Differential resource selection within shