Morphology and hemodynamics during vascular regeneration in critically ischemic murine skin studied by intravital microscopy techniques

Schweizer, R; Merz, K; Schlosser, S; Spanholtz, T; Contaldo, C; Stein, J V; Enzmann, V; Giovanoli, P; Erni, D; Plock, J A

Abstract: BACKGROUND: With the understanding of angiogenesis and arteriogenesis, new theories about the orchestration of these processes have emerged. The aim of this study was to develop an in vivo model that enables visualization of vascular regenerating mechanisms by intravital microscopy techniques in collateral arteriolar flap vascularity. METHODS: A dorsal skin flap (15 × 30 mm) was created in mice and fixed into a skinfold chamber to allow for assessment of morphology and microhemodynamics by intravital fluorescence microscopy (IVFM). Laser scanning confocal microscopy (LSCM) was utilized for three-dimensional reconstruction of the microvascular architecture. RESULTS: Flap tpO(2) was 5.3 ± 0.9 versus 30.5 ± 1.2 mm Hg in controls (p < 0.01). The collateral arterioles in the flap tissue were dilated (29.4 ± 5.3 μm; p < 0.01 vs. controls) and lengthened in a tortuous manner (tortuosity index 1.00 on day 1 vs. 1.35 ± 0.05 on day 12; p < 0.01). Functional capillary density was increased from 121.00 ± 25 to 170 ± 30 cm/cm(2) (day 12; p < 0.01) as a result of angiogenesis. Morphological evidence of angiogenesis on capillary level and vascular remodeling on arteriolar level could be demonstrated by IVFM and LSCM. CONCLUSIONS: Present intravital microscopy techniques offer unique opportunities to study structural changes and hemodynamic effects of vascular regeneration in this extended axial pattern flap model.

DOI: 10.1159/000333088
Morphology and Hemodynamics during Vascular Regeneration in Critically Ischemic Murine Skin Studied by Intravital Microscopy Techniques

R. Schweizer a K. Merz d S. Schlosser a T. Spanholtz a C. Contaldo e J.V. Stein c V. Enzmann a,b P. Giovanoli e D. Erni d J.A. Plock a,d,e

Departments of a Clinical Research and b Ophthalmology, and c Theodor Kocher Institute, University of Bern, d Department of Plastic and Hand Surgery, Inselspital, University Hospital, Bern, and e Division of Plastic and Hand Surgery, University Hospital, Zürich, Switzerland

Key Words
Angiogenesis · Arteriogenesis · Hypoxia · Intravital microscopy · Microcirculation · Surgical flap · Neovascularization · Vascular remodeling

Abstract
Background: With the understanding of angiogenesis and arteriogenesis, new theories about the orchestration of these processes have emerged. The aim of this study was to develop an in vivo model that enables visualization of vascular regenerating mechanisms by intravital microscopy techniques in collateral arteriolar flap vascularity. Methods: A dorsal skin flap (15 × 30 mm) was created in mice and fixed into a skinfold chamber to allow for assessment of morphology and microhemodynamics by intravital fluorescence microscopy (IVFM). Laser scanning confocal microscopy (LSCM) was utilized for three-dimensional reconstruction of the microvascular architecture. Results: Flap tpO2 was 5.3 ± 0.9 versus 30.5 ± 1.2 mm Hg in controls (p < 0.01). The collateral arterioles in the flap tissue were dilated (29.4 ± 5.3 μm; p < 0.01 vs. controls) and lengthened in a tortuous manner (tortuosity index 1.00 on day 1 vs. 1.35± 0.05 on day 12; p < 0.01). Functional capillary density was increased from 121.00 ± 25 to 170 ± 30 cm/cm2 (day 12; p < 0.01) as a result of angiogenesis. Morphological evidence of angiogenesis on capillary level and vascular remodeling on arteriolar level could be demonstrated by IVFM and LSCM. Conclusions: Present intravital microscopy techniques offer unique opportunities to study structural changes and hemodynamic effects of vascular regeneration in this extended axial pattern flap model.

Introduction
Critical ischemia and hypoxia can lead to consecutive functional loss, cell death and necrosis in surgical flaps. During the last years, a new approach to tackle critical ischemia has emerged, which consists in promoting the regenerative potential of the vasculature to compensate the diminished supply of blood and oxygen. Such neovascularization includes the formation of new vessels (angiogenesis) and the remodeling (arteriogenesis) of preexisting vascular structures. Up to date, each of these mechanisms has predominantly been investigated as an isolated process, whereas there is a paucity of data documenting these integral processes in the living tissue over time. Previous in vivo studies have been restricted to the analysis of necrotic flap area or single time-point experiments, or focused on acute phenomena of vasoregulation [1, 2], ischemia and ischemia reperfusion experiments [3–
5] and tissue survival studies [6, 7]. Recently, the attempt has been made to study angiogenesis over time [6, 8]. The physiological vascular regeneration mechanisms following critical ischemia without development of necrosis are, however, fairly evaluated continuously and morphologically over time, which is especially true for extended axial pattern flaps with collateralized random perfusion in the extended part.

Various techniques have been used to demonstrate oxygen delivery [9], oxygen homeostasis or blood flow by dye diffusion [10], laser Doppler flowmetry [11], oxygen measurements [12, 13] or microdialysis [14–16]. However, all these techniques have their limitations in assessing blood perfusion only indirectly.

The missing link between basic knowledge and biological efficacy of neovascularization may be substituted using intravital microscopic techniques repetitively providing in vivo data of both the regenerative morphological changes and their hemodynamic effects simultaneously [2, 17–19]. Intravital microscopy (IVFM) is the only technique that allows for direct and quantitative assessment of hemodynamic and morphological data in the living tissue over time. With the aid of a variety of dyes, high-resolution optical instrumentation and sophisticated software, all levels of the vascular network can be investigated [6, 8]. In addition, oxygenation and viability can be monitored in the same tissue. The shortcoming of IVFM, e.g. two-dimensional imaging and limited penetration depth, can be circumvented by utilizing multiphoton laser scanning confocal microscopy (LSCM) [20, 21], which has been shown to enable three-dimensional reconstruction of living tissue structures with a resolution that allows for visualization of cellular organelles at a penetration depth of several hundred micrometers [22].

The present study was dedicated to the development of a new application of the dorsal skinfold chamber that enables studying vascular regenerative mechanisms with intravital microscopy techniques in order to follow the interrelationship between the morphological vascular changes resulting from neovascularization and microhemodynamic changes on various vascular levels over time. The focus was put on the arteriolar collateralization zone of an extended axial pattern flap.

Animals and Methods

The experiments were performed according to the National Institutes of Health guidelines for the care and use of laboratory animals and with the approval of the local Animal Ethics Committee.

Animals

Twenty-six female mice (C57BL/6, 10–12 weeks old, 23–25 g; Charles River Laboratories, Sulzfeld, Germany) were used in this study. The animals were housed in single cages postoperatively with free access to water and standard diet. Due to the lack of optical clarity, anesthesia complications and infection, 6 animals were excluded in the early phase of the experiments. Ten animals were available for analysis in the flap and skin chamber group, 6 animals were included in the control group after receiving a skin chamber only. These groups were also used for tpO2 and microdialysis measurements on day 1. Another 4 animals were assigned to analysis by LSCM after flap and skin chamber operation.

Anesthesia

For all manipulations, the animals were anesthetized with an intraperitoneal injection of medetomidine 500 μg/kg body weight (BW), climazolam 5 mg/kg BW, and fentanyl 50 μg/kg BW. Reversion was induced by antidote injection with atipamezol 1.25 mg/kg BW (Antisedan; Pfizer, Switzerland), sarmazenil 0.5 mg/kg BW (Sarmasol; Gräub, Switzerland) and naloxon 0.6 mg/kg BW (Naloxon; Orpha, Switzerland) after the manipulations were completed.

Flap Surgery

The anesthetized animals were placed on a heating pad in a prone position, and the room temperature was set at 28°C to keep their skin temperature constant at 32°C, which was verified with a microthermometer placed on the abdominal skin. The back skin was shaved and depilated. Surgery was performed with the aid of an operating microscope at ×10 magnification (Wild Heerbrugg, Switzerland). The flap was planned as a cranially pedicled axial pattern flap, nourished by the lateral thoracic artery, with a length-to-width ratio of 30 × 15 mm. The spine was taken as medial flap border. The flap consisted of skin, a thin layer of panniculus carnosus muscle, and subcutaneous tissue. During surgery, the flap was irrigated with 0.9% NaCl to prevent it from drying out. The flap was fixed into a dorsal skin fold chamber to make it amenable to intravital microscopy (fig. 1).

Wound infection and technical complications such as rupture of the sutures or insufficient optical clarity due to granulation tissue were defined as exclusion criteria.

Three distinct vascular zones were defined within the flap: the proximal zone, corresponding to the vascular territory of the flap pedicle, i.e. the lateral thoracic artery; the distal zone corresponding to the territory of the circumflex iliac artery, and the intermediate zone consisting of collateral vessels, through which the distal zone is perfused. In the control group, the skin fold chamber was mounted onto intact skin in the same area. Postoperatively, all animals received analgesic treatment with metamizole (0.25 mg/g BW, Novalgin; Sanofi-Aventis, Switzerland) and 0.1 ml glucose 5% for volume replacement purposes due to the large wound size.

Tissue Oxygenation

To measure tissue oxygenation, a 22-gauge needle was inserted in the tissue. After removing the canula, the measuring probes could be inserted in the preformed duct. Care was taken not to injure larger vessels, which would lead to bleeding and prohibit adequate measurement.
Partial oxygen tension was assessed in the tissue with Clark-type microprobes consisting of polarographic electrodes and an oxygen-sensitive microcell with a pO_2-sensitive area of 1 mm2 (Revoxode CC1; GMS, Kiel, Germany) [23, 24]. The probes were inserted into the subcutaneous tissue in the distal vascular territory of the flap under visual control and microscopic magnification. In control animals, the probe was placed in the subcutaneous tissue of the distal part of the chamber window. Care was taken to place the probes away from arterioles and large venules. Equilibration was awaited and values were measured over 5 min.

The microdialysis technique (CMA, Stockholm, Sweden) was utilized for analysis of the oxidative energy metabolism in the jeopardized tissue. Interstitial concentrations of pyruvate and lactate were determined as previously described [12, 24–26]. The lactate-to-pyruvate ratio was calculated to assess the aerobic/aerobic correlation. Microprobes (CMA20, 20 kDa, PAES; CMA) were perfused with isotonic Ringer solution using a microinjection pump (CMA/100; CMA). The perfusion rate was set to 0.75 µl/min. After insertion in the tissue, probes were perfused for 30 min for equilibration before the definitive sample was collected over 15 min. The dialysates were analyzed photometrically using the CMA600 computer-based system (CMA) [25, 27].

Intravital Fluorescence Microscopy

Investigations were performed using an epiluminescence intravital microscope (Zeiss Axioplan; Zeiss, Jena, Germany), as reported earlier [2, 12, 23, 28]. Microscopic images were captured by a television camera (intensified CCD camera; Kappa Messtechnik, Gleichen, Germany), displayed on a television screen (Trinitron PVM-1454; Sony, Tokyo, Japan), and recorded on video (50 Hz; Panasonic AG-7350-SVHS, Tokyo, Japan) for subsequent off-line analysis with the help of a computer-assisted image analysis system (CapImage; Zeintl, Heidelberg, Germany) [29, 30]. The preparation was observed visually with a ×40 water immersion objective with a numerical aperture of 0.75, which resulted in a total optical magnification of ×909 on the video monitor, where 1 pixel corresponded to 264 nm in the tissue. The microvessels were classified according to physiological and anatomical features. The pedicle artery, collateral arterioles in the proximal part of the flap, capillaries in the distal part of the flap, and postcapillary collecting venules in the distal part of the flap were chosen for evaluation according to their optical clarity. The intraluminal microvascular diameters were measured in micrometers with the use of 2% fluorescein isothiocyanate-labeled-dextran (FITC dextran, 150 kDa; Sigma, Buchs, Switzerland). The tortuosity index was defined as a function of changing vessels, linearity over a defined distance. Briefly, it is determined by the ratio between the length of the winded arteriole and the distance of the starting point and the end point of a determined vessel section. Functional capillary density (FCD) was defined as the length of red blood cell-perfused capillaries per observation area (cm/cm2). Capillary perfusion was determined by red blood cell velocity (RBC velocity; mm/s) in the capillary system. All measurements were performed using CapImage software (Zeintl).

