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ABSTRACT 

OBJECTIVE: Based on previous data that have linked the small ubiquitin-like modifier-1 

(SUMO-1) to the pathogenesis of rheumatoid arthritis (RA), we have investigated the 

expression of the highly homologous SUMO family members SUMO-2/3 in human RA and 

in the hTNFtg mouse model of RA and studied their role in regulating disease specific 

matrixmetalloproteinases (MMPs). 

METHODS: Synovial tissue was obtained from RA and osteoarthritis (OA) patients and 

used for histological analyses as well as for the isolation of synovial fibroblasts (SFs). The 

expression of SUMO-2/3 in RA and OA patients as well as in hTNFtg and wt mice was 

studied by PCR, Western blot and immunostaining. SUMO-2/3 was knocked down using 

siRNA in SFs, and TNF-alpha induced MMP production was determined by ELISA. 

Activation of NF-κB was determined by a luciferase activity assay and a transcription factor 

assay in the presence of the NF-κB inhibitor BAY 11-7082. 

RESULTS: Expression of SUMO-2 and to a lesser extent of SUMO-3 was higher in RA 

tissues and RASFs compared to osteoarthritis controls. Similarly, there was increased 

expression of SUMO-2 in the synovium and in SFs of hTNFtg mice compared to wt animals. 

In vitro, the expression of SUMO-2 but not of SUMO-3 was induced by TNF-alpha. The 

knockdown of SUMO-2/3 significantly increased the TNF-alpha and IL-1beta induced 

expression of MMP-3 and MMP-13, accompanied by increased NF-κB activity. Induction of 

MMP-3 and MMP-13 was inhibited by blockade of the NF-κB pathway. TNF-alpha and IL-

1beta mediated MMP-1 expression was not regulated by SUMO-2/3.  

CONCLUSIONS: Collectively, we show that despite their high homology, SUMO-2/3 are 

differentially regulated by TNF-alpha and selectively control TNF-alpha mediated MMP 

expression via the NF-κB pathway. Therefore, we hypothesize that SUMO-2 contributes to 

the specific activation of RASF.  
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INTRODUCTION 

Hyperplasia of the synovium, infiltration of different inflammatory cells and invasion of 

synovial fibroblasts into joint structures are characteristic features of human rheumatoid 

arthritis (RA)(1, 2). Stable activation of RA synovial fibroblasts (RASFs) plays a major role 

in the rheumatoid destruction of the cartilage matrix(3), mainly through the expression of 

MMPs which are regulated by inflammatory cytokines such as TNF-alpha and IL-1(4, 5).  

Small ubiquitin-related modifiers (SUMOs) belong to a subfamily of ubiquitin-like proteins. 

Posttranslational modification of proteins by SUMO is involved in a variety of cellular 

processes, including protein localisation(6, 7), transcriptional regulation(8, 9), protein 

stability, cell survival and death(10-12). There are four mammalian SUMO genes: SUMO-1, 

SUMO-2, SUMO-3 and SUMO-4. SUMO-2 and SUMO-3 share 96% amino acid sequence 

identity, while SUMO-1 is approximately 50% similar to SUMO-2 and SUMO-3; thus 

SUMO-2 and SUMO-3 are referred as SUMO-2/3(13). SUMO-2 and SUMO-3 can be 

modified in vivo by SUMO-1 and SUMO-2/3(14, 15). Interestingly, SUMO can not only be 

targeted by posttranslational modifications belonging to the ubiquitin family but also by 

acetylation and phosphorylation. For SUMO-2 it was shown that the lysine residues K11, K32 

and K41 can be modified by ubiquitin(16, 17). A recent study, showed that SUMO-3 can be 

phosphorylated at serine 2, while SUMO-2 cannot be phosphorylated because it has an 

alanine at this position(18). Thus, these may be functional differences between SUMO-2 and 

SUMO-3 which, however, have not been investigated in detail.  

In line with their important role in cellular functions, the expression and activity of MMPs are 

tightly regulated at multiple levels of gene transcription, synthesis, and extracellular activity. 

Previously, it was shown that the MMP-1 promoter is hyperacetylated in RASF compared to 

SFs from OA patients (OASF). Interestingly, overexpression of SUMO specific protease-1 

(SENP-1), which is downregulated in RASF, leads to normalization of the acetylation pattern 
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in the MMP-1 promoter and decreases the production of MMP-1(19). Cytokines such as 

TNF-alpha and IL-1beta stimulate the production of MMPs through the activation of cellular 

signaling pathways involving mitogen-activated protein kinases (MAPKs) and nuclear factor-

κB (NF-κB)(20). 

In the current study, we have investigated the expression of SUMO-2/3 in human RASFs and 

in human TNF-alpha transgenic (hTNFtg) mice(21), where transgenic overexpression of the 

human tumor necrosis factor alpha (hTNF-alpha) leads to a chronic inflammatory and 

destructive polyarthritis. Here, we demonstrate for the first time a role of  SUMO-2/3 in the 

activation of  TNF-alpha mediated MMP-3 and MMP-13 expression in RASFs. We show that 

SUMO-2/3 is part of regulatory mechanisms that limit expression of distinct MMP´s by 

inhibiting the activation of NF-κB.  

 

 

RESULTS 

Elevated expression of SUMO-2/3 in the synovium and in synovial fibroblasts from patients 

with RA  

First, we addressed the question of whether SUMO-2/3 is expressed in synovial fibroblasts 

from the inflamed synovium of human RA patients. As shown in Fig.1a, 

immunohistochemical stainings of human RA synovial tissue revealed high expression of 

SUMO-2/3. The proteins are predominantly localised in the synovial lining layer as well as in 

the sublining layer, whereas only marginal expression was found in synovial tissue of patients 

with OA. For further analysis of the subcellular distribution of SUMO-2/3 in RASFs and 

OASFs, immunocytochemical stainings were performed. SUMO-2/3 was found 

predominantly within the nucleus (Fig.1b). When compared to OASFs, RA cells exhibited a 

markedly enhanced nuclear staining for SUMO-2/3. These data were confirmed by Western 

blot analysis at protein level (Fig.1c) using a SUMO-2 specific antibody (Suppl.Fig.S3) which 
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additionally recognizes SUMO-3. Interestingly, analysis by quantitative real-time PCR in 

Fig.1d shows an increased expression of SUMO-2 in fibroblasts isolated from RA synovium 

compared to the control cells from patients with OA. The mRNA level of SUMO-3 was far 

less increased in RASFs compared to in OASFs.  

 

TNF-alpha regulates SUMO-2, but not SUMO-3 

The expression data led us to investigate whether SUMO-2/3 is regulated by inflammatory 

cytokines such as TNF-alpha. To this end, we stimulated synovial fibroblasts from RA 

patients (n=5) with recombinant human TNF-alpha and analysed whether there is a dose-

response effect of TNF-alpha (0,1; 1; 10 and 100 ng/ml) on SUMO-2 and SUMO-3 at 

transcriptional level and subsequently analysed the expression of SUMO-2/3 at protein level. 

As shown in Fig.1e, TNF-alpha (100ng/ml) stimulation of synovial fibroblasts from RA 

patients for 24h resulted in an upregulation of SUMO-2/3 at protein level. In addition, the 

conjugation of target proteins by SUMO-2/3 was increased. Interestingly, TNF-alpha was 

only able to induce a dose-dependent increase in SUMO-2 mRNA expression, whilst SUMO-

