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Mosquito dispersal is a key behavioural factor that affects the persistence and resurgence of several vec-
tor-borne diseases. Spatial heterogeneity of mosquito resources, such as hosts and breeding sites, affects
mosquito dispersal behaviour and consequently affects mosquito population structures, human exposure
to vectors, and the ability to control disease transmission. In this paper, we develop and simulate a dis-
crete-space continuous-time mathematical model to investigate the impact of dispersal and heteroge-
neous distribution of resources on the distribution and dynamics of mosquito populations. We build
an ordinary differential equation model of the mosquito life cycle and replicate it across a hexagonal grid
(multi-patch system) that represents two-dimensional space. We use the model to estimate mosquito
dispersal distances and to evaluate the effect of spatial repellents as a vector control strategy. We find
evidence of association between heterogeneity, dispersal, spatial distribution of resources, and mosquito
population dynamics. Random distribution of repellents reduces the distance moved by mosquitoes,
offering a promising strategy for disease control.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

Mosquitoes transmit malaria, dengue, yellow fever, filariasis,
and several other important diseases. Malaria, in particular, shows
considerable spatial variation predominantly determined by cli-
matic variation [25], intervention coverage, and human movement
[39,55,60,62]. At local scales (i.e. from 100 m to 1 km), mosquito
behaviour and ecology play an important role in determining the
distribution of transmission [34]. Like other animals, mosquitoes
can move in any direction, motivated by resource availability and
other drivers of dispersal, but can only travel over limited dis-
tances. Control interventions should consider locality and mosqui-
toes’ ability to move, to achieve a high level of effectiveness in
reducing the mosquito population.

The impact of vector dispersal in the spread and control of dis-
eases was first highlighted a century ago by Ronald Ross [53], but
has received limited attention within the public health commu-
nity. Ross stipulated that mosquito density within any area is al-
ways a function of four variables, which include the reproduction
rate, mortality rate, immigration, and emigration rates. A study
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by Manga et al. [38] also showed that the spatial variation in the
distribution of resources used by mosquitoes affects their repro-
duction and their rate of dispersal. This in turn contributes to var-
iation in densities [10,24,37,58], human exposure to vectors, and
the ability to control disease transmission [55]. The effects of re-
source availability on transmission can be surprising. For instance,
even the presence of non-productive larval habitats may affect bit-
ing densities [34]. However, conducting experimental studies of
mosquito dispersal [21–23,42] are challenging.

Mathematical models play an important role in understanding
and providing solutions to phenomena which are difficult to mea-
sure in the field, but few models have incorporated dispersal or
heterogeneity when modelling resource availability [17,34,
46,49,58,68] or varied the usual assumption of a closed vector pop-
ulation [45,50,67]. Others have sub-divided the adult stage of the
mosquitoes into different stages [45,50,54]. To investigate the ef-
fects of dispersal and heterogeneity, a model should incorporate
features of the mosquito life cycle, the feeding cycle, spatial heter-
ogeneity in mosquito resources, and dispersal.

Spatial models have commonly used the diffusion approach,
which considers space as a continuous variable. Despite the exis-
tence of diffusion models, which account for heterogeneity
[51,63], it is difficult to explicitly incorporate the various factors
that affect movement. For example, in areas where resources are
located in patches or discrete locations, mosquito dispersal is more
conveniently modelled using a metapopulation approach, in which
the population is divided into discrete patches. In each patch, the
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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population is sub-divided into subgroups, corresponding to differ-
ent states, leading to a multi-patch, multi-compartment system.

Several models using diffusion approaches [18,19] have incor-
porated heterogeneity and have shown that the environment has
a strong influence on the distribution of disease vectors. However,
none of them have included the aquatic stages of the mosquitoes
or have provided a general and simple framework for modelling
arbitrary spatial patterns of mosquito control interventions. A
model framework that includes the aquatic stages and that parti-
tions space into discrete locations allows us to capture the various
forms of spatial heterogeneity that exist in our environment.

In this paper, a mathematical model, that includes all of the
above features is developed and simulated to investigate the im-
pact of dispersal and heterogeneous distribution of mosquito re-
sources, such as hosts and breeding sites, on the spatial
distribution, dynamics, and persistence of mosquito populations.
The distance a mosquito can travel from its place of emergence
or food source is a critical factor for vector control interventions,
thus the model is used to project likely dispersal distances and
considers how these might be changed by vector control
interventions.

In the following sections, we develop and analyse a model for
mosquito population dynamics that does not consider movement
of mosquitoes. We then develop a meta-population model for mos-
quito movements with discrete space in hexagonal patches and
compare it to a continuous space model. We then combine the
two models and run simulations of a spatially explicit model of
the full mosquito life cycle to determine the effect of repellents.
2. Description of the basic model: mosquito dynamics without
dispersal

Mosquito life begins with eggs, which hatch into larvae under
suitable conditions. The larvae develop into pupae that mature
and emerge into adults (see Fig. 1). Female mosquitoes then feed
on human or animal blood to provide protein for their eggs. After
biting, female mosquitoes rest while their eggs develop. Once eggs
are fully developed, the females oviposit and then proceed to find
another blood meal thus completing the mosquito feeding cycle
[12].

Ignoring the effects of hibernation and breaks in the reproduc-
tive cycle, and assuming that eggs deposited at breeding sites pro-
ceed through development immediately [56], we consider six
compartments of the mosquito life cycle: eggs (E), larval (L), pupal
Fig. 1. Schematic representation of Anopheles mosquito life cycle and feeding cycle.
Model states are Eggs (E), Larvae (L), Pupae (P), host seeking adults (Ah), resting
adults (Ar), and oviposition site searching adults (Ao).
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(P), host seeking adults (Ah), resting adults (Ar), and oviposition site
seeking adults (Ao) (Fig. 1). In contrast to other models [36], we dis-
tinguish all of these stages because interventions may be applied to
any one (or more) of them. Since only female mosquitoes are in-
volved in the transmission of vector-borne diseases, this model
ignores males. The six subgroups have different mortality and pro-
gression rates. Each subgroup is affected by three processes: in-
crease due to recruitment, decrease due to mortality, and
development or progression of survivors into the next state. The
parameter b is the average number of female eggs laid during an
oviposition and qAo

(day�1) is the rate at which new eggs are ovi-
posited (i.e. reproduction rate). Exit from the egg stage is either
due to mortality, lE (day�1), or hatching into larvae, qE (day�1).
In the larval stage, individuals exit by death or progress to pupal
stage at a rate, qL (day�1). Assuming a stable environment, inter-
competition for food and other resources for larvae may occur,
leading to density-dependent mortality, lL2

L2 (day�1 mosqui-
toes�1) or natural death at an intrinsic rate, lL1

(day�1). Pupae
die at a rate, lP (day�1) and survivors progress and emerge as
adults at rate qP (day�1). In the adult stage, host seeking mosqui-
toes die at a rate lAh

(day�1). Those surviving this stage, and if they
are successful in feeding, enter the resting stage at a rate qAh

(day�1). In the resting stage, mosquitoes die at a rate, lAr
(day�1).

Survivors progress to the oviposition site searching stage at a rate
qAr

(day�1). Oviposition site searchers die at rate lAo
(day�1) and

after laying eggs return to the host seeking stage. These processes
account for the dynamics of each subgroup over time. Although
mosquitoes might require more than one blood meal to produce
eggs [5], this model assumes the simple case where only one blood
meal is enough for eggs to mature. Throughout this work, we use
the words oviposition sites and breeding sites interchangeably.

From the description above, we develop the following system of
differential equations to describe mosquito dynamics without
movement:

dE
dt
¼ bqAo

Ao � lE þ qE

� �
E;

dL
dt
¼ qEE� lL1

þ lL2
Lþ qL

� �
L;

dP
dt
¼ qLL� lP þ qP

� �
P; ð1Þ

dAh

dt
¼ qPP þ qAo

Ao � lAh
þ qAh

� �
Ah;

dAr

dt
¼ qAh

Ah � lAr
þ qAr

� �
Ar ;

dAo

dt
¼ qAr

Ar � lAo
þ qAo

� �
Ao;

with initial conditions Eð0Þ; Lð0Þ; Pð0Þ;Ahð0Þ;Arð0Þ, and Aoð0Þ. Mos-
quito survival in each stage and the progression period from one
stage to the next are assumed to be exponentially distributed. The
definitions of state variables and the associated parameters are gi-
ven in Tables 1 and 2, respectively.

Since the system in Eq. (1) monitors populations in each stage of
mosquito development and because all model parameters (Table 2)
are positive, there exists a region D such that
Table 1
State variable definitions.

Variable Description

E density of eggs
L density of larvae
P density of pupae
Ah density of mosquitoes searching for hosts
Ar density of resting mosquitoes
Ao density of mosquitoes searching for oviposition sites

f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),



Table 2
Description and values of parameters of the model. All parameters are positive and time is measured in days. For the model with dispersal, these parameters are patch dependent.