Leukocytes were stained using rhodamin 6G. As reported earlier [2], leukocyte interaction with the endothelium was analyzed quantitatively. Sticking leukocytes were defined as the number of cells per square micrometer of venular endothelial cell surface (calculated from diameter and length of the vessel segment studied, assuming cylindrical geometry) that remained stationary and

Fig. 1. Surgical flap model with the marked area including the two vascular territories of the lateral thoracic and the superficial circumflex iliac artery (a), which is secured during surgery (b). The flap is mounted into a dorsal skin chamber (c) and available for intravital microscopy examinations (d).
attached for at least 20 s to the microvascular endothelium. Rolling leukocytes were defined as cells moving along the vascular wall more slowly than the blood stream, or leukocytes sticking to the endothelium for less than 20 s. They were reported as the number of cells passing a reference point within the microvessel.

Multiphoton Confocal Microscopy (LSCM)

Multiphoton imaging allowed three-dimensional time-lapse imaging of fluorescent signals deep below the surface of living tissues. The fluorescent images were of slightly lower resolution compared with those obtained by traditional confocal microscopy. Differentiation of differently stained objects was obtained with double- or triple-labeled excitation using a Ti:Al2O3 laser at 800 nm and a HeNe laser at 633 nm. Multiphoton imaging was performed with a fluorescence microscope (BX50WI; Olympus, Volketswil, Switzerland) equipped with a 20× objective and a software-controlled confocal/multiphoton microscopy system (LaVision Biotec, Bielefeld, Germany). For multiphoton excitation and second harmonic generation, a Ti:sapphire laser with a 12-W pump laser (MaiTai HP; Spectra-Physics, Darmstadt, Germany) was tunable to 780 nm. For three-dimensional analysis of vascular depth, z-step size of 2 μm (scan field × depth, z-step size of 2 μm) between 10 and 30 μm below the skin were taken using 780 nm excitation wavelength. Fluorescent and second harmonic generation signals were collected using 455/57- and 525/50-nm bandpass filters and 593/40-nm bandpass filters with non-descanned detectors to generate three-color images. Plasma was labeled with FITC dextran (250 kDa, 25 mg/ml; Sigma Chemical, St. Louis, Mo., USA) according to the manufacturer’s instructions. Three-dimensional analysis of vascular structures was performed using imaging software (Volocity; Improvision, Lexington, Ky., USA).

Immunohistochemistry

Tissue hypoxia was assessed by pimonidazole staining as established previously [12, 24]. Thirty minutes prior to euthanasia the HypoxyProbe™-1 antibody (60 mg/kg) was administered. Skin samples were taken at the end of the experiment on day 12. Tissue was fixed in 4% paraformaldehyde, washed in PBS, stored in 70% ethanol and finally embedded in paraffin blocks. Five-micron sections were cut, transferred to micro-slides and air-dried at 37°C overnight.

Paraffin sections were dewaxed and rehydrated. For detection of HypoxyProbe, sections were blocked for endogenous peroxidases with 3% H2O2 for 5 min followed by 0.01% Pronase for 40 min at 40°C for antigen retrieval. Sections were treated with DAKO blocking solution for 5 min and incubated with Hypoxy-Probe-1 antibody 1:50 for 40 min, followed by biotin-conjugated F(ab’)2 I:500 and streptavidin peroxidase. Signals were developed using a DAB-peroxidase system (DAKO).