3 remained unaffected (Fig.1f). These data suggest that only SUMO-2 is regulated by TNF-

alpha and that although SUMO-2 and SUMO-3 proteins are closely similar in their amino 

acid sequence, they perform different functions during inflammatory conditions. Next, we 

investigated the expression of SUMO-2/3 in human TNF-transgenic (hTNFtg) mice(21), as a 

model for inflammatory polyarthritis. For this, we first performed immunohistochemical 

stainings of hTNFtg mice in tissue sections. As shown in Fig.2a, we confirmed the increased 

expression of SUMO-2/3 in tissue sections from hTNFtg mice  as well as in Western blot 

analysis of primary synovial fibroblasts in comparison to wild type samples (Fig.2c). SUMO-

2 mRNA level was strongly increased in synovial fibroblasts from hTNFtg mice compared to 

wt mice, but the SUMO-3 RNA level was not increased to the same extent (Fig.2b).  
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Knockdown of SUMO-2/3 affects MMP-3 and MMP-13 expression in synovial fibroblasts 

from RA and OA patients 

To investigate the role of elevated SUMO-2/3 expression in RA, we analysed the production 

of MMP-1, MMP-3 and MMP-13 in synovial fibroblasts obtained from RA and OA patients. 

As expected, the levels of MMP-1, MMP-3 and MMP-13 expression were strongly 

upregulated in RASF compared to in OASF. Interestingly, we found that knockdown of both 

SUMO-2 and SUMO-3 using specific siRNA, leads to a significant upregulation of MMP-3 

and MMP-13 after stimulation with TNF-alpha in comparison to the cells transfected with 

mock siRNA (Fig.3a) without changing TNF-Receptor I expression (Suppl.Fig.1a). In 

contrast, the production of MMP-1 was not affected by silencing SUMO-2/3 (Fig.3a). These 

observations could be confirmed at the transcriptional level by semiquantitative PCR (Fig.3b). 

We found a significant upregulation of TNF-alpha induced MMP-3 expression in RASFs, but 

not of MMP-1 after knockdown of SUMO-2/3. In addition to TNF-alpha stimulation we used 

the cytokine IL-1beta, where a similar effect on MMP-3 and MMP-13 production after 

SUMO-2/3 knockdown was observed (Suppl. Fig.2a). 

 

SUMO-2/3 regulates the activity of MMP-3 and MMP-13 regulation via the NF-κB pathway 

Based on our findings, we analysed underlying mechanisms of how SUMO-2/3 regulates 

MMP-3 and MMP-13. As MMP-3 and MMP-13 are regulated predominantly through the NF-

κB pathway, we analysed the functional consequences of SUMO-2/3 knockdown on the 

activity of NF-κB. Firstly, in light of data showing an effect of SUMO-1 on NF-κB activity 

via the modification of IκB-alpha(22), we measured the expression of SUMO-1 after SUMO-

2/3 knockdown using real time pcr and found that the expression of SUMO-1 was not 

affected (Suppl. Fig.1b). The direct role of SUMO-2/3 in NF-κB activation was assessed 

following SUMO-2/3 knockdown using siRNA. As shown in Fig.4a and Fig.4b, the loss of 

SUMO-2/3 enhanced the activity of NF-κB after stimulation with 100 ng/ml TNF-alpha for 

16h. Transfection of HeLa cells with siRNA against SUMO-2/3 resulted in a knockdown that 

was detectable at the protein level (Fig.4a). These results indicate that downregulation of 
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SUMO-2/3 positively regulates NF-κB transcriptional activity and hence may increase the 

expression of MMP-3 and MMP-13. Based on this observation, we used the NF-κB inhibitor 

BAY 11-7082 to determine whether upregulation of MMP-3 and MMP-13 via SUMO-2/3 

was indeed dependent on the NF-κB pathway. Figure 5a and 5b show that inhibition of TNF-

alpha induced phosphorylation of IκB-alpha and NF-κB activation using the BAY 11-7082 

inhibitor totally blocked SUMO-2/3 induced MMP-3 and MMP-13 production. The MMP-13 

levels after treatment with BAY 11-7082 were undetectable.  

 

MATERIALS AND METHODS 

Isolation of synovial fibroblasts and cell culture 

All studies were approved by the ethics committees of the Medical University of Vienna and 

the University Hospital Muenster. Samples of synovial tissues from patients with RA or OA 

were obtained from joint replacement surgery and provided by the Department of Orthopaedic 

Surgery, St. Joseph Hospital, Sendenhorst, Germany, the Department of Orthopaedic Surgery 

of the University of Magdeburg School of Medicine, Magdeburg, Germany, and the 

Department of Orthopaedic Surgery, KMG-Kliniken Kyritz, Germany. Murine synovial 

fibroblasts were isolated from tarsus of hind paws of wild type and hTNFtg mice. Synovial 

fibroblasts were isolated by enzymatic digestion and were cultured in DMEM (Invitrogen) + 

10% FCS (PAA) + antibiotics/antimycotics (PAA). All cells were cultured in DMEM with 

10% FCS at 37°C and 5% CO2 from passage 3 to 5 for all experiments. 

 

Immunohistochemical analysis of human and mouse synovial tissue 

For immunohistochemical analysis, deparaffinized, ethanol-dehydrated tissue sections of 

human synovial tissue were pretreated with trypsin, blocked with 10% horse serum, stained 

with antibodies against SUMO-2/3 (Zymed Laboratories), and counterstained with methyl 

green (Sigma-Aldrich).  

 



8 

siRNAs (small interfering RNAs) and Transfection 

A single siRNA was used to suppress both SUMO-2 and SUMO-3 expression (SUMO-2+3 

siRNA). Negative control siRNA (target sequence AATTCTCCGAACGTGTCACGT) were 

synthesized by QIAGEN. Transfection of siRNAs was performed by using 

Lipofectamine2000 (Invitrogen) according to the manufacturer’s instructions. Synovial 

fibroblasts were transfected 48h before further analysis. 

 

Semi-quantitative and quantitative RT-PCR  

Total RNAs from RASF/OASF were prepared by RNeasy miniprep kit (QIAGEN) according 

to the manufacturers protocol. cDNAs were synthesized by reverse-transcriptase. Quantitative 

real-time PCR was performed using the Bio-Rad iQ2 system. 

The following primers were used: MMP-1 sense 5`-CTGAAGGTGATGAAGCAGCC-3´, 

antisense 5´-AGTCCAAGAGAATGGCCGAG-3´; MMP-3 sense 5´-

CTCACAGACCTGACTCGGTT-3´, antisense 5´-CACGCCTGAAGGAAGAGATG-3´;  

SUMO-1 sense 5´-GACCAGGAGGCAAAACCTTCAACTG-3,´ antisense 5-

TCTCACTGCTATCCTGTCCAATGACT 3`; SUMO-2 sense 5´-

CACACCTGCACAGTTGGAAATGG-3´, antisense 5´-ACCTCCCGTCTGCTGTTGGAA -

3´; SUMO-3 sense 5´-GACACTCCAGCACAGCTGGAGATG-´3, antisense 5´-

AAACTGTGCCCTGCCAGGCT-3´; GAPDH sense 5´-

GGTGAAGGTCGGAGTCAACGGATT-3´,  

antisense 5´-TGGTGACCAGGCGCCCAATACGA -3´; β-Actin sense 5´-

CCACACCCGCCACCAGTTCG -3´, antisense 5´-TGCTCTGGGCCTCGTCACCC -3´. 

 

Protein extraction and Western blot analysis 

Total protein from human and murine synovial fibroblasts were extracted in RIPA lysis buffer 

(50mM Tris/HCl, 150mM NaCl, 1mM EDTA, 0,1% SDS, 0,5% deoxycholate, and 1% Triton 
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X-100) containing complete protease inhibitor cocktail (Roche Applied Science) and 10mM 

N-ethylmaleimide (NEM). For Western blotting, 30 µg of total cellular protein was separated 

by gradient SDS-PAGE (4-15%), transferred electrophoretically onto a PVDF membrane 

(Millipore) and blocked for 1h with PBS containing 5% non-fat milk, then incubated with 

primary antibody overnight at 4°C, followed by three PBS washes. Endogenous SUMO 

proteins were visualized using a SUMO-2/3 antibody recognising both SUMO-2 and SUMO-

3 isoforms (Zymed Laboratories). Detection was performed using horseradish peroxidase-

conjugated secondary antibodies and chemiluminescent substrates (ECL Western Blotting 

Detection Reagents; Amersham). 

 

MMP expression in human RASF/OASF 

MMP-1, MMP-3 and MMP-13 production by synovial fibroblasts from RA and OA patients 

after stimulation with recombinant human TNF-alpha or IL-1beta for 24h were measured by 

ELISA (R&D systems) measurement of the supernatants. Before stimulation with TNF-alpha 

the cells were treated with the NF-κB inhibitor BAY 11-7082, 5µM (Adipogen) or with 

DMSO for 30 min. 

 

NF-κB p65 transcription factor assay 

HeLa cells were transfected with specific siRNA against SUMO-2/3 for 48h. 

Activation of NF-κB p65 transcription factor was achieved by the stimulation of HeLa cells 

with 100ng/ml TNF-alpha for 16h. The nuclear extracts were prepared and NF-κB p65 

transcription factor assay was performed according to the manufacturers protocol (Active 

Motive). 

 

Luciferase reporter assay 
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Hek 293T cells were co-transfected with siRNA SUMO-2/3 or siRNA mock, in addition to 

the reporter plasmid, pNF-κB-Luc (Stratagene) and pRL-TK control reporter vector 

(Promega) using Lipofectamine2000 (Invitrogen). The pNF-κB-Luc plasmid contains a firefly 

luciferase reporter gene that was derived from a basic promoter element joined to five tandem 

repeats of an NF-κB consensus-binding element. The pRL-TK plasmid (Promega), which 

expresses Renilla luciferase, was used for the normalization of transfection efficiency. After 

12 h of stimulation with 100ng/ml TNF-alpha, the cells were harvested and their luciferase 

activities were measured using the dual luciferase reporter assay system (Promega). The data 

represent the means±S.E.M., and each transfection was performed in triplicate. 

 

Statistical Analysis 

Data are shown as arithmetic means ± SEM. Statistical analysis were performed using 

GraphPad Prism Software, 5.0c (Graph Pad Software Inc., San Diego, CA). According to data 

distribution and number of groups, a parametric (t test) or non-parametric (Mann-Whitney) 

test was performed. Values from ELISA data were compared by paired Student´s t test. *P ≤ 

0,05; **P ≤ 0,01; ***P ≤ 0,001 was considered as statistically significant. 

 

DISCUSSION 

In this study, we have shown for the first time that SUMO-2/3 is involved in the activation of 

synovial fibroblasts in RA and, thus, the disregulation of sumoylation is likely to contribute to 

the pathogenesis of the disease. SUMO-2 is not only upregulated in RASF but also regulates 

TNF-alpha and IL-1beta induced expression of MMP-3 and MMP-13. 

Following previous data that have demonstrated the increased expression of SUMO-1 in 

synovial fibroblasts from patients with RA(23), we investigated the expression of SUMO-2/3 

in RASF as well as in the hTNFtg mouse model. In our study, we have demonstrated an 

increased expression of SUMO-2/3 in synovial tissue sections from RA patients compared to 
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OA patients as well as in synovial fibroblasts from these two patient groups. Based on this 

data, we wanted to investigate the effect of  the proinflammatory cytokine TNF-alpha, which 

is one of the major players contributing to RA. Interestingly, we found a dose-dependent 

increase in SUMO-2 expression at mRNA level, while, expression of SUMO-3 was 

unchanged. Additionally, protein levels of both free SUMO-2/3 and of the conjugated 

proteins was increased. Therefore, we conclude that TNF-alpha selectively regulates the 

expression of SUMO-2, but not SUMO-3. SUMO-3, but not SUMO-2, can be phosphorylated 

at serine 2(18). This published functional difference between SUMO-2 and SUMO-3 may be 

the reason for the different contributions of TNF-alpha in the expression of SUMO-2 and 

SUMO-3. Furthermore, we have also confirmed increased expression of SUMO-2/3 in 

synovial tissue sections from hTNFtg mice and in synovial fibroblasts obtained from these 

mice compared to wt mice, suggesting that chronic exposure to TNF-alpha increases the 

expression of SUMO-2/3. 

To find out which functional role SUMO-2/3 has in contributing to the pathogenesis of RA, 

we knocked down SUMO-2/3 and measured TNF-alpha and IL-1beta induced MMP 

expression. Surprisingly, knockdown of SUMO-2/3 enhances TNF-alpha and IL-1beta 

induced expression of MMP-3 and MMP-13, but not of MMP-1. TNF-alpha is one of the key 

regulators in the pathogenesis of rheumatoid arthritis and is overexpressed in synovial 

fibroblasts from RA patients. These data suggest that the increased expression of SUMO-2 

may be part of a protective rather than a disease-promoting mechanism in synovial fibroblasts 

from RA patients to counteract and limit the increased and unbalanced expression of MMP-3 

and MMP-13. These data raise the question of which transcription factors are involved in 

increasing MMP-3 and MMP-13 expression following TNF-alpha stimulation of SUMO-2/3 

silenced cells. NF-κB plays an important role in RA pathogenesis(24) and cytokine activity 

e.g. TNF-alpha induces the activation of NF-κB in RA(25). Inactive NF-κB is composed of a 

heterodimer of p50 and p65 subunits in complex with an inhibitory IκB subunit. Activation of 
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this factor requires phosphorylation, ubiquitination and proteasomal degradation of IκB. 

Using site-directed mutagenesis, it was shown that lysine K21 in IκB-alpha is the primary site 

on the target protein for sumoylation(22). SUMO-1 was shown to regulate NF-κB activity by 

stabilizing the IκBalpha-NF-κB complex(22). Induction of MMPs by cytokines is both cell 

type and MMP-specific. In articular chondrocytes and in SW1353 cells, inhibition of the 

transcription factor NF-κB suppresses TNF-alpha induced MMP-13 expression(25). NF-κB 

activity is also essential for upregulation of MMP-1 and MMP-3 in rabbit and human vascular 

smooth muscle cells(26). Our results show that silencing of SUMO-2/3 by specific siRNA 

upregulates the transcriptional activity of NF-κB in response to TNF-alpha. Our observed 

data is in line with a recent study, which has shown that mouse SUMO-2 modifies IκB-alpha 

and inhibits the translocation of NF-κB into the nucleus in dendritic cells(27).  

Our observations suggest that after knockdown of SUMO-2/3, NF-κB translocates into the 

nucleus and promotes increased transcription and secretion of MMP-3 and MMP-13.  

With respect to the differential regulation of individual members of the MMP family, it has 

been well established that in addition to NF-κB, MMPs are regulated by other pathways and 

transcrition factors, such as AP-1(2). Therefore, our results on the one hand may refelect the 

different levels to which MMPs are regulated specifically by NF-κB. On the other hand, 

sumoylation pathways have been demonstrated to regulate MMPs also through complex 

epigenetic pathways, which also may explain the differences(19). Additionally we have 

confirmed these results by pretreatment of RA synovial fibroblasts with the highly specific 

inhibitor of IκB-alpha phosphorylation BAY 11-7082. Addition of BAY 11-7082 inhibitor 

totally blocked SUMO-2/3 induced MMP-3 and MMP-13 production, indicating that SUMO-

2/3 regulates MMP-3 and MMP-13 expression through NF-κB pathway. Furthermore, there is 

a growing body of evidence showing that hypoxia and SUMO activity are closely linked 

through regulation of HIF1-alpha. Different studies demonstrate this controversial hypothesis 
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concerning the regulation of HIF1-alpha expression and subsequent regulation of MMP-1 and 

MMP-3(28-30). In our study, although we demonstrate a role of SUMO-2/3 in regulation of 

TNF-alpha mediated MMP expression via the NF-κB signalling pathway, we cannot exclude 

the effect of other integrating signalling pathways upon the overall regulation of MMPs in RA. 

