <0.003

2 

1.69 93.91 <0.003 0.108 

G/G 38 56 

G/T 40 47 CYP2B6*6 

T/T 16 

38.30 0.93 0.335 

18 

34.30 2.31 0.129 <0.003

G/G 75 69 

G/A 0 0 CYP2C8*3 

A/A 0 

0.00   

0 

0.00    

A/A 109 131

A/C 10 0 CYP2C9*3 

C/C 3 

6.56 13.38 <0.003

0 

0.00   <0.003

C/C 122 129

C/G 0 2 CYP2C9*5 

G/G 0 

0.00   

0 

0.76 0.01 0.920 0.268 

G/G 117 139

G/A 7 2 CYP2C19*3 

A/A 0 

2.82 0.10 0.752 

0 

0.71 0.01 0.920 0.049 

G/G 74 126

G/A 0 5 CYP2D6*4 

A/A 0 

0.00   

3 

4.10 37.07 <0.003 0.007 

C/C 19 119

C/T 33 16 
CYP2D6*10 

(100C>T) 
T/T 38 

60.56 2.30 0.129 

1 

6.62 0.31 0.578 <0.003

G/G 17 13 

G/C 36 49 
CYP2D6*10 

(4180G>C) 
C/C 69 

71.31 9.78 <0.003

80 

73.59 1.79 0.181 0.065 
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Table 2. Continued. 

Cambodia Tanzania 
 

n % SNP χ2 Pχ n % SNP χ2 Pχ 
PF 

C/C 66 74 

C/T 0 37 
CYP2D6*17 

(1023C>T) 
T/T 0 

0.00   

5 

20.26 0.02 0.888 <0.003

C/C 46 9 

C/T 4 19 
CYP2D6*17 

(2850C>T) 
T/T 2 

7.69 10.92 <0.003

19 

60.64 1.10 0.294 <0.003

A/A 87 8 

A/G 7 55 CYP3A4*1B 

G/G 0 

3.72 0.14 0.708 

71 

73.51 0.39 0.532 <0.003

A/A 16 98 

A/G 56 39 CYP3A5*3 

G/G 52 

64.52 0.02 0.888 

7 

18.40 1.39 0.238 <0.003

n indicates the number of patients, % SNP the mutated allele frequency in percent, χ2 the result 

from the Hardy-Weinberg equilibrium test and Pχ the one-tailed P-value. PF is the P-value of 

Fischer’s exact test for differences between populations. 
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Table 3. Allele frequencies in N-acetyltransferase 2 gene in Cambodia and Tanzania.  

Cambodia Tanzania 
 

n % SNP χ2 Pχ n % SNP χ2 Pχ 
PF 

T/T 106 58 

T/C 16 66 NAT2*5 

C/C 0 

6.56 0.60 0.439 

19 

36.36 0 1.000 <0.003 

G/G 44 84 

G/A 59 49 NAT2*6 

A/A 19 

39.75 0.01 0.920 

15 

26.69 3.51 0.061 <0.003 

G/G 78 141 

G/A 38 7 NAT2*7 

A/A 6 

20.49 0.24 0.624 

0 

2.36 0.09 0.764 <0.003 

G/G 115 107 

G/A 6 27 NAT2*14 

A/A 0 

2.48 0.08 0.777 

7 

14.54 7.42 0.006 <0.003 

n indicates the number of patients, % SNP the mutated allele frequency in percent, χ2 the result 

from the Hardy-Weinberg equilibrium test and Pχ the one-tailed P-value. PF is the P-value of 

Fischer’s exact test for differences between populations. 
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Discussion 

In this study we found alleles that showed similar frequencies in both populations and others 

that varied greatly in malaria patients from Cambodia and Tanzania. The FST-value implies 

that the degree of differentiation among the two populations is moderate. The finding that the 

majority of samples was found to be in Hardy-Weinberg equilibrium proves that sampling 

was unbiased. The few cases where population data were found not to be in Hardy-Weinberg 

proportion are most likely due to the small sample size (and thus might represent chance 

findings) or due to the Wahlund effect, i.e. reduction in heterozygosity due to highly 

diverging subpopulations.  

 

Alleles showing major differences were of CYP2D6, CYP3A4, CYP3A5, and NAT2. This is in 

accordance with previous reports showing that allele frequencies of CYP2D6 and NAT2 vary 

considerably between continents or even countries [149,150]. There is little information 

available on allele frequencies of CYP and NAT2 gene polymorphisms in Tanzanian or 

Cambodian populations. Sistonen et al. investigated CYP2D6 haplotype frequencies in single 

populations and found in Cambodia no polymorphism in CYP2D6*4 and CYP2D6*17 genes 

but 54.5 % mutated CYP2D6*10 [150] which is comparable with our data. A study on 

CYP2D6 genotypes in Tanzania also reported a low allele frequency for CYP2D6*4 (1 %) and 

intermediate frequency for CYP2D6*17 (17 %) [151], the latter showing a much higher 

frequency in our study. The small number of available sequence data for some of the CYP2D6 

loci was probably due to rather short PCR products or a low PCR efficiency. Short PCR 

products tend to fail sequencing due to stuttering at the beginning of sequencing. The PCR 

primers were initially designed for use in a DNA microarray and no attention had been paid to 

the length of the PCR product. It is also possible that mismatches incorporated into the primer 

to avoid amplification of the pseudogene CYP2D7 might reduce PCR efficiency. In future 

studies primers, especially for CYP2D6, should be redesigned.  

 

The observed low frequency of CYP2C19*3 confirms previous findings from Tanzania where 

no CYP2C19*3 alleles were found [152]. The allele frequencies we report for CYP2B6*6 

(516G>T), CYP3A4*1B and CYP3A5*3 are very similar to those previously described for 

three Tanzanian populations. One study from Zanzibar reported allele frequencies of 32.0 % 

for CYP2B6*6 (516G>T), 69.2 % for CYP3A4*1B and 15.8 % for CYP3A5*3, and two 

studies from mainland Tanzania reported allele frequencies of 73.2 % for CYP3A4*1B and 

19.0 % for CYP3A5*3 [152-154]. A comparison of our allele frequencies with frequency data 
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for Asians and Africans (available for CYP2A6*2, CYP2B6*5, CYP2B6*6 (516G>T), 

CYP2C8*3, CYP2C9*3, CYP2C19*3, CYP3A4*1B, and CYP3A5*3) on the National Center 

for Biotechnology Information (NCBI) Single Nucleotide Polymorphism (SNP) Homepage 

showed high concordance [155].  

 

The major differences between the Cambodian and Tanzanian population in allele frequencies 

were observed for CYP2D6*10, CYP3A4*1B, and CYP3A5*3. CYP3A4 has been implicated 

in metabolizing lumefantrine, and CYP3A4 and CYP3A5 are involved in the metabolism of 

artemether [61]. Epidemiological studies reported an association of the CYP3A4*1B allele 

with risk of higher grade of prostate cancer and risk of developing secondary acute myoblastic 

leukaemia following treatment with epipodophyllotoxins due to altered metabolism of 

testosterone and the chemotherapeutic [156,157]. A study on tacrolimus concluded that 

increased doses should be given to CYP344*1B carriers [158] and similar recommendations 

were given in another study on docetaxel [159]. These findings have initiated discussions 

about whether interindividual variability in hepatic CYP3A4 activity is due to genetic factors. 

The author of the original prostate cancer study repeatedly defended the theory that there 

might be a downstream effect of the CYP3A4*1B polymorphism on some metabolic pathways 

that could be physiologically relevant [160,161]. Other authors doubted the described 

relationship between CYP3A4*1B allele and the phenotype [162-170]. The debate could not 

even be ended by an extensive review on the subject [171]. Keshava et al. concluded that (i) 

there is a lack of evidence to date that the major polymorphic variants in CYP3A4 have any 

association with CYP3A4 activity, (ii) that there is evidence for a correlation between 

CYP3A4*1B and early life events associated with breast cancer risk and (iii) that the five 

prostate cancer studies reviewed did not provide convincing support for a direct role of 

CYP3A4*1B in prostate carcinogenesis. Some authors suggested that a linkage disequilibrium 

between CYP3A4*1B and CYP3A5*1A (and thus increased CYP3A5 expression) could be the 

actual cause of the altered metabolism [163,168,172]. Therefore, it is interesting to observe a 

high allelic frequency of the mutated CYP3A4*1B and low frequency of the wild type 

CYP3A5*1 in Tanzania and vice versa in Cambodia. Lumefantrine, the long-acting 

component of the most widely used ACT in Africa is metabolized by CYP3A4. The 

artemisinin component (i.e. artemether) is metabolized by CYP3A4 and CYP3A5 and hence 

differences in the efficacy of artemether–lumefantrine (AL) might be explained by 

pharmacogenetics. Studies in Cambodia on efficacy of AL showed cure rates of only 71.1% 

[147]. These high treatment failure rates could not be explained by food intake nor could 
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parasite resistance be demonstrated using molecular markers [147,173]. Thus, one could 

speculate that host factors might influence treatment outcome. With our findings we can 

hypothesize that Cambodian subjects probably metabolize AL differently than African 

patients and that therapeutic plasma levels may not have been sustained long enough in 

Cambodian subjects [174]. The fact that AL may be of limited use as alternative treatment 

against malaria in Cambodia led to the continued use of artesunate–mefloquine (AM). In 

1982, the first mefloquine resistant parasites were found along the Thai-Cambodian border  

[175]. Due to high levels of resistance against mefloquine [176], AM virtually represents a 

monotherapy and might have a non negligible effect on the emergence of the reduced 

susceptibility to artemisinins observed in South-East Asia [177-184]. Therefore, it seems 

important to deepen our understanding of the treatment failures under AL in Cambodia. The 

impact of altered drug metabolism needs to be confirmed by pharmacokinetic studies in 

malaria patients and we intend to analyze this genotype-phenotype association in the patients 

in a recently conducted study (AL2002 study). 

 

This highlights the need to include pharmacogenetic data in the evaluation of antimalarial 

treatment regimens in specific ethnic groups. Should the above findings be confirmed it 

would be essential to gather molecular data for the selection of an appropriate first-line 

treatment for uncomplicated malaria in specific populations. 
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CHAPTER 3  

 

A microarray based system for the simultaneous analysis of single 

nucleotide polymorphisms in human genes involved in the metabolism of 

antimalarial drugs 
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Abstract 

Background 

In order to provide a cost-effective tool to analyse pharmacogenetic markers in malaria 

treatment, we compared DNA microarray technology with sequencing of polymerase chain 

reaction (PCR) fragments to detect single nucleotide polymorphisms (SNPs) in a larger 

number of samples.  

 

Methods 

The microarray was developed to affordably generate SNP data of genes encoding the human 

cytochrome P450 enzyme family (CYP) and N-acetyltransferase-2 (NAT2) involved in 

antimalarial drug metabolisms and with known polymorphisms, i.e. CYP2A6, CYP2B6, 

CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and NAT2.  

 

Results 

For some SNPs, i.e. CYP2A6*2, CYP2B6*5, CYP2C8*3, CYP2C9*3/*5, CYP2C19*3, 

CYP2D6*4 and NAT2*6/*7/*14, agreement between both techniques ranged from substantial 

to almost perfect (kappa index between 0.61 and 1.00), whilst for other SNPs a large 

variability from slight to substantial agreement (kappa index between 0.39 and 1.00) was 

found, e.g. CYP2D6*17 (2850C>T), CYP3A4*1B and CYP3A5*3.  

 

Conclusion 

The major limit of the microarray technology for this purpose was lack of robustness and with 

a large number of missing data or with incorrect specificity.  
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Background 

Drug action depends on how drugs are metabolized and differences in activity of 

metabolizing enzymes can significantly contribute to the efficacy of drugs [47,185]. This 

might also be true for drugs given to treat malaria. We intended to analyse single nucleotide 

polymorphisms (SNPs) in genes encoding enzymes implicated in metabolizing antimalarial 

drugs in order to determine the contribution of these enzymes to the pharmacokinetics of the 

specific drugs. Standard methods to detect SNPs, such as the polymerase chain reaction 

(PCR) based restriction fragment length polymorphism (RFLP) approach [186,187] are 

usually time consuming, expensive and/or not suitable for use in resource-poor countries. 

Here we compare an alternative, DNA microarray based [188] technique to detect SNPs in a 

larger sample size with sequencing. The microarray was developed to affordably generate 

SNP data of genes encoding the human cytochrome P450 enzyme family (CYP) and N-

acetyltransferase-2 (NAT2) involved in antimalarial drug metabolisms. The respective 

enzymes with known polymorphisms are CYP2A6 and CYP2B6 for the artemisinins, CYP2C8 

for amodiaquine, chloroquine and dapsone, CYP2C9 and NAT2 for dapsone and 

sulfamethoxazole, CYP2C19 for dapsone and proguanil, CYP2D6 for chloroquine and 

halofantrine, CYP3A4 for the artemisinins, chloroquine, dapsone, halofantrine, lumefantrine, 

mefloquine, primaquine and quinine, and CYP3A5 for artemether, β-arteether, chloroquine, 

mefloquine, quinine and sulfadoxine [37,44,52,59-79]. For certain antimalarial drugs 

(piperaquine, pyrimethamine and pyronaridine) the metabolic pathway is yet not well known, 

while others (atovaquone and doxycycline) are barely metabolized at all [53-58].  

 

Methods 

Sequencing 

Samples were collected in the context of an in vivo treatment study (CHAPTER 6) assessing 

the effect of pharmacogenetics on the pharmacokinetic profile of antimalarials in malaria 

patients from Cambodia (n = 125) and Tanzania (n = 149). Target sequences in cyp and nat2 

genes of these samples were amplified using PCR. The PCR primers used are listed in Table 1 

and the full protocol has been described elsewhere (CHAPTER 2). The amplified regions 

contained SNPs which are known to alter the function of enzymes involved in the metabolism 

of antimalarial drugs (for target loci and effect of the SNP see Table 1). PCR products were 

purified and sequenced by Macrogen (Macrogen Ltd., Korea). ABI Prism AutoAssembler 
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version 1.4.0 (Applied Biosystems) was used for assembly and analysis of sequences. The 

genotype of each patient was then assessed visually. Aliquots of the same PCR products were 

used for primer extension and microarray analysis. 

 

Table 1. Primers used to amplify target sequences in chytochromes P450 isoenzymes and N-

acetyltransferase 2 genes.  

SNP Primer  

forward 5’-TCTCTCTCTCTACCTCGACAT-3’ CYP2A6*2  

(479T>A, L160H) reverse 5’-GTTCCTCGTCCTGGGTGTT-3’ 

forward 5’-CCAGAAGACATCGATCTGAC-3’ CYP2B6*5  

(1459C>T, R487C) reverse 5’-TCTCTCAGAGGCAGGAAGTT-3’ 

forward 5’-TGAGTGATGGCAGACAATCACA-3’ CYP2B6*6  

(516G>T, Q172H) reverse 5’-CAAGTTGAGCATCTTCAGGAACT-3’ 

forward 5’-CTAAAGGACTTGGTAGGTGCA-3’ CYP2C8*3  

(416G>A, R139K) reverse 5’-CAGGATGCGCAATGAAGACC-3’ 

forward 5’-CTGGTTTATGGCAGTTACACATT-3’ CYP2C9*3/*5  

(1075°>C, I359L / 1080C>G, 

D360E) reverse 5’-GAGAAAGTCCAGTTAAACTGCC-3’ 

forward 5’-GGGAATTCATAGGTAAGATATTA-3’ CYP2C19*3  

(636G>A, W212X) reverse 5’-GGAGTGATATAAGCACGCTTTG-3’ 

forward 5’-CCGCCTTCGCCAACCACT-3’ CYP2D6*4  

(1846G>A, splicing defect) reverse 5’-CCCTGCAGAGACTCCTCGGT-3’ 

forward 5’-CCCATTTGGTAGTGAGGCAGGT-3’ CYP2D6*10  

(100C>T, P34S) reverse 5’-CCCCTTCTCAGCCTGGCTTCTTG-3’ 

forward 5’-AGCCACCATGGTGTCTTTGCT-3’ CYP2D6*10  

(4180G>C, S486T) reverse 5’-TTGCCCTGAGGAGGATGATC-3’ 

forward 5’-CGCGAGGCGCTGGTGACCAA-3’ CYP2D6*17  

(1023C>T, T107I) reverse 5’-CCAGCTCGGACTACGGTCATCAC-3’ 

forward 5’-GACTCTGTACCTCCTATCCACGTCA-3’ CYP2D6*17  

(2850C>T, R296C) reverse 5’-TCCCTCGGCCCCTGCACTGTTT-3’ 

forward 5’-CTCACCTCTGTTCAGGGAAAC-3’ CYP3A4*1B  

(-392A>G) reverse 5’-ATGGCCAAGTCTGGGATGAG-3’ 
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Table 1. Continued.  

SNP Primer  

forward 5’-TGGAGAGTGGCATAGGAGATAC-3’ CYP3A5*3  

(6986A>G, splicing defect) reverse 5’-CCATACCCCTAGTTGTACGACACA-3’ 

forward 5’-GGGATCATGGACATTGAAGCATATT-3’ NAT2*5/*6/*7/*14 

 (341T>C, I114T /  

590G>A, R197Q /  

857G>A, G286E /  

191G>A, R64Q) 

reverse 5’-ACGTGAGGGTAGAGAGGATATCTG-3’ 

Primers highlighted in bold were used for sequencing. SNP positions are indicated in 

brackets; they were obtained from the Home Page of the Human Cytochrome P450 (CYP) 

Allele Nomenclature Committee (http://www.cypalleles.ki.se/), and the Consensus Human 

Arylamine N-Acetyltransferase Gene Nomenclature (http://louisville.edu/medschool/  

pharmacology/NAT.html).   

 

Patient selection for DNA microarray validation 

Of 274 patients from Cambodia and Tanzania, 96 were selected (out of practical reason, i.e. 

96-well plate) for validation of the microarray. Patients were assorted by the number of 

successfully sequenced SNPs and then their ID number. For all 96 selected patients at least  

16 out of 18 SNPs have been successfully sequenced. 

 

Extension control and elimination of non-incorporated nucleotides.  

As extension control for the microarray, amplified nested PCR product from the Plasmodium 

falciparum chloroquine resistance transporter gene (pfcrt) from strains 3D7 (wildtype at loci 

pfcrt76 and pfcrt97) and K1 (mutation at locus pfcrt76 and wildtype at pfcrt97) was mixed in 

a ratio of 55%:45%. Primers and PCR conditions have been described elsewhere [188]. 

 

To eliminate non-incorporated nucleotides prior to primer extension, all nested PCR products 

of one blood sample were pooled and 10 μl of the pooled PCR products and 0.5 μl of the 

extension control mix were digested with 8 U shrimp alkaline phosphatase (SAP) and 4 μl  

10 × SAP buffer (both Amersham Biosciences, Freiburg, Germany) in a reaction volume of 

48 μl for 1 h at 37°C. SAP was inactivated by incubating samples for 15 min at 90°C. 
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Primer extension and denaturation 

Since the microarray scanner used only supported dual-fluorescence measures simultaneously 

and because of the large similarity of the cyp genes, a strategy of three parallel reactions with 

different primer and dye combinations had to be applied. Different extension primer mixes  

(I, II and III) were prepared according to Table 2, each with a total volume of 320 μl 

containing the corresponding primers (62.5 nM final concentration of each primer, Operon 

Biotechnologies GmbH, Germany) diluted in 1 × Tris-EDTA (TE). Afterwards, three 

extension mixes (I, II and III) were prepared (final volume of 8 μl) containing 2 U of HOT 

TERMIPol® DNA Polymerase (Solis BioDyne, Estonia), 1.8 μl of 10 × Reaction Buffer C 

(Solis BioDyne, Estonia), 2.5 mM MgCl2, and 0.625 μM of the corresponding Cy3- and Cy5-

labeled ddNTPs (Perkin Elmer, Schwerzenbach, Switzerland); ddNTP mixes are listed in 

Table 3.  Then, 12 μl SAP digested PCR product of each patient were mixed with 8 μl of the 

extension mix I, II or III, respectively. The following primer extension protocol was used:  

1 min at 94°C followed by 40 cycles of 10 sec at 94°C followed by 40 sec at 50°C. The three 

mixes of each patient were then pooled again in a 96 well plate and mixed with 10 μl of the 

hybridization buffer. The hybridization buffer contained 37.5 μM EDTA pH 8.0, 7 pM of two 

differently labelled positive hybridization controls 5’-GCCTCCACGCACGTTGTGATATGTA-

[Cy3]-3’ and 5’-CTGTGACAGAGCCAACACGCAGTCT-[Cy5]-5’ (Operon Biotechnolo-

gies GmbH, Germany), and 3% Sodium Dodecyl Sulfate (SDS). The plate was incubated for 

1 min at 94°C and immediately chilled on ice for 2 min.  

 

Microarray production and microarray hybridization 

Aldehyde-activated ArrayIt® SuperAldehyde 2 glass slides with SuperMask™ 16 (EBN 

European Biotech Network, Dolembreux, Belgium) were used. Oligonucleotides (Operon 

Biotechnologies GmbH, Germany) corresponding to the antisense DNA of the extension 

primers, extension controls (Table 2) and positive hybridization controls were spotted onto 

the microarrays in triplicate. The spotting was done by the DNA Array Facility of the Center 

for Integrative Genomics, University of Lausanne, Switzerland, using solutions of 50 μM 

oligonuclotide in 180 mM phosphate buffer (pH 8.0). All oligonucleotides had a C7-

aminolinker attached to the 3’ end. Anchor oligonucleotides prelabeled with Cy3 and Cy5 and 

four oligonucleotides with a random sequence were added as positive and negative controls, 

respectively. Of the pooled and denatured primer extension reaction mixture 35 μl were 
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transferred to one well of the microarray, and 6 µl 20 × Standard Saline Citrate (SSC) were 

added. In each well, representing a single microarray, DNA from one patient was hybridized. 

Hybridization was carried out in a humid chamber at 50°C for 90 min. After hybridization, 

the slide was washed at room temperature in 2 × SSC with 0.2% SDS for 10 min, followed by 

a wash with 2 × SSC for 10 min, and a final wash with 2 × SSC plus 2% ethanol for 2 min. 

These three steps represent the first wash step. Slides were dried with compressed air.  

 

Table 2. Extension primers of three parallel mixes.  

SNP Primer Mix

CYP2C8*3.1 5’-GGAATTTTGGGATGGGGAAGA-3’ I 

CYP2A6*2 5’-GCTTCCTCATCGACGCCC-3’ I 

CYP2D6*4 5’-CCGCATCTCCCACCCCCA-3’ I 

CYP2D6*10 (100C>T) 5’-ACGCTGGGCTGCACGCTAC-3’ I 

CYP2D6*17 (2859C>T) 5’-AGCTTCAATGATGAGAACCTG-3’ I 

CYP2D6*17 (1023C>T) 5’-CCCGAAACCCAGGATCTGG-3’ I 

CYP3A5*3 5’-TGGTCCAAACAGGGAAGAGATA-3’ I 

CYP3A4*1B 5’-CATAAAATCTATTAAATCGCCTCTCTC-3’ I 

E.CYP2C9*3 5’-TGCACGAGGTCCAGAGATAC-3’ II 

E.CYP2C9*5 5’-CAGGCTGGTGGGGAGAAG-3’ II 

E.CYP2B6*6 (516G>T) 5’-AGATGATGTTGGCGGTAATGGA-3’ II 

E.CYP2D6*10 (4180G>C) 5’-GTGTCTTTGCTTTCCTGGTGA-3’ II 

pfcrt76 5’-TTTGTTTAAAGTTCTTTTAGCAAAAATT-3’ II 

pfcrt97 5’-GTTTTGTAACATCCGAAACTCA-3’ II 

NAT2*7 5’-GTGCCCAAACCTGGTGATG-3’ III 

NAT2*14 5’-TTGATCACATTGTAAGAAGAAACC-3’ III 

CYP2C19*3 5’-AGGATTGTAAGCACCCCCTG-3’ III 

CYP2B6*5 5’-TACCCCCAACATACCAGATC-3’ III 

NAT2*5 5’-CTTCTCCTGCAGGTGACCA-3’ III 

NAT2*6 5’-TATACTTATTTACGCTTGAACCTC-3’ III 
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Table 3. Labelled ddNTPs 

used for the three parallel 

extension mixes.  

ddNTP and label Mix

ddATP Cy3 

ddCTP Cy3 

ddGTP Cy5 

ddUTP Cy5 

I 

ddATP Cy5 

ddCTP Cy3 

ddGTP Cy5 

ddUTP Cy3 

II 

ddATP Cy3 

ddCTP Cy5 

ddGTP Cy5 

ddUTP Cy5 

III 

 

Data acquisition  

Microarrays were scanned at 635 nm and 532 nm using an Axon 4100A fluorescence scanner 

(Bucher Biotec AG, Basel, Switzerland). After the first scan slides were washed and scanned 

again and after each wash, Cy3 and Cy5 images were acquired and analyzed using the Axon 

GenePix Pro software (version 6.0). An in house developed perl script based on Kestler’s 

statistics module [189] was used to call SNPs based on probe signal intensities. The script 

calculates receiver operating characteristic (ROC) curves using signal intensity values from 

the set of positive and negative controls for each hybridization. Hybridization specific 

thresholds that maximize both sensitivity and specificity were then used to make SNP calls. 

 

Data comparison 

SNP data gathered from sequencing and from microarray analysis were compared for 

agreement. The kappa index was interpreted based on the criteria of Landis and Koch [190]. 

Hardy-Weinberg equilibrium was tested using the chi-square Hardy-Weinberg equilibrium 
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test calculator for biallelic markers of the Online Encyclopedia for Genetic Epidemiology 

studies (http://www.oege.org). 

 

Ethical approval 

All the applied protocols were approved by the ethics committee of the two cantons of Basel 

(Ethikkommission beider Basel, EKBB) and the responsible local authorities (i.e. in Tanzania 

from the Institutional Review Board of the Ifakara Health Institute and the National Institute 

for Medical Research Review Board and in Cambodia from the National Ethics Committee 

for Health Research). Blood samples were collected following written informed consent in the 

respective local language (Khmer or Swahili) from the participants or their guardians. 

 

Results 

We tested the agreement between results obtained from sequencing and from the microarray 

on 18 SNPs within eight cyp isoenzyme genes and nat2 genes from 26 Cambodian and  

70 Tanzanian malaria patients. The results are summarized in Table 4. For some SNPs 

agreement ranged from substantial to almost perfect, whilst for other SNPs a large variability 

from slight to substantial agreement was found. Where applicable, Chi-square Hardy-

Weinberg equilibrium tests for the allele frequencies acquired by the microarray showed that 

most SNPs were significantly (P < 0.01) out of equilibrium (Table 5). Exceptions were 

CYP2D6*17 (1023C>T) (P = 0.50) for Tanzania after the 1st wash; CYP2C8*3 (P = 0.92), 

CYP2C9*3 (P = 0.92), CYP2C9*5 (P = 0.92), CYP2D6*4 (P = 0.92) and CYP3A5*3  

(P = 0.16) after the 1st wash and CYP3A5*3 (P = 0.01) and NAT2 (P = 0.07) after the 2nd wash 

for Cambodia. 
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Table 4. Comparison of SNP data acquired either by sequencing or DNA microarray 

technology. 

1st wash 2nd wash 
SNP Country 

κ n % κ n % 
Agreement 

Cambodia 0.87 24 88.9 0.92 19 70.4 
CYP2A6*2 

Tanzania 0.83 58 82.9 0.61 53 75.7 

Substantial to 

almost perfect 

Cambodia 0.94 27 100.0 0.94 27 100.0 
CYP2B6*5 

Tanzania 0.92 67 95.7 0.86 67 95.7 

Almost 

perfect 

Cambodia 0.42 26 96.3 0.42 27 100.0 
CYP2B6*6 

Tanzania 0.35 63 90.0 0.40 59 84.3 

Fair to 

moderate 

Cambodia 0.97 20 74.1 1.00 20 74.1 
CYP2C8*3 

Tanzania 0.90 39 55.7 0.79 38 54.3 

Substantial to 

almost perfect 

Cambodia 0.92 26 96.3 0.94 26 96.3 
CYP2C9*3 

Tanzania 0.90 67 95.7 0.82 64 91.4 

Almost 

perfect 

Cambodia 0.98 27 100.0 1.00 27 100.0 
CYP2C9*5 

Tanzania 0.93 67 95.7 0.86 70 100.0 

Almost 

perfect 

Cambodia 1.00 27 100.0 1.00 26 96.3 
CYP2C19*3 

Tanzania 0.90 67 95.7 0.83 66 94.3 

Almost 

perfect 

Cambodia 0.98 26 96.3 1.00 26 96.3 
CYP2D6*4 

Tanzania 0.91 63 90.0 0.88 65 92.9 

Almost 

perfect 

Cambodia 0.59 24 88.9 0.64 20 74.1 CYP2D6*10 

(100C>T) Tanzania 0.72 31 44.3 0.76 27 38.6 

Moderate to 

substantial 

Cambodia 0.40 21 77.8 0.50 17 63.0 CYP2D6*10 

(4180G>C) Tanzania 0.45 45 64.3 0.51 38 54.3 

Fair to 

moderate 

Cambodia 0.86 19 70.4 1.00 6 22.2 CYP2D6*17 

(1023C>T) Tanzania 0.59 37 52.9 0.49 37 52.9 

Moderate to 

almost perfect 

Cambodia 0.29 7 25.9 0.20 6 22.2 CYP2D6*17 

(2850C>T) Tanzania 0.66 20 28.6 0.59 21 30.0 

Slight to 

substantial 

Cambodia 0.00 6 22.2 0.00 5 18.5 
CYP3A4*1B 

Tanzania 0.76 23 32.9 0.69 22 31.4 

Slight to 

substantial 

Cambodia 0.39 21 77.8 0.42 17 63.0 
CYP3A5*3 

Tanzania 0.73 61 87.1 0.65 58 82.9 

Fair to 

substantial 
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Table 4. 

1st wash 2nd wash 
SNP Country 

κ n % κ n % 
Agreement 

Cambodia 0.32 14 51.9 0.38 8 29.6 
NAT2*5 

Tanzania 0.47 37 52.9 0.53 28 40.0 

Fair to 

moderate 

Cambodia 0.70 26 96.3 0.73 25 92.6 
NAT2*6 

Tanzania 0.74 62 88.6 0.71 62 88.6 
Substantial 

Cambodia 0.72 25 92.6 0.70 22 81.5 
NAT2*7 

Tanzania 0.75 55 78.6 0.67 49 70.0 
Substantial 

Cambodia 1.00 27 100.0 1.00 27 100.0 
NAT2*14 

Tanzania 0.76 62 88.6 0.74 61 87.1 

Substantial to 

almost perfect 

Data was aquired in 27 Cambodian and 70 Tanzanian malaria patients. Κ indicates the 

kappa index. N is the number and % the percentage of samples with results for both 

techniques. 
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Table 5. Chi-square Hardy-Weinberg equilibrium tests for SNP data acquired 

by DNA microarray technology. 

Cambodia Tanzania 

1st wash 2nd wash 1st wash 2nd wash SNP 

χ2 P χ2 P χ2 P χ2 P 

CYP2A6*2 23.00 <0.01 7.29 <0.01 23.57 <0.01 34.02 <0.01 

CYP2B6*5 N.A.  N.A.  54.39 <0.01 32.76 <0.01 

CYP2B6*6 N.A.  N.A.  16.90 <0.01 17.41 <0.01 

CYP2C8*3 0.01 0.92 N.A.  8.22 <0.01 39.35 <0.01 

CYP2C9*3 0.01 0.92 N.A.  22.08 <0.01 11.13 <0.01 

CYP2C9*5 0.01 0.92 N.A.  14.69 <0.01 14.30 <0.01 

CYP2C19*3 N.A.  N.A.  18.22 <0.01 9.98 <0.01 

CYP2D6*4 0.01 0.92 N.A.  20.87 <0.01 18.55 <0.01 

CYP2D6*10 

(100C>T) 
24.00 <0.01 7.39 <0.01 31.00 <0.01 27.00 <0.01 

CYP2D6*10 

(4180G>C) 
13.67 <0.01 N.A.  11.94 <0.01 38.00 <0.01 

CYP2D6*17 

(1023C>T) 
11.90 <0.01 7.00 <0.01 0.45 0.5 35.34 <0.01 

CYP2D6*17 

(2850C>T) 
7.35 <0.01 10.00 <0.01 37.66 <0.01 30.03 <0.01 

CYP3A4*1B N.A.  N.A.  N.A.  24.00 <0.01 

CYP3A5*3 1.98 0.16 6.39 0.01 13.36 <0.01 18.74 <0.01 

N.A.T2*5 8.41 <0.01 3.32 0.07 13.83 <0.01 13.70 <0.01 

N.A.T2*6 N.A.  N.A.  33.29 <0.01 12.04 <0.01 

N.A.T2*7 9.97 <0.01 8.63 <0.01 30.21 <0.01 24.82 <0.01 

N.A.T2*14 N.A.  N.A.  32.08 <0.01 19.30 <0.01 

χ2 indicates the result from the Hardy-Weinberg equilibrium test, P the one-

tailed P-value, and N.A. that Chi-square could not be calculated because the 

allele frequency was either 0% or 100%. 
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Discussion 

Comparison of data generated by microarray analysis with sequencing showed that the 

performance of the DNA microarray is limited. For some SNPs, i.e. CYP2A6*2, CYP2B6*5, 

CYP2C8*3, CYP2C9*3/*5, CYP2C19*3, CYP2D6*4 and NAT2*6/*7/*14, agreement ranged 

from substantial to almost perfect (kappa index between 0.61 and 1.00), whilst for other SNPs 

a large variability from slight to substantial agreement (kappa index between 0.39 and 1.00) 

was found, e.g. CYP2D6*17 (2850C>T), CYP3A4*1B and CYP3A5*3. No clear trend in rise 

or decline of agreement between methods was visible from the 1st to the 2nd wash of the slide 

and thus it remains ambiguous whether repeated washing improves the performance of the 

microarray. However, agreement tends to be lower among the Cambodian samples. A 

possible explanation is the strong dependence of kappa on true prevalence of the SNPs [191] 

and the dissimilar distribution of the SNPs of interest in Cambodians and Tanzanians [192]. 

Furthermore, among most of these SNPs a considerable number of patient samples failed to 

yield a signal on the microarray (e.g. CYP2D6*17 (2850C>T) and CYP CYP3A4*1B). The 

trend was clearly higher in samples from Tanzania, which might also be due to a lower quality 

of DNA arising from suboptimal storage conditions after blood withdrawal. Sequencing data 

agreed with published reference sequences from public sources (Human Cytochrome P450 

(CYP) Allele Nomenclature Committee, http://www.cypalleles.ki.se/) and thus seemed to be 

truthful.  

 

Because cyps evolved out of a single ancestor [185,193], they show very close sequence 

similarities, which in turn makes it difficult to design gene specific primers, in particular 

extension primers that have to be designed at a defined position. It therefore became almost 

impossible to develop a single multiplex PCR and thus the microarray method described here 

is time consuming and laborious. This is in contrast to a similar microarray developed for the 

analysis of drug resistance associated SNPs in Plasmodium falciparum genes that permits the 

simultaneous analysis of many SNPs in hundreds of samples in a very short time period 

(approximately 15 h for four 96-well plates) with significantly reduced costs compared to 

other systems [188].  

 

Furthermore, the costs of sequencing have decreased considerably during the last years and 

this trend may well continue. On the other hand, the costs of microarray reagents (especially 

Cy3- and Cy5-labeled ddNTPs that are used in three combinations) and glass slides for 

arraying have increased and are unlikely to decrease over time. So the costs for the microarray 
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thechnology are not considerably lower anymore and therefore, overall costs of both methods 

have become comparable.  

 

While SNP analysis microarray has been successfully used to analyse point mutations in drug 

resistance associated genes in Plasmodium [188,194], it seems to fail with closely related 

genes such as the human cyp genes. For the latter, sequencing appears to be a more reliable 

method.  

 

Conclusions 

Although microarray allows the simultaneous determination of many SNPs, the lack of 

robustness for the described approach here prohibits its wide use in pharmacogenetics and 

sequencing occurs the more reliable technique. With the availability of large sequencing 

capacities world wide, molecular-epidemiological studies using sequencing for a limited 

number of SNPs in CYP genes in a large population are feasible. 
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CHAPTER 4  

 

Residual antimalarials in malaria patients from Tanzania – implications on 

drug efficacy assessment and spread of parasite resistance 
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Abstract 

Background  

Repeated antimalarial treatment for febrile episodes and self-treatment are common in 

malaria-endemic areas. The intake of antimalarials prior to participating in an in vivo study 

may alter treatment outcome and affect the interpretation of both efficacy and safety 

outcomes. We report the findings from baseline plasma sampling of malaria patients prior to 

inclusion into an in vivo study in Tanzania and discuss the implications of residual 

concentrations of antimalarials in this setting.  

 

Method and Findings 

In an in vivo study conducted in a rural area of Tanzania in 2008, baseline plasma samples 

from patients reporting no antimalarial intake within the last 28 days were screened for the 

presence of 14 antimalarials (parent drugs or metabolites) using liquid chromatography-

tandem mass spectrometry. Among the 148 patients enrolled, 110 (74.3%) had at least one 

antimalarial in their plasma: 80 (54.1%) had lumefantrine above the lower limit of calibration 

(LLC = 4 ng/mL), 7 (4.7%) desbutyl-lumefantrine (4 ng/mL), 77 (52.0%) sulfadoxine  

(0.5 ng/mL), 15 (10.1%) pyrimethamine (0.5 ng/mL), 16 (10.8%) quinine (2.5 ng/mL) and 

none chloroquine (2.5 ng/mL). 

 

Conclusions 

The proportion of patients with detectable antimalarial drug levels prior to enrolment into the 

study is both surprising and worrying. Artemether–lumefantrine was expected to be available 

only at government health facilities and sulfadoxine–pyrimethamine only for intermittent 

preventive treatment in pregnancy (IPTp). Self-reporting of previous drug intake is unreliable 

and thus screening for the presence of antimalarial drug levels should be considered in future 

in vivo studies to allow for accurate assessment of treatment outcome. Furthermore, persisting 

sub-therapeutic drug levels of antimalarials in a population could promote the spread of drug 

resistance. The knowledge on drug pressure in a given population is important to monitor 

standard treatment policy implementation. 
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Introduction 

The intake of antimalarial drugs prior to inclusion in an in vivo study may interfere with the 

estimation of treatment outcomes (for both efficacy and safety) due to the presence of residual 

antimalarials. The standard World Health Organization (WHO) protocol for monitoring 

antimalarial drug efficacy does not exclude patients with a history of previous antimalarial 

drug use or the presence of antimalarial drugs in the urine or blood [195]. Nonetheless, it is 

customary in clinical studies to record the occurrence of previous drug intake at screening as 

reported by the patient, parent or guardian. Two studies in Africa investigated self-reporting 

of drug intake [196,197], and both concluded that it is inaccurate. A more objective indication 

on the drug use in a study population would be obtained by screening the urine or blood for 

the presence of antimalarial drugs. There are studies on residuals of antimalarials that have 

been used in past policies, i.e. chloroquine (CQ) or sulfadoxine–pyrimethamine (SP), in urine 

or blood in the general population or patients [198-211]. However, to our knowledge, there is 

no study on the presence of lumefantrine in malaria patients seeking medical care.  

 

Policy makers in malaria endemic countries are faced with the difficult problem of ensuring 

easy and early access to effective and high quality antimalarials, while preventing their 

uncontrolled and unnecessary use, which would increase drug pressure on the parasites and 

encourage parasite resistance. Thus, knowledge of drug use in a specific area could help 

decisions makers to assess how treatment policies are implemented.  

 

Here we report the findings of the analysis of baseline samples from patients with 

Plasmodium falciparum malaria recruited in an in vivo study in Tanzania. Samples were 

analysed for the presence of 14 currently in-use antimalarials in a single run using a liquid 

chromatography-tandem mass spectrometry assay [212].   

 

Methods 

Study area and population 

The study was performed in a rural area with moderate to high malaria transmission intensity 

(Kilombero district, Morogoro region, Tanzania) during the main rainy season from March to 

May 2008. At the time of the study, artemether–lumefantrine (AL) had recently been 

introduced as first-line treatment and was only available at government health facilities to 
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ensure controlled prescription. Before 2006, the official first-line treatment in Tanzania was 

SP, which had in turn replaced CQ in 2001. In 2008, amodiaquine, SP and quinine were 

widely available in the private sector in the study area. Artesunate, dihydroartemisinin, and 

halofantrine could also be found sporadically in a few drug shops (Alba S et al., in 

preparation). In the private sector these drugs could be purchased over the counter without a 

doctor’s prescription. 

  

Febrile patients were recruited at the Kibaoni Health Center, 6 km from Ifakara down town, 

that serves a population of 26,261. The population lives in villages with good coverage of 

government health facilities and licensed drug stores (pharmacies, part II drug stores [duka la 

dawa baridi] and Accredited Drug Dispensing Outlets [ADDO; duka la dawa muhimu]) 

[213,214]. A map of the villages of residence of the patients included in the study with 

location of health facilities and drug dispensing outlets is presented in Figure 1. 

 

Clinical procedures 

The trial was designed to assess the effects of the individual pharmacogenetic profiles on  the 

disposition of standard antimalarials (to be reported elsewhere). It was based on the standard 

WHO protocol for in vivo testing. Suspected malaria cases were screened by rapid diagnostic 

test Paracheck Pf®, Orchid Biomedical Systems, India) for the presence of Plasmodium 

falciparum. Parasite count and specification of Plasmodium were done by microscopy. The 

patients with a positive result were then seen by a clinical officer, who invited them to 

participate in the study if they did not present with danger signs of complicated malaria or 

severe concomitant illness, and if they reported not having taken antimalarials in the previous 

28 days. The latter information was checked against the patient’s care log book when 

available. Consenting patients had a baseline sample (Day 0, 4.5 mL venous blood collected 

in an EDTA Vacutainer®; Becton, Dickinson and Company, USA) taken to check for 

potential residual antimalarials and correct pharmacokinetic analyses later on. Treatment with 

the standard first-line treatment AL was then initiated, according to body weight and age 

category.  
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Laboratory procedures 

Blood samples were kept on ice for no longer than 6 h after bleeding (venipuncture) and then 

aliquoted into whole blood, plasma and pellet and immediately stored at -80°C. Plasma 

concentrations of 14 antimalarial drugs and their metabolites, i.e. artemether, artesunate, 

dihydroartemisinin, amodiaquine, N-desethyl-amodiaquine, lumefantrine, desbutyl-

lumefantrine, piperaquine, pyronaridine, mefloquine, chloroquine, quinine, pyrimethamine 

and sulfadoxine, were determined by liquid chromatography coupled to tandem triple stage 

mass spectrometry (LC-MS/MS) [212]. The lower limits of the calibration range (LLC) in our 

method were selected as the lowest levels of the calibration curves, which confidently provide 

a bias and CV% below ± 20%, in accordance to FDA recommendations [131]. All samples 

were analyzed twice. First, quantitative measurement was performed using calibration and 

quality control samples; then, for confirmation, qualitative assessment was repeated using a 

new chromatographic column that had not been exposed to any antimalarial drugs. In order to 

exclude contamination and false positive results, a large set of blank controls was analyzed 

prior to the clinical samples on the new column, checking for the absence of specific MS/MS 

signals of the antimalarials investigated. 

 

Data management and analysis 

Summary statistics, Chi-square tests, multivariate analysis and graphs of residual plasma 

concentrations of antimalarials found prior to treatment were produced using Stata® (version 

10.1 “intercooled”, Stata Corporation, College Station, TX, USA). Logistic regression 

analysis was used to investigate the influence of body weight, sex and distance from health 

facilities or pharmacies on the presence of antimalarials at study entry. The distance between 

patient home and health facility or pharmacy was defined as “close” or “far” depending on the 

distance in kilometers, also taking into account ease of access, i.e. main road and river 

(according to Figure 1). In the first multivariate analysis we considered Bondeni, Kapolo, 

Katrini, Kibaoni, Kibaoni HC, Kikwawila, Kilolelo, Kining’ina, Machipi, Maendeleo, 

Makelo, Mbasa, Mchonjoi, Michenga C, Milola S, Muungano, Nakafulu, Sakamaganga B, 

Station, and Viwanja Stini as “close” and Lungongole, Kilama A, and Kilama B as “far”. In 

the second analysis we also classified Kilolelo, Kining’ina, Machipi, Makelo, and Michenga 

C as “far” because the flooding of the Lumemo river might have been an obstacle during the 
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rainy season. We also evaluated the contribution of SP alone, AL alone or both, using 

likelihood ratio tests. 

 

 
Figure 1. Villages of residence of the patients included in the study. 

 

Estimation of time of drug intake for lumefantrine 

To estimate the probable timing of drug intake, we compared the plasma concentrations of 

lumefantrine at baseline (C0) and on Day 7 (C7) after a complete treatment with AL for the 

same patients. We included only patients for whom we had both samples and who complied 

with the three-day, six-dose AL treatment schedule. Assuming a terminal elimination half-life 

of t½ = 3.3 days for lumefantrine, an inter-individual variability of 40% [61] and a similar 

dosage on pre-study exposure and during the study, a back-calculation was done to estimate 

the intake time before baseline sampling:  
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intake time = ln(C7 / C0) · t½ / ln(2) + 7  [days] 

 

The variability on t½ was used to estimate a 90% confidence interval around this intake time, 

considering plausible inter-individual variations in elimination rate [61].  

 

Bayesian back-calculations for sulfadoxine 

A Bayesian estimation of the most likely drug intake time was also attempted from individual 

sulfadoxine plasma concentration data, with a minimization approach using the “Solver” 

implemented in Microsoft Excel®. Patients were assumed to have taken a single dose of 

sulfadoxine (combined with pyrimethamine) according to body weight: 1500 mg for >45 kg, 

1000 mg for 31–45 kg, 750 mg for 21–30 kg, 500 mg for 11–20 kg and 250 mg for 5–10 kg. 

Approximate averages of pharmacokinetic parameters, inter-individual variability and intra-

individual (residual) variability were derived from a literature review (Tables 1–4). These 

parameters were used to back-calculate the most likely time for dose intake, expected to 

produce the observed concentration according to a standard one-compartment model. The 

variability was used to estimate a 90% confidence interval around this intake time, 

considering plausible variations in clearance, distribution volume and measurement/modeling 

error [215]. Similar calculations were not attempted for other antimalarials, as their dosage 

forms are more heterogeneous (lumefantrine and quinine), their population pharmacokinetic 

parameters are less well characterized (lumefantrine) and their half-lives are shorter 

(pyrimethamine, quinine).   

 

Ethical approval 

All the applied protocols and related documents were approved by the Ethikkommission 

beider Basel (EKBB), the Institutional Review Board of the Ifakara Health Institute and the 

National Institute for Medical Research Review Board. Blood samples were obtained after 

written informed consent in Swahili from the participants or their responsible guardians. 
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Results 

A total of 1672 patients of all age were screened, of whom 389 (23%) had a positive malaria 

test and 150 were eligible and willing to participate in the in vivo study. Two patients (one 

from the Kibaoni HC area and one from Kining’ina) were excluded from the analyses 

(venipuncture unfeasible in one patient; treatment initiated before baseline sampling in the 

other one), leaving 148 patients with a valid baseline sample, of whom 64 (43.2%) were male 

and 84 (56.8%) female (3 (2.0%) pregnant in 3rd trimester). Patients’ ages ranged from 1 to 78 

years (median 9 years). 51 (34.5%) patients were children under the age of 5, and 94 (63.5%) 

were <12 years old.  

 

The presence of antimalarial drug was detected in the plasma of 111 (75.0%) patients:  

80 (54.1%) had lumefantrine above the lower limit of calibration (LLC = 4 ng/mL), 7 (4.7%) 

desbutyl-lumefantrine (LLC = 4 ng/mL), 77 (52.0%) sulfadoxine (LLC = 0.5 ng/mL),  

15 (10.1%) pyrimethamine (LLC = 0.5 ng/mL), 16 (10.8%) quinine (LLC = 2.5 ng/mL) and 

none chloroquine (LLC = 2.5 ng/mL) or any other antimalarials tested. Summary statistics are 

shown in Table 5, and box plots of residual plasma concentrations are represented in Figure 2. 

Among the 111 patients with residual drug concentrations, 57 (38.5%) had more than one 

drug (note that parent drug and metabolite or combined regimens such as SP are considered as 

one): 43 (29.1%) had both lumefantrine and SP, 6 (4.1%) had both lumefantrine and quinine, 

1 (0.7%) had both SP and quinine, and 7 (4.7%) had all three agents. The presence of residual 

antimalarials in plasma was significantly more frequent among children under 5 years of age 

(86.3%, χ2 = 5.82, P = 0.016) than among older children and adults (68.0% altogether).  

 

For lumefantrine, among the 59 eligible patients the median plasma concentration (range) was 

18.3 ng/mL (4.4–181.8 ng/mL) on Day 0 and 413 ng/mL (37.3–1402 ng/mL) on Day 7. This 

means that, to account for the levels observed on Day 0, a similar dosage level should have 

been administered at a median of 21 days (interquartile range 17–24 days, whole range 11–29 

days) before study entry. In 2 patients (3%) this estimate was >28 days. The variability in t½ 

translates into 90% confidence intervals extending from 74% to 144% of estimates (median). 
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Figure 2. Residual plasma concentrations of antimalarials found prior to treatment in 148 

malaria patients. Number of patients (n), median, 25th and 75th percentile, lower and upper 

adjacent values, and outside values are shown for lumefantrine, desbutyl-lumefantrine, 

sulfadoxine, pyrimethamine and quinine on a logarithmic scale [ng/mL].  

 

Table 5. Residual plasma concentrations of antimalarials found prior to treatment in 148 

malaria patients [ng/mL].  

Antimalarial Patients (%) Mean Median Minimum Maximum

Lumefantrine 80 (54.1) 25.3 15.8 4.4 181.8

Desbutyl-lumefantrine 7 (4.7) 7.3 5.9 4.8 12.2

Sulfadoxine 77 (52.0) 4’480.2 4.4 0.6 138'887.5

Pyrimethamine 15 (10.1) 56.8 7.1 0.9 391.3

Quinine 16 (10.8) 318.0 26.3 4.4 2'947.2

No artemether, artesunate, dihydroartemisinin, amodiaquine, N-desethyl-amodiaquine, 

piperaquine, pyronaridine, mefloquine, or chloroquine was found. 

 

Back-estimation of the most likely times for sulfadoxine intake indicated a median of  

108 days before blood sampling at study entry (interquartile range 67 to 121 days, whole 

range <1 to 130 days). Two patients had concentrations >78 mg/mL, compatible with same 

day intake. In 70 patients (91%), the estimate exceeded 28 days. The evaluation of uncertainty 

around individual dose intake times showed 90% confidence intervals extending from 49% to 

202% of estimates (median).  
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The investigation of the influence of body weight, sex and distance to health facilities or 

pharmacies on the probability of residual antimalarials at study entry (details not presented) 

showed only a significant relationship between body weight and residual AL levels 

(likelihood ratio χ2 = 9.06, P = 0.03 in the first analysis; likelihood ratio χ2 = 9.60, P = 0.02 in 

the second analysis), patients with lower body weight being more likely to show residual AL 

levels. However, this was not the case for SP or SP and AL taken together. Furthermore, 

neither sex nor distance from health facilities or pharmacies showed a significant effect on 

residual levels of SP, AL or both at study entry. 

 

Discussion 

This is the first study investigating the presence of a range of antimalarials in the plasma of 

African malaria patients on enrollment into an in vivo study. The measurement of  

14 antimalarial drugs currently in-use allowed a comprehensive assessment of drugs available 

in the community under study. 

 

Artemether–lumefantrine 

Three in four patients had detectable plasma concentrations of antimalarials at the time of 

enrolment into the study, and in a majority of cases the agent detected was lumefantrine/ 

desethyl-lumefantrine – indicating that they had taken AL, which was supposedly available 

only at government health facilities to ensure controlled prescription of first-line treatments. 

Assuming that the patients had taken a three-day, six-dose AL treatment regimen, most 

patients (97%) must have taken the drug within 28 days prior to treatment. Furthermore, it is 

also possible that patients might have taken a sub-therapeutic dose of AL more recently. 

However, as indicated by the wide variability in elimination half-lives, these values represent 

only rough estimates. Nevertheless, these findings suggest that at least half of the patients 

included into our study had taken AL, mostly within the previous month (one month 

corresponds roughly to the limit of evaluation of past exposure, considering assay LLC for 

lumefantrine). The Day 7 values observed in this study are comparable with those of a study 

in Thai patients [median plasma concentration (range) of lumefantrine was 528 ng/mL  

(49–5175 ng/mL) after 6 doses of AL over 60 h according to body weight [224]] and in 

patients from Bangladesh [860.3 ng/mL (53.8–6215.0 ng/mL) [225]]. Due to the short half-
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life of the artemisinin component, e.g. 45 min for dihydroartemisinin, it is likely that none of 

the patients had taken a co-formulated ACT (e.g AL) within the last 24 hours [226]. 

 

Sulfadoxine–pyrimethamine  

SP was still found in approximately half of the patients, although it had been officially 

abandoned as first-line treatment since 2006. Assuming that the patients with residual SP in 

their plasma had taken a single dose of sulfadoxine according to body weight, most patients 

must have taken the drug ~3.5 months (median 108 days) prior blood withdrawal. However,  

2 patients had sulfadoxine plasma concentrations indicating very recent exposure, and another 

8 exposure during the last 4 weeks. Furthermore, it is also possible that patients might have 

taken a sub-therapeutic dose of SP more recently. These estimates are approximate, as 

indicated by the wide confidence interval explained by the fair degree of inter-individual 

variability in clearance, volume of distribution and residual error. Nevertheless, these findings 

are sufficient to conclude that a significant number of patients had taken SP for a previous 

febrile episode, which is contrary to the standard treatment recommendations. The LC-

MS/MS method used for the determination of sulfadoxine (LLC = 0.5 ng/mL) would 

theoretically make it possible to detect traces of sulfadoxine up to 4 months (127 days) after a 

single dose of 25 mg/kg of  sulfadoxine.  

 

Chloroquine and quinine 

This study tends to confirm that CQ, replaced by SP as first-line treatment in 2001, has been 

effectively withdrawn. On the other hand, one tenth of the patients were found with quinine in 

their plasma. Quinine has an elimination half-life of 16–18 h in malaria patients [227]. After a 

treatment with 10 mg/kg of quinine dihydrochloride administered 8 hourly orally for 7 days, 

the plasma quinine levels had fallen to below 0.4 μg/mL in almost all patients 40 h after the 

last dose on Day 7 [228]. Thus, we infer that most patients with quinine levels in our study 

must have taken the last quinine dose not more than 2 days before reporting at the health 

facility. 
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High numbers of patients with residual antimalarials 

Why was the number of patients with residual antimalarials so high? Through the 

demographic surveillance system (DSS) data and a treatment seeking survey in the Ifakara 

area it was found that approximately 8% of children had fever in the previous 2 weeks when 

seen between January and April 2008 (Alba S et al., personal communication). An 

epidemiological study which used the Explanatory Model Interview Catalogue (EMIC) 

reported that 87.5% (78.2-93.8%) of all fevers in children in our study area were treated with 

one of the recommended antimalarials (at that time SP, amodiaquine or quinine) [207]. Based 

on these data, one would expect 14% of children to have had an antimalarial treatment in the 

preceding month (i.e. (0.08 × 2) × 0.875), which is much lower than the proportion of patients 

with residual antimalarial plasma levels in this study (86.3% for under 5s, 68% for older 

children and adults). This large discrepancy could be either due to poor recall of the study 

subjects in the epidemiological survey or a selection bias. The latter could have arisen either 

because we captured (i) only patients preferentially seeking antimalarial treatment at a health 

facility instead at drug shops (~76.3% of children under the age of 5 years receiving treatment 

according to the epidemiological study), (ii) patients who are more susceptible to repeated 

infections (and hence repeated treatments) or are more exposed to infection, or (iii) patients 

with easy access to treatment. However, similar results were found in two study sites in rural 

Cambodia (CHAPTER 5). 

 

Reliability of medical history 

Whatever the reason is for the large number of malaria patients with antimalarials in their 

blood at study baseline, the fact remains that these patients are the usual subjects investigated 

in in vivo studies and clinical trials. All patients included in the study reported not having 

taken antimalarials in the previous 28 days. Entry criteria based on self-reporting of previous 

drug intake (poor recall) or information recorded in the care log book (self-treatment not 

documented) are thus unreliable at least in this population and for lumefantrine.  
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Potential bias in drug safety and efficacy assessment 

Previous drug intake may affect the current treatment in several ways. Higher drug exposure 

resulting from cumulative levels may lead to better efficacy or more toxicity. The parasites 

causing the disease at the time of enrolment may be less sensitive population selected by the 

previous treatment. Thus, previous antimalarial intake may interfere with the outcome of the 

treatment under investigation, and this study shows that only baseline drug concentration 

measurement in the blood can reliably be used for the purpose. Our LC-MS/MS assay covers 

14 antimalarials in a single run. We can confidently exclude a lack of specificity and false 

positives as we included blank plasma samples as negative controls and systematically 

repeated the measurement on a new chromatographic column. Furthermore, we have 

demonstrated that all drugs are stable for up to 48 h in plasma stored at 4 °C [212]. Therefore, 

even in settings, where no LC-MS/MS instrument is available, samples can be collected in the 

field, and easily kept and transported to the nearest laboratory where they can be frozen and 

stored until assayed or further shipped to their final destination.  

 

High drug pressure as risk factor for the spread of drug resistance 

There is abundant literature on the effects of inadequate antimalarial treatment on the 

emergence and spread of resistance. Here, we do not know if the residual drug levels found 

were from a full or incomplete treatment, if the person had parasites at the time of the 

previous drug intake, and whether the parasites causing the current episode are the same or a 

new infection. Be it as it may, the residual levels were not enough to control parasite 

replication and clinical symptoms. This means that these parasites have been exposed to 

inadequate drug levels for some time. The chances of drug resistant parasites to be selected 

depends on several factors, and is higher for patients with no immunity (e.g. young children), 

drugs with long residence times and resistance being conferred through single point 

mutations, and for infections with a large parasite biomass [229]. These patients had a mean 

baseline parasite biomass of ~9 × 1010 (ranging from  ~1 × 108 to  ~6 × 1011, data not shown), 

values which are in line with those reported for symptomatic cases in malaria-endemic areas 

[230], and were exposed to drug concentrations which were likely to be in the selective 

window [45].  
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The findings of this study must be confirmed in other settings as they have potential 

implications for both clinical research and surveillance (treatment efficacy and safety 

outcome) and control (pharmaco-epidemiology, adherence to policy). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

147



 

148



 

 

 

 

 

CHAPTER 5  

 

Residual antimalarials at admission in malaria patients from Cambodia – 

indication of drug pressure 
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Abstract 

The border area between Thailand and Cambodia has been known as the origin of antimalarial 

drug resistance for the past 30 years. There is an active and highly diverse market in 

antimalarials in this area, and knowledge on drug use in this specific area will be useful in 

evaluating the impact of the ongoing interventions undertaken to increase access to 

appropriate treatment with artemisinin-based combination therapy and to contain the spread of 

drug resistance. Here we report the findings from the analysis of baseline samples from 

falciparum malaria patients recruited in two in vivo studies for the presence of 14 currently in-

use antimalarials in a single run using a liquid chromatography-tandem mass spectrometry 

assay. More than 50% of patients had residual drug concentrations above the lower limit of 

calibration of at least on antimalarial at admission. Among the drugs detected were the 

currently used first-line drugs mefloquine (25% and 35% of patients) and piperaquine (15% of 

patients), the first-line drug against vivax malaria chloroquine (25% and 41% of patients), and 

the former first-line drug quinine (5% and 34% patients). The findings suggest that there is a 

high drug pressure in the area and many people still seek treatment in the private and informal 

sector where accurate treatment following the first-line treatment policies is not guaranteed. 

Thus, efforts to contain emergences and spread of parasite resistance against new 

antimalarials by promotion of comprehensive behavioural change, communication, 

community-based mobilization and advocacy along the Thai-Cambodian border should be 

maintained. 

 

Introduction 

A few years ago, the World Health Organization (WHO) recommended that conventional 

monotherapies such as chloroquine (CQ), amodiaquine (AQ) or sulfadoxine–pyrimethamine 

(SP) should be replaced by artemisinin-based combination therapies (ACTs) for treating 

falciparum malaria and today ACTs are used as first-line treatment throughout the world 

[4,182,231,232]. Initiatives to scale-up control interventions and eliminate malaria are 

critically dependent on the sustained efficacy of ACTs. However, there is recent worrying 

evidence of reduced response to artemisinins arising on the Thai-Cambodian border [177-

184,233,234]. This area has long been known as the origin of antimalarial drug resistance. 

Parasites carrying resistance markers against CQ, SP, and mefloquine (MQ) were first found 

here before appearing elsewhere in the world [179,181,235]. In Cambodia, because of poor 

151



transportation and public health infrastructure, antimalarials were made available in the 

private sector to increase patients’ access to the drug. While instrumental to reaching out for 

more patients, this also led to uncontrolled use of these drugs. A recent study of malaria 

treatment–seeking behaviour in Cambodia showed that more than 80% of the patients initially 

sought treatment from private providers and pharmacies or consumed drugs on their own 

[236]. Drugs from the private sector are often of substandard quality and the drug providers 

do not emphasize adherence. These key factors lead to treatment failure and development of 

resistance against CQ, SP and MQ in this area and it is conceivable that the availability of 

artemisinin monotherapies, incorrect dosages and poor drug quality must have affected 

response to artemisinin derivatives too [178].   

 

Several studies and programs are currently focusing on improving the availability of quality 

assured artemisinin-based combinations. In a study on access to ACTs in remote areas of 

Cambodia [237] it was shown that in the private sector up to 26% of patients received CQ, 

22% an artemisinins monotherapy and 12% quinine (Q). Treatments from private 

practitioners contained artemisinins monotherapy in 34%, CQ in 11% and Q in 13% of cases. 

Similar findings were reported for public health facilities, where artesunate (AS) monotherapy 

and CQ each accounted for 11% of the treatments given. Provision of free diagnosis and 

treatment through trained village malaria worker were found to be effective means of 

increasing ACT coverage in the studied settings. In 2008, a baseline outlet and household 

survey was conducted in Cambodia in the frame of ACTwatch [238]. The survey assessed 

levels and trends in the availability, price and volume of antimalarials, providers’ perceptions 

and knowledge of antimalarial medicines at different outlets, and consumer treatment-seeking 

behaviour and volumes of specific antimalarials consumed. The findings, which are to be 

presented by the end of 2009, are expected to provide and promote evidence and 

recommendations for policy makers on methods to increase availability and decrease the 

consumer price of quality assured artemisinin-based combination therapies through the 

private sector. WHO and several key partners from the ministries of health and academia 

currently work on containing the spread of artemisinin-resistant malarial parasites along the 

Thai-Cambodian border. One of the key objectives of the collaboration is supporting the 

containment and elimination of artemisinin-tolerant parasites through comprehensive 

behavioural change, communication, community-based mobilization and advocacy [177,184]. 

Knowledge of drug use in this specific area could help evaluating the impact of the 

interventions undertaken.  
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This study aims at collecting information about circulating antimalarials in two Cambodian 

provinces with different levels of drug resistance and thus also recommended first-line 

treatments. Here we report the findings from the analysis of baseline samples from falciparum 

malaria patients recruited in two in vivo studies for the presence of 14 currently in-use 

antimalarials in a single run using a liquid chromatography-tandem mass spectrometry (LC-

MS/MS) assay [212].  

 

Materials and methods 

Study area and population 

The study was performed in two rural areas with moderate transmission intensity (Praeh 

Vihear district, Cambodia) during the main rainy season from October 2007 to February 2008 

and July to October 2008. AS–MQ has been the first-line treatment for Plasmodium 

falciparum infection since 2000 and was available at government health facilities as well as in 

private structures through social marketing program (Malarine). CQ has been used as first-line 

treatment for P. vivax infection. AS, dihydroartemisinin (DHA), and Q can easily be found in 

the private sector without a doctor's prescription. At the time of the study, DHA–piperaquine 

(DHA–PPQ) had recently been introduced as first-line treatment in Veal Veng district 

because of low clinical efficacy of the AS–MQ regimen and was only available at government 

health facilities to ensure controlled use. 

 

Clinical procedures  

The trial was designed to assess the effect of the pharmacogenetic profile on the 

pharmacokinetics of standard antimalarials (to be reported elsewhere). It was based on the 

standard WHO protocol for in vivo testing [239]. 

 

Phnom Dék Health Centre, Rovieng district, Preah Vihear province, Cambodia 

The study was performed from October 2007 to February 2008. Suspected malaria cases were 

screened by microscopy. Total number of patients screened was 234 and out of these  

67 (29%) were infected with P. falciparum and 74 (32%) with P. vivax. No mixed infections 
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were detected. The patients with a positive slide for P. falciparum were then seen by the 

clinician who invited them to participate in the study if they were older than 6 months, not 

pregnant or lactating and did not present with danger signs of complicated malaria or any 

other severe concomitant illness. After informed consent by the patient, the baseline sample 

(Day 0, 4.5 mL venous blood collected in an EDTA Vacutainer) was taken, hematocrit was 

measured, filter paper sample and a thin and thick smear were taken. Then the national 

standard first-line treatment introduced in 2000 [178], i.e. AS (Arsumax, Sanofi-Aventis, 

France) and MQ (Eloquine, Medochemie Ltd, Cyprus), was given according to age. 

 

Pramoy Health Centre, Veal Veng district, Pursat province, Cambodia 

The study was performed from July to October 2008. Suspected malaria cases were screened 

by microscopy. Total number of patients screened was 287 and out of these 82 (29%) were 

infected with P. falciparum and 50 (17%) with P. vivax. No mixed infections were detected. 

The patients with a positive slide for P. falciparum were then seen by the clinician who 

invited them to participate in the study if they were older than 6 years, not pregnant or 

lactating and did not present with danger signs of complicated malaria or any other severe 

concomitant illness. After informed consent by the patient, the baseline sample (Day 0,  

4.5 mL venous blood collected in an EDTA Vacutainer) was taken, hematocrit was measured, 

filter paper sample and a thin and thick smear were taken. Then the treatment with DHA-PPQ 

(Duo-Cotecxin, Zhejiang Holley Nanhu Pharmaceutical Co., Ltd, China) was given according 

to age. 

 

Laboratory procedures 

Blood samples were immediately aliquoted into whole blood, plasma and pellet and stored in 

liquid nitrogen. The samples were transferred into a -80 °C freezer within one week. Plasma 

concentrations of 14 antimalarial drugs and their metabolites, i.e. artemether, AS, DHA, AQ, 

N-desethyl-AQ, lumefantrine, desbutyl-lumefantrine, PPQ, pyronaridine, MQ, CQ, Q, 

pyrimethamine and sulfadoxine, were determined by liquid chromatography coupled to 

tandem triple stage mass spectrometry (LC-MS/MS) [212]. The lower limits of the calibration 

range (LLC) in our method were selected as the lowest levels of the calibration curves, which 

confidently provide a bias and CV% below ± 20%, in accordance to FDA recommendations 

[131]. All samples were analyzed twice. First, quantitative measurement was performed using 
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calibration and quality control samples; then, for confirmation, qualitative assessment was 

repeated using a new chromatographic column that had not been exposed to any antimalarial 

drugs,. In order to exclude contamination and false positive results, a large set of blank 

controls was analyzed prior to the clinical samples on the new column, checking for absence 

of specific MS/MS signals of the antimalarials investigated. 

 

Data management and analysis 

Summary statistics and graphs of the residual plasma concentrations of antimalarials found 

prior to treatment in the study population were produced using Stata (version 10.1 

“intercooled”, Stata Corporation, College Station, TX, USA). 

 

Estimation of dose intake time for mefloquine and piperaquine 

To estimate the probable timing of drug intake, we compared the plasma concentrations of 

MQ in patients from Preah Vihear and PPQ in patients from Pursat at baseline (C0) and on 

Day 14 (C14) after a complete treatment with the respective drug among the same patients. We 

included only patients for whom we had both samples and who complied with the three-day 

treatment schedule. Assuming a mean terminal elimination half-life of t½ = 15 (90% CI: 

12.93–17.07) days for MQ [240,241] and t½ = 27.8 (total range 10.2–216) days for PPQ 

[242], and a similar dosage on pre-study exposure and during the study, a back-calculation 

was done to estimate the intake time before baseline sampling:  

 

intake time = ln(C14 / C0) · t½ / ln(2) + 14  [days] 

 

Similar calculations were not attempted for the other antimalarials (i.e. CQ and Q), as we did 

not have the respective C0 and C14 after a standardized treatment in the study patients. 

 

Results  

At Phnom Dék Health Centre, 64 patients were eligible and willing to participate in the in 

vivo study. 38 (59.4%) were male and 26 (40.6%) female; age ranged from 2 to 57 years 

(median age 18 years). The presence of antimalarial drug was detected in the plasma of 33 
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(51.6%) patients: 16 (25.0%) had MQ above the lower limit of calibration (LLC =  

2.5 ng/mL), 16 (25.0%) CQ (LLC = 2.5 ng/mL), and 3 (4.7%) Q (LLC = 2.5 ng/mL) and none 

any other antimalarials tested. Summary statistics are shown in Table 1 and box plots of 

residual plasma concentrations are presented in Figure 1. Of the 32 patients with residual drug 

concentrations, 3 (9.1%) had more than one drug: 2 patient had CQ and MQ and 1 CQ and Q. 

For MQ, the 12 of the above 16 patients who had also a value on Day 14, had a median 

plasma concentration (range) of 52.8 ng/mL (12.6–987 ng/mL) on Day 0. One patient had a 

plasma concentration above the approximate in vivo minimum inhibitory concentration (MIC) 

of mefloquine for resistant P. falciparum, i.e. 500 ng/mL [243,244]. On Day 14, the median 

plasma concentration was 757 ng/mL (392–1135 ng/mL). This means that a similar dosage 

level should have been administered at a median of 68 days (interquartile range 47–79 days, 

whole range 17–102 days) before enrolling into the study, to account for the levels observed 

on Day 0. For 2 patients (17%) this estimate was <28 days. As there were only 3 late 

parasitological failures (LPFs) on Day 42, correlation between Day 0 concentration and 

treatment failure was not assessed. The variability in t½ translates into 90% confidence 

intervals extending from 89% to 111% of estimates (median). 

 

 
Figure 1. Residual plasma concentrations of antimalarials found prior to treatment 

in 64 malaria patients from Preah Vihear. Number of patients (n), median, 25th 

and 75th percentile, lower and upper adjacent values, and outside values are 

shown for chloroquine, mefloquine and quinine [ng/mL]. 
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Table 1. Residual plasma concentrations of antimalarials found prior to 

treatment in 64 malaria patients from Preah Vihear [ng/mL].  

Antimalarial Patients Mean Median Minimum Maximum 

Mefloquine 16 260.3 152.5 12.6 987.0 

Chloroquine 16 75.8 30.1 4.1 579.7 

Quinine 3 72.1 4’312.7 3.5 7’550.8 

No artemether, artesunate, dihydroartemisinin, amodiaquine, N-desethyl-

amodiaquine, desbutyl-lumefantrine, lumefantrine, piperaquine, 

pyronaridine, sulfadoxine or pyrimethamine was found. 

 

At Pramoy Health Centre, 61 patients were eligible and willing to participate in the in vivo 

study. 38 (62.3%) were male and 23 (37.7%) female; age ranged from 7 to 53 years (median 

age 18 years). The presence of antimalarial drug was detected in the plasma of 42 (68.9%) 

patients: 25 (41.0%) CQ, 21 (34.4%) MQ, 9 (14.7%) PPQ (LLC = 2 ng/mL), and 2 (3.3%) Q 

and none any other antimalarials tested. Summary statistics are shown in Table 2 and box 

plots of residual plasma concentrations are in Figure 2. Of the 42 patients with residual drug 

concentrations, 12 (28.6%) had more than one drug: 1 (8.3%) patient had MQ and PPQ,  

1 (8.3%) CQ and PPQ, 2 (16.7%) MQ and Q, 5 (41.7%) CQ and MQ, and 3 (25.0%) CQ, MQ 

and PPQ. For PPQ, among the 7 eligible patients the median plasma concentration (range) 

was 7.9 ng/mL (6.1–22.9 ng/mL) on Day 0 and 28.5 ng/mL (18.8–56.3 ng/mL) on Day 14. 

This means that a similar dosage level should have been administered at a median of 67 days 

(interquartile range 53–81 days, whole range 15–93 days) before enrolling into the study, to 

account for the levels observed on Day 0. In 1 patients (14%) was this estimate shorter than 

28 days. As there was only 1 late parasitological failures (LPFs) on Day 28, correlation 

between Day 0 concentration and treatment failure was not assessed. The variability in t½ 

(lowest and highest value measured for t½, [242]) translates into intervals extending from 50% 

to 632% of estimates (median). 
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Figure 2. Residual plasma concentrations of antimalarials found prior to treatment in  

61 malaria patients from Pursat. Number of patients (n), median, 25th and 75th percentile, 

lower and upper adjacent values, and outside values are shown for chloroquine mefloquine, 

quinine and piperaquine [ng/mL].  

 

Table 2. Residual plasma concentrations of antimalarials found prior to 

treatment in 61 malaria patients from Pursat [ng/mL].  

Antimalarial Patients Mean Median Minimum Maximum 

Chloroquine 25 80.8 16.8 2.6 919.5 

Mefloquine 21 431.0 346.2 2.9 1202.4 

Piperaquine 9 10.7 7.9 2.1 23.9 

Quinine 2 8.6 8.6 4.2 12.9 

No artemether, artesunate, dihydroartemisinin, amodiaquine, N-desethyl-

amodiaquine, desbutyl-lumefantrine, lumefantrine, pyronaridine, 

sulfadoxine or pyrimethamine was found. 

 

Discussion 

This is the first study investigating the presence of a broad range of antimalarials in the 

plasma of South-East Asian malaria patients prior to treatment. The measurement of  

14 antimalarial drugs currently in-use allowed a comprehensive assessment of all circulating 

drugs in the studied communities in a region with high levels of antimalarial drug resistance, 
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i.e. Pursat province, and a region with moderate levels of drug resistance, i.e. Preah Vihear 

province.  

Residuals of former first-line treatments 

Although Q is not recommended as first-line treatment in uncomplicated falciparum malaria, 

it was found in 4.7% and 3.3% of patients, respectively. One patient showed a Q plasma 

concentration of 7.6 mg/L, which corresponds to plasma concentrations during acute oral 

treatment with ~10 mg/kg Q every 8 hours [245,246]. Furthermore, we could detect MQ in 

one third of the study patients from Pursat, one patient showing a plasma concentration above 

the MIC. This shows that people often buy their antimalarials from the private sector as in 

2008 the government changed the first-line treatment along the border with Thailand from 

AS–MQ to DHA–PPQ and thus AS–MQ was no longer available at government health 

facilities in Western Cambodia. Effective case management including prompt diagnosis and 

treatment with an appropriate antimalarial are not guaranteed in the private sector. However, 

this is a key elements of the global strategy to eliminate malaria on a long-term bases [247]. 

Comprehensive behavioural change of the population is urgently needed to encourage them to 

seek appropriate management, i.e. laboratory diagnosis and ACT for malaria. The detection of 

drugs with long residence time does not allow saying neither whether patients have taken it as 

a monotherapy or as an ACT nor whether the complete dose has been taken. The removal of 

monotherapies from the market in Cambodia must be enforced as people with poor access to 

health facilities tend to buy the cheapest antimalarial available in the private sector regardless 

of its efficacy against the disease.   

 

Residuals of current first-line treatments 

We found that more than half of the patients carried residual antimalarials at inclusion into 

our study. Although CQ has been banned as first-line treatment against P. falciparum, it could 

be detected in the plasma of 25.0% of the patients in the Preah Vihear province and 41.0% of 

the patients from the Pursat province. This might be explained by the fact that CQ is the 

recommended first-line treatment against P. vivax in Cambodia. We also detected residuals of 

current first-line treatments in the study patients: 26.6% with MQ in Preah Vihear, where the 

first-line treatment in 2007 was AS–MQ, and 14.7% with PPQ in Pursat, where the first-line 

treatment in 2008 was DHA–PPQ. Assuming that the patients have taken MQ (in Preah 

Vihear) or PPQ (in Pursat) respectively according to the three-day treatment regimen, most 
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patients must have taken the regional first-line regimen more than 28 days prior to treatment 

in our study. It is also possible that patients might have taken a sub-therapeutic dose of these 

antimalarials more recently. However, as indicated by the large variability in elimination half-

life, these values represent only rough estimates. The mean Day 7 values observed in this 

study for the 7 patients with residual DHA–PPQ at inclusion [i.e. mean 49.8 ng/mL (95% CI: 

30.9 to 68.7 ng/ml)] were comparable with those of a study in 196 patients from Papua, 

Indonesia [mean 46.6 ng/ml (95% CI: 43.3 to 49.8 ng/ml) [248]] 

 

Artemisinins 

In our study it was not possible to detect any of the artemisinins in the patients’ plasma due to 

the short half-life of these compounds [226]. However, it cannot be excluded that some of the 

patients might have taken a monotherapy of one of the artemisinins. Considering the high 

number of patients who did consume antimalarials that should not be used for the therapy of 

uncomplicated falciparum malaria, it is possible that some might have taken also an 

artemisinin as either combination or monotherapies but this cannot be verified.  

 

Potential bias in drug safety and efficacy assessment 

Previous antimalarial intake may interfere with the outcome of the treatment under 

investigation. This study shows that only baseline drug concentration measurement in the 

blood can reliably be used for the purpose. Our LC-MS/MS assay covers 14 antimalarials in a 

single run. We can confidently exclude a lack of specificity and false positives as we included 

blank plasma samples as negative controls and systematically repeated the measurement on a 

new chromatographic column. Previous drug intake may affect the current treatment in 

several ways. Higher drug exposure resulting from cumulative levels may lead to better 

efficacy or more toxicity. The parasites causing the disease at the time of enrolment may be 

less sensitive a population selected by the previous treatment and patients might be considered 

as treatments failures already at inclusion. 
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High drug pressure 

The likelihood of selecting for drug resistant parasites is highest with sub-therapeutic levels of 

a single drug. Thus, it is worrying that patients with low residual concentrations of the long-

lived antimalarials (i.e. MQ and PPQ) report with a new episode of malaria before they have 

completely cleared the antimalarial. Price et al. reported that the mean plasma PPQ 

concentration was 16.8 ng/mL (95% CI: 15.1 to 18.6 ng/mL) on Day 28 [248]. In our study, 

the mean plasma PPQ concentration on Day 0 was 10.7 ng/mL. It is therefore likely that most 

patients have taken their PPQ treatment as symptomatic treatment of a fever episode or as 

treatment of a confirmed malaria episode more than one month prior to inclusion. The 

persisting high drug pressure of MQ facilitates the spread of multi-drug resistant parasites 

from Western to Northern and Eastern Cambodia where parasites are still susceptible to MQ. 

The loss of AS–MQ as treatment option against malaria in resource poor areas such as rural 

Cambodia would not only lead to a higher burden of disease due to treatment failure. The 

efforts of the ministry of health to restrict the use of  DHA–PPQ only to areas of high drug 

resistance seems to be erased by the non-adherence of the susceptible population to bed net 

use recommendations and no appropriate seeking behaviour for first-line antimalarial 

combination therapy in the private and informal sector.  

 

In conclusion this study shows that regardless of the efforts to improve diagnosis and 

treatment of malaria in government health facilities in Cambodia, many still seek treatment in 

the private and informal sector which do not necessarily follow national treatment policies. 

The emergences and spread of parasite resistance against antimalarials along the Thai-

Cambodian border can only be contained by comprehensive behavioural change, 

communication, community-based mobilization and advocacy. 
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CHAPTER 6  

 

Effects of pharmacogenetics on population pharmacokinetics of artemisinin-

based combination therapy in Cambodian and Tanzanian malaria patients 
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Abstract 

The plasma concentration-time profiles of most antimalarial drugs vary considerably between 

individuals. Whereas several studies have investigated the influence of non-genetic factor on 

pharmacokinetics of antimalarial none has addressed the effect of polymorphisms in genes 

encoding enzymes responsible for antimalarial drug metabolism, such as isoenzymes of the 

cytochrome P450 superfamily (CYP) and N-acetyltransferase 2 (NAT2).  

 

The present study investigated population pharmacokinetics of artesunate, dihydroartemisinin, 

mefloquine, and piperaquine in Cambodian patients and artemether and lumefantrine in 

Tanzanian patients. Inter- and intra-individual variability of the pharmacokinetic parameters 

were assessed and the contribution of demographic, environmental and pharmacogenetic 

covariates on the inter-individual variability were quantified using a nonlinear mixed-effects 

model approach. 

 

For artemether, we found that 9% of the inter-individual variability in clearance could be 

explained by the genotype of CYP3A5 (reference allele versus variant allele CYP3A5*3). 

Heterozygous carriers showed a reduction in clearance of 34%. The alterations in clearance 

were less pronounced for lumefantrine (increase in clearance of 12% in homozygous carriers 

of variant allele CYP3A4*1B, explaining 2% of the inter-individual variability in clearance) 

and mefloquine (decrease in clearance of 14% in carriers of homozygous variant allele 

CYP3A5*5, explaining 1% of the inter-individual variability in clearance).   

 

In conclusion, we were able to show that there is a correlation between the pharmacogenetic 

profile of the host and the pharmacokinetics of antimalarial drugs administered in malaria 

patients. These results suggest that pharmacogenetics could be one of the basic mechanisms 

involved in the pharmacokinetics of antimalarial drugs. The knowledge gained from this 

study could facilitate the selection process of first-line treatment for malaria and would allow 

dosing adaption based on the pharmacogenetic profile of the population. Such adaptations are 

needed especially in the most vulnerable groups, including infants, pregnant women, and 

those with prevalent co-morbidities, where often therapeutic antimalarial drug concentrations 

over time are not achieved.  
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Background 

One of the most important control measures in malaria is prompt diagnosis and treatment with 

an effective and safe artemisinin-based combination therapy (ACT). Both drug efficacy and 

safety are strongly dependent on the achievement of appropriate circulating concentrations 

under treatment. Insufficient exposure is associated with a risk of failure and emergence of 

resistance, and too high levels with a risk of toxicity. It has been shown that there is a fixed 

fractional reduction in parasite number each asexual cycle (first-order kinetics) when blood 

concentrations of antimalarial drugs exceed the minimum parasiticidal concentration (MPC) 

for the infecting parasites. The blood concentration at which the multiplication factor per 

cycle is 1 can be called the minimum inhibitory concentration (MIC) [249]. In order to 

eradicate malaria parasites from the body, host immune response on the one hand and 

circulating antimalarial drug concentrations exceeding MIC for the infecting parasites on the 

other hand are crucial. Several studies showed an association between Day 7 drug 

concentrations with treatment response [61,147,220,246,249-251]. As the MPC and thus MIC 

depend on the infecting parasite, these levels should be expressed as a function of the 

molecular drug resistance markers a parasite is carrying. Dosing-regimens could then be 

adapted according to the level of circulating resistant parasites. However, dose-adaption in 

malaria patients cannot be done using the rule of three. There is a marked inter-individual 

pharmacokinetic variation of some antimalarials [40] and precise pharmacokinetic 

determinants of treatment outcome in malaria remain uncertain resulting in sub-optimal 

dosing in vulnerable populations, particularly pregnant women and young children [220]. It is 

known that drug response is affected by genetic and non-genetic factors. The latter include 

e.g. food intake, sex, disease status and concomitant treatment. There is data on the influence 

of age [30], disease status [31], pre-existing host semi-immunity [32], co-morbidity [33-35], 

concomitant treatment [36,37], environmental factors (e.g. food intake [38]) and pregnancy 

[30] on the clinical outcome in malaria. However, there is lack of research about genetic 

factors influencing drug response in malaria. The analysis of genetic polymorphisms in genes 

encoding proteins and enzymes involved in drug absorption, distribution, metabolism, 

elimination and action would be a step towards a broader understanding of inter-individual 

differences in pharmacokinetic profiles and consequential treatment failures and adverse drug 

reactions in malaria patients. It has been stated that polymorphism of drug-metabolizing 

enzymes have by far the highest impact on inter-individual differences in drug response 

[47,252,253]. Depending on the alleles an individual is carrying, the metabolism can be 

altered. A deeper insight in the inter-population variability in the profile of genes encoding 
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enzymes responsible for antimalarial drug metabolism, such as isoenzymes of the cytochrome 

P450 superfamily (CYP) and N-acetyltransferase 2 (NAT2), could facilitate the selection of 

appropriate first-line treatment for uncomplicated malaria in a specific population.   

 

The study of the pharmacogenetic and pharmacokinetic data in two genetically different 

populations from malaria endemic countries in Asia and Africa might lead to a better 

understanding of the different factors influencing pharmacokinetic drug profile, i.e. drug 

response, in malaria patients. Only few studies have assessed the pharmacogenetic profile of 

enzymes involved in the metabolism of the drug used for the treatments against Plasmodium 

falciparum malaria in a given population exposed to the disease [254-257]. However, none 

has investigated the influence of the pharmacogenetic profile on pharmacokinetics of 

antimalarials. The only way to capture numerous single nucleotide polymorphisms (SNPs) in 

the genes which are known to be involved in drug metabolism is to use large sample size.  

 

The present study investigated population pharmacokinetics of artesunate (AS), 

dihydroartemisinin (DHA), mefloquine (MQ), and piperaquine (PPQ) in Cambodian patients 

and artemether (AM) and lumefantrine (LF) in Tanzanian patients. Inter- and intra-individual 

variability of the pharmacokinetic parameters were assessed and the contribution of 

demographic, environmental and pharmacogenetic covariates on the inter-individual 

variability were quantified using a nonlinear mixed-effects model approach. 

 

Materials and methods 

Study areas and design 

Kibaoni Health Centre, Kilombero district, Morogoro region, Tanzania 

The first study was performed from March to May 2008. Suspected malaria cases were 

screened by rapid diagnostic test (Paracheck, Orchid Biomedical Systems, India). Total 

number of patients screened was 1672 and out of these 389 (23%) showed a positive test 

during the recruitment phase. These patients were then seen by the clinical officer who invited 

them to participate in the study if they did not present with danger signs of complicated 

malaria or any other severe concomitant illness. After informed consent by the patient, the 

baseline sample (Day 0, 4.5 mL venous blood collected in an EDTA Vacutainer) was 

withdrawn, hemoglobin was measured, filter paper sample and a thin and thick smear were 
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taken. Then the first dose of AM–LF (Coartem, Novartis Pharma, Switzerland) was given 

according to body weight (see Table 1), time and food intake with drug administration were 

noted. Patients were then either admitted for three days or asked to come back to the health 

facility for the following five doses (second dose 8h after first dose, third, fourth, fifth and 

sixth dose 12, 24, 36, and 48 h after the second dose). Patients were seen by the clinical 

officer on Days 1, 2, 3, 7, 14, 28, and 42. On Days 1, 2, and 7, 2 mL of venous blood were 

collected (EDTA Vacutainer) for pharmacokinetics and filter paper sample and a thin and 

thick smear were taken. The exact time of the blood withdrawal was noted. On Days 3, 14, 

28, and 42 only filter paper sample and a thin and thick smear were taken. Hemoglobin was 

measured on Days 28 and 42. On every visit axillary temperature and respiratory rate were 

measured. The patients were also asked questions about symptoms such as headache, 

vomiting and diarrhoea. If patients suffered from concomitant illnesses they were provided 

with additional treatment (paracetamol, mebendazole, metronidazole, cloxacillin, 

amoxicillin). 

 

Phnom Dék Health Centre, Rovieng district, Preah Vihear province, Cambodia 

The second study was performed from October 2007 to February 2008. Suspected malaria 

cases were screened by microscopy. Total number of patients screened was 234 and out of 

these 67 (29%) were infected with P. falciparum and 74 (32%) with P. vivax. No mixed 

infections were detected. The patients with a positive slide for P. falciparum were then seen 

by the clinician who invited them to participate in the study if they were older than 6 months, 

not pregnant or lactating and did not present with danger signs of complicated malaria or any 

other severe concomitant illness. After informed consent by the patient, the baseline sample 

(Day 0, 4.5 mL venous blood collected in an EDTA Vacutainer) was withdrawn, hematocrit 

was measured, filter paper sample and a thin and thick smear were taken. Then the first dose 

of AS (Arsumax, Sanofi-Aventis, France) and MQ (Eloquine, Medochemie Ltd, Cyprus) was 

given according to body weight (see Table 1), time and food intake with drug administration 

were noted. A second blood samples was taken approximately 1 h after the first dose. Patients 

were then either admitted for three days or asked to come back to the health facility for the 

following two doses on Day 1 and 2 respectively. Patients were seen by the clinical officer on 

Days 1, 2, 3, 7, 14, 21, 28, 35 and 42. On Days 1, 2, 7 and 14, 2 mL of venous blood were 

collected (EDTA Vacutainer) for pharmacokinetics and filter paper sample and a thin and 

thick smear were taken. The exact time of the blood withdrawal was noted. On Days 3, 14, 
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21, 28, 35 and 42 only filter paper sample and a thin and thick smear were taken. On every 

visit axillary temperature and respiratory rate were measured. The patients were also asked 

questions about history of fever and other symptoms. If patients suffered fever they were 

provided with paracetamol. 

 

Pramoy Health Centre, Veal Veng district, Pursat province, Cambodia 

The third study was performed from July to October 2008. Suspected malaria cases were 

screened by microscopy. Total number of patients screened was 287 and out of these 82 

(29%) were infected with P. falciparum and 50 (17%) with P. vivax. No mixed infections 

were detected. The patients with a positive slide for P. falciparum were then seen by the 

clinician who invited them to participate in the study if they were older than 6 years, not 

pregnant or lactating and did not present with danger signs of complicated malaria or any 

other severe concomitant illness. The rest of the procedures were the same as those in Phnom 

Dék except that the drug used was DHA–PPQ (Duo-Cotecxin, Zhejiang Holley Nanhu 

Pharmaceutical Co., Ltd, China) given according to age (see Table 1). 
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Table 1. Dosing regimens for the study drugs used 

Drug Weight [kg] Age [years] Day 0 Day 1 Day 2 

5–14   
AM: 2 × 20 mg 

LF: 2 × 120 mg 

AM: 2 × 20 mg 

LF: 2 × 120 mg 

AM: 2 × 20 mg 

LF: 2 × 120 mg 

15–24  
AM: 2 × 40 mg 

LF: 2 × 240 mg 

AM: 2 × 40 mg 

LF: 2 × 240 mg 

AM: 2 × 40 mg 

LF: 2 × 240 mg 

25–34  
AM: 2 × 60 mg 

LF: 2 × 360 mg 

AM: 2 × 60 mg 

LF: 2 × 360 mg 

AM: 2 × 60 mg 

LF: 2 × 360 mg 

AM – LF 

≥35  
AM: 2 × 80 mg 

LF: 2 × 480 mg 

AM: 2 × 80 mg 

LF: 2 × 480 mg 

AM: 2 × 80 mg 

LF: 2 × 480 mg 

10–12.5  
AS: 50 mg 

MQ: 125 mg 

AS: 50 mg 

MQ: 125 mg 

AS: 50 mg 

 

13–15.5  
AS: 50 mg 

MQ: 125 mg 

AS: 50 mg 

MQ: 125 mg 

AS: 50 mg 

MQ: 125 mg 

16–24.5  
AS: 100 mg 

MQ: 250 mg 

AS: 100 mg 

MQ: 250 mg 

AS: 100 mg 

 

25–34.5  
AS: 150 mg 

MQ: 250 mg 

AS: 150 mg 

MQ: 250 mg 

AS: 150 mg 

MQ: 250 mg 

35–37  
AS: 200 mg 

MQ: 250 mg 

AS: 200 mg 

MQ: 250 mg 

AS: 200 mg 

MQ: 250 mg 

38–57  
AS: 200 mg 

MQ: 500 mg 

AS: 200 mg 

MQ: 500 mg 

AS: 200 mg 

MQ: 250 mg 

AS – MQ 

58–76  
AS: 200 mg 

MQ: 500 mg 

AS: 200 mg 

MQ: 500 mg 

AS: 200 mg 

MQ: 500 mg 

 6–11 
DHA: 60 mg 

PPQ: 480 mg 

DHA: 60 mg 

PPQ: 480 mg 

DHA: 40 mg 

PPQ: 320 mg 

 11–16  
DHA: 80 mg 

PPQ: 640 mg 

DHA: 80 mg 

PPQ: 640 mg 

DHA: 80 mg 

PPQ: 640 mg 
DHA – PPQ 

 >16 
DHA: 120 mg 

PPQ: 960 mg 

DHA: 120 mg 

PPQ: 960 mg 

DHA: 80 mg 

PPQ: 640 mg 

Drugs used: AM: artemether; AS: artesunate; DHA: dihydroartemisinin; LF: lumefantrine; 

MQ: mefloquine; PPQ: piperaquine 
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Laboratory techniques 

Pharmacokinetics 

Blood samples were kept on ice for no longer than 6 h after withdrawal and then aliquoted 

into whole blood, plasma and pellet and immediately stored in a -80°C freezer. Plasma 

concentrations of 14 antimalarial drugs and their metabolites, i.e. AM, AS, DHA, 

amodiaquine, N-desethyl-amodiaquine, LF, desbutyl-lumefantrine (DLF), PPQ, pyronaridine, 

MQ, chloroquine, quinine, pyrimethamine and sulfadoxine, were determined simultaneously 

using a liquid chromatography–tandem mass spectrometry method (LC–MS/MS) requiring 

200 μl of plasma [212]. Plasma was purified by a combination of protein precipitation, 

evaporation and reconstitution in methanol/ammonium formate 20 mM (pH 4.0) 1:1. Reverse-

phase chromatographic separation of antimalarial drugs was obtained using a gradient elution 

of 20 mM ammonium formate and acetonitrile both containing 0.5% formic acid, followed by 

rinsing and re-equilibration to the initial solvent composition up to 21 min. Analyte 

quantification, using matrix-matched calibration samples, was performed by electrospray 

ionization–triple quadrupole mass spectrometry by selected reaction monitoring detection in 

the positive mode. The method was validated according to FDA recommendations, including 

assessment of extraction yield, matrix effect variability, overall process efficiency, standard 

addition experiments as well as antimalarials short- and long-term stability in plasma. The 

method is precise (inter-day CV%: 3.1–12.6%) and sensitive (lower limits of quantification 

0.15–3.0 for basic/neutral antimalarials and 0.75–5 ng/mL for artemisinin derivatives, 

respectively). For details see Hodel et al. [212] 

 

Pharmacogenetics 

DNA was extracted from 200 μl whole blood from the baseline blood samples (Day 0) using 

the QIAamp 96 DNA Blood Kit (QIAGEN GmbH, Germany) according to the manufacturer's 

instructions. Target sequences in cytochrome P450 isoenzymes (CYP) and N-acetyltransferase 

2 (NAT2) were amplified by polymerase chain reaction (PCR). Primers were selected to 

amplify regions containing single nucleotide polymorphisms (SNPs) which are known to alter 

the function of enzymes involved in the metabolism of antimalarial drugs, namely CYP2A6*2 

(479T>A, L160H), CYP2B6*5 (1459C>T, R487C), CYP2B6*6 (only 516G>T, Q172H, also 

called CYP2B6*9), CYP2C8*3 (only 416G>A, R139K), CYP2C9*3 (1075A>C, I359L), 
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CYP2C9*5 (1080C>G, D360E), CYP2C19*3 (636G>A, W212X), CYP2D6*4 (1846G>A, 

splicing defect), CYP2D6*10 (100C>T and 4180G>C, P34S and S486T), CYP2D6*17 

(1023C>T and 2859C>T, T107I and R296C), CYP3A4*1B (-392A>G), CYP3A5*3 

(6986A>G, splicing defect), NAT2*5 (341T>C, I114T), NAT2*6 (590G>A, R197Q), NAT2*7 

(857G>A, G286E), and NAT2*14 (191G>A, R64Q). SNP selection criteria and the PCR 

protocol have been described elsewhere (CHAPTER 2). The PCR products were sent to 

Macrogen, Ltd., Korea for purification and sequencing using the PCR primers. Sequences 

were analysed using the ABI Prism AutoAssembler version 1.4.0 (Applied Biosystems) for 

assembly. The genotype of each patient was then assessed visually.  

 

Population pharmacokinetic modelling 

Model-based pharmacokinetic analyses 

The analysis was performed using the NONMEM computer program [89]. It uses mixed 

(fixed and random) effects regression to estimate population means and variances of the 

pharmacokinetic parameters and to identify factors that influence them.  

 

Structural model 

One- and two-compartment pharmacokinetic models with elimination from the central 

compartment and with first-order absorption, with and without absorption lag times, were 

evaluated. For the antimalarials for which also metabolite concentrations were assessed, i.e. 

AM, AS and LF, pharmacokinetics of the parent drug and the metabolite were modeled 

sequentially first and then in a common model. The estimated parameters from the different 

compartment models (Figure 1) were the systemic clearance (CL), the intercompartmental 

clearance (Q), the central volume of distribution (VC), the peripheral volume of distribution 

(VP), and the absorption rate constant (k12). Where available, the metabolite was included into 

the model (i.e. DHA for AM and AS and DLF for LF) and metabolism rate constant (k23) and 

elimination rate constants for the metabolite (k30) were estimated. The models are described 

by the following differential equations that express the mass (amount) balance for each of the 

compartments: 
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Where AD is the amount of the parent antimalarial in the absorption compartment (= depot), 

AC and AM are the amounts derived from the measured concentrations of the parent 

antimalarial and its metabolite, respectively. AP is the amount derived from the (unmeasured) 

concentrations of parent antimalarial in the peripheral compartment. kxy is the rate constant for 

the transfer from compartment x to y. The amount in a given compartment at a given time t 

can be derived from the (un)measured concentration C and the estimated volume of 

distribution V, i.e.: 
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For PPQ the intracompartmental clearance (Q) was calculated as follows: 

 

3223  )10( kVkVQ PC ×=×=  
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Since no intravenous drug concentration data were available, the absolute bioavailability 

could not be estimated and CL and V represent apparent values. The VM for DLF was set to 

the estimated value for VC of LF. CL was calculated as indicated in Equation 11 for AM, MQ 

and PQ and Equation 12 for LF: 

 

( ) C

C

VkkCL
VkCL

×+=
×=

2320

20

  )12(
  )11(

 

 

Analysis of baseline samples (i.e. Day 0 prior treatment) showed that some patients had 

residuals of the drug investigated in their plasma from the treatment of the previous malaria 

episode. To account for this, the residual amount from the previous treatment was estimated 

as a factor (F0):  

 

0
0)0(  )13( FeFAC

η×=  

 

Where AC(0) is the amount of drug present in the central compartment at t = 0 and 
0Fη  the 

inter-individual variability (for details see statistical model). 

 

Lumefantrine Piperaquine Aremether and mefloquine 

k32k23 

k20

k12 

1 

P 

C D 

3 

1 1 

 
 

Figure 1. Schematic representation of the pharmacokinetic compartmental models. D: Depot, 

ka: first-order absorption rate constant, C: central compartment, CL: clearance, km: metabolism 

rate constant, M: metabolite compartment, ke: elimination rate constants for the metabolite,  

f: fraction of the total mass that is not metabolized, P: peripheral compartment,  

Q: intercompartment clearance. See also text. 
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Statistical model 

Exponential errors following a log-normal distribution were assumed for the description of 

inter-patient variability of the pharmacokinetic parameters and were of the form:  

 
ie  )14( ηθθ ×=i  

 

Where θj is the individual pharmacokinetic parameter value in the jth individual, θ is the 

population parameter estimate, and ηi is the random effect value, which is independently and 

normally distributed with a mean of 0 and variance ω. Proportional and combined 

proportional-and-additive error models were compared to describe intra-patient (residual) 

variability.  

 

Covariate model 

Covariates (X) evaluated for inclusion during the model building process were body weight, 

height, age, sex, smoking status, pregnancy (only for Tanzanians as pregnancy was an 

exclusion criteria in the Cambodian studies), and concomitant medications. Concomitant 

medications included moderate to strong inhibitors or inducers of the CYP responsible for the 

metabolism of the antimalarial administered to the respective patient (Table 2). Information 

was based on report of self-medication prior inclusion and prescription during the study. In 

the analyses of AM and LF, 30 patients included were considered having taken a moderate or 

strong inhibitor of CYP2C9 (for AM only) and 14 patients included were considered having 

taken an inhibitor of CYP3A4 (AM and LF). In the analyses of AS and MQ, 5 patients were 

considered having taken an inhibitor of CYP3A4 and 2 an inducer of CYP3A4. 27 patients 

included in the analysis of PPQ, had taken an inhibitor of at least CYP2C8, CYP2C9 or 

CYP2D6.  

 

The covariate analysis was performed by using a stepwise insertion/deletion approach. Visual 

inspection of the correlation between post hoc individual parameter estimates and the 

available covariates (demographic characteristics, concomitant medications) was first 

conducted by graphical exploration in Microsoft Excel 2000 (Microsoft Corporation). 

Potentially influential covariates were then incorporated sequentially into the pharmacokinetic 

model. The typical value of a given parameter θ (e.g., CL) was modeled to depend on X either 
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proportionally (Equation 15), linearly (Equation 16) or as an allometric power function 

(Equation 17): 

 

[ ]

bX

X
X

a

a

ba

θθθ

θθ
θθθ

×=

×=
×+×=

  )17(

  )16(
1  )15(

  

 

Where θa is the estimate of the basal value and θb is the contribution of the factor X. For 

categorical covariates X was set to 0 or 1. For continuous covariates X was tested non-

centered and centered on the mean value. In the allometric power models, θb was tested fixed 

to values from literature, i.e. 0.75 on CL and 1 on VC [258], or estimated.  
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At the end of the analysis, all patient characteristics showing an influence on the parameters 

were again confirmed by comparing the full model (with all factors included) to models from 

which each of the factors was removed sequentially. 

 

In the pharmacogenetic analyses SNP information of the enzymes responsible for the 

metabolism of the respective antimalarial (Table 2) was included. In these analyses, each 

genotype was entered solo into the model, i.e. homozygous for the reference allele, 

Heterozygous or homozygous for the mutated allele. A separate fixed effect was assigned to 

each genotype as follows: 

 

332211 )18( XXX TV.CL ×+×+×= θθθ  

 

Where TV.CL is the typical value of CL. Xi is an indicator variable that takes the value of 1 if 

an individual carries the ith genotypic score (i.e. X1: homozygous for reference allele Hom-

REF, X2: Heterozygous Het, X3: homozygous for the allele variant Hom-VAR) and 0 

otherwise. The genotypes that yielded a similar fixed effect were then taken together in a 

reduced model in which the same genotyping group was assigned to Hom-REF compared to 

Het / Hom-VAR and Hom-REF / Het compared to Hom-VAR: 

 

2211  )19( XXTV.CL ×+×= θθ  

 

For PPQ no data on the metabolic pathways was available and thus all available SNPs were 

tested if their allele frequency was unequal 0% or 100% among the study population, i.e. 

CYP2B6*5, CYP2B6*6, CYP2C9*3, CYP2C19*3, CYP2D6*10 (100C>T and 4180G>C), 

CYP2D6*17 (2859C>T), CYP3A4*1B, CYP3A5*3, NAT2*5, NAT2*6, and NAT2*7.  

 

Model selection and parameter estimation 

The models were fitted by use of the first-order conditional method (and three significant 

digits) with the subroutines ADVAN2, TRANS 2 (for AM and MQ), ADVAN 4, TRANS 4 

(for PPQ) or ADVAN5 (for LF its corresponding metabolite DLF). Goodness-of-fit statistics 

and graphical displays were used to compare models on each step of model building. As 

goodness-of-fit statistics, NONMEM uses the objective function, which is approximately 

equal to minus twice the logarithm of the maximum likelihood. The likelihood ratio test, 
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based on the reduction in objective function (ΔOF), was used to carry out comparisons 

between any two models. A ΔOF (−2 log likelihood, approximate χ2 distribution) of 3.84 

points for 1 additional parameter was used for determining statistical significance (P < 0.05) 

of the difference between two models. The figures were generated with GraphPad Prism 

(version 4.03). 

 

Results 

Data 

Pharmacokinetic data was obtained for three different ACTs. Table 3 lists the number of 

samples per time point and Table 4 the patients’ characteristics.  

 

Table 3. Number of samples per time point 

Day AM / DHA† LF / DLF† AS / DHA† MQ DHA PPQ 

Pre-treatment  78 / 7  16  9 

0 1 / 1 1 / 0 58 / 62 62 56 57 

1 103 / 120 138 / 123 1 / 1 64  59 

2 91 / 129 137 / 133  62  60 

3 0 / 1 1 / 1     

6    4  6 

7  125 / 123  50  48 

8  5 / 5  4  5 

9  1 / 1  1   

13    6  3 

14    46  49 

15    4  6 

16    2   

Drugs used: AM: artemether; AS: artesunate; DHA: dihydroartemisinin;  

LF: lumefantrine; MQ: mefloquine; PPQ: piperaquine.  

† Parent drug / metabolite 
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A total of 150 patients was recruited for the study on AM–LF in Tanzania and 7 had to be 

excluded from the study and the population pharmacokinetic analysis (2 presented with a 

hemoglobin <5.0 g/dL, 1 patient was unable to swallow the drug, 2 patients withdrew consent, 

in 1 patient blood withdrawal was not possible and 1 patient presented with >9,999 parasites 

per 200 white blood cells), leaving 143 patients included in the analysis of LF. For AM,  

8 more patients had to be excluded due to undetectable levels of neither AM nor DHA. The 

median (range) of samples available per subject was 3 (2–4) for LF, 3 (1–4) for DLF, 2 (1–3) 

for AM and 2 (1–3) for DHA.  

 

A total of 64 patients was recruited for the study on AS–MQ in Cambodia. One had to be 

excluded from the study due to withdrawal of consent, leaving 63 patients included in the 

analysis of MQ. In 4 patients only DHA but no AS could be detected. The median (range) of 

samples available per subject was 5 (3–6) for MQ, 1 (1) for AS and 1 (1) for DHA.  

 

A total of 61 patients was recruited for the study on DHA–PPQ in Cambodia. One had to be 

excluded from the study and the population pharmacokinetic analysis; the patient withdrew 

consent, leaving 60 patients included in the analysis of PPQ. For DHA, 4 more patients had to 

be excluded due to undetectable levels of DHA. The median (range) of samples available per 

subject was 5 (4–6) for PPQ and 1 (1) DHA.  

 

Population pharmacokinetic analyses 

In all three study sites patients with residual concentrations of the study drugs were included. 

The residual dose from previous treatments was estimated for every patient population. For 

LF the residual dose was 1.62 mg which corresponds to 0.3–1.4% of the initial dose 

administered in the study (120–480 mg). Much higher values were estimated for MQ, i.e.  

33.4 mg which corresponds to 6.7–26.7% of an initial dose of 125–500 mg, and PPQ, i.e.  

123 mg which corresponds to 12.8–25.6% of an initial dose of 480–960 mg. 

 

For AM, a one-compartment model with first-order absorption from the gastrointestinal tract 

and described appropriately the data. A two-compartment model did not improve the model 

fit (ΔOFV = 0.015). DHA could not be included into the model because standard errors (S.E.) 

of the parameters could not be estimated. Furthermore, k12 had to be fixed for the calculations 

of the S.E. of CL and VC. A better fit was obtained by assigning an inter-patient variability not 

only to CL but also to VC (ΔOFV = −20.596). The use of a proportional error models for the 

182



residual intra-patient variability was the most satisfactory. A fixed allometric power function 

of body weight on CL and VC significantly improved model fit and was kept in the final model 

(ΔOFV ≥ −38.816).  Addition of sex, smoking status, pregnancy and concomitant medications 

on CL and VC did not improve the model significantly (ΔOFV ≥ −0.577). However, inclusion 

of genotype of CYP3A5 significantly improved the fit, showing a reduction in CL of 34% in 

Het / Hom-VAR compared to Hom-REF (ΔOFV = −6.527). The parameter estimates for the 

final model and derived parameters are given in Table 5. Figure 2 shows the overall 

goodness-of-fits plots and the concentration-time plot of AM in the 135 patients included in 

the analysis.  

 

For LF, a one-compartment model with first-order absorption from the gastrointestinal tract 

and metabolism into DHA described appropriately the data. A two-compartment model did 

not improve the model fit (ΔOFV = 0.005). For DLF a one-compartment model was 

adequately as well. A better fit was obtained by assigning an inter-patient variability not only 

on CL but also on VC (ΔOFV = −75.351), F0 (ΔOFV = −17.565) and k23 (ΔOFV = −198.974). 

A proportional error model for the residual intra-patient variability for LF and an additive 

error model for DLF were the most satisfactory ones. Inclusion of age, height and body 

weight improved the fit (ΔOFV ≥ −90.042). A fixed allometric power function of body 

weight on CL and VC compared to a simple linear or proportional model was kept in the final 

model as the linear and proportional models did not show significantly better fits (ΔOFV = 

−0.215). Addition of sex, smoking status, pregnancy and concomitant medications on CL and 

VC did not improve the model significantly (ΔOFV ≥ −0.192). However, inclusion of 

genotype of CYP3A4 significantly improved the fit, showing a modest increase in CL of 14% 

in Hom-VAR compared to Het / Hom-REF (ΔOFV = −4.315). The parameter estimates for 

the final model and derived parameters are given in Table 5. Figure 3 and 4 shows the overall 

goodness-of-fits plots and the concentration-time plot of LF and DLF in the 143 patients 

included in the analysis. 

 

For MQ, a one-compartment model with first-order absorption from the gastrointestinal tract 

described appropriately the data. A two-compartment model did not improve the model fit 

(ΔOFV = 0.005). A better fit was obtained by assigning an inter-patient variability not only on 

CL but also on VC (ΔOFV = −171.612) and F0 (ΔOFV = −210.717). The use of proportional 

error models for the residual intra-patient variability was the most satisfactory. Inclusion of 

age, height and body weight improved the fit (ΔOFV ≥ −136.107). A fixed allometric power 
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function of body weight on CL and VC compared to a simple linear or proportional model was 

kept in the final model as the linear and proportional models did not show highly significant 

better fits (ΔOFV = −8.567). Sex as covariate on CL was found to increase fit (ΔOFV = 

−4.049). However, due to the very moderate improve of fit the covariate was not included in 

the final model. Addition of smoking status and concomitant medications on CL and VC did 

not improve the model significantly (ΔOFV ≥ −1.216) whereas inclusion of genotype of 

CYP3A5 significantly improved the fit, showing a modest reduction in CL of 14% in Hom-

VAR compared to Het / Hom-REF (ΔOFV = −4.591). The parameter estimates for the final 

model and derived parameters are given in Table 5. Figure 5 shows the overall goodness-of-

fits plots and the concentration-time plot of MQ in the 63 patients included in the analysis. 

 

For PPQ, a two-compartment model with first-order absorption from the gastrointestinal tract 

described appropriately the data (ΔOFV = −97.234 two- compared to one-compartment 

model). A better fit was obtained by assigning an inter-patient variability not only to CL but 

also to VC (ΔOFV = −129.316) and VP (ΔOFV = −17.290). The use of proportional error 

model for the residual intra-patient variability was the most satisfactory. Inclusion of a fixed 

allometric power function of body weight on CL (ΔOFV = −6.962) significantly improved the 

model. The same was found for an allometric power function of body weight on VC (ΔOFV = 

−25.777). Although the model with the estimated power was slightly better than the model 

with power fixed at 1 (ΔOFV = −2.414) the difference was not significant and thus the power 

was fixed at 1 in accordance with literature [258] and the models of the other antimalarials 

presented in this study. Addition of sex or smoking status as covariates of CL did not improve 

the model significantly (ΔOFV ≥ −2.014). As the metabolizing cytochromes of PPQ are not 

known, concomitant treatment was not included in the model. Inclusion of genotype of NAT2 

(variant 590G>A) pharmacogenetics significantly improved the fit, showing a reduction in CL 

of 32% in carriers of Hom-VAR compared to Het / Hom-REF (ΔOFV = −4.460). However, 

pharmacogenetics was not included into the final model due to reasons discussed later. The 

introduction of a correlation between CL and VC significantly improved goodness-of fit 

(ΔOFV = −9.091). The parameter estimates for the final model and derived parameters are 

given in Table 5. Figure 6 shows the overall goodness-of-fits plots and the concentration-time 

plot of PPQ in the 60 patients included in the analysis. 
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Figure 2. Overall goodness-of-fits plots and the concentration-time plot of AM in 135 patients 

included in the analysis. Concentrations are in µmol/L. (A) log-log plot of observed 

concentrations versus population predictions, the line is the line of identity. (B) log-log plot of 

observations versus individual predictions, the line is the line of identity. (C) Population 

residuals versus population predictions, the line is at ordinate value zero. (D) Population 

weighted residuals versus population predictions, the line is at ordinate value zero. (E) Plasma 

concentration-time plot. 
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Figure 3. Overall goodness-of-fits plots and the concentration-time plot of LF in 143 patients 

included in the analysis. Pink dots represent residual plasma concentrations of LF found prior 

treatment initiation. Concentrations are in µmol/L. (A) log-log plot of observed 

concentrations versus population predictions, the line is the line of identity. (B) log-log plot of 

observations versus individual predictions, the line is the line of identity. (C) Population 

residuals versus population predictions, the line is at ordinate value zero. (D) Population 

weighted residuals versus population predictions, the line is at ordinate value zero. (E) Plasma 

concentration-time plot, the lines represent simulated concentrations after different total doses 

of LF administered to a carrier of two reference alleles of CYP3A4 with body weight equal to 

the mean body weight of the study participants who received the same total dose. 
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Figure 4. Overall goodness-of-fits plots and the concentration-time plot of DLF in  

143 patients included in the analysis. Pink dots represent residual plasma concentrations of 

DLF found prior treatment initiation. Concentrations are in µmol/L. (A) log-log plot of 

observed concentrations versus population predictions, the line is the line of identity. (B) log-

log plot of observations versus individual predictions, the line is the line of identity.  

(C) Population residuals versus population predictions, the line is at ordinate value zero.  

(D) Population weighted residuals versus population predictions, the line is at ordinate value 

zero.  
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Figure 5. Overall goodness-of-fits plots and the concentration-time plot of MQ in 63 patients 

included in the analysis. Pink dots represent residual plasma concentrations of MQ found 

prior treatment initiation. Concentrations are in µmol/L. (A) log-log plot of observed 

concentrations versus population predictions, the line is the line of identity. (B) log-log plot of 

observations versus individual predictions, the line is the line of identity. (C) Population 

residuals versus population predictions, the line is at ordinate value zero. (D) Population 

weighted residuals versus population predictions, the line is at ordinate value zero. (E) Plasma 

concentration-time plot, the lines represent simulated concentrations after different total doses 

of MQ administered to a carrier of two reference alleles of CYP3A5 with body weight equal to 

the mean body weight of the study participants who received the same total dose.  
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Figure 6. Overall goodness-of-fits plots and the concentration-time plot of PPQ in 60 patients 

included in the analysis. Pink dots represent residual plasma concentrations of PPQ found 

prior treatment initiation. Concentrations are in µmol/L. (A) log-log plot of observed 

concentrations versus population predictions, the line is the line of identity. (B) log-log plot of 

observations versus individual predictions, the line is the line of identity. (C) Population 

residuals versus population predictions, the line is at ordinate value zero. (D) Population 

weighted residuals versus population predictions, the line is at ordinate value zero. (E) Plasma 

concentration-time plot, the lines represent simulated concentrations after different total doses 

of PPQ administered to a person with body weight equal to the mean body weight of the study 

participants who received the same total dose. 
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Owing to the limited number of samples and inadequate sampling time the data collected for 

AS and its metabolite DHA from the combination treatment with MQ and the data collected 

for DHA from the combination treatment with PPQ did not allow the estimation of population 

pharmacokinetic parameters. Thus, the results for AS and DHA are not presented.  

 

Discussion  

This study allowed analyses of population pharmacokinetics of several antimalarials currently 

used as first-line treatments in Cambodia and Tanzania. Congruence of the pharmacokinetic 

estimates from this study with estimates from previously published population 

pharmacokinetic models was assessed. The estimated values for CL and VC for AM, LF, MQ 

and PPQ in this study are in line with the previously published estimates (see Table 6 for 

review). However, no literature data is available for DLF. All estimates from this study are 

within the range of the published data, except for the VC of PPQ which was found to be 

smaller in this study than reported by other authors. This could be explained by the number of 

compartments used in the reference studies, i.e. steady-state volume of distribution instead of 

VC and VP.  

 

In this study we were able to quantify the effect of different covariates on the pharmacokinetic 

parameters of ACTs. Inter-individual variability in pharmacokinetic parameters of 

antimalarials depends on many non-genetic factors such as age, disease status, co-morbidity, 

concomitant treatment, environmental factors (e.g. food intake), pregnancy, and adherence. 

Whereas in our study body weight accounted for 10–30% of the inter-individual variability in 

CL, other covariates such as sex, smoking, pregnancy and concomitant treatment did not show 

a significant contribution to the inter-individual variability of the estimated pharmacokinetic 

parameters. As expected, an allometric power function of body weight on CL and VC 

improved model fit for all antimalarials investigated. This is in line with the applied dosing 

regimens of antimalarials according to body weight or age as surrogate for body weight. 

According to literature, 0.75 for θb  in CL and 1 for θb  in VC were selected [258] as the 

models with the estimated θb did not show a significant change in the OFV. Concomitant 

treatment did not show a significant effect on clearance for any of the drugs. This might be 

explained by the fact that the information included into the model was based on self-reporting 

by patients or guardians, and administered drugs, dose, last intake and duration of treatment 

were thus difficult to assess. Polycyclic aromatic hydrocarbons in tobacco smoke are believed 

to be responsible for the induction of cytochrome CYP1A2 and possibly CYP2E1 [271]. Most 
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of the antimalarials investigated are not metabolized by any of these enzymes (Table 2), and 

thus it was not expected that smoking would be a significant covariate in our model. Tarning 

et al. speculated that CYP1A2 might be involved in the metabolism of PPQ [58]. However, 

smokers did not show a significantly altered PPQ metabolism compared to non-smokers. This 

can be because CYP1A2 is not the (main) enzyme metabolizing PPQ and/or because of high 

exposure of the whole study population to soot (e.g. cooking at fireplace, slash and burn 

agriculture, production of wood charcoal) and a resulting bias. Although it is well known that 

fatty meals increases bioavailability of antimalarials [259,272-274], the information on food 

intake was not tested as covariate in the population pharmacokinetic models. Patients who 

were not admitted to the health centre were encouraged to take at least a light meal at home. 

However, assessment of meals taken with the drugs (i.e. none, light, heavy) may not be as 

accurate as in inpatients. In a study on adherence to treatment regimens in Tanzania, only 

0.4% of patients took the antimalarials with food (Kabanywanyi et al., in preparation). Thus, 

the data seemed too unreliable and was not included as covariate. This might explain some of 

the misfit in the goodness-of-fit plots (Figures 2 to 6), i.e. fasting might have resulted in lower 

observed concentrations than predicted. As small children were not able swallow pills, AM–

LF had to be crushed, mixed with a few milliliters of water and given to the children on a 

spoon. Often some of the drug got spilled by the person preparing and/or administering the 

drug. Likewise, this might have led to a non-quantifiable loss of administered dose and 

possibly to lower observed concentrations than predicted. 

 

Apart from non-genetic factors, differences in ethnicity have a profound impact on drug 

clearance due to pharmacogenetic polymorphism in drug metabolizing enzymes and 

transporters, or drug targets. Alterations in clearance can have an impact on safety, efficacy 

and dosing regimen. In the context of tropical regions, the situation may be even more serious 

due to co-infections and multiple drug therapy, which may affect drug clearance. Up to this 

paper, there was no information on the influence of pharmacogenetics on pharmacokinetics of 

ACTs. Thus, the main aim of the present study was to investigate whether specific SNPs in 

CYP and NAT2 could explain parts of the inter-individual variability in the pharmacokinetic 

profile of antimalarials in Cambodian and Tanzanian patients.  
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Table 6. Population estimate of clearance and steady-state volume of distribution of 

antimalarials for a person with a median body weight of 70 kg from mixed effects models 

from the present study and in previous studies 

Drug Subjects 
Median age  

(range) [years] 

No. of 

patients 
CL [L/h] VSS [L] Reference 

Patients 10 (1–78) 135 605a 3556 Present study 

Patients 22 (14–60) 217 180b 217b [265] 

AM 

Patients 3.0 (0.4–9) 90 125 63 [266] 

Patients 9 (1–78) 143 8.7a 454 Present study 

Patients 22 (14–60) 217 15.4 684 [265] 

Patients 23 (13–59) 102 7 298  [61] 

Patients 20 (5–66) 309 7.6 361 [61] 

Healthy   29.8 388c  [61] 

LF 

Pregnant women 24 (15–42) 103 8.7 257 [267] 

Patients 18 (2–57) 63 2.7a 623 Present study 

Patients 14.8 (8–61) 128 1.4 574.7 [268] 

Patients 9.3 (4–15) 74 3.71 1089.2 [268] 

Prophylaxis 26d (18–55) 1,111 1.75 863 [269] 

MQ 

Patients 19 (2–55) 50 2.1 767.62 [270] 

Patients 18 (7–53) 60 109a 42’820 Present study 

Patients 3–55 98 98e 61,180e [242] 

Patients 30 ± 13f 38 63 40,180 [242] 

Healthy volunteers 2–10 47 129.5 42,980 [242] 

PPQ 

Healthy volunteers 31 ± 3.5f 12 70g 7210g [242] 

Drugs used: AM: artemether; AS: artesunate; DHA: dihydroartemisinin; LF: lumefantrine; 

MQ: mefloquine; PPQ: piperaquine.  
a Population estimate for a patient with reference allele of the metabolizing cytochrome P450 
b Fixed parameter at mean value 
c Body weight not specified and thus estimate for a patient of unknown body weight 
d Mean 
e Population estimate for a patient with a median body weight of 48 kg 
f Mean ± standard deviation  
g Parameter estimates are weight normalized based on published population mean values 

divided by the mean weight of subjects 
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For AM, the effects of CYP2B6, CYP2C9, CYP2C19 and CYP3A4/5 genotypes on CL of AM 

were assessed. Previous studies on AM turnover to DHA showed that the turnover was 

highest for human recombinant CYP2B6 [260]. Although, intestinal CYP3A4 might play a 

role in the presystemic metabolism of AM [275,276] interaction studies indicated that liver 

CYP3A4 is not important in the in vivo metabolism of AM [277-279]. This is in line with our 

finding that there was no difference in CL in Het / Hom-VAR compared to Hom-REF of 

CYP3A4. Likewise, no significant difference in the pharmacokinetic profile of AM could be 

seen in carriers of CYP2B6*5, CYP2B6*6, CYP2C9*5 or CYP2C19*3 compared to carriers of 

the respective reference allele, indicating that either allele frequencies were too low to show a 

significant effect on CL or that there is indeed no interethnic difference in metabolism of AM 

on the basis of a genetic polymorphism of these enzymes. However, inclusion of the 

pharmacogenetic profile of CYP3A5 significantly improved the fit, showing a reduction in CL 

of 34% in Het / Hom-VAR compared to Hom-REF and explaining 9% of the inter-individual 

variability. CYP3A5*3 is the most frequent and functionally important SNP in the CYP3A5 

gene [280]. The mutation confers low CYP3A5 protein expression as a result of improper 

mRNA splicing and reduced translation of a functional protein [168]. In our study, about one 

third of patients were carriers of at least one CYP3A5*3 allele. In these patients, a slightly 

prolonged therapeutic effect of AM can be expected. Although AM is generally well tolerated 

[281], toxicity due to interactions with other drugs could be anticipated. There is considerable 

geographic overlap between occurrence of HIV/AIDS and malaria [282] and thus many 

malaria patients are likely to take ARVs. As most interactions with ARVs involve drugs that 

interact with CYP enzymes [283], one could imagine that competition at the binding site of 

CYP3A5 is more prominent in carriers of CYP3A5*3 resulting in a prolonged circulation of 

ARVs and higher risk of toxicity. Hence, the pharmacogenetic profile of malaria patients 

might not only affect the pharmacokinetic profiles of the antimalarials administered but also 

their potential of drug-drug interactions. Considering the high number of malaria patients 

worldwide, further studies on drug-drug interactions of antimalarials in specific patient 

populations would therefore help to identify patients at higher risk of toxicity or treatment 

failure.   

 

For LF, 2% of the inter-individual variability in CL could be explained by the genotype of 

CYP3A4. An increase in CL of 12% in Hom-VAR was seen in comparison with Het / Hom-

REF. The literature about alterations of the metabolism in CYP3A4*1B carriers is very 

inconclusive. Some authors proposed higher doses of tacrolimus or docetaxel, both substrates 
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of CYP3A4, for carriers of CYP3A4*1B due to enhanced clearance of these drugs and 

potential risk of underexposure [158,159]. Amirimani et al. suggested that the increased 

enzyme activity in carriers of the A>G substitution 290 bp upstream of the CYP3A4 

transcription start site (CYP3A4*1B) leads to enhanced expression of the enzyme [160,162]. 

On the other hand, studies in cancer patients reported decreased metabolism of drugs in 

carriers of CYP3A4*1B [156,157]. Many publications even doubt that inter-individual 

differences in drug metabolism can be attributed to the allelic variant CYP3A4*1B 

[163,164,166-170,284]. Our results support rather the findings of enhanced clearance in 

carriers of the allelic variant. Although, the phenotypic effect observed in this study was 

rather moderate it could become more important in the context of reduced parasite 

susceptibility. The combination of AM–LF achieves its antimalarial effect through an initial 

rapid reduction in parasite biomass attributable to the short-acting but highly potent AM, with 

the subsequent removal of the remaining parasites by the intrinsically less-active but more 

slowly eliminated LF and thus overall cure rates depend on there being sufficient LF to 

remove the residual parasite biomass left by AM [61,224,229]. Currently, AM–LF shows high 

efficacy in Tanzania [146]. However, when the emergence of the reduced susceptibility to 

artemisinins observed in South-East Asia [177-184] spreads to Africa, the protecting effect of 

LF will become pivotal for cure. In our study, allele frequency CYP3A4*1B was above 70% 

and mean LF plasma concentration observed in Hom-VAR on Day 7 was 447.6 ng/mL 

compared to 508.6 ng/mL in Het / Hom-REF. The relationship between drug concentrations 

and therapeutic response depends on the drug susceptibility of the infecting parasites [224]. 

Hence, quite a large proportion of patients might be at higher risk of treatment failure due to 

lower protecting levels of LF if doses are not adapted for this population.  

 

Interestingly, we observed a high allelic frequency of the variant allele CYP3A4*1B and low 

frequency of the reference allele CYP3A5*1 in Tanzania and vice versa in Cambodia (Table 

4). Whereas studies in Cambodia on efficacy of AM–LF showed cure rates of only 71.1% 

[147], AM–LF stays highly efficacious in Tanzanian [146]. The high treatment failure rate in 

Cambodia could not be explained entirely by food intake nor could parasite resistance be 

demonstrated using molecular markers [147,173]. Thus, one could speculate that host factors 

might influence treatment outcome. Among the Cambodian subjects in the present study, 

about 13% were Hom-REF for CYP3A5 (CHAPTER 2). If we translate the findings from the 

Tanzanian population to the Cambodian population, we would expect that 13% of 

Cambodians show a 32% higher CL and a resulting lower area under the plasma drug 
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concentration-time curve (AUC) of AM than the majority of Cambodians. In these 13%, the 

risk of treatment failure could be increased due to reduced exposure of parasites to the 

artemisinin component of the ACT. This hypothesis is strengthened by the findings from the 

above mentioned efficacy study on AM–LF in Cambodia where treatment failure rate was still 

around 13% even after food supplementation. To confirm the hypothesis that the observed 

increase in drug CL is clinically significant, it will be necessary to do a population 

pharmacokinetic study of AM–LF in Cambodians. Furthermore, data on therapeutic drug 

levels of ACTs must be included in the analysis, especially in infections with parasites 

showing reduced susceptibility to ACTs. 

 

For MQ, only 1% of the inter-individual variability in CL could be explained by the genotype 

of CYP3A5. A slight reduction in CL of 14% was seen in Hom-VAR compared to Het / Hom-

REF. As mentioned above, the mutation confers low CYP3A5 protein expression [168] and 

could explain the lower clearance in homozygous carriers of CYP3A5*3. Whereas CL of AM 

in Het was similar to CL in Hom-VAR in MQ only Hom-VAR showed a significant reduction 

in CL. The drug dependent impact of CYP3A5 genetic polymorphism on drug disposition 

might be explained by the substrate specificity and product regioselectivity [168]. Although, 

the reduction in CL of 12% seems rather moderate, the allele frequency of CYP3A5*3 in the 

patients studied was nearly 70% and thus a considerable number of patients receiving MQ are 

at higher risk of neuropsychiatric adverse effects. These findings highlight the importance of 

better understanding of dose-dependant adverse effects in populations with high frequencies 

of slow metabolizer alleles.     

 

For PPQ, inclusion of pharmacogenetics significantly improved the fit, showing a reduction in 

CL of 32% in carriers of NAT2*6/*6 compared to carriers of at least one reference allele. The 

reduction in inter-individual variability of CL was 3%.  However, NAT2*6 was not included 

into the final model of PPQ as the chemical structure of PPQ and the described metabolites 

[58] do not suggest an N-acetylation as metabolic pathway. Furthermore, due to lack of data 

on PPQ metabolism all SNPs available were tested individually. Thus the significant improve 

of the model fit due to inclusion of the genotype of NAT2 as covariate in the model at 5% 

significance level could represent a chance finding. For PPQ none of the 12 SNPs tested lead 

to a significant difference in OFVs of ≥8.28 (corresponding to Bonferroni corrected P-value 

of ≤0.004). 
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Conclusion 

Inter-individual variability in pharmacokinetic parameters of antimalarials depends on many 

factors such as age, disease status, co-morbidity, concomitant treatment, environmental 

factors (e.g. food intake), pregnancy, and adherence. This study assessed the impact of the 

pharmacogenetic profile on the clearance of several antimalarial drugs currently in use in 

South-East Asia and Africa. Overall, pharmacokinetics explained up to 10% of the differences 

in CL between subjects. Whereas for AM, the change in clearance between carriers of 

different allelic variants of the main metabolizing CYP was prominent, in LF and MQ it was 

rather moderate. These might represent isolated findings and more studies, ideally with the 

same ACTs, in different populations are needed to confirm the influence of the 

pharmacogenetic profile on the clearance of antimalarials. There are still large gaps of 

knowledge about (i) the metabolism of antimalarials, e.g. PPQ, (ii) the genotype–phenotype 

association of SNPs in drug metabolizing enzymes, e.g. CYP3A4*1B, and (iii) the correlation 

of drug concentrations and drug response of antimalarials.   

 

A large population is exposed to malarial and consequently to antimalarials. Thus, even if 

only a small relative number of people experiences changes in drug disposition leading to 

increased risk of toxicity or treatment failure as well as altered potential of drug-drug 

interactions, this might represent a considerable absolute number of patients worldwide. As 

allele frequencies vary greatly between countries and continents a region-specific degree of 

the impact of pharmacogenetics on pharmacokinetics may be expected. As a consequence, 

treatment-policies should incorporate information on the metabolic pathway of the drugs and 

the frequency of alleles associated with slow, rapid and ultrarapid metabolizing phenotypes in 

the selection process. Drug safety and efficacy could thereby be improved. 
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Between 2007 and 2008 three in vivo studies have been preformed in 125 and 150 malaria 

patients from Cambodia and Tanzania, respectively, in order to assess the effect of 

pharmacogenetics on the pharmacokinetic profile of artemisinin-based combinations. Plasma 

concentrations of the administered antimalarials were measured using a LC–MS/MS method 

developed specifically for this purpose and the pharmacogenetic profiles of the patients were 

determined by direct sequencing. The collected data was included in population 

pharmacokinetic models enabling the quantification of the effect of different covariates on 

pharmacokinetic parameters of ACTs.  

 

Determination of plasma concentration of ACTs 

Among the various determinants of treatment response, the achievement of sufficient 

circulation drug concentrations is essential for curing malaria. So far, one of the obstacles to 

obtain this information has been the lack of sensitive, reliable, robust analytical 

methodologies for the detection of antimalarials in blood or plasma. The methods developed 

previously mostly aimed at detecting a single or few antimalarials generally belonging to a 

single chemical class. Most of these assays were used for clinical trials or studies on a limited 

number of antimalarial compounds [58,94-130]. However, our study design necessitated an 

assay that allowed extraction and detection of several drugs and their main metabolites 

simultaneously with no limitation for drug classes. To be used on a large number of samples, 

an assay with reduced overall analytical time and costs compared to previously described 

methods was needed. 

  

High performance liquid chromatography (HPLC) is widely used and relatively economical 

and triple stage mass detection (MS/MS) qualifies for the measurement of arrays of 

structurally unrelated antimalarial agents and their metabolites in a single analytical run. In 

collaboration with the laboratory of the Division of Clinical Pharmacology (PCL) of the 

University Hospital in Lausanne (CHUV), Switzerland, we thus developed a sensitive LC–

MS/MS method for the simultaneous detection of the major antimalarial agents currently used 

as drug combinations (artemether, artesunate, lumefantrine, piperaquine, pyronaridine, 

amodiaquine, chloroquine, mefloquine, quinine, sulfadoxine and pyrimethamine) as well as 

some of their metabolites (dihydroartemisinin, desbutyl-lumefantrine, desethyl-amodiaquine) 

in a small volume of plasma. The assay requires only as little as 200 μl of plasma and is an 

improvement over previous methods in terms of convenience (a single extraction procedure 

for 14 major antimalarials and metabolites reducing significantly analytical time), sensitivity, 
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selectivity and throughput. The method was validated according to well-established 

recommendations [131], including assessment of extraction yield, matrix effect variability, 

overall process efficiency, standard addition experiments, as well as short- and long-term 

stability of antimalarial drugs in plasma.  

 

A major limitation for the use in field studies in malaria endemic countries is investment costs 

for equipment. However, we could demonstrate that there was no loss of stability in samples 

collected in the field and stored on ice for a few hours or in liquid nitrogen for several days, 

respectively, before transfer in a –80°C freezer and subsequent shipment to the laboratory for 

analysis. Thus, the method is suitable for the analysis of field samples collected in remote 

areas where no electricity is available but dry ice or liquid nitrogen is available.        

 

The successful performance of the assay has been demonstrated in our three in vivo studies. In 

rural areas of Cambodia and Tanzania, baseline plasma samples from malaria patients 

reporting no antimalarial drug intake within the last 28 days were screened for the presence of 

14 antimalarials prior to the initiation of study ACTs. The analyses of samples revealed 

residual concentrations of antimalarials from previous episodes in more than half of the 

patients both in Tanzania and Cambodia. The simultaneous analysis of 14 antimalarials 

allowed the detection of residuals not only of the study drugs, i.e. recommended national first-

line drugs against falciparum malaria, but also of first-line treatments previously used and the 

recommended first-line treatments against vivax malaria. Such detection is an important 

advantage compared to other methods were parallel runs would be necessary to collect the 

data about all anticipated drugs. The data obtained from the baseline samples enabled us to 

establish a better assessment of the antimalarial drugs circulating in the local population, and 

hence of the drug pressure on the parasites in both countries. Due to the high sensitivity of the 

assay, residual plasma concentrations of antimalarials with long half-life were quantifiable 

even several weeks after previous intake, allowing us to estimate time between baseline and 

the previous intake of a standard dose of the detected antimalarial. This time interval 

indicated either the number of fever episodes or, if a reliable diagnostic test was used, the 

number of malaria episodes in the study populations. For some drugs the interval was as short 

as a few days, suggesting that the drug was taken during the current episode (i.e. quinine), and 

for others it was estimated to be 1 (i.e. lumefantrine), 2 (i.e. mefloquine) or 3 months (i.e. 

sulfadoxine–pyrimethamine).  
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The assay was also applied for the measurement of plasma drug concentrations over time 

during the in vivo studies. The high-throughput of the assay allowed the analysis of a large 

number of samples in a relatively short time. Furthermore, the small volume of plasma needed 

for analysis was a major advantage in terms of ethical considerations, and permitted the 

inclusion of very small children (1 year of age) into the study. Although children <5 years 

belong to the most vulnerable group of malaria patients [285], pharmacokinetic data in these 

patients are very scarce and hence attempts for pooling data from several small studies were 

discussed [40,220]. The main limitation in pooling individual patient data is the variability in 

assay and analysis methodology between pharmacokinetic studies. The assay methodology is 

a key determinant of the accuracy of the results and should thus meet high quality 

requirements in terms of recovery, coefficients of variation (for quality control samples), 

back-calculated concentrations for calibration standards, regression model, stability, lower 

limits of quantification, sample handling, volume of sample, biological matrix, anticoagulant, 

duplicate assay, inter- and intra-assay variability, and data handling [40]. Our method met 

these criteria and could thus be used for future pharmacokinetic studies of antimalarials. 

 

In summary, we conclude that our method is suitable for simultaneously detecting the 

presence of drug in subjects for screening purposes and quantifying drug exposure after 

treatment. It may contribute to filling the current knowledge gaps in the pharmacokinetic–

pharmacodynamic relationships of antimalarials and better define the therapeutic dose ranges 

in different patient populations. Future steps could be an extension of the method by including 

antiretroviral drugs (ARVs) in the same run. The geographical prevalence of HIV/AIDS and 

malaria overlap because a significant number of HIV-infected individuals live in regions with 

different levels of malaria transmission. The simultaneous analysis of plasma concentrations 

of antimalarials and ARVs could contribute to a better understanding of chemotherapeutic 

interactions during malaria in HIV co-infected individuals.  

 

The data from the two baselines surveys gave information about circulating antimalarial drugs 

in the communities and the resulting drug pressure. Our findings challenge the usual 

statement that access to drugs in remote rural places is poor and that stock-outs are frequent 

[213,214,237,286-288]. In order to investigate whether access to antimalarial treatment 

depends on the distance from home to health facilities and drug shops, a more formal 

assessment of the geographical distribution of antimalarial drugs circulating in different 
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communities should be performed. This would allow quantifying the magnitude of drug 

pressure according to drug availability. 

 

Assessment of the pharmacogenetic profiles of malaria patients 

Genetic polymorphisms in drug metabolizing enzymes can lead to differential enzymatic 

activity due to altered substrate binding capacity. Resulting phenotypes are slow, rapid or 

ultrarapid metabolizers. The analysis of these polymorphisms is a step towards a broader 

understanding of inter-individual differences in pharmacokinetic and pharmacodynamic 

profiles and consequential treatment failures and adverse drug reactions. The main enzymes 

involved in the metabolism of antimalarial drugs are the cytochrome P450 isoenzymes (CYP) 

and N-acetyltransferase-2 (NAT2). Thus, we analysed allele frequencies of single nucleotide 

polymorphisms (SNPs) in CYP and NAT2 in samples from Cambodia and Tanzania in order 

to assess whether ethnic differences in the pharmacokinetic profile of these enzymes exist.  

 

DNA microarrays are considered to be cost-effective tools for the high-throughput analysis of 

known SNPs in a large sample size [188]. Building on the experience of a previously in-house 

designed DNA microarray for the SNP analysis of drug resistance markers in P. falciparum 

[188], we developed a microarray for the simultaneous analysis of several SNPs in CYP and 

NAT2. Fluorescence scanners for the acquisition of microarray data are now available in many 

laboratories in malaria endemic areas and the technology could be transferred to malaria 

endemic areas. However, the development of the pharmacogenetics microarray proved to be 

more difficult than expected. The design of the primers for the PCR and primer extension 

reactions was compromised by the large sequence homology of the CYP genes and their 

pseudogenes. Comparison of SNP data gathered from the DNA microarray and direct 

sequencing in 96 patients from Tanzania and Cambodia showed that the performance of the 

microarray was not satisfactory. Furthermore, whilst the cost of sequencing has decreased 

considerably since this project was started, the cost for microarray reagents (especially Cy3- 

and Cy5-labeled ddNTPs) and glass slides for arraying has increased. Therefore, the costs per 

SNP with the microarray technology are not considerably lower and overall costs of both 

methods have become comparable. This implies that samples from future studies on SNP in 

malaria endemic areas might be sent to one of the service laboratories providing sequencing 

services at competitive prices. 
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For the analysis of the pharmacogenetic profile of the patients included in our in vivo studies, 

direct sequencing of PCR products was applied. We investigated SNPs in CYP2A6, CYP2B6, 

CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, and NAT2. Most alleles were 

found to be in Hardy-Weinberg equilibrium, indicating that sampling was unbiased. The 

comparison of allele frequencies in our study populations with the available data from 

literature [149-152,152-155] showed high agreement. Alleles showing major inter-ethnic 

differences in frequency were of CYP2D6, CYP3A4, CYP3A5, and NAT2. This is in 

accordance with previous reports showing that allele frequencies of CYP2D6 and NAT2 vary 

considerably between continents or even countries [149,150], leading to differing distribution 

patterns of phenotypes, i.e. poor, rapid and ultra-rapid metabolizers. 

 

CYP2D6, CYP3A4/5 and NAT2 are not only responsible for the metabolism of antimalarials 

but also many drugs used for long-term therapy of infectious diseases highly prevalent in 

malaria endemic areas are substrates, inducers or inhibitors of these enzymes, e.g. ARVs and 

antituberculosis (anti-TB) drugs. CYP3A is highly inducible, extremely polymorphic and 

metabolizes many of the drugs that are key components of highly active ARV therapy 

regimens [289]. The anti-TB drug isoniazid is a substrate of NAT2 [290] and the anti-TB drug 

rifampicin is an inducer of several cytochromes, including CYP2D6 and CYP3A [291-294]. 

These are just a few examples illustrating the importance of considering information about the 

metabolic pathway of drugs when selecting the treatment regimen for patients receiving long-

term therapy with different drugs that alter the metabolism of each other. Taken together, 

these data show that we are facing two different phenomena. On the one hand mutual 

transcriptional alteration of the metabolizing enzymes can lead to drug-drug interactions. On 

the other hand pharmacogenetic differences alter the metabolic capacity of CYP and NAT2. 

While the former phenomenom is relatively well investigated [295], the latter has only 

recently begun to receive appropriate attention and clearly illustrates that the data gained from 

drug-drug interaction studies cannot be transferred directly from one population to another 

due to differences in the pharmacogenetic profile. While this problem is buffered to some 

extent in industrialized countries by a trend towards individualized pharmacotherapy 

according to the genetic profile of a patient [296,297], similar approaches are far from reality 

in resource poor settings. Consequently, if individual pharmacogenetic information is not 

available, at least allele frequencies within a given population should be considered during 

treatment policy making at the local level. 
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A limitation of this work was the sample selection process. Originally, it was planned to 

perform a cross-sectional community based survey in Cambodia and Tanzania in addition to 

the in vivo studies in order to get a broader view of the pharmacogenetic profile in these 

populations. Due to increase in costs of the field work, we were not able to perform these 

additional studies. Comparison of the data collected from malaria patients shows similar 

results to other (South-East) Asian and African populations, indicating that malaria patients 

seem to represent an accurate subsample of the general population. Nevertheless, future 

studies aiming at collecting pharmacokinetic data in the general population should be based 

on a cross-sectional approach with random selection of households. 

 

In summary, we were able to assess the pharmacogenetic profiles of the populations in 

Cambodia and Tanzania regarding genes known to govern drug disposition. We found clear 

differences in the distribution of genotypes of certain enzymes between the two populations. 

The resulting differences in phenotypes could explain partially the inter-individual variability 

in drug metabolism. Hence, pharmacogenetic information should be included in future 

decisions in first-line treatment selection at the national level.  

 

Effects of pharmacogenetics on the pharmacokinetic profile of ACTs 

The present PhD thesis investigated population pharmacokinetics of artesunate–mefloquine 

and dihydroartemisinin–piperaquine in Cambodian patients and artemether–lumefantrine in 

Tanzanian patients. Inter- and intra-individual variability of the pharmacokinetic parameters 

were assessed and the contribution of demographic, environmental and pharmacogenetic 

covariates to the inter-individual variability were quantified using a nonlinear mixed-effects 

model approach. 

 

Data on population pharmacokinetics of antimalarials is still scarce. The few studies available 

often include only a small number of patients, constraining the ability to draw conclusions on 

optimal dosing. Even fewer studies were conducted in the most vulnerable populations such 

as pregnant women or children [40]. Owing to the small plasma volume per time point 

required by our LC–MS/MS assay for the determination of circulating drug concentrations, 

we were able to include also very small children into our pharmacokinetic analysis.    
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The pharmacokinetic parameters we estimated in our models were in agreement with those 

from other population pharmacokinetic studies. As expected, the inclusion of a fixed 

allometric power function of body weight on clearance and central volume of distribution 

significantly improved model fit. Allometric scaling accounts for development of body size 

and function but not for the fact that the drug-metabolizing capacity of the liver is generally 

low at birth [298]. It could thus be interesting to develop the model further and include 

information about the stage of maturation of the drug-metabolizing part of the CYP. 

Unfortunately, there is still not enough data on the time point the activity of the applicable 

CYP isoform(s) attains adult levels. Available studies even on the same CYP isoform have 

given very divergent results [298].  

 

In order to account for parts of inter-individual variability in drug-metabolizing capacity of 

the liver we included pharmacogenetic data as covariate. For artemether, we found that 9% of 

the inter-individual variability in clearance could be explained by the genotype of CYP3A5 

(reference allele versus variant allele CYP3A5*3). Carriers of at least one variant allele 

showed a reduction in clearance of 34%. The alterations in clearance were less pronounced 

for lumefantrine (increase in clearance of 12% in homozygous carriers of variant allele 

CYP3A4*1B, explaining 2% of the inter-individual variability in clearance) and mefloquine 

(decrease in clearance of 14% in homozygous carriers of variant allele CYP3A5*5, explaining 

1% of the inter-individual variability in clearance). Interestingly, we also found a reduction in 

inter-individual variability of clearance of 3% when including the genotype of NAT2 

(reference allele versus variant allele NAT2*6) in the model for piperaquine. A reduction in 

clearance of 32% was observed in homozygous carriers of the variant allele. The literature on 

piperaquine metabolism is scarce and the involved enzymes are unknown. But data on the 

metabolites found in urine indicated that CYP might play a role [58]. The chemical structure 

of piperaquine and its metabolites does not favour N-acetylation, questioning our finding that 

NAT2 genotypes seem to modify the clearance of this drug. We were not able to find a 

plausible explanation of the results and therefore omitted pharmacogenetics as a covariate in 

the final model of piperaquine, claiming that it might have been a chance finding due to 

multiple testing of SNPs. One could imagine that NAT2*5 is an effect modifier for another 

factor involved in piperaquine clearance and future studies might reveal a linkage equilibrium 

with another gene coding for a protein or enzyme involved in the clearance of piperaquine. 

Considering the relatively moderate number of patients included in the population 

pharmacokinetic model of piperaquine, more data would be necessary to assess whether the 
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genotype of NAT2 has an impact on the inter-individual variability of clearance of 

piperaquine or not. 

 

In order to place our findings within a broader context, we referred to studies on the efficacy 

of artemether–lumefantrine in Cambodia and Tanzania (CHAPTERS 2 and 6) [146,147]. 

Artemether–lumefantrine was very effective against falciparum malaria in Tanzania on the 

one hand and much less effective in Cambodia on the other hand, i.e. up to ~30% treatment 

failures. Because of the differences observed between Cambodians and Tanzanians in allele 

frequencies of CYP3A4/5, the main enzymes involved in the metabolism of artemether–

lumefantrine [61], we hypothesized that pharmacogenetics might play a role in treatment 

outcome. In our population pharmacokinetic models of the two antimalarials we could 

confirm the impact of the genetic makeup on metabolism of these antimalarials and the 

resulting circulating plasma concentrations over time. Among the Cambodian subjects in our 

study, about 13% were Hom-REF for CYP3A5 (CHAPTER 2). If we translate the findings 

from the Tanzanian population treated with artemether to the Cambodian population, we 

would expect that 13% of Cambodians show a 32% higher clearance and a resulting lower 

area under the plasma drug concentration-time curve (AUC) of artemether than the majority 

of Cambodians. In these 13%, the risk of treatment failure could be increased due to reduced 

exposure of parasites to the artemisinin component of the ACT. This hypothesis is 

strengthened by the findings from the above mentioned efficacy study on artemether–

lumefantrine in Cambodia where treatment failure rate was still around 13% even after food 

supplementation and correction for drug resistance markers. To confirm the hypothesis that 

the observed increase in drug clearance is clinically significant and potentially leading to 

treatment failure, it would be necessary to (i) perform a population pharmacokinetic study of 

artemether–lumefantrine in Cambodians and (ii) ideally also to assess the pharmacogenetic 

profile of the patients included in the study on artemether–lumefantrine showing 13% 

treatment failure rates [147].    

 

In summary, we were able to show that there is a correlation between the pharmacogenetic 

profile of the host and the pharmacokinetics of antimalarial drugs administered in malaria 

patients. The results from our study may contribute to achieve one of the major aims of the 

clinical pharmacology component of the Worldwide Antimalarial Resistance Network 

(WARN), i.e. to investigate whether therapeutic antimalarial drug concentrations over time 

are achieved in the majority of all target groups, including infants, pregnant women, and those 
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with prevalent co-morbid diseases (especially HIV/AIDS, malnutrition) or if there are 

important sub-groups being under (or over) dosed [40]. A subsequent step should then be the 

analysis of covariates influencing the pharmacokinetic profile, i.e. circulating drug 

concentrations over time.  

 

Treatment effectiveness does depend not only on the achievement of appropriate circulating 

concentrations of the antimalarial drugs but also on host immunity and parasite resistance. 

Immunity to malaria is very complex and still not fully understood [299]. Therefore, it is 

difficult to include this data in the assessment of treatment effectiveness. However, 

appropriate circulating drugs can be easily defined by the therapeutic window of the drug. 

The upper limit of the therapeutic window is usually known from clinical studies during the 

development phase of the drug. The lower limit of the interval, i.e. minimal inhibitory 

concentration (MIC), strongly depends on the parasite resistance and resulting susceptibility 

to the drug. Optimal dosing can only be ensured through defining the correlation between 

drug concentration and clinical and parasitological response. Hence, another issue addressed 

by the WARN is the collection of data on therapeutic drug levels of antimalarial drugs, in 

vitro drug susceptibility of the parasite and molecular markers associated with drugs 

resistance [93]. Once the data from the WARN database is available, one should try to define 

therapeutic levels as a function defined by molecular drug resistance markers in the parasite 

and the half maximal inhibitory concentration (IC50) from in vitro assay. In a second step, the 

function could be expanded by including pharmacogenetic data. Taken together national first-

line treatment selection and necessary dosing adaptation could then be based on current data 

on the level of drug resistance of circulating parasites and the pharmacogenetic profile of the 

population.      

 

In order to confirm our findings of the influence of the pharmacogenetic profile on the 

clearance of antimalarials more studies, ideally with the same ACTs, in different populations 

are needed. The main limitations in pooling population pharmacokinetic data are the 

differences in study design and the variability in assay and analysis methodology between 

pharmacokinetic studies. This complicates the meta-analysis of results from different 

laboratories and studies. Additional studies should thus be conducted using the same study 

design and methodologies.   
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Conclusion and recommendations 

We developed a sensitive LC–MS/MS method for the simultaneous analysis of the major 

antimalarial agents currently used and successfully applied it to samples collected in the field. 

Furthermore, we were able to detect differences in the pharmacogenetic profile of enzymes 

responsible for the metabolism of antimalarial drugs in Cambodians and Tanzanians. Plasma 

concentrations and the data gained from the pharmacogenetic analysis were included in 

pharmacokinetic models and allowed the estimation of the effect of pharmacogenetics on the 

pharmacokinetic profile of different ACTs. Pharmacogenetics accounted for up to 9% of the 

inter-individual variability in total clearance of the ACTs investigated. The knowledge gained 

from this study could facilitate the selection process of first-line treatment for malaria and 

would allow dosing adaptation based on the pharmacogenetic profile of the population. In 

order to exclude that these are isolated findings, we recommend that future studies collect 

more date on: 

 

(i) The enzymes involved in the metabolism of antimalarials 

(ii) The phenotype associated with specific mutations in drug metabolizing enzymes  

(iii) The frequencies of  allele variants causing metabolic alterations in different populations 

(iv) The therapeutic drug levels of antimalarials as a function of parasite susceptibility 

(v) The effect of co-medication on plasma levels of antimalarials 

(vi) The pharmacokinetic profile of antimalarials in specific vulnerable patient groups  

(vii) The association of pharmacogenetics and pharmcodynamics in malaria patients 

(viii) The relation of population pharmacokinetics to overall treatment effectiveness 
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Figure S1. Impact of the presence of MeOH on the assay of endoperoxide 

antimalarials in hemolysed plasma. Signal intensities for endoperoxide 

antimalarials are expressed as the mean percentage of calibration samples 

prepared in plasma with no RBC, used as control (100%).  
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Figure S2. Influence of extraction procedure on the assay of artemisinin derivatives in 

hemolysed plasma. Signal intensities for endoperoxide antimalarials are expressed as the 

mean percentage of calibration samples prepared in plasma with no RBC, used as control 

(100%). 
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Summary We describe here the results of an analysis of Plasmodium falciparum multidrug

resistance protein 1 (pfmdr1) gene copy number from 440 field isolates from Papua New Guinea.

No multiple copies of the gene were found, which corresponds to the lack of usage of meflo

quine. These data extend regional knowledge about the distribution of multidrugresistant

P. falciparum.

© 2008 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights

reserved.

1. Introduction

Recent in vitro and in vivo studies showed an associa
tion between artesunate—mefloquine therapy failure and
genetic changes in Plasmodium falciparum multidrug resis
tance protein 1 (pfmdr1) gene (Price et al., 2004; Sidhu
et al., 2006). These findings underline the contribution of
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2 Current address: Burnet Institute for Medical Research and Pub

lic Health, G.P.O. Box 2284, Melbourne, Victoria 3001, Australia.

pfmdr1 copy number to the susceptibility of P. falciparum

to antimalarial drugs. Most malariaendemic countries have
recently adopted artemisinin combination therapies (ACTs)
as firstline therapy for P. falciparum infections because
of increasing resistance to all currently used antimalarial
drugs.

As the world’s most multidrugresistant P. falciparum

parasites are found along the borders of Thailand and are
also emerging elsewhere in Southeast Asia, many studies on
pfmdr1 gene copy number have been performed on samples
from Southeast Asia. Studies in Africa indicate that pfmdr1

gene copy number is rare in the field outside Southeast
Asia (Ursing et al., 2006). However, no research has been
conducted on pfmdr1 copy number in Papua New Guinea
(PNG), where drug pressure of mefloquine on P. falciparum

has been minimal so far. Until recently, standard firstline

00359203/$ — see front matter © 2008 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.
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treatment in PNG for malaria consisted of chloroquine or
amodiaquine plus sulfadoxine—pyrimethamine. In order to
describe the baseline situation, we determined pfmdr1 copy
numbers in 440 field isolates from PNG. With this analysis
we extend the knowledge about the global distribution of
multidrugresistant P. falciparum.

2. Materials and methods

Pretreatment fingerprick samples were collected from 440
patients within several in vivo drug efficacy studies con
ducted between 2003 and 2005 in three health centres in
Simbu, East Sepik and Madang Province in PNG (Marfurt et
al., 2007).

The pfmdr1 gene copy number was assessed as described
previously (Price et al., 2004). The assays were run in trip
licate on an Applied Biosystems 7500 realtime PCR system
(Applied Biosystems, Rotkreuz, Switzerland) and every run
contained two calibrator DNA samples from clones 3D7 and
W2mef, having pfmdr1 copy numbers of 1 and 3, respec
tively. The Ct threshold was set manually at 0.05 for pfmdr1

and at 0.03 for btubulin, respectively, and the baseline was
calculated automatically. Results were analysed by the com
parative 11Ct method described previously (Price et al.,
2004). Assays were repeated if one of the following results
was obtained: no Ct value for more than one sample in the
triplicate; calibrator copy number /= 3; 11Ct spread >1.5;
Ct values >35.

The multiplicity of infection was determined as described
previously by fragmentsizing of P. falciparum merozoite
surface protein 2 (pfmsp2) using GeneMapper Software,
v3.7 (Applied Biosystems) (Falk et al., 2006). The primary
and nested PCR protocol was changed to 2 min at 94 ◦C
followed by 25 cycles (30 s at 94 ◦C, 45 s at 50 ◦C and
1 min 30 s at 70 ◦C) with a final elongation for 10 min at
70 ◦C each. Of the diluted nested PCR product (1:10 in
H2O), 2.5 ml were combined with 10 ml diluted ROX500 size
standard (1:40 in H2O; Applied Biosystems). Assays were
repeated if one of the following results was obtained: no
sizing data; pfmsp2 PCR artefacts; no pfmsp2 PCR prod
uct.

Samples were excluded from the final analysis if one
or more of the following results were obtained after rep
etition of the assay: no Ct value for more than one
sample in triplicate; 11Ct spread >1.5; Ct values >35;
pfmsp2 PCR artefacts; no sizing data; no pfmsp2 PCR prod
uct.

3. Results

Of the 440 samples analysed, 35 were excluded from the
final analysis (15 no Ct value for more than one sample in
triplicate; one Ct value >35; three no Ct value for more than
one sample in triplicate and no pfmsp2 PCR product; six no
sizing data; three pfmsp2 PCR artefacts; seven no pfmsp2

PCR product). The remaining 405 samples included in the
final analysis showed only one copy of the pfmdr1 gene.
The mean multiplicity of infection found in the patients was
1.56 ± 0.76 (mean ± SD), with 240 patients showing single
infections.

4. Discussion

The number of samples excluded from the final analysis
might be explained by the fact that field samples sometimes
contain very low levels of parasite DNA, thus leading to inde
terminable Ct values in the realtime PCR or missing pfmsp2

PCR products.
Mefloquine use has not been significant yet in PNG,

and the occurrence of only one gene copy of pfmdr1

strengthens the assumption that mefloquine selects for copy
number increase. Studies that have tested different P. falci

parum isolates from PNG for mefloquine resistance showed
full in vitro susceptibility (Hombhanje, 1998). By contrast,
other authors previously have shown a high frequency of
pfmdr1 sequence polymorphisms, confirming that chloro
quine selects for polymorphisms (Nagesha et al., 2001).

The multiplicity of infections found is similar to results
in other settings in PNG (Cortes et al., 2004). However, it is
possible that a small percentage of the parasites in multi
ple infections carry more than one copy of pfmdr1 and will
not appear as multiple copies in the analysis due to lack of
statistical power. In addition, the fact that within the large
number of single infections there was no gene amplification
supports the idea that pfmdr1 is still not amplified in PNG.

In conclusion, we show that drugresistanceassociated
pfmdr1 gene amplifications have not yet been selected in
PNG. Therefore mefloquine and artesunate might still be
highly effective firstline treatment options against P. falci

parum infections.
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