WHAT IS THE SITE OF ORIGIN OF COCHLEOVESTIBULAR SCHWANNOMAS?

Christof Roosli1,2, Fred H. Linthicum Jr.3, Sebahattin Cureoglu4, and Saumil N. Merchant1

1Massachusetts Eye and Ear and Infirmary, Harvard Medical School, Boston, Massachusetts, USA;
2Clinic of Otorhinolaryngology-Head and Neck Surgery, University Hospital Zurich, Zurich, Switzerland;
3House Ear Institute, Los Angeles, California, USA;
4Department of Otolaryngology, University of Minnesota, Minneapolis, Minnesota, USA

Corresponding Author:
Christof Roosli, M.D.
Massachusetts Eye and Ear Infirmary
243 Charles Street
Boston, MA 02114
U.S.A
Phone: 617 573 5591
Fax: 617 720 4408
E-mail: christof_roosli@meei.harvard.edu

Running title: Origin of cochleovestibular schwannomas

Key words: vestibular schwannoma, temporal bone histopathology, site of origin, Obersteiner-Redlich-Zone, glial-Schwann cell transition zone
WHAT IS THE SITE OF ORIGIN OF COCHLEOVESTIBULAR SCHWANNOMAS?

ABSTRACT
The belief that cochleovestibular schwannomas arise from the glial-Schwann cell junction has been quoted repeatedly in the literature, although there is no published evidence that supports this statement. A systematic evaluation of the nerve of origin and the precise location of cochleovestibular schwannomas using our respective archival temporal bone collections was conducted. Forty tumors were within the internal auditory canal (IAC), while 10 were intralabyrinthine neoplasms. Of 40 IAC schwannomas, 4 arose from the cochlear nerve, and 36 from the vestibular nerve. Twenty-one tumors clearly arose lateral to the glial-Schwann cell junction, while 16 tumors filled at least two thirds of the IAC with the epicenter of the neoplasm located in the mid part or the lateral part of the IAC. Only 3 schwannomas were located in the medial one third of the IAC in the area of the glial-Schwann cell junction. We concluded that cochleovestibular schwannomas may arise anywhere along the course of the axons of the eighth cranial nerve from the glial-Schwann sheath junction up until their terminations within the auditory and vestibular end organs.

INTRODUCTION
The nomenclature of tumors arising from the eighth cranial nerve has been inconsistent in the literature. Although in common use, the term “acoustic neuroma” is a misnomer because this neoplasm arises from Schwann cells. It is, therefore, a schwannoma rather than a true neuroma, since the latter implies a proliferating mass of nerve fibers [Merchant and McKenna, 2010]. Furthermore, the tumor more commonly arises from the vestibular, rather than the acoustic or cochlear nerve. A more accurate term is “cochleovestibular schwannoma”, which is what we will preferentially use in the rest of this paper.

For most cranial and spinal nerves, neuroglial cells extend for only a fraction of a millimeter beyond their origin from the brainstem or spinal cord [Tarlov, 1937; Guclu et al., 1990]. An exception is the cochleovestibular nerve, which has glia extending for a median length of 9.75 mm along its course [Bridger and Farkashidy, 1980]. The zone at which the glial tissue ends and the Schwann cells begin is termed the glial-Schwann sheath junction, also known as the Obersteiner-Redlich zone [Obersteiner and Redlich, 1895; Redlich, 1897]. This transition zone is typically located at or medial to the porus of the internal auditory canal (IAC) [Bridger and Farkashidy, 1980] (Figure 1 A and B).

It is a commonly held belief that cochleovestibular schwannomas arise at the glial-Schwann sheath junction. This statement is often quoted in the literature [De Moura, 1967; Neely et al., 1976; Curtin, 1984; Jia et al., 2008; Roche et al., 2008] and in textbooks [Kuhweide et al., 1996; Gunderson and Tepper, 2007; Bernstein and Berger, 2008; Seegenschmiedt et al., 2008]. To the best of our knowledge, there is no published evidence that supports this statement. Ascertainment of the precise site of origin of a cochleovestibular schwannoma using clinical observations is difficult. Tumors that come to surgery often fill the IAC and have grown to a size where it is not possible to determine the tumor’s origin with respect to the glial-Schwann junction. The variability of the location of the glial-Schwann junction also makes it difficult to identify its exact relation to the tumor without histopathologic investigation even in small tumors. The resolution of MRI is not accurate enough to determine the glial-Schwann junction.