In conclusion, our results have demonstrated that downregulation of SUMO-2/3 enhances 

TNF-alpha and IL-1beta induced expression of MMP-3 and MMP-13 through upregulated 

transcriptional activity of NF-κB. Overall, our results suggest that the fine tuning and balance 

of sumoylation pathways is important in the pathogenesis of RA. Furthermore, because many 

proteins which are regulated by SUMO modification are also targets of drugs and therapies 

against rheumatoid arthritis, it is important to invest in a deeper understanding of this 

mechanism in order to provide us with novel targets for drug design against RA. 
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FIGURE LEGENDS 

 
Figure 1. Expression of SUMO-2/3 in synovial fibroblasts from patients with RA. 

a) SUMO-2/3 expression was assessed by immunohistochemical staining using SUMO-2/3 

antibody in synovial tissue from patients with RA compared to OA. The nuclei were 

counterstained with methyl green. b) When investigated at the protein level by fluorescence 

microscopy, SUMO-2/3 (green staining) was detected in the nucleus. c) Westen blot analysis 

demonstrates SUMO-2/3 expression as well as conjugated proteins in RASF versus OASF. d) 

mRNA levels of SUMO-2 and SUMO-3 were determined in primary synovial fibroblasts 

isolated from patients with RA (n=9) and OA (n=8) by quantitative real time PCR 

(normalized to gapdh). e) Western blotting for SUMO-2/3 in RASFs treated for 24 h with 

100ng/ml TNF-alpha. f) Synovial fibroblasts from RA patients (n=5) were treated for 6 h with 

a dose response of TNF-alpha (0,1; 1; 10 and 100 ng/ml) on SUMO-2 and SUMO-3, mRNA 

levels were measured by real time PCR. Values were normalized for the housekeeping gene 

gapdh. The data are mean ± S.E.M. of three independent experiments. *P ≤ 0,05; **P ≤ 0,01; 

***P ≤ 0,001 was considered as statistically significant. 

 

 
Figure 2. Expression of SUMO-2/3 in synovial tissue and synovial fibroblasts from hTNFtg 

mice. a) Immunohistochemical staining of SUMO-2/3 expression in synovial tissue from 

hTNFtg mice (n=4) compared to wildtype (wt) (n=4) using SUMO-2/3 antibody or isotype 

control. Arrows point to areas of synovial fibroblasts. b) mRNA levels of SUMO-2 and 

SUMO-3 (normalized for the housekeeping gene beta-actin) as well as protein levels (c) were 

determined in synovial fibroblasts isolated from hTNFtg (n=3) and wt (n=3) mice. The data 

are mean ± S.E.M. of three independent experiments. *P ≤ 0,05; **P ≤ 0,01; ***P ≤ 0,001 

was considered as statistically significant. 

 

 

Figure 3. SUMO-2/3 regulates TNF-alpha induced MMP-3 and MMP-13 expression, but not 

MMP-1 in synovial fibroblasts. a) Expression levels of MMP-3, MMP-13 and MMP-1 in 

supernatants from RASF (n=3) and OASF (n=3) were measured by ELISA. b) 

Semiquantitative PCR demonstrates TNF-alpha induced production of MMP-1 and MMP-3 in 
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synovial fibroblasts. The data are mean ± S.E.M. of three independent experiments. *P ≤ 

0,05; **P ≤ 0,01; ***P ≤ 0,001 was considered as statistically significant. 

 

 

Figure 4. SUMO-2/3 regulates NF-κB p65 activation. a) Downregulation of SUMO-2/3 leads 

to enhanced activation of NF-κB p65 after stimulation for 16 h with TNF-alpha in nuclear 

extracts from HeLa cells (n=3). Transfection efficiency was assessed by Western blot for 

SUMO-2/3. b) Hek 293T cells were co-transfected with siRNA for SUMO-2/3 or control 

siRNA, in addition to reporter plasmid, pNF-κB-Luc and pRL-TK control reporter vector. 

The pRL-TK plasmid, which expresses Renilla luciferase, was used for the normalization of 

transfection efficiency. After 12 h of stimulation with 100ng/ml TNF-alpha, the cells were 

harvested and their luciferase activities were measured using the dual luciferase reporter assay 

system. The data represent the means±S.E.M. and each transfection was performed in 

triplicate. *P ≤ 0,05; **P ≤ 0,01; ***P ≤ 0,001 was considered as statistically significant. 

 

 

Figure 5. Inhibition of NF-κB activation reduces the expression of MMP-3 and MMP-13. RA 

synovial fibroblasts were pretreated with IκB phosphorylation inhibitor BAY 11-7082 for 30 

min and then stimulated with TNF-alpha (100 ng/ml) for 24 h. Expression levels of MMP-3 

and MMP-13 in supernatans from RASF (n=3) were measured by ELISA. The results for 

MMP-3 (a) and MMP-13 (b) are shown. The data are mean ± S.E.M. of three independent 

experiments. *P ≤ 0,05; **P ≤ 0,01; ***P ≤ 0,001 was considered as statistically significant. 

 

 

 

Supplementary Material 

 

Materials and Methods 

RASFs were transfected with siRNA against SUMO-2/3. Whole cell extracts were isolated 

from this cells and subjected to Western blot. TNF-Receptor I was visualized using a TNF-

Receptor I antibody (cell signaling). RNA was isolated, then cDNAs were synthesized and the 

expression of SUMO-1, -2 and -3 were determined by using real time PCR.  
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Figure S1. Expression of TNF-Receptor I and SUMO-1 after knockdown of SUMO-2/3. 

RASFs were transfected with siRNA against SUMO-2/3 and protein extracts were subjected 

to western blotting. As shown in Fig. S1a knockdown of SUMO-2/3 does not affect the 

expression of the TNF-Receptor I. Expression of SUMO-1 was not changed after knockdown 

of SUMO-2/3, as shown in Fig.S1b. All experiments were performed in three independent 

trials. *P ≤ 0,05; **P ≤ 0,01; ***P ≤ 0,001 was considered as statistically significant. 

 

 

Figure S2. SUMO-2/3 regulates IL-1beta induced MMP-3 and MMP-13 expression, but not 

MMP-1 in synovial fibroblasts. a) Synovial fibroblasts form RA and OA patients were 

transfected with siRNA against SUMO-2/3 and stimulated with IL-1beta for 24h, 

supernatants were collected. Expression levels of MMP-3, MMP-13 and MMP-1 in 

supernatants from RASF (n=3) and OASF (n=3) were measured by ELISA. The data are 

mean ± S.E.M. of three independent experiments. *P ≤ 0,05; **P ≤ 0,01; ***P ≤ 0,001 was 

considered as statistically significant. 

 

 

Figure S3. Specifity of the SUMO-2/3 antibody. Flag-SUMO-2, Flag-SUMO-3 constructs or 

Flag-tag empty control vector were transfected into HeLa cells and lysed 24 hours later. The 

lysates were separated by SDS-PAGE and the expressed proteins were visualized by western 

blotting using the SUMO-2/3 antibody. Flag-SUMO-2 and Flag-SUMO-3 transfected HeLa 

cells show a higher level of sumoylation in comparison to the basal levels seen in both 

untransfected and empty plasmid control transfected cells. 
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