Parameter Description Units Baseline Range Source

b number of female eggs laid per oviposition - 100 50� 300 [56]
qE egg hatching rate into larvae day�1 0:50 0:33� 1:0 [56,27],69
qL rate at which larvae develop into pupae day�1 0:14 0:08� 0:17 [56],27,4,32,20
qP rate at which pupae develop into adult/emergence rate day�1 0:50 0:33� 1:0 [56,27]
lE egg mortality rate day�1 0:56 0:32� 0:80 [47]
lL1

density-independent larvae mortality rate day�1 0:44 0:30� 0:58 [47]
lL2

density-dependent larvae mortality rate day�1 mosq�1 0:05 0:0� 1:0 Variable
lP pupae mortality rate day�1 0:37 0:22� 0:52 [47]
qAh

rate at which host seeking mosquitoes enter the resting state day�1 0:46 0:322� 0:598 [13], Estimated
qAr

rate at which resting mosquitoes enter oviposition site searching state day�1 0:43 0:30� 0:56 [13]
qAo

oviposition rate day�1 3:0 3:0� 4:0 [13]
lAh

mortality rate of mosquitoes of searching for hosts day�1 0:18 0:125� 0:233 [13], Estimated
lAr

mortality rate of resting mosquitoes day�1 0:0043 0:0034� 0:01 [13]
lAo

mortality rate of mosquitoes searching for oviposition sites day�1 0:41 0:41� 0:56 [13]
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8>>>>>>>><
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Ah P 0;
Ar P 0;
Ao P 0

��������������

9>>>>>>>>=
>>>>>>>>;
; ð2Þ

where the model is mathematically and biologically meaningful and
all solutions of the system (1) with non-negative initial data will re-
main non-negative in the feasible region D for all time t P 0. We
use the notation X0 to represent dX

dt here and denote the boundary
of D by @D.

Theorem 2.1. If the initial conditions of system (1) lie in region D,
then there exists a unique solution for (1), EðtÞ; LðtÞ; PðtÞ;AhðtÞ;ArðtÞ,
and AoðtÞ that remains in D for all time t P 0.
Proof. The right hand side of the system (1) is continuous with
continuous partial derivatives in D, therefore (1) has a unique solu-
tion that exists for all time. It remains to be shown that D is for-
ward-invariant. We see from system (1) that if E ¼ 0, then
E0 ¼ bqAo

Ao P 0; if L ¼ 0, then L0 P 0; if P ¼ 0, then P0 P 0; if
Ah ¼ 0, then A0h P 0; if Ar ¼ 0, then A0r P 0; and if Ao ¼ 0, then
A0o P 0. Therefore all solutions of the system of equations (Eq.
(1)) are contained in the region D. h
3. Analytical results of the basic model without mosquito
dispersal

3.1. Existence of equilibrium points

This section presents existence and stability results of the mod-
el (Eq. (1)) of the steady states. An equilibrium point of a given a
system of equations ( _XðtÞ) (where X is a vector composed by state
variables) is a steady-state solution, where XðtÞ ¼ X� for all t.

Proposition 1. The model in (1) has exactly one equilibrium point on
@D given by P0 ¼ ð0;0;0;0;0;0Þ. We label P0 the mosquito-free
equilibrium point.
Proof. Substituting Po into the right hand side of (1) shows that all
derivatives are zero so Po is an equilibrium point of (1). Setting any
of E; L; P;Ah;Ar , or Ao equal to 0, we see that all other remaining
state variables must also be equal to zero for the system to be at
equilibrium. Therefore, Po is the only equilibrium point on @D. h
Please cite this article in press as: A.M. Lutambi et al., Mathematical modelling o
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Similar to White et al. [67], we define the population reproduc-
tion number, R0, as the expected number of female mosquitoes
produced by a single female mosquito in her life time in the ab-
sence of density-dependence. In [64], a method for computing
the reproduction number for epidemic models was developed.
However, it can equivalently be used in ecological models where
new births are treated as new infections. We determine the mos-
quito population reproduction number for model (1) using the
next-generation technique [64].

Defining x as a set of all state variables (E; L; P;Ah;Ar ;Ao) in the
model, then x ¼ ðx1; x2; . . . ; xiÞT for i ¼ 1;2; . . . ; 6. The system in
(1) can be written in the form of dxi

dt ¼ FiðxÞ � ViðxÞ, where Fi is
the rate of new recruitment (birth of eggs) in a compartment,
Vi ¼ V�i � Vþi , with Vþi being the rate of transfer of mosquitoes into
a compartment and V�i is the rate of transfer of mosquitoes out of
the compartment. For this model, F, and V are given by:

F ¼

bqAo
Ao

0

0

0

0

0

2
666666666664

3
777777777775
;

and

V ¼

lE þ qE

� �
E

lL1
þ qL

� �
Lþ lL2

L2 � qEE

lP þ qP

� �
P � qLL

lAh
þ qAh

� �
Ah � qPP � qAo

Ao

lAr
þ qAr

� �
Ar � qAh

Ah

lAo
þ qAo

� �
Ao � qAr

Ar

2
66666666666664

3
77777777777775
:

To obtain the next generation operator, FV�1, we calculate
Fij ¼ @Fi

@xj

���
P0

and Vij ¼ @Vi
@xj

���
P0

to obtain

F ¼

0 0 0 0 0 bqAo

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2
666666664

3
777777775
; ð3Þ

and
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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V ¼

lE þ qE

� �
0 0 0 0 0

�qE lL1
þ qL

� �
0 0 0 0

0 �qL lP þ qP

� �
0 0 0

0 0 �qP lAh
þ qAh

� �
0 �qAo

0 0 0 �qAh
lAr
þ qAr

� �
0

0 0 0 0 �qAr
lAr
þ qAr

� �

2
666666666664

3
777777777775
:

ð4Þ

The population reproduction number, R0, is the spectral radius
of the next generation operator, qðFV�1Þ. This value is given by

Ro ¼
b
Y

j

qj

ljþqj

� �

1�
Y

Ai

qAi
lAi
þqAi

� � : ð5Þ

where j ¼ E; L; P;Ah;Ar;Ao and i ¼ h; r, and o. qj

ljþqj
is the probability

that a mosquito in stage j will survive to the next stage. The valueQ
Ai

qAi
lAi
þqAi

� �
2 ð0;1Þ for all i is the probability that an adult mos-

quito survives the feeding cycle. Although density-dependent mor-
tality of larvae affects mosquito population, R0 does not depend on
density-dependent mortality of larvae.

Theorem 3.1. The system of Eq. (1) has a persistent positive
equilibrium solution Pe ¼ ðE�; L�; P�;A�h;A

�
r ;A

�
oÞ, with its components

given by
E� ¼
bqAo

A�o
lE þ qE

;

L� ¼
lL1
þ qL

� �
Ro � 1ð Þ

lL2

;

P� ¼ qLL�

lP þ qP
;

A�h ¼
qPP�R0

lAh
þ qAh

� �
B1

; ð6Þ

A�r ¼
qAh

A�h
lAr
þ qAr

;

A�o ¼
qAr

A�r
lAo
þ qAo

;

with R0 given in Eq. (5) and B1 ¼ b
Q

j
qj

ljþqj

� �
for j ¼ E; L; P;Ah;Ar ;Ao,

which exist in the interior of D if R0 > 1.
Proof. Substituting Pe ¼ ðE�; L�; P�;A�h;A
�
r ;A

�
oÞ into (1) shows that Pe

is an equilibrium point of (1). If Ro > 1, we see that all components
Pe are positive. Thus, Pe exist in the interior of D if Ro > 1. h
3.2. Stability of the equilibrium points

Theorem 3.2. The mosquito-free equilibrium is locally asymptotically
stable when Ro < 1 and unstable otherwise.
Proof. Let the new births in the ecological model (1) be equivalent
to new infections in the epidemic models studied in van den Dries-
sche and Watmough [64]. The matrices FðxÞ;VðxÞþ, and VðxÞ� sat-
isfy the assumptions A(1)–A(5) [64]. Thus, this theorem is a
straightforward application of Theorem 2 given in [64]. h
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Theorem 3.3. The persistent equilibrium is locally asymptotically sta-
ble whenever Ro > 1 and unstable when Ro < 1. When Ro ¼ 1; Pe ¼ Po.
Proof. Let JPe
be the Jacobian matrix of system (1) at the mosquito

persistent equilibrium given by

JPe
¼

� lE þ qE

� �
0 0 0 0 bqAo

qE � lL1
þ qL

� �
�U 0 0 0 0

0 qL � lP þ qP

� �
0 0 0

0 0 qP � lAh
þ qAh

� �
0 qAo

0 0 0 qAh
� lAr

þ qAr

� �
0

0 0 0 0 qAr
� lAr

þ qAr

� �

2
6666666666664

3
7777777777775
;

ð7Þ

where U ¼ 2ðlL1
þ qLÞ Ro � 1ð Þ. To obtain the eigenvalues of JPe

,
we solve detðJPe

� kIÞ ¼ 0. We use the concept of block matrices
to compute this determinant. Let J ¼ JPe

� kI be a block matrix
given by

J ¼
A B
C D

	 

ð8Þ

with the following components:

A ¼
�ðlE þ qEÞ � k 0 0

qE �ðlL1
þ qLÞ �U� k 0

0 qL �ðlP þ qPÞ � k

0
B@

1
CA;

B ¼
0 0 bqAo

0 0 0
0 0 0

0
B@

1
CA;C ¼

0 0 qP

0 0 0
0 0 0

0
B@

1
CA;

and

D ¼
�ðlAh

þ qAh
Þ � k 0 qA0

qAh
�ðlAr

þ qAr
Þ � k 0

0 qAr
�ðlA0

þ qA0
Þ � k

0
B@

1
CA:

It follows from the concepts of block matrices that
detðJÞ ¼ detðAD� BCÞ. But in this case, BC is a zero matrix
leading to detðJPe

� kIÞ ¼ detðJÞ ¼ detðADÞ ¼ 0. By solving the equa-
tion, we obtain three of the eigenvalues given by k1 ¼ �ðlE þ qEÞ;
k2 ¼ �ðlL1

þ qLÞ �U, and k3 ¼ �ðlP þ qPÞ. When Ro > 1; k2 < 0,
which forms the necessary condition for a stable equilibrium point.
When Ro < 1; k2 > 0; Pe is unstable. The remaining three eigen-
values are given by the roots of the following equation:

a0k
3 þ a1k

2 þ a2kþ a3 ¼ 0; ð9Þ

where

a0 ¼ 1;

a1 ¼ lAh
þ qAh

� �
þ lAr

þ qAr

� �
þ lAo

þ qAo

� �
;

a2 ¼ lAh
þ qAh

� �
lAr
þ qAr

� �
þ lAh

þ qAh

� �
lAo
þ qAo

� �
þ lAr

þ qAr

� �
lAo
þ qAo

� �
;

a3 ¼ lAh
þ qAh

� �
lAr
þ qAr

� �
lAo
þ qAo

� �
� qAh

qAr
qAo

¼ lAh
þ qAh

� �
lAr
þ qAr

� �
lAo
þ qAo

� � B1

Ro

� �
; ð10Þ

where B1 ¼ b
Q

j
qj

ljþqj

� �
for j ¼ E; L; P;Ah;Ar;Ao. It remains to be

shown that when Ro > 1, the eigenvalues have negative real
parts. The roots of the polynomial in Eq.(9) are difficult to calculate
explicitly, but it is clear from (9) that a0 > 0; a1 > 0; a2 > 0, and
a3 > 0 always. By the Routh–Hurwitz criteria [41] we need to
show that a1a2 � a3 > 0 for all roots of Eq. (9) to have negative real
parts.
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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a1a2 � a3 ¼ ðlAh
þ qAh

Þ þ ðlAr
þ qAr

Þ þ ðlAo
þ qAo

Þ
h i
½ðlAh

þ qAh
ÞðlAr

þ qAr
Þ

þ ðlAh
þ qAh

ÞðlAo
þ qAo

Þ þ ðlAr
þ qAr

ÞðlAo
þ qAo

Þ�
� ðlAh

þ qAh
ÞðlAr

þ qAr
ÞðlAo

þ qAo
Þ � qAh

qAr
qAo

¼ ðlAh
þ qAh

Þ2½ðlAr
þ qAr

Þ þ ðlAo
þ qAo

Þ�

þ ðlAr
þ qAr

Þ2½ðlAh
þ qAh

Þ þ ðlAo
þ qAo

Þ�

þ ðlAo
þ qAo

Þ2½ðlAh
þ qAh

Þ þ ðlAr
þ qAr

Þ�
þ 2ðlAh

þ qAh
ÞðlAr

þ qAr
ÞðlAo

þ qAo
Þ � qAh

qAr
qAo

¼ ðlAh
þ qAh

Þ2½ðlAr
þ qAr

Þ þ ðlAo
þ qAo

Þ� ð11Þ

þ ðlAr
þ qAr

Þ2½ðlAh
þ qAh

Þ þ ðlAo
þ qAo

Þ�

þ ðlAo
þ qAo

Þ2½ðlAh
þ qAh

Þ þ ðlAr
þ qAr

Þ�

þ ðlAh
þ qAh

ÞðlAr
þ qAr

ÞðlAo
þ qAo

Þ 1þ B1

Ro

	 

:

From (11) we see that a1a2 � a3 > 0 for all values of Ro. Thus, the
roots of (9) have negative real parts. Therefore, when Ro > 1, the six
eigenvalues have negative real parts and the persistent equilibrium
point is locally asymptotically stable. Where, as when
Ro < 1; k2 > 0. The persistent equilibrium point is unstable. Substi-
tuting Ro ¼ 1 in (6) shows that at Ro ¼ 1; Pe ¼ Po. h
3.3. Sensitivity Analysis of R0

Sensitivity analysis determines the effects of parameters on
model outcomes [11]. To carry out local sensitivity analysis, we
use a simple approach to compute the sensitivity index, which is
a partial derivative of the output variable with respect to the input
parameters [11,12]. For the base reproduction number, R0, and pi,
an input parameter, the sensitivity index can be computed as
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@R0=@pi. The normalized sensitivity index, XR0
pi

, of Ro, with respect
to parameter pi at a fixed value, p0 [11,12] is

XR0
pi
¼ @R0

@pi
� pi

R0

����
pi¼p0

: ð12Þ

Using the parameter values presented in Table 2, we compute the
sensitivity indices using Eq. (12). In Fig. 2A we show the impact
of each parameter on the reproduction number. The number of fe-
male eggs laid per oviposition, b, is the most important parameter
in the model (XRo

b ¼ 1:00), indicating a maximum impact on model
outcomes. Increasing or decreasing b by 10%, for example, can in-
crease or decrease Ro by 10%. The parameters with the next highest
sensitivity indices are qL and lL1

. If the development rate from lar-
val to pupae stage (qL) is increased, we observe a decreased risk of
dying of larvae (lL1

) and vice versa. A 10% increase (or decrease) in
qL, for example, increases (or decreases) Ro by 7:6%, while a similar
increase (or decrease) of lL1

in Ro decreases (or increases) Ro by
7:6%. Other important parameters with higher indices are qAh

and
lAh

. Similar to qL and lL1
, these parameters indicate an equal but

opposite impact on Ro. Increasing qAh
can lead to an increase in

Ro. Increasing lAh
, however would decrease Ro.

Local sensitivity analysis shows the effect of one parameter
while all others are kept constant. Global sensitivity analysis esti-
mates the effect of one parameter on the output, while allowing all
other parameters to vary, enabling the identification of interac-
tions [11]. Here, we used SaSAT software [26] to carry out the glo-
bal sensitivity analysis of the mosquito population reproduction
number. The Latin Hypercube Sampling Method (LHS), a type of
stratified Monte Carlo sampling [6], was used to sample the input
parameters using the parameter value ranges provided in Table 2.
Due to the absence of data on the distribution function of the
parameters used in our model, a uniform distribution for all input
parameters was chosen. The sets of input parameter values sam-
pled using the LHS method were used to run 5000 simulations.
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es of R0 to parameters evaluated at the baseline parameter values given in Table 2. B:
arameter influence on R0.
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To identify input parameters with the greatest influence on Ro, we
computed the Partial Rank Correlation Coefficients between the in-
put parameters and our output variable using the SaSAT software.

In Fig. 2B, we present the results of the partial rank correlation
coefficients for each of the parameters. Again, results show that
birth parameter, b, has the highest influence on the mosquito pop-
ulation reproduction number. Next to b are the parameters associ-
ated with the larvae stage, followed by the egg development rate
and the parameters related to the host seeking stage. Parameters
related to the resting stage of the mosquitoes show the lowest
influence on Ro.

In general, we find that mortality rates are negatively correlated
to the population reproduction number, while development rates
are positively correlated. Because the population reproduction
number gives information on the stability of the equilibrium point
and the persistence of the mosquito population, increasing param-
eters that are positively correlated to the reproduction number
would result in the persistence of the mosquito population.
4. Modelling movement

4.1. Continuous space model

Traditional methods of modelling diffusion have involved the
use of the heat equation in which the domain is assumed to be con-
tinuous. If we assume that the movement of individual mosquitoes
is similar to that of Brownian motion, then we can define the rate
of change of mosquito density at time t at location ðx; yÞ;Mðx; y; tÞ
as

@Mðx; y; tÞ
@t

¼ D�r2Mðx; y; tÞ ð13Þ

where ðx; yÞ 2 R2;r represents the partial derivative in 2-
dimensional space and r2M ¼ @2M=@x2 þ @2M=@y2, and D� is the
diffusion coefficient (metres2 time�1). We assume that the initial
conditions are given by Mðx; y; 0Þ ¼ Kdðx; yÞ, where dðx; yÞ is the 2-
dimension Dirac delta function, dðx; yÞ ¼ 0for x2 þ y2 – 0 andR1
�1
R1
�1 dðx; yÞdxdy ¼ 1. Therefore,

R1
�1
R1
�1 Mðx; y; 0Þdxdy ¼ K rep-
Fig. 3. A Schematic representation of a landscape division into hex
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resents an initial condition of K mosquitoes released at the origin.
The standard solution to the heat Eq. (13) is given by:

Mðx; y; tÞ ¼ K
4pD�t

exp �ðx
2 þ y2Þ
4D�t

	 

ð14Þ

for t > 0 and ðx; yÞ 2 R2. We convert our solution to polar coordi-
nates with

x ¼ r cos h and y ¼ r sin h; implying that r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and dxdy ¼ rdrdh: ð15Þ

Using (14) and (15) we obtain

Mðr; h; tÞ ¼ K
4pD�t

exp � r2

4D�t

	 

ð16Þ

for r P 0 is the radial distance measured from centre. The mosquito
density at a given distance, r from the centre is obtained from
Mðr; tÞ ¼

R 2p
0 Mðr; h; tÞrdh, which gives

Mðr; tÞ ¼ Kr
2D�t

exp � r2

4D�t

	 

: ð17Þ

Although partial differential equations (PDEs) are a good way of
modelling dispersal [18,19], their analysis is usually limited to
numerical simulations when modelling environmental heteroge-
neity. Discrete approaches offer a better and simpler way of mod-
elling heterogeneity [2,3,29], specifically when resources such as
hosts and breeding sites are variable across regions. In the next
section, we develop a mosquito dispersal model which considers
discrete space and describes how we model heterogeneity in re-
sources and its influence on mosquito dispersal.

4.2. Discrete space model spatial structure

We let N be the set of all patches and n be any patch in N. We
construct the model by dividing 2-dimensional space into a set
of discrete hexagonal patches (Fig. 3). We label the hexagonal grid
with a coordinate system, ði; jÞ, where 1 6 i 6 n and 1 6 j 6 m rep-
resent the locations of the centre of the patches and i; j 2 N.
agonal patches. Model equations (Eq. (36) apply in each patch.

f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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We define the neighbourhood, Nði; jÞ, (Fig. 3) of an index patch
as an ordered set of six patches given by

Nði; jÞ ¼ fði; jþ 1Þ; ði; j� 1Þ; ðiþ 1; jÞ; ði� 1; jÞ; ði� 1; jþ 1Þ; ði
� 1; j� 1Þg ð18Þ

when j is even or

Nði; jÞ ¼ fði; jþ 1Þ; ði; j� 1Þ; ðiþ 1; j� 1Þ; ði� 1; jÞ; ðiþ 1; j

þ 1Þ; ðiþ 1; jÞg ð19Þ

when j is odd. We assume periodic boundary conditions so that
patch ði; 0Þ ¼ ði;mÞ and ð0; jÞ ¼ ðn; jÞ.
4.3. Dispersal in a homogeneous landscape

Mosquitoes disperse while searching for hosts or oviposition
sites, causing a link between patches. A given fraction of adults
searching for hosts and a fraction of adults searching for oviposi-
tion sites leave their original or current patches of residence, while
others stay behind. We assume that dispersing adults move from
their current patch to enter any of the other six nearest neighbour-
ing patches (Fig. 3) and that long-range dispersal is achieved
through a repeated single patch movement. That is, patch jumping
is precluded.

Mosquitoes can detect host odour [33,44], but it is unclear
whether they have the learning capacity they would need to enable
them to return to particular hosts or breeding sites [1]. We make
the simplifying assumption that mosquitoes do not preferentially
return to their previous locations, so that movement is a Markov
process. In the case where all patches have similar characteristics
(i.e. a homogeneous landscape), the mosquitoes disperse equally
to each of the six neighbouring patches surrounding the current
position (Fig. 3) and the dispersal parameter is the same for all
patches. If we let D > 0 (per time) be the rate at which mosquitoes
move from one patch to a neighbouring patch, we can compute its
value from:

D ¼ D�

A
ð20Þ

where D� is the diffusion coefficient in the absence of all other fac-
tors affecting flight. The area A (in metres2) of a hexagon is given by:

A ¼
ffiffiffi
3
p

L2

2
; ð21Þ

with L (in metres) being the patch size defined as the measurement
from the centre of one patch to the centre of the neighbouring
patch. We let Mði;jÞ be the number of free flying mosquitoes in patch
ði; jÞ. We let mosquitoes move from patch ði; jÞ (a source or index
patch) to a neighbouring patch n 2 Nði; jÞ. We define the movement
rate from patch ði; jÞ to a neighbouring patch n to be Dði;jÞ=n and the
movement rate from the neighbouring patch to the index patch to
be Dn=ði;jÞ. For a homogeneous environment, Dði;jÞ=n ¼ Dn=ði;jÞ ¼ D.
Assuming that mosquitoes do not reproduce or die during dispersal,
the dynamics of free-flying mosquitoes in any patch ði; jÞ can be rep-
resented as

dMði;jÞ

dt
¼
X

n2Nði;jÞ
DMn �

X
n2Nði;jÞ

DMði;jÞ ð22Þ

with initial conditions Mði;jÞð0Þ. The first term represents mosquitoes
moving into the patch and the second term represents mosquitoes
moving out of a patch. The movement model in (22) is biologically
and mathematically meaningful in the domain X ¼ Mði;jÞ 2 Rnm, such
that Mði;jÞ P 0.
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Theorem 4.1. If initial conditions lie in region X, the movement Eq.
(22) has a unique solution that exists and remains in X for all time
t P 0.
Proof. The right hand side of Eq. (22) is continuous with a contin-
uous partial derivative in region X and therefore (22) has a unique
solution. We then show that X is forward-invariant. If Mði;jÞ ¼ 0,
then M0

ði;jÞ ¼
P

n2Nði;jÞDMn P 0 for all ði; jÞ. Thus, the solution to Eq.
(22) is enclosed in X and a unique solution exists for all t. h
4.4. Dispersal in a heterogeneous landscape

Differences in the distribution of resources creates heterogene-
ity on the grid, since patches may have different degrees of attrac-
tiveness to mosquitoes. In this section, we describe how
heterogeneity and differences in patch attractiveness to mosqui-
toes during movement is incorporated.

4.4.1. Dispersal with heterogeneity in host availability
The number of hosts is allowed to differ between patches across

the grid, introducing heterogeneity. Because of the neighbour to
neighbour dispersal nature of this model, movement of mosquitoes
from one patch to other patches is only affected by the patches
bordering each neighbourhood. We therefore calculate and use
the proportion of hosts in each set of seven patches relative to each
other, using the number of hosts on the particular patch and on its
six neighbours. However, we assume that host distribution across
patches is constant over time.

We recall that N is a set of patches on the grid, n is any patch in
N, and Nði; jÞ is a set of neighbours given by (18) and (19) of an in-
dex patch ði; jÞ. We also let ci;j be a set of seven patches sharing
boundaries, that is, patch ði; jÞ and its 6 neighbours. ci0 ;j0 is a set of
seven patches sharing boundaries made up of patch n0 and its six
neighbours, of which one is patch ði; jÞ. For easy reference, we
use the following notations:

� Hn is the population of hosts in patch n
� Hij

T is the total population of hosts in ci;j

� Hn0 is the population of hosts in patch n0

� Hi0 j0

T is the total population of hosts in ci0 ;j0

� �Hij
n is the proportion of hosts in patch n 2 ci;j out of all hosts in ci;j

� �Hij
n0 is the proportion of hosts in patch n0 2 ci;j out of all hosts in

ci;j

� �Hi0 j0

n is the proportion of hosts in patch n 2 ci0 ;j0 out of all hosts in
ci0 ;j0

� �Hi0 j0

n0 is the proportion of hosts in patch n0 2 ci0 ;j0 out of all hosts in
ci0 ;j0

We calculate the total number of hosts over these seven patches
sharing boundaries from

Hij
T ¼

X
n2ci;j

Hn; ð23Þ

and the proportion of hosts in each n 2 ci;j from

�Hij
n ¼

Hn

Hij
T

ð24Þ

withX
n2ci;j

�Hij
n ¼ 1 ð25Þ

Mosquitoes are attracted to odours released by hosts
[15,33,44,61]. This leads to mosquitoes being less likely to leave
the patch if their current patch is a home to many hosts and likely
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),



Fig. 4. Diagrammatic representation of mosquito movement between an index patch (source patch ði; jÞ) and a neighbouring patch (ði0; j0Þ ¼ n0 2 Nði; jÞ) where Nði; jÞ is defined
by Eqs. (18) and (19).
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to move out of the patch if there are few hosts. To mimic this phe-
nomenon, we use a decreasing exponential function to model the
movement rate. If ði; jÞ is a source patch and its neighbours
(Fig. 4), and if we take into account the availability of hosts in each
of the patches contained in ci;j, we can define the movement out of
a patch i; j to a neighbour patch n0 as

bH
ði;jÞ=n0 ¼ De

�k �Hij
n
��Hij

n0

� �
: ð26Þ

Here, k is a constant parameter for the decay function and �Hij
n0

is
the proportion of hosts in patch n0 contained in ci;j, which is ob-
tained from

�Hij
n0
¼ Hn0

Hij
T

: ð27Þ

The function in Eq. (26) (its behaviour is shown in Fig. 5) repre-
sents different possible characteristics of two patches sharing
boundaries as follows:

� If �Hij
n >

�Hij
n0

, then 0 < bH
ði;jÞ=n0 < D. This condition establishes that

the source patch ði; jÞ contains more hosts compared to patch
n0. The patch is therefore more attractive to mosquitoes com-
pared to its neighbour and will tend to retain mosquitoes; few
mosquitoes will tend to move away from it.
Please cite this article in press as: A.M. Lutambi et al., Mathematical modelling o
http://dx.doi.org/10.1016/j.mbs.2012.11.013
� If �Hij
n ¼ �Hij

n0 , then bH
ði;jÞ=n0 ¼ D. This implies that the two patches

have equal attractiveness to mosquitoes.
� If �Hij

n <
�Hij

n0 , then bH
ði;jÞ=n0 > D. Here, patch ði; jÞ is less attractive to

mosquitoes because it has fewer hosts compared to patch n0.
The dispersal rate out of the patch is high as more mosquitoes
will migrate out to patches that are more attractive.

Similarly, the movement of mosquitoes from patch n0 to patch
ði; jÞ (Fig. 4), where both n0 and ði; jÞ are contained in ci;j, is modelled.
In this respect, Hi0 j0

T is calculated using a different set of neighbour-
ing patches, ci0 ;j0 . In other words, it is the total number of hosts in n0

and its six neighbours, of which one of them is patch ði; jÞ. We cal-
culate it using

Hi0 j0

T ¼
X
n2ci0;j0

Hn: ð28Þ

Therefore, we model the movement rate from any neighbouring
patch n0 into patch ði; jÞ (as shown in Fig. 4) using

bH
n0=ði;jÞ ¼ De

�k �Hi0 j0
n0
��Hi0 j0

n

� �
ð29Þ

where

�Hi0 j0

n ¼
Hn

Hi0j0

T

; ð30Þ
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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and

�Hi0 j0

n0 ¼
Hn0

Hi0 j0

T

: ð31Þ

In general, the movement rate from patches with relatively low
attraction is higher compared to patches with higher attraction
and vice versa. To summarise, we re-write the general movement
model presented in Eq. (22) as

dAhði;jÞ

dt
¼

X
n02Nði;jÞ

bH
n0=ði;jÞAhn0

0
@

1
A� X

n02Nði;jÞ
bH
ði;jÞ=n0

0
@

1
AAhði;jÞ; ð32Þ

to describe the dynamics of host seeking mosquitoes in the absence
of new recruitment and deaths in any of the patches. Here, the dis-
persal rate takes into account the dependence of dispersal on hosts
availability.

4.4.2. Dispersal with heterogeneity in oviposition site availability
Another form of heterogeneity is imposed by the availability

of oviposition sites in an area. Mosquitoes searching for
breeding sites for egg laying are attracted by the availability of
breeding sites [43]. We incorporate this in a manner similar to that
for hosts.

If Bci;j
is the number of oviposition sites in a patch and �Bci;j

is the proportion of oviposition sites in a patch relative to its
neighbours, the movement rate out of the index patch ði; jÞ is
expressed as

bB
ði;jÞ=n0 ¼ De

�k �Bij
n
��Bij

n0

� �
ð33Þ

and the movement rate into the patch from neighbouring
patches:

bB
n0=ði;jÞ ¼ De

�k �Bi0 j0
n0
��Bi0 j0

n

� �
ð34Þ

Similarly, the movement rate of mosquitoes from a patch is higher if
there are few breeding sites (B) in the patch. We represent the
movement of mosquitoes searching for oviposition sites in the fol-
lowing equation

dAoði;jÞ

dt
¼

X
n02Nði;jÞ

bB
n0=ði;jÞAon0

0
@

1
A� X

n02Nði;jÞ
bB
ði;jÞ=n0

0
@

1
AAoði;jÞ: ð35Þ

Since the density of breeding sites is affected by seasonal
variations, as temporal sites are created due to rainfall for
example, their distribution changes over time. However, in this
model, for simplicity, we consider only permanent breeding sites.
So the initial distribution of breeding sites does not change over
time.

4.5. Full dispersal model equations

In Section 2, we studied the dynamics of mosquito populations
in each stage of the mosquito life cycle within a single patch. We
extend this model to incorporate dispersal processes. If we allow
host seeking and oviposition site searching mosquitoes to move
between patches, then we can combine the system of equations
in Eq. (1) for patch ði; jÞ and the movement terms in (32) and
(35) to form the following system of equations:
Please cite this article in press as: A.M. Lutambi et al., Mathematical modelling o
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dEði;jÞ
dt
¼ bði;jÞw

B
ði;jÞqAoði;jÞAoði;jÞ � lEði;jÞ þ qEði;jÞ

� �
Eði;jÞ

dLði;jÞ
dt
¼ qEði;jÞEði;jÞ � lL1ði;jÞ þ lL2ði;jÞLði;jÞ þ qLði;jÞ

� �
Lði;jÞ

dPði;jÞ
dt
¼ qLði;jÞLði;jÞ � lPði;jÞ þ qPði;jÞ

� �
Pði;jÞ

dAhði;jÞ

dt
¼ qPði;jÞPði;jÞ þ wB

ði;jÞqAoði;jÞAoði;jÞ � lAhði;jÞ
þ wH

ði;jÞqAhði;jÞ

� �
Ahði;jÞ

�
X

n02Nði;jÞ
bH
ði;jÞ=n0

0
@

1
AAhði;jÞ þ

X
n02Nði;jÞ

bH
n0=ði;jÞAhn0

0
@

1
A ð36Þ

dArði;jÞ

dt
¼ wH

ði;jÞqAhði;jÞ
Ahði;jÞ � lArði;jÞ

þ qArði;jÞ

� �
Arði;jÞ

dAoði;jÞ

dt
¼ qArði;jÞ

Arði;jÞ � lAoði;jÞ
þ wB

ði;jÞqAoði;jÞ

� �
Aoði;jÞ

�
X

n02Nði;jÞ
bB
ði;jÞ=n0

0
@

1
AAoði;jÞ þ

X
n02Nði;jÞ

bB
n0=ði;jÞAon0

0
@

1
A

with initial conditions Eði;jÞ; Lði;jÞ; Pði;jÞ;Ahði;jÞ;Arði;jÞ;Aoði;jÞ P 0 at time
t ¼ 0. Here, H and B represents hosts and breeding sites respec-
tively. The state variables and some of the parameters carry the
same meaning as in system (1) (see Tables 1 and 2). The individual
equations in system (36) describe the evolution of eggs, larvae, pu-
pae, host seeking, resting, and oviposition site searching mosquitoes
in patch ði; jÞ.

The progression from the oviposition site searching state, Ao, to
the host seeking state, Ah. is possible if and only if oviposition site
searching mosquitoes have laid eggs. We introduce a parameter
wB
ði;jÞ defined by:

wB
ði;jÞ ¼

1 if Bði;jÞ > 0
0 if Bði;jÞ ¼ 0;

(
ð37Þ

to control this process, since laying eggs in a patch is possible only if
the particular patch contains at least one breeding site. In patches
where Bði;jÞ ¼ 0, the initial conditions for Eði;jÞ; Lði;jÞ, and Pði;jÞ are 0.
Similarly, the progression from host seeking to the resting stage is
possible if there are hosts in the patch [31]. As such, we define

wH
ði;jÞ ¼

1 if Hði;jÞ > 0
0 if Hði;jÞ ¼ 0:

(
ð38Þ

Patches without hosts have initial conditions Arði;jÞ ¼ 0. All other
parameters are patch dependent and their definitions are summa-
rised in Tables 2 and 3.

The total number of mosquitoes in each stage at time t over all
patches on the grid is given by the sum over all locations N. That is

SðtÞ ¼
X
n2N

SnðtÞ
 !

ð39Þ

with SðtÞ representing the stage specific total number of mosquitoes
(EðtÞ; LðtÞ; PðtÞ;AhðtÞ;ArðtÞ, and AoðtÞ). The solutions of Eq. (36) re-
main nonnegative in the region

C ¼

Eði;jÞ
Lði;jÞ
Pði;jÞ
Ahði;jÞ

Arði;jÞ

Aoði;jÞ

0
BBBBBBBB@

1
CCCCCCCCA
2 R6nm

8>>>>>>>><
>>>>>>>>:

Eði;jÞ P 0;
Lði;jÞ P 0;
Pði;jÞ P 0;
Ahði;jÞ P 0;
Arði;jÞ P 0;
Aoði;jÞ P 0

��������������

9>>>>>>>>=
>>>>>>>>;
; ð40Þ

because movement always stops when there are no mosquitoes in a
patch. The model is therefore mathematically and biologically well
posed.
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),



Table 3
Description of parameters and variables specific to the dispersal model.

Parameter Description Units

H number of hosts hosts
B number of breeding sites breeding sites

bH dispersal rate of host seeking mosquitoes per time

bB dispersal rate of mosquitoes searching for
breeding sites

per time

bH� dispersal rate of mosquitoes in the presence of
repellents

per time

L patch size metres
D rate of movement per time
k a constant parameter for the decay function dimensionless
D� diffusion coefficient metres2time�1

p repellents blocked ability of mosquitoes to
enter a patch

dimensionless

/H a fraction measuring the strength of a repellent
in in patch i; j

unitless
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Theorem 4.2. Assuming that initial conditions lie in C, the system of
equations for the mosquito population dynamics for all patches (36)
has a unique solution that exists and remains in C for all time t P 0.
Proof. The right hand side of system (36) is continuous with
continuous partial derivatives in region C. Thus, there exists a
unique solution for (36). We show that region C is forward-
invariant. From system (36) we see that if Eði;jÞ ¼ 0, then

E0ði;jÞ ¼ bði;jÞw
B
ði;jÞqAoði;jÞAoði;jÞ P 0; if Lði;jÞ ¼ 0, then L0ði;jÞ ¼ qEði;jÞEði;jÞ P 0;

if Pði;jÞ ¼ 0, then P0ði;jÞ ¼ qLði;jÞLði;jÞ P 0; if Ahði;jÞ ¼ 0, then

A0hði;jÞ ¼ qPði;jÞPði;jÞ þ wB
ði;jÞqAoði;jÞAoði;jÞ þ

P
n02Nði;jÞb

H
n0=ði;jÞAhn0

� �
P 0; if

Arði;jÞ ¼ 0, then A0rði;jÞ ¼ wH
ði;jÞqAhði;jÞ

Ahði;jÞ P 0; and if Aoði;jÞ ¼ 0, then

A0oði;jÞ ¼ qArði;jÞ
Arði;jÞ þ

P
n02Nði;jÞb

B
n0=ði;jÞAon0

� �
P 0. Therefore, all solutions

of the system of equations in (36) are contained in the region N and
a unique solution exists for all t. h

System (36) is at an equilibrium if the right hand side is zero at
all time t. Patch ði; jÞ is at a mosquito-free equilibrium if
Eði;jÞ ¼ Lði;jÞ ¼ Pði;jÞ ¼ Ahði;jÞ ¼ Arði;jÞ ¼ Aoði;jÞ ¼ 0. However, given the
complexity of the model, we do not show its stability or show
the existence of other invariant subsets and only run numerical
simulations of this model.

5. Numerical simulations

The model without dispersal (Eq. (1)) and the model with dis-
persal (Eq. (36)) are both simulated using Matlab 7:10:0(R2010a)
student version [40] and the ode45 solver for solving differential
equations is used. The 25 by 21 grid (see sketch in Fig. 3) is used
as a platform to simulate movement of mosquitoes between hex-
agonal patches. To ensure that boundary conditions do not influ-
ence results, periodic boundary conditions are used. This implies
a torus topology for the landscape, where edge patches are such
that their nearest neighbours on the outside are patches on the
opposing edges.

For model simulation and investigation, we use data on stage
specific mortality and development rates from the literature (see
A), summarised in Table 2. For mosquito dispersal, some studies
show that mosquitoes can move up to 800 m a day [21]. Field stud-
ies on mark release recapture experiments of Anopheles gambiae
also show that daily flight range from 200 to 400 m [42]. These re-
sults indicate that mosquito dispersal distance is variable. Due to
these variations, in Section 6.1 we use our model platform (Sec-
tion 4) and the movement rate D (Eq. (20)) to produce distributions
of dispersed mosquitoes by distance travelled in a day. However,
for numerical illustration of the model with dispersal, we set the
Please cite this article in press as: A.M. Lutambi et al., Mathematical modelling o
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distance from the centre of one patch to the centre of the neigh-
bouring patch, L, to 50 m.

We run simulations with total numbers of 2700 eggs, 1900 lar-
vae, 2000 pupae, 2400 host seeking adults, 1800 resting adults, and
1200 oviposition site seeking adults, initially distributed across the
grid (Fig. 7). The distribution is based on the whether a patch con-
tains breeding sites or hosts. Five scenarios are set up to simulate
the effect of different kinds of heterogeneity (Fig. 6). In the first
scenario, all patches contain hosts and breeding sites; the second
scenario simulates the case when hosts and breeding sites are ran-
domly distributed on the grid. In the third scenario, all patches
contain breeding sites and hosts are only on one side of the grid;
while in the fourth scenario, hosts are present in all patches, with
breeding sites being on one side of the grid. In scenario five, hosts
and breeding sites are placed in clusters that are far apart from
each other. Simulations are continued for each scenario until the
total mosquito population over the entire grid for each of the
stages and their spatial distribution reaches an equilibrium. The fi-
nal time of analysis for the simulations for all results presented in
this work is 250 days, except where stated otherwise.

6. Model application, comparisons, and results

6.1. Dispersal distances

In this section, we use the dispersal model to estimate the dis-
tance travelled by an average mosquito. The evolution of Eq. (22) is
simulated on a homogeneous grid with uniform attractiveness to
mosquitoes. The system is initialized with all mosquitoes placed
at a single source patch. We then calculate the total number of
mosquitoes per patch and per neighbourhood, the average density
of mosquitoes per patch, and the average of the dispersal distance
after time 1.

We let MnðtÞ be the average density of mosquitoes in a patch at
time t, where n measures the distance from the source patch. Here,
n is 0;1;2; . . . ;m, with n ¼ 0 being the source patch, n ¼ 1 being
the nearest neighbouring patches (first ring of patches), n ¼ 2
being the second ring of patches, n ¼ 3 being the third ring of
patches, and so on (see Fig. 8). The total number of patches in each
of the rings is given by

Nn ¼
6n for n P 1
1 for n ¼ 0:

�
ð41Þ

The total number of mosquitoes that reached ring n after time
t; PnðtÞ is

PnðtÞ ¼
XNn

k¼1

CkðtÞ; ð42Þ

where Ck is the number of mosquitoes in patch k contained in n.
From Eq. (42), we obtain the mosquito frequency distance travelled
from the source patch for a particular time t. We present the results
in Fig. 9A for t ¼ 1 day and different values of D.

The average density of mosquitoes per patch, after time t has
elapsed, is obtained from:

MnðtÞ ¼
PnðtÞ
Nn

; ð43Þ

which gives the average density distribution presented in Fig. 9B
when t ¼ 1 day.

We let S1 be the initial number of mosquitoes released from the
source patch and the weighted average distance travelled by one
mosquito at time t;WdðtÞ, is

WdðtÞ ¼
Pm

n¼0nPnðtÞ
S1

� �
� L ð44Þ
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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Fig. 6. Spatial arrangements of hosts and breeding sites on the grid showing the set up of scenarios. Scenario 1 (first row): all patches contain hosts and breeding sites.
Scenario 2 (second row): random distribution of hosts and breeding sites. Scenario 3 (third row): all patches contain breeding sites but hosts on one side of the grid. Scenario 4
(fourth row): all patches contain hosts but breeding sites are on one side of the grid. Scenario 5 (fifth row): clusters of hosts and breeding sites are far apart from each other.
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where L is the patch size. We calculate the weighted average of the
dispersal distance travelled by a mosquito in one day, Wdð1Þ.

In Fig. 9A we present the results of the frequency distribution
of mosquitoes dispersed in a day by distance from source at dif-
ferent values of the diffusion parameter. As expected, increasing
values of D results in mosquitoes moving faster and reaching lar-
ger distances. Fig. 9B shows the average density of mosquitoes
Please cite this article in press as: A.M. Lutambi et al., Mathematical modelling o
http://dx.doi.org/10.1016/j.mbs.2012.11.013
per patch by distance moved in a day. After one day, most mos-
quitoes have moved, but the source still contains the highest
density.

From simulations, the weighted mean distance travelled by
each mosquito per day (as calculated from Eq. (44)) is estimated
to be 43;79, and 103 m when L ¼ 50 m and mosquitoes are al-
lowed to move at a rate, D, of 0:2;0:5, and 0:8, respectively.
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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Fig. 7. Spatial population distribution of initial conditions by stage. The distribution of initial conditions is common to all scenarios (Fig. 6) for comparative purposes.
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6.2. Comparison between discrete and continuous space form of the
models

The nearest neighbours movement approach has been shown to
relate closely to diffusion models [3,30]. To evaluate the effects of
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using discrete space, we compare the behaviour of the discrete
space movement model (Eq. (22)) under homogeneous conditions
to that of the model that uses the diffusion approach (Eq. (13)). By
comparing the behaviour of the two approaches, we calculate how
far a mosquito can travel in a day (and time is set to 1 day in the
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ach ring of neighbours to source patch, n ¼ 0;1;2; . . . ;m can be multiplied by patch

f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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simulations for both models).Fig. 10 presents the results of the dis-
crete (Eq. (22)) and continuous forms (Eq. (17)) of the model. The
scenario we compare to the diffusion model is such that all patches
contain mosquito resources, creating uniformity in attractiveness
to mosquitoes between patches. The probability of a mosquito
Please cite this article in press as: A.M. Lutambi et al., Mathematical modelling o
http://dx.doi.org/10.1016/j.mbs.2012.11.013
moving in any direction is therefore the same. The two models pro-
duce slightly different results. However, the distributions show
similar properties in terms of the modelled mosquito trajectories
between the discrete space and the continuous space models. Both
models show peaks in mosquito density near the point of release.
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),



14 A.M. Lutambi et al. / Mathematical Biosciences xxx (2012) xxx–xxx
The continuous model shows a higher peak and a higher rate of de-
crease compared to the discrete model.

6.3. Spatial repellents

Spatial repellents can have different effects on mosquito dis-
persal, and hence population dynamics, in different areas. These
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repellents can be non-physical barriers, such as the treating perim-
eters with insecticides to protect populations from mosquito bites
[8] by reducing the number of biting mosquitoes moving into the
area [9]. We use the dispersal model developed in this paper to
evaluate the effect of including patches with spatial repellents on
the distance travelled by mosquitoes. We include a multiplicative
factor /ði;jÞ ¼ 1� pði;jÞ, where pði;jÞ 2 ½0;1� to account for the effect
25 30 35
0

24

49

73

97

122

146

171

195

219

244

0 5 10 15 20 25 30 350

5

10

15

20

25

30

Oviposition site searching

0

36

73

109

146

182

218

255

291

328

364

25 30 35
0

24

49

73

97

122

146

171

195

219

244

0 5 10 15 20 25 30 350

5

10

15

20

25

30

Oviposition site searching

0

36

73

109

146

182

218

255

291

328

364

25 30 35
0

24

49

73

97

122

146

171

195

219

244

0 5 10 15 20 25 30 350

5

10

15

20

25

30

Oviposition site searching

0

36

73

109

146

182

218

255

291

328

364

25 30 35
0

24

49

73

97

122

146

171

195

219

244

0 5 10 15 20 25 30 350

5

10

15

20

25

30

Oviposition site searching

0

36

73

109

146

182

218

255

291

328

364

25 30 35
0

24

49

73

97

122

146

171

195

219

244

0 5 10 15 20 25 30 350

5

10

15

20

25

30

Oviposition site searching

0

36

73

109

146

182

218

255

291

328

364

nario 1 (first row): all patches contain hosts and breeding sites. Scenario 2 (second
contain breeding sites but hosts are on one side of the grid. Scenario 4 (fourth row):

ow): clusters of hosts and breeding sites are far apart from each other. These results

f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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of spatial repellents on flying mosquitoes in some patches. The
parameter p can be interpreted as the blocked ability of mosqui-
toes to enter into a patch. When pði;jÞ ¼ 1, the barrier in the patch
acts as an obstacle which completely blocks movement and when
pði;jÞ ¼ 0, movement is not impeded. For host seeking mosquitoes,
the dispersal rates from the source patch become:

bH�
ði;jÞ=n0 ¼ /n0b

H
ði;jÞ=n0 ð45Þ

and the dispersal rate into the patch changes to

bH�
n0=ði;jÞ ¼ /ði;jÞb

H
n0=ði;jÞ: ð46Þ

We note that in this way of modelling spatial repellents, emerging
adults are not chased away by the repellents unless they have en-
tered the host seeking stage.

We set up two scenarios to simulate the effect of repellents,
with pði;jÞ ¼ 0:8. In the first scenario, we place repellents in the sec-
ond ring to source (i.e. n ¼ 2) to form a regular ring distribution. In
the second scenario, we randomly distribute repellents over the
patches across the landscape. Results from these two scenarios
were compared with results produced under homogeneous condi-
tions (without repellents in any of the patches).

The presence of repellents in patches placed at n ¼ 2 creates a
barrier to mosquitoes (Fig. 9A). Most mosquitoes move away from
the source and cluster in the first neighbourhood (n ¼ 1). Few mos-
quitoes are observed in the second neighbourhood. The density of
mosquitoes for n > 2 are lower, compared to the scenario when
there are no repellents. At larger distances from the source patch,
the presence of repellents in patches near the source did not show
any impact on mosquito dispersal.

The density of mosquitoes in the source patch is found to be
higher when D is 0:8, with repellents placed in a ring of patches,
Please cite this article in press as: A.M. Lutambi et al., Mathematical modelling o
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than at D ¼ 0:2 with no repellents. From n ¼ 1 to n ¼ 2, there is
no major difference between the two scenarios. For n > 2, mos-
quito density is smaller when D is set to 0:2, compared to when
repellents are placed in a ring distribution. In this case, the repel-
lent does not have a strong impact on the movement of mosquitoes
and therefore the value of the movement rate has a substantial role
in controlling movement to other patches. When there are patches
with repellents, the average number of mosquitoes dispersed per
patch (Fig. 9B) does not differ much from a scenario where the
are no repellents. On the other hand, a small difference is observed
for n < 2.

A random distribution of repellents results in mosquitoes clus-
tering in the source patch and in the nearest neighbourhoods. Few-
er mosquitoes are observed clustering in the patches far from the
source patch compared to a situation when there are no repellents.

In the presence of spatial repellents, with D ¼ 0:8, the weighted
mean distance moved is estimated to be 78 m when repellents are
placed at n ¼ 2 and 55 m when repellents are randomly distributed
across the landscape.
6.4. Impact of heterogeneity on spatial distribution

Fig. 11 shows the effect of heterogeneity on the spatial distribu-
tion of larvae, host seeking, and oviposition site searching mosqui-
toes when the system is at equilibrium. The population
distribution is highly dependent on the distribution of both hosts
and breeding sites. As expected, when all patches on the grid have
both hosts and breeding sites, the entire grid become densely pop-
ulated. Host seeking mosquitoes show a pronounced spread across
the grid when hosts and breeding sites are randomly distributed,
compared to mosquitoes searching for oviposition sites. When
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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breeding sites are placed in all patches and hosts are clustered on
one part of the grid, host seeking mosquitoes spread over a larger
area, compared to a scenario where hosts are present in all patches
and breeding sites are clustered on one side of the grid.

6.5. Impact of dispersal on population distribution

Mosquito dispersal becomes more important when the distri-
bution of hosts and breeding sites on the grid is heterogeneous
(Fig. 11). Clustering of host seeking mosquitoes towards patches
containing both hosts and breeding sites is observed. However,
when hosts and breeding sites are located in separate parts of
the grid, the population dies out within a few days (given the as-
sumed initial densities of mosquitoes for these simulations).

6.6. Impact of heterogeneity on the dynamics of the total population

Fig. 12 presents the dynamics of the total population (Eg. (39))
over all patches on the grid. Heterogeneous distributions of breed-
ing sites and hosts, to a large extent, reduces the population at
equilibrium. When clusters of breeding sites and hosts are placed
far from each other, mosquitoes become unable to reproduce as
distances required to travel is increased. Hence, population extinc-
tion is possible.