For VEGF staining, the sections were deparaffinized and rehydrated. They were immersed in 0.1 M tri-Na citrate at pH 6.0 and underwent heat-induced antigen retrieval with a microwave oven. After cooling down to room temperature, the slides were rinsed with PBS (2 × 3 min). The sections were incubated with a monoclonal mouse reactive VEGF-antibody (Abcam, Cambridge, UK), followed by a secondary goat anti-mouse antibody (Abcam). The protocol was provided from the company. A DAB-peroxidase system (DAKO) was used for staining and hematoxilin for counterstaining.

Results

Hypoxia in the distal flap tissue was confirmed by a ptO2 of 5.3 ± 0.9 versus 30.5 ± 1.2 mm Hg in controls (p < 0.01). Accordingly, the lactate-to-pyruvate ratio was 74.4 ± 8.5 in the distal flap compared to 15.7 ± 1.1 in controls (p < 0.01; fig. 2).

Analysis of microhemodynamic parameters revealed pathophysiological changes on different vascular levels. The conduit arterioles were enlarged in the critically perfused flap tissue over time (27.3 ± 4.4 and 29.4 ± 5.3 μm, respectively; p < 0.01 vs. control; fig. 3), whereas diameters remained at baseline in the control animals (20.3 ± 1.4 and 20.5 ± 2.8 μm on day 1 and 12). On the same vascular level, the tortuosity index was 1.35 ± 0.05 on day 12 versus 1.00 on day 1 (p < 0.01) in the flap tissue, while exhibiting no elongation in the control group. FCD was approximately 250 cm/cm² in the control tissue at
both time points. In the distal flap, FCD was reduced to $121.00 \pm 8.25 \text{ cm/cm}^2$ on day 1, but recovered partially to $170.83 \pm 30 \text{ cm/cm}^2$ on day 12 ($p < 0.01$ vs. day 1; $p < 0.01$ vs. control; fig. 4). Capillary RBC velocity on day 1 was $0.15 \pm 0.04 \text{ mm/s}$ in the distal flap tissue compared to $0.27 \pm 0.04 \text{ mm/s}$ in the control skin ($p < 0.01$), whereas values of 0.27 ± 0.05 and $0.29 \pm 0.03 \text{ mm/s}$ were obtained on day 12, respectively (fig. 4). The diameters in postcapillary collecting venules were similar in both groups and time points (data not shown). Increased counts of rolling and sticking leukocytes (4.2 ± 1.5 and 4.6 ± 1.3, respectively) were observed in the distal flap tissue at both days 1 and 12 (vs. 2.8 ± 1.1 on day 1 and 2.1 ± 1 on day 12; day 1 vs. day 12 n.s., day 12 control vs. flap $p < 0.01$; fig. 5).

Morphological evidence for angiogenesis and arteriogenesis could be demonstrated by IVFM in terms of sprouting and budding on capillary level (fig. 6) and increasing tortuosity on arteriolar level (fig. 7), respectively. The three-dimensional character of the remodeled microvasculature could be visualized with help of LSCM on capillary level (fig. 8).

Immunohistochemistry revealed strong positivity in the hypoxprobe staining for hypoxic cells in the flap tissue (score 12/6) compared to controls (score 2/6) after 12 days. This was also true for the VEGF staining. Especial-
ly the perivascular cells of arterioles and capillaries showed strong VEGF expression (score 10/6), whereas controls (score 3/6) did not show the same intensity of expression (fig. 9).

Discussion

In this new application of the dorsal skin fold chamber, we were able to demonstrate the functional and morphological results of vascular regeneration in an extended axial pattern flap with distal random perfusion. Physiological parameters as dilated and tortuous arterioles and increased capillary density and flow could be demonstrated. To our knowledge, this is the first in vivo documentation of combined arteriogenesis and angiogenesis in critical ischemia and the first three-dimensional reconstruction of angiogenesis in a surgical flap model. We could show in one model that vascular regeneration takes advantage of different mechanisms that contribute to hemodynamic improvements. Previous knowledge has shown that the survival of distant parts of axial pattern flaps is assured by vasodilation and recruitment of choke vessels, which is known as the delay phenomenon. In random pattern flaps, the survival was attributed to angiogenesis. Therefore, we provide a new view that a more complex system of vascular regenerating mechanisms is involved.