Anecdotal otopathological observations [Henschen, 1915; Skinner, 1929; Xenellis and Linthicum, 2003] have indicated that many of these tumors originate lateral to the glial-Schwann sheath junction. The purpose of this study was to conduct a systematic evaluation
of the nerve of origin and the precise location of cochleovestibular schwannomas using our respective archival temporal bone collections.

MATERIAL AND METHODS

Archival temporal bones with a diagnosis of sporadic cochleovestibular schwannoma within the collections at the Massachusetts Eye and Ear Infirmary (MEEI), the House Ear Institute (HEI), the University of Minnesota (UM), and the University Hospital of Zurich were examined. The temporal bones had been processed for light microscopy using the standard method of fixation in formalin, decalcification using trichloroacetic acid or ethylenediaminetetraacetate, embedding in celloidin, serial sectioning in the horizontal plane at a section thickness of 20 microns and staining of every tenth section using hematoxylin and eosin [Merchant, 2010]. Both symptomatic and occult cases of cochleovestibular schwannoma were included. Sections of each case were examined to determine the nerve of origin of the tumor and the site of origin in relation to the glial-Schwann junction. The institutional review boards of our respective institutions approved the study.

RESULTS

There were a total of 97 ears with sporadic cochleovestibular schwannoma. Of these, the nerve and site of origin could not be ascertained in 48 cases, because of surgical resection. There were 50 schwannomas from 49 ears where information about the site of origin could be obtained, and these cases were subjected to further analysis. There were 24 males and 25 females, with ages ranging from 25 to 100 years (mean 75 years).

Table 1 describes the nerve of origin. The tumor arose from the vestibular nerves or one of its branches in 38 (76 %) ears, while 12 (24 %) arose from the cochlear nerve. There was an approximately equal distribution between site of origin within the vestibular nerve trunk (n=13), the superior vestibular nerve (n=13), and inferior vestibular nerve (n=10).

Table 2 shows the distribution of tumors with respect to the glial-Schwann junction in the 40 tumors located within the IAC. In 3 ears (7.5 %), the tumor could have arisen at the glial-Schwann junction because the neoplasm was located in the medial one third of the IAC. In 16 ears (40 %), the schwannoma filled at least two thirds of the IAC, but since the epicenter of the tumor was in the mid-portion of the canal or in the lateral part of the canal, it was unlikely that the tumor arise from the glial-Schwann junction. In another 21 ears (52.5 %), the tumor clearly arose from a location that was lateral to the junction; these schwannomas were small enough that the junction was clearly seen as separate from the entire tumor.

Examples of tumors at various locations are shown in Figure 1, C-H.

DISCUSSION

The results of the present study clearly demonstrate that the majority of sporadic cochleovestibular schwannomas originate lateral to the glial-Schwann junction. There are no published data to support the commonly held belief that cochleovestibular schwannomas arise at the glial-Schwann junction. One might ask, then, how did this belief come about and how did it become entrenched in the literature?

Our review of the early writings on the subject of origin of cochleovestibular schwannoma suggests a possible explanation. In the early part of the twentieth century, there was a debate as to whether these tumors arose from neuroglial cells [Verocay, 1910; Henschen, 1915], from fibrous nerve tissue [Henschen, 1915; Cushing, 1917; Antoni, 1920] or from Schwann cells
[Skinner, 1929] of the eighth cranial nerve. The tumors encountered in those days were uniformly large ones, where the site of origin could not be determined at the time of surgical resection. Furthermore, light microscopic histological study alone could not conclusively prove the cellular origin of the tumor. It was not until the 1960s when electron microscopic studies showed morphologic characteristics typical for Schwann cells that these tumors were recognized as being schwannomas [Luse, 1960; Raimondi et al., 1962; Hilding and House WF, 1965].