6.7. Impact of dispersal and heterogeneity on population dynamics

To evaluate the impact of dispersal and heterogeneity on popula-
tion dynamics, we carried out numerical simulations using models
both without (system (1)) and with dispersal (system (36)). While
maintaining the same set up of multiple sources of mosquitoes
(Fig. 7) for comparison purposes, we computed the average number
of mosquitoes at equilibrium across all patches on the grid for the
dispersal model. The two models show slightly different equilibrium
values (Fig. 13) (i.e. ð7339;577;93;194;206;26Þ for the model with-
Please cite this article in press as: A.M. Lutambi et al., Mathematical modelling o
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out dispersal and ð7197;564;91;190;202;25Þ for the dispersal
model when all patches have hosts and breeding sites). For ran-
domly distributed mosquito resources, the average equilibrium va-
lue across all patches on the grid was ð118;31;5;7;6;1Þ. This
corresponds to an equilibrium population, measured as number of
mosquitoes per km2, as ð33:2;2:6; 0:4;0:9;0:9; 0:1Þ � 105 when
hosts and breeding sites were present in all patches and approxi-
mately ð54:374;14:380;2:314;3:257;2:630;0:333Þ � 103 when re-
sources are randomly distributed across the grid.
7. Discussion

Mathematical models for evaluating the impact of the transmis-
sion of vector borne diseases do not consider effects on vector
mobility, despite evidence that the relative locations of mosquito
breeding sites and of human hosts profoundly affect transmission
of both malaria [14,59] and the dengue virus [28,65]. One reason
for this is that, whereas spatial variation in biting rates is relatively
easy to study, rates of movement of mosquitoes can only be stud-
ied using challenging mark-recapture techniques, which provide
sparse data. Consequently, there is little evidence of the impact
of heterogeneity in the distribution of resources used by mosqui-
toes on the mosquito population size and its spatial distribution.
The likely impact of interventions that may affect mosquito move-
ment is thus even less well understood.

Our compartment model of the life cycle and feeding cycle of
mosquitoes incorporates spatial heterogeneity both in densities
of breeding sites and of human hosts. It also incorporates mosquito
movement and can be used to predict the effects of interventions
targeting different stages of the mosquito life cycle. We consider
effects on population size, on the spatial distribution of mosqui-
toes, and on how far individual mosquitoes move. We use the
example of spatial repellents to illustrate how these parameters
can be affected by a relatively simple intervention.
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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In a homogeneous environment, the model without dispersal
indicates that there is a linear relationship between population
reproduction numbers and both age-stage specific survival and
developmental rates of mosquitoes. This leads to straightforward
relationships between the size of the mosquito population, devel-
opmental rates from larvae to pupae, and mortality rates of larvae.
However, when there are heterogeneities in resource availability,
these linear relationships are disturbed, and have far-reaching
the effects on spatial distribution and population dynamics of mos-
quitoes [66]. If breeding sites are eliminated from the neighbour-
hoods of hosts or are not available in most patches, mosquitoes
searching for breeding sites are forced to move longer distances
in search of oviposition sites, prolonging the feeding cycle
[13,35] and increasing mortality during searching [54]. In general,
environmental heterogeneity forces mosquitoes to move longer
distances and increases their mortality [54]. In our models, we
could eliminate mosquito populations by separating breeding sites
and hosts.

From the host’s perspective, living in proximity to mosquito
breeding sites increases exposure to mosquito bites and potentially
also to disease. Because the vector-host ratio is higher around
breeding sites [34], selectively eliminating breeding sites in areas
of human habitation can prevent mosquitoes from using human
hosts for blood meals [24]. Similarly, a possible intervention strat-
egy is to deploy interventions such as spatial repellents or bed nets
around breeding sites. However, our simulations suggest that such
a ring strategy for repellent deployment is advantageous only if
mosquito sources are few, clearly defined, and known. In situations
where mosquito sources and households are scattered throughout
the area, this strategy will not be feasible. However, even random
deployment of repellents reduces the distance moved by mosqui-
toes, making it more difficult for them to complete their life cycle,
and hence has beneficial effects.

Spatial heterogeneity in resource availability can thus, on its
own, have complex effects on mosquito populations. Even rela-
tively simple interventions, such as spatial repellents, can be de-
ployed in a variety of ways in such environments. We have only
just begun to use our model to explore the implications of the
resulting multiplicity of combinations of environments with inter-
vention strategies. Analysing of the spatial effects of more complex
interventions, such as insecticide treated mosquito nets, which
have simultaneous killing and repellent effects, will bring further
challenges.

Like any model, ours has limitations. Effects of wind, which can
either facilitate or prevent movement [7,16,33,51,57], were not
incorporated. We chose to use a discrete hexagonal patches as a
representation of space, rather than using a continuous space mod-
el [51,63] because this makes it easier to model arbitrary spatial
distributions of resources. At the same time, this constrained the
modelled mosquito movements to follow a limited set of trajecto-
ries. We do not know what trajectories mosquitoes adopt in reality
and strategies such as Levy flight [52] may well be used to optimize
foraging efficiency. An alternative approach to our discrete space
model is to use a PDE model for mosquito dispersal, for example
that of Raffy and Tran [51,63]. Here attractiveness is represented
via chemotaxis or an advection term, taking into account blood
meals, breeding sites, wind, etc. The advantage of the discrete
space model proposed in this paper is that one can easily assess
vector control strategies, as the discrete space enables easy repre-
sentation of interventions that cover sets of households or villages.

The differences in the peaks and rates of decrease in mosquito
distributions by distances travelled indicate that the choice of
the exponential movement rate in the discrete model does not
force the results to be the same as those produced by the continu-
ous space approach. However, we could show that although there
are differences, mosquito distributions by distances moved have
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similar properties (both models show peaks in mosquito density
in the regions close to the origin and are zero far away from the re-
lease point) to those predicted by a continuous space diffusion
model [48], and suggest that our results are broadly applicable
no matter what foraging strategies mosquitoes may adopt.

We could also show that the various factors taken into account
by the model play an important role in the spatial distribution of
mosquitoes. The model could show realistic behaviours in simple
theoretical situations on an artificial landscape. Our model, to-
gether with field data, could be used to determine areas of high
transmission within local settings, evaluate the community effect
of interventions, and aid in developing possible and efficient vector
control strategies, which can optimize the allocation of scarce
resources.
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Appendix A. Data for model parameters

Data for parameterizing the model was obtained from litera-
ture. There is variability in the available data as study designs
and conditions under which studies were carried out vary from
one place to another. A single value was chosen from a range of
values as baseline and used for the numerical simulation of the
model.

The development of mosquitoes in their early stages is a nonlin-
ear process that depends on water temperature [27,50,17]. How-
ever, for simplicity, we assume that the mean development time
for each stage is constant over time.

For Anopheles gambiae, the duration of egg development (from
oviposition to hatching into a larva) (1=qE) is about 2 days in field
environments [56]. Under laboratory conditions and tropical areas
this period extends to 3 days [27,69,56]. In a study by [56], the lar-
val period for mosquitoes of the Anopheles genus is found to be
7 days. Other studies have shown that the larval stage may last
(1=qL) between 6 to 10 days in field environments or 11 to 13 days
in laboratory conditions [27] or last between 7 to 15 days in tem-
perate and tropical areas [4,32,20]. It has also been found that the
pupal period (1=qP) lasts for 1� 2 days in field environments but
under laboratory conditions the pupal period lasts for about 2 days
[27]. In tropical regions the pupal stage for Anopheles genus last be-
tween 2 to 3 days [56].

We used mean mortality rates of 0:56� 0:28 for eggs,
0:51� 0:14 for larvae instars I and II, 0:37� 0:14 for larvae instars
III and IV, and 0:37� 0:15 for pupae [47]. The average of the two
categories of larvae for the density independent mortality of larvae,
lL1
¼ 0:44� 0:14. Larval mortality can be resolved into natural

mortality rates, lL1
and density dependent mortality of larvae,

lL2
. For our simulations, we allow lL2

to take any value between
0 and 1.

Since the model details the adult mosquito life cycle via the
mosquito feeding cycle, we derive the estimates of most of the
f mosquito dispersal in a heterogeneous environment, Math. Biosci. (2012),
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parameters from studies on the mosquito feeding cycle. The time
spent while searching for hosts (1=qAh

) can be estimated. From
[13], we can calculate qAh

¼ 0:46. Once mosquitoes survive the
host seeking stage and have successfully fed, mosquitoes rest for
food digestion and egg maturation. Using 1=qAr

¼ 2:33 days [13],
which is qAr

¼ 0:43 per day, we can calculate the value of lAr
as

0:0043 given that the probability of surviving while resting is
1� lAr

=ðlAr
� qAr

Þ ¼ qAr
=ðlAr

þ qAr
Þ ¼ 0:99 [13]. If mosquitoes

spend 1=qAo
¼ 0:33 days ovipositing, then qAo

¼ 3 per day. The cor-
responding probability of surviving the oviposition site searching
stage 1� lAo

=ðlAo
þ qAo

Þ ¼ qAo
=ðlAo

þ qAo
Þ is 0:88 [13]. From this

probability, we obtain lAo
¼ 0:41 per day. From [13] we see that

the probability of surviving the feeding cycle is pf ¼ 0:623. From
our model, this probability can be calculated from
qAh

=ðlAh
þ qAh

Þ
� �

qAr
=ðlAr

þ qAr
Þ

� �
qAo

=ðlAo
þ qAo

Þ
� �

. Substituting
the values for the survival probabilities of the oviposition site
search and resting given above in this section, we obtain
qAh

=ðlAh
þ qAh

Þ ¼ 0:72 as the probability of surviving during the
host searching. Thus, we obtain lAh

¼ 0:18 (Table 2).
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