Intake, selection, digesta retention, digestion and gut fill of two
coprophageous species, rabbits (*Oryctolagus cuniculus*) and
guinea pigs (*Cavia porcellus*), on a hay-only diet

R. Franz¹, M. Kreuzer², J. Hummel³, J.-M. Hatt¹, M. Clauss¹

1 Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich,
 Winterthurerstr. 260, 8057 Zurich, Switzerland,
2 ETH Zurich, Institute of Plant, Animal and Agroecosystem Sciences, Universitätsstrasse
 2, 8092 Zurich, Switzerland
3 Institute of Animal Science, Rheinische Friedrich-Wilhelms-Universität, Endenicher Allee
 15, D-53115 Bonn, Germany

Keywords:
herbivory, hindgut fermenter, caecum fermenter, coprophagy, cecotrophy, rodent, lagomorph

Correspondence
M. Claus. Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich,
Winterthurerstr. 260, 8057 Zurich, Switzerland
Tel.: +41 44 635 83 76; Fax: +41 44 635 89 01
E-mail: mclauss@vetclinics.uzh.ch
Summary

A colonic separation mechanism (CSM) is the prerequisite for the digestive strategy of coprophagy. Two different CSM are known in small herbivores, the ‘wash-back’ CSM of lagomorphs and the ‘mucous-trap’ CSM of rodents. Differences between these groups in their digestive pattern when fed exclusively hay were investigated in six rabbits (*Oryctolagus cuniculus*) and six guinea pigs (*Cavia porcellus*). Intake, digestibility (by total faecal collection), solute and particle mean retention times (MRT, using Co-EDTA and Cr-mordanted fibres) were measured. Rabbits selected less fibrous parts of the hay than guinea pigs, leaving orts with higher content of neutral detergent fibre (NDF; 721 ± 21 vs. 642 ± 31 g/kg dry matter (DM) in guinea pigs). They also expressed a lower NDF digestibility (0.44 ± 0.10 vs. 0.55 ± 0.05 of total), a similar particle MRT (15 ± 3 vs. 18 ± 6 h), a longer solute MRT (51 ± 9 vs. 16 ± 4 h), and a lower calculated dry matter gut fill (19.6 ± 4.7 vs. 29.7 ± 4.1 g DM/kg body mass) than guinea pigs (p < 0.05 for each variable). These results support the assumption that the ‘wash-back’ CSM, exhibited in the rabbits, is more efficient in extracting bacterial matter from the colonic digesta plug than the ‘mucous-trap’ CSM found in the guinea pigs. Related to metabolic body mass, rabbits therefore need a less capacious colon for their CSM where a more efficient bacteria wash-out is reflected in the lower fibre digestibility. A lighter digestive tract could contribute to a peculiarity of lagomorphs: their ability to run faster than other similar-sized mammals.
Introduction

In many small mammalian herbivores – mainly represented by lagomorphs (rabbits, hares and pikas) and rodents – the practice of coprophagy has been documented (Kenagy and Hoyt, 1980; Hirakawa, 2001, 2002). Actually, it was suggested that this digestive strategy should be assumed to occur in any lagomorph or herbivorous rodent until the opposite is proven (Clauss et al., 2007a). Coprophagy ensures that protein synthesised by bacteria growing in the distal fermentation chambers, the caecum and the colon, is not lost via defaecation but reingested. Additionally, other bacterial products like vitamins or undigested remains of essential nutrients like fatty acids are used by the herbivore in this way (Karasov and Martínez del Rio, 2007; Leiber et al., 2008). Coprophagy appears to occur only in small herbivores, with the largest known coprophageous animal being the largest rodent, the capybara (Hydrochaeris hydrochaeris) (Hirakawa, 2002). One reason for this association with size may be that small herbivores cannot compensate for metabolic losses on low-quality forage by using body reserves, and thus have to maintain high food intakes on low-quality forages and minimize metabolic losses via coprophagy (Meyer et al., 2010).