The renowned neurosurgeon, Harvey Cushing, in a review of the subject in 1917, concluded that histogenesis of these tumors depended on connective tissue and neuroglia, and that these tumors possibly arose from tissue rests near the zone of transition [Cushing, 1917]. It is conceivable that the debate concerning cell of origin (glial verses endoneurium verses Schwann cells) along with opinions such as those articulated by Cushing gave rise to the erroneous assumption that these tumors arose at the junction. The erroneous assumption then took a life of its own in the literature.

The eighth cranial nerve has a higher propensity for schwannoma growth compared to other cranial nerves, since cochleovestibular schwannomas constitute over 90 % of all schwannomas arising from cranial nerves [Nager, 1984]. Our study shows that a sporadic cochleovestibular schwannoma may arise from Schwann cells anywhere along the course of the axons of the eighth cranial nerve from the glial-Schwann sheath junction up until their terminations within the auditory and vestibular end organs. When such a tumor arises from a nerve sheath within the bony labyrinth, the result is an intralabyrinthine schwannoma, whereas when it arises within the IAC, the result is a more traditional cochleovestibular schwannoma. The reason or reasons underlying the enhanced susceptibility of the vestibular and cochlear nerves to neoplastic transformation awaits further research.

There is a clear propensity for Schwann cells of the vestibular nerve to give rise to these tumors, as we observed a 3.2:1 ratio between the vestibular and cochlear nerve. Contrary to others [Komatsuzaki and Tsunoda, 2001; Khrais et al., 2008] who found an incidence of origin of 84 to 92% for the inferior vestibular nerve, we did not find a clear preference for the inferior vs superior vestibular nerve. The difference may be due to differing patient groups. While we investigated the nerve of origin in both occult and symptomatic cases using histological sections, Khrais et al. [Khrais et al., 2008] and Komatsuzaki et al. [Komatsuzaki and Tsunoda, 2001] defined the nerve of origin in symptomatic cases at the time of surgery.

CONCLUSIONS

Cochleovestibular schwannomas (acoustic neuromas) arise from Schwann cells ensheathing the axons of the eighth cranial nerve anywhere from the glial-Schwann junction up until the nerve terminations within the auditory and vestibular sense organs. Most tumors originate lateral to the glial-Schwann sheath junction. Further, these tumors arise from the vestibular nerve or one of its branches in the majority of instances.

ACKNOWLEDGEMENTS

The authors wish to thank Jon Pack for the photomicrographs. This study was supported by funding from NIH (NIDCD) grant No. U24DC008559.
REFERENCES

Table 1
Nerve of Origin of 50 Cochleovestibular Schwannomas

<table>
<thead>
<tr>
<th>Nerve</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cochlear nerve</td>
<td>12</td>
</tr>
<tr>
<td>- IAC</td>
<td>4</td>
</tr>
<tr>
<td>- cochlea</td>
<td>8</td>
</tr>
<tr>
<td>Vestibular nerve</td>
<td>38</td>
</tr>
<tr>
<td>- IAC</td>
<td>36</td>
</tr>
<tr>
<td>- trunk</td>
<td>13</td>
</tr>
<tr>
<td>- superior</td>
<td>13</td>
</tr>
<tr>
<td>- inferior</td>
<td>10</td>
</tr>
<tr>
<td>- intralabyrinthine</td>
<td>2</td>
</tr>
</tbody>
</table>

Internal auditory canal (IAC)

Table 2
Location of Schwannomas within Internal Auditory Canal

<table>
<thead>
<tr>
<th></th>
<th>tumor in one third (n)</th>
<th>tumor in two thirds (n)</th>
<th>tumor in all thirds (n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medial third</td>
<td>3</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>Middle third</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Lateral third</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 1
A and B. Low and high power views of the glial-Schwann cell junction from a 53 yr old man.
C-G. Examples of small schwannomas within the internal auditory canal (IAC), arising clearly lateral to the glial-Schwann cell junction.
H. Example of a schwannoma filling the medial two thirds of the IAC. The epicenter of the tumor is in the mid-portion of the IAC.