Various techniques have been used to investigate microcirculation and neovascularization in three-dimensional fashion, like corrosion casting [31], scanning electron microscopy [31, 32], microangiography [33, 34], but none has shown the technical promise of in vivo multiphoton LSCM so far [21, 22, 35]. Several advantages compared with other fluorescence-based microscopy techniques, including diminished phototoxicity, reduced bleaching, the phenomenon of second harmonic generation of ultraviolet photons by collagen fibers, which allows noninvasive imaging of extracellular matrix components and deeper tissue penetration (in our experience 250 μm for multiphoton excitation), have to be noticed. The two- and three-dimensional state-of-the-art fluorescence techniques allow for in vivo research utilizing fluorescent antibodies, nanoparticles and cells. The potential
The implementation of fluorescent stem cells in our model is most promising for research of stem cell interaction in the context of vascular regeneration.

We standardized and characterized the flap tissue by quantitative and qualitative analysis of tissue oxygenation and oxygen metabolism utilizing microdialysis and partial tissue oxygen tension measurements in the same animals. Hypoxic tissue conditions due to critical ischemia could be demonstrated. Both methods have been used as standard procedures in our laboratory before [12, 27, 36]. Two approved models in experimental surgery were combined: (1) the dorsal skinfold chamber [6] and (2) a pedicled axially perfused skin flap at the dorsum of the mice [4, 5, 24]. This chronic model was evaluated for intravital microscopy investigation, without reaching a limit time-wise after 12 days. Quantitative measurements on microhemodynamic parameters in vivo without further need for invasive techniques or surgical manipulation were enabled. According to the literature, vascular regeneration has been studied mainly with a focus on one mechanism like arteriogenesis and angiogenesis [6, 8, 37]. This isolated point of view could be overcome with our new model through the combination of different microscopy techniques.

In detail, we found dilated and elongated conduit arterioles in the flap tissue, which equals the morphological result of arteriogenesis [38, 39]. The role of collateral vessels in this context has so far not been studied in extended flaps. The massive increase of tortuosity and vasodilation in collateral arterioles within the flap could be interpreted as shear stress-related vasodilation and trigger for elongation during arteriogenesis [39, 40]. Interestingly, the physiological and morphological changes had no influence on the capacity of the collecting venular system diameter, which could be due to constant outflow. Downstream to the arteriolar system, capillary budding and sprouting could be observed, resulting in angiogenetic recovery of FCD and RBC velocity. It remains speculative
if the recovery of capillary blood flow is mainly related to the partial recovery of FCD or the vasodilation on the arteriolar side. It could be assumed that both mechanisms contribute to it. Angiogenesis studied by IVFM has been described by Harder et al. [6] in a random pattern flap model in mice. However, this model was determined to focus on angiogenesis and demarcation against necrosis and not the integral process of vascular regeneration as in our model.

The increase of rolling and sticking leukocytes indicates a role of inflammatory response in vascular regeneration. Moreover, a defined role for adherent or activated leukocytes could be supposed [41]. As leukocytes can be effectively visualized in vivo, this could be of future interest for the use of our model.

In conclusion, this model could contribute to a better understanding of the different mechanisms of vascular regeneration by investigating the pathophysiological mechanisms of vascular remodeling on arterial, arteriolar, capillary and venular level in future experiments. Intense competitive evaluation by intravitral microscopy would result in monitoring of the morphological changes on different vascular levels and their hemodynamic relevance for the whole orchestrated process of vascular regeneration over time. The use of LSCM has so far not been described for in vivo chamber models in mice or flap models. In its complexity, it represents an ideal tool to investigate the effects of critical ischemia on arteriolar, capillary and venular morphology, microhemodynamic and vascular recovery processes separately for each vascular section. Inflammatory reactions on the level of leukocyte adhesion could be assessed and visualized, which opens the field of cellular research in vascular regeneration. Cell-cell interaction could be studied in addition as demonstrated by leukocyte adherence. Moreover, fluorescent intravital antibody staining and implementation of fluorescent stem cells would help to elucidate the contribution of resident and circulating progenitor cells to neovascularization, which is the direction of our future research projects.

References