A prerequisite for the practice of coprophagy is a mechanism in the digestive tract that separates the valuable material (mainly bacteria and small particles) from indigestible or hardly digestible residues, i.e. a ‘colonic separation mechanism’ (CSM) (Björnhag, 1987). Basically, two types of CSM exist (Cork et al., 1999): a ‘wash-back’ CSM as found in lagomorphs, and a ‘mucus-trap’ CSM as found in rodents. The colon of lagomorphs is characterised by three taenia and haustreæ in the first, and one taenia with haustreæ in the second part of the proximal colon; fluid secretion and retrograde peristalsis occurs during the phase when hard faeces are formed (Clauss, 1978; Snipes et al., 1982; Ehrlein et al., 1983). Thus, fluids, bacteria and small particles are washed back into the caecum. Different from that, the colon of caviomorph and hystricomorph rodents is equipped with a peculiar anatomical structure, the ‘colonic groove’ or ‘furrow’ (Gorgas, 1966; Snipes et al., 1988). In
this groove, mucous and bacteria are trapped and transported back to the caecum (Holtenius and Björnhag, 1985; Takahashi and Sakaguchi, 2000, 2006). The colon of some myomorph rodents is characterised by anatomical structures like longitudinal folds and oblique furrows (Plicae circulares) that may serve a similar purpose as the colonic groove in caviomorph rodents (Behmann, 1973; Sperber et al., 1983). The CSM type can be differentiated by the use of passage markers (Cork et al., 1999; Pei et al., 2001): The ‘wash-back’ CSM is characterised by short particle but long fluid retention times, whereas the ‘mucus trap’ CSM results in a more or less simultaneous excretion of fluid and particle passage markers.

The question whether the two CSMs differ in more than the fluid retention pattern has been hardly addressed (Björnhag and Snipes, 1999). Discussions of this topic focus mainly on the appearance of the faeces. In lagomorphs, two different types of faeces are formed: the so-called ‘hard’ faeces, which are mostly not re-ingested and which consist of larger particles, and the so-called ‘soft’ faeces or ‘caecotrophs’ that are re-ingested (Hirakawa, 2001). In contrast, such a separation of faeces types is considered less evident in rodents (Björnhag and Snipes, 1999; Hirakawa, 2001). However, different types of faeces were also described for beavers (Aplodontia rufa) (Hirakawa, 2001) and nutria (Myocastor coypus) (Takahashi and Sakaguchi, 1998), guinea pigs (Holtenius and Björnhag, 1985), capybaras (Mendes et al., 2000), dassie-rats (Pteromus typicus) (Mess and Ade, 2005), and tuco-tucos (Ctenomys talarum) (Martino et al., 2007). Nevertheless, less easily identifiable cecotrophs in rodents are a reason why the CSM of lagomorphs is considered more efficient than that of rodents (Björnhag and Snipes, 1999). Differences between the CSM, other than those in fluid passage and visual appearance of the caecotrophs, have not been addressed so far.

The objective of the present study was, therefore, to compare diet selection, digesta retention, digestibility and calculated gut capacity in rabbits and guinea pigs as representatives for lagomorphs and rodents, respectively. Although a direct comparison of the two species has been published previously (Sakaguchi et al., 1987; 1992), this was done using
Materials and methods

Six pygmy rabbits (body mass 1.57 ± 0.31 kg) and six guinea pigs (0.79 ± 0.07 kg) were housed individually at 20 ± 2 °C on a 12 h light : 12 h dark schedule in cages (55 x 53 x 60 cm for guinea pigs and 97 x 60 x 55 cm for rabbits) with a carton-covered floor. Coprophagy was not prevented, or accounted for, in the present study. The animals were offered grass hay at ad libitum access. The hay contained (g/kg dry matter (DM)) organic matter, 926; crude protein, 72; neutral detergent fibre (NDF), 635; and acid detergent fibre (ADF), 360 as analysed in two subsamples by standard procedures (AOAC, 1997). Fresh water was available at all times. After 2 weeks of adaptation, intake (food offered and leftover) was registered daily, and faeces were collected completely for 7 days at regular intervals (from 4 h at the beginning up to 12 h on the last day). Faeces were dried to constant weight. These individual faecal samples were used for passage marker analysis (see below). From these samples, a representative pool sample was prepared for the analysis of faeces for DM, total ash, crude protein, NDF, ADF and gross energy (AOAC, 1997). From these data apparent digestibility of nutrients and energy were calculated as

\[(\text{Intake} - \text{excretion}) / \text{intake} \times 100.\]

Mean ingesta retention times (MRT) were determined by feeding a particle (chromium-mordanted fibre, < 2 mm) and a fluid/solute (cobalt-EDTA) marker prepared according to Udén et al. (1980). Marker analysis followed the procedure outlined by Behrend et al. (2004) and Hummel et al. (2005); in doing so, wet ashing with sulphuric acid was followed by atom absorption spectroscopy. The MRT in the total gastrointestinal tract was calculated according to Thielemanns et al. (1978) as
MRT = \sum(t_i \times dt \times c_i) / \sum(dt \times c_i)

where \(t_i \) = time after marker application (h), \(dt \) = time interval represented by marker concentration (calculated as \(((t_{i+1} - t_i) + (t_i - t_{i-1})) / 2\)), and \(c_i \) = faecal marker concentration at time \(i \) (mg/kg DM). The marker was assumed to have been excreted completely once the faecal Co and Cr contents were the same as before marker application. The selectivity factor was calculated as \(\frac{MRT_{\text{particles}}}{MRT_{\text{solute}}} \). The indigestible gut content (\(V_N \)) and the total gut content (\(V \)) were calculated according to Holleman and White (1989) as

\[V_N = F \times MRT \]

\[V = \frac{(V_N - (V_N / (1 - (aD DM/100))))/\ln(1 - (aD DM/100))}{1 - (aD DM/100)} \]

assuming an exponential absorption of ingested food with time spent in the digestive tract. Because of the accepted linear scaling of gut fill with body mass (reviewed in Clauss et al., 2007b), gut fill was expressed as a proportion of body mass (BM).

Comparisons between rabbits and guinea pigs were performed using a t-test in PSAW 18.0 (SPSS Inc., Chicago, IL). The significance level was set to 0.05.

Results

On a metabolic body mass basis (BM\(^{0.75}\)), the rabbits tended (p < 0.1) to ingest less hay than the guinea pigs (Table 1). The rabbits apparently fed more selectively than the guinea pigs and the leftover of the hay offered was higher (p < 0.05) in NDF and ADF. Note that unexpectedly, crude protein levels also were higher in leftovers than in the offered hay, but there was no significant difference between the species. The rabbit faeces contained more ADF (p < 0.05) than guinea pig faeces, whereas their crude protein content was not significantly lower. Fibre digestibilities were lower in the rabbits than in the guinea pigs; they also tended (p < 0.1) to express lower DM and OM digestibility. The apparent digestibility of
protein did not differ between the species. Whereas MRT of particles did not differ between
the species, rabbits had drastically longer (p < 0.001) MRT of solutes than guinea pigs. The
passage pattern of the markers showed a parallel movement of solute and particle markers in
the guinea pigs, but a distinct separation between particles and solutes in the rabbits (Fig. 1).
This pattern was consistent for all individuals of each species. Consequently, the calculated
selectivity factor was very low in rabbits at 0.30 (95% confidence interval: 0.28 to 0.33)
(Table 1). In guinea pigs, the selectivity factor was just above 1.0 (mean: 1.18, 95%
confidence interval: 1.04 to 1.30). In both species, recurrent marker peaks were consistent
with an assumed re-ingestion of the markers via coprophagy. The calculated DM gut fill was
lower (p < 0.01) in the rabbits than in the guinea pigs.

Discussion

The fundamental differences in solute and particle passage patterns between rabbits and
guinea pigs described previously for animals fed on pelleted compound feeds (Sakaguchi et
al., 1987; Sakaguchi et al., 1992) are obviously also present in forage-only fed animals. The
passage patterns as observed in the guinea pigs of the present experiment have been found in
several other rodent species with anatomical features of a ‘mucous-trap’ CSM (Pei et al.,
2001). Recurrent marker peaks, considered typical for coprophagy (Clauss et al., 2007a), were
evident in both species. The present experiment confirms previous findings on lower apparent
digestibility of DM and, in particular, fibre fractions in rabbits than in guinea pigs (Slade and
Hintz, 1969; Sakaguchi et al., 1987; Sakaguchi et al., 1992). In contrast, there was no higher
apparent crude protein digestibility and no lower protein contents in the hard faeces of rabbits
as compared to that of guinea pigs as had been reported previously for rabbits in comparison
with other rodents with a mucous-trap CSM (Slade and Hintz, 1969; González-Jiménez and
Escobar, 1975; Sakaguchi, 2003). Furthermore, the general assumption that lagomorphs
exhibit a particularly high protein digestibility (Monk, 1989) could not be corroborated by the
present study, even though rabbit faeces contained numerically less crude protein than guinea pig faeces.

The present study illustrated that rabbits feed more selectively than guinea pigs, potentially due to their inherently lower capacity to digest fibre, and that rabbits have a lower DM digesta load than guinea pigs per unit body mass. A similar difference results when the data from Sakaguchi et al. (1987) on food intake, digestibility and particle retention of rabbits and guinea pigs on a pelleted compound feed are used to calculate DM gut fill (22.6 vs. 31.5 g/kg BM in rabbits vs. guinea pigs, respectively).

Measurements of a solute marker, such as Co-EDTA, are traditionally interpreted as ‘fluid retention’ or ‘fluid passage’ (e.g. Pickard and Stevens, 1972). Thus the pattern shown in Fig. 1 could be paraphrased as indicating a longer ‘fluid retention’ in rabbits than in guinea pigs. However, the interpretation that fluids are selectively retained in a ‘wash-back’ CSM is problematic. Clauss et al. (2010b) explained that retention times measured for fluid passage markers do not actually represent retention of fluid. In the passage of the digesta through the gastrointestinal tract, fluid is constantly absorbed and excreted from and to the gut. The fluid excreted in the faeces therefore does not quantitatively represent a fraction of the fluid ingested via food or drinking water, but rather the last fraction of fluid excreted into the digesta and not absorbed from the distal colon. Because a fluid passage marker is, by definition, not absorbable, it is ‘passed on’ from one fluid fraction to the next. Excessive dosages of fluid passage markers can even lead to diarrhoea because the marker binds an excessive amount of water which remains in the intestinal tract (Bernard et al., 1995). Because the term ‘fluid retention’ presumably does not describe a physiological process, we advocate the use of the term ‘solute retention’, following Cork et al. (1999).

The behaviour of a solute marker, in comparison to the particle phase of digesta, represents the amount of fluid washing of that particle phase. The true importance of the solute marker may therefore consist in describing a type of washing which may be important to separate
different digesta phases (Lentle et al., 2006) in order to enhance solute uptake at the luminal-intestinal border, or to separate very small particles (such as bacteria) from the total gastrointestinal contents. Secretion of fluids into, and washing of, the digesta can occur in both directions – aborad and orad. In many large mammalian herbivores, particularly in the grazing species, the MRT of solutes is often shorter than that of particles (Steuer et al., 2010), which indicates a particular washing of the particulate digesta phase with fluids in an aborad direction allowing the fluid marker to be transported faster than the particle marker. For ruminants, it has been suggested that this washing of the digesta with fluid in the forestomach leads to a particularly efficient harvest of microbes growing in the digesta (Clauss et al., 2010a). The ‘wash-back’ CSM of rabbits, with active fluid secretion in the proximal colon, retrograde fluid transport and fluid re-absorption in the caecum (Björnhag, 1972) probably has a similar effect in transferring solutes and very small particles back into the caecum (Jilge, 1982). In analogy to ruminants, a retrograde flushing of the digesta might therefore be very useful to harvest microbes growing on soluble and insoluble cell wall constituents in the colonic digesta plug.

Different from that fluid is constantly absorbed in the colon in guinea pigs, as is indicated by a monotonous increase in digesta DM content along the whole colon (Holtenius and Björnhag, 1985). Due to similar reported solute and particle retention patterns, a similar situation can be assumed for other caviomorph and myomorph rodents (Pei et al., 2001). It can be assumed that the ‘mucus-trap’ CSM is less efficient than the ‘wash-back’ CSM due to a slower extraction of bacteria from the colonic digesta plug. This could translate into the necessity of a proportionately larger colon section in herbivorous rodents compared to lagomorphs to achieve a sufficient degree of bacteria extraction. This hypothesis thus warrants investigation, but fits well to the comparatively lower DM gut loads calculated for rabbits. The distance to the groove is a crucial factor that determines the efficiency of protein extraction in the ‘mucous-trap’ CSM. This is obvious from findings in nutria that showed that
only the part of the colonic digesta plug that is close to the colonic groove is depleted of protein, whereas the digesta in the opposite portion of the plug retains a higher protein content (Takahashi and Sakaguchi, 2000). Still, the putative difference in efficiency between the CSM types need not necessarily – as suggested for example by Hörnicke (1981) – translate into a digestive advantage of the ‘wash-back’ CSM.

A slower, and potentially less complete, removal of bacteria from the digesta plug in a larger colon probably explains the higher digestibility of fibre from the same feed in guinea pigs and other herbivorous rodents as compared to rabbits, even though particle retention times are not distinctively different (Sakaguchi, 2003). The more selective feeding behaviour in rabbits, as found in this study, may be the response to counterbalance the lower capacity for fibre digestion. If the ‘wash-back’ CSM of the lagomorphs is really associated with comparatively lower gut loads, it might help explain a peculiarity of this order: lagomorphs can run faster than other similar-sized mammals (Garland, 1983; Lovegrove, 2004). Apart from adaptations of metabolism and limb anatomy, a limited gut load (to reduce overall body mass) will contribute to this characteristic.

Acknowledgements

We thank E. Küng for providing the experimental animals. This is contribution no. 95 of the DFG Research Unit 533 “The Biology of Sauropod Dinosaurs”.

References

Holténius, K.; Björnhag, G., 1985: The colonic separation mechanism in the guinea pig (Cavia porcellus) and the chinchilla (Chinchilla laniger). Comparative Biochemistry and Physiology A 82, 537-542.

Jilge, B., 1982: Rate of movement of marker particles in the digestive tract of the rabbit. Laboratory Animals 16, 7-11.

Sakaguchi, E.; Kaizu, K.; Nakamichi, M., 1992: Fibre digestion and digesta retention from different physical forms of the feed in the rabbit. Comparative Biochemistry and Physiology A 102, 559-563.

Table 1 Mean (±SD) body mass, food intake, digestibility and methane production in rabbits and guinea pigs (n=6 per species)

<table>
<thead>
<tr>
<th>Species</th>
<th>Rabbit</th>
<th>Guinea pig</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body mass (BM, kg)</td>
<td>1.57 ± 0.31</td>
<td>0.79 ± 0.07</td>
<td>0.001</td>
</tr>
<tr>
<td>Dry matter (DM) intake (g/kg^{0.75} BM/day)</td>
<td>50 ± 5</td>
<td>59 ± 11</td>
<td>0.076</td>
</tr>
<tr>
<td>Composition of ingested hay (g/kg DM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic matter</td>
<td>932 ± 2</td>
<td>937 ± 10</td>
<td>0.339</td>
</tr>
<tr>
<td>Crude protein</td>
<td>69 ± 2</td>
<td>69 ± 3</td>
<td>0.936</td>
</tr>
<tr>
<td>Neutral detergent fibre</td>
<td>613 ± 16</td>
<td>634 ± 2</td>
<td>0.025</td>
</tr>
<tr>
<td>Acid detergent fibre</td>
<td>331 ± 19</td>
<td>351 ± 7</td>
<td>0.054</td>
</tr>
<tr>
<td>Composition of leftovers (g/kg DM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Organic matter</td>
<td>889± 21</td>
<td>856 ± 33</td>
<td>0.065</td>
</tr>
<tr>
<td>Crude protein</td>
<td>82 ± 10</td>
<td>87 ± 10</td>
<td>0.462</td>
</tr>
<tr>
<td>Neutral detergent fibre</td>
<td>721 ± 21</td>
<td>642 ± 31</td>
<td><0.001</td>
</tr>
<tr>
<td>Acid detergent fibre</td>
<td>477 ± 38</td>
<td>429 ± 33</td>
<td>0.043</td>
</tr>
<tr>
<td>Faeces composition (g/kg DM)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crude protein</td>
<td>99 ± 23</td>
<td>117 ± 10</td>
<td>0.112</td>
</tr>
<tr>
<td>Neutral detergent fibre</td>
<td>760 ± 66</td>
<td>733 ± 15</td>
<td>0.347</td>
</tr>
<tr>
<td>Acid detergent fibre</td>
<td>489 ± 09</td>
<td>468 ± 16</td>
<td>0.020</td>
</tr>
<tr>
<td>Apparent digestibility (proportion of intake)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter</td>
<td>0.55 ± 0.06</td>
<td>0.61 ± 0.03</td>
<td>0.075</td>
</tr>
<tr>
<td>Organic matter</td>
<td>0.56 ± 0.06</td>
<td>0.62 ± 0.03</td>
<td>0.072</td>
</tr>
<tr>
<td>Crude protein</td>
<td>0.37 ± 0.09</td>
<td>0.35 ± 0.06</td>
<td>0.570</td>
</tr>
<tr>
<td>Neutral detergent fibre</td>
<td>0.44 ± 0.10</td>
<td>0.55 ± 0.05</td>
<td>0.038</td>
</tr>
<tr>
<td>Acid detergent fibre</td>
<td>0.34 ± 0.10</td>
<td>0.48 ± 0.06</td>
<td>0.014</td>
</tr>
<tr>
<td>Mean retention times (h)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particles</td>
<td>15 ± 3</td>
<td>18 ± 6</td>
<td>0.286</td>
</tr>
<tr>
<td>Fluid (Solutes)</td>
<td>51 ± 9</td>
<td>16 ± 4</td>
<td><0.001</td>
</tr>
<tr>
<td>Selectivity factor</td>
<td>0.30 ± 0.03</td>
<td>1.18 ± 0.17</td>
<td><0.001</td>
</tr>
<tr>
<td>Gut fill (g DM/kg BM)</td>
<td>19.6 ± 4.7</td>
<td>29.7 ± 4.1</td>
<td>0.003</td>
</tr>
</tbody>
</table>

*Independent sample t-test.
Figure 1 Faecal excretion pattern of solute (Co) and particle (Cr, < 2 mm) markers in three individual rabbits (a-c) and guinea pigs (d-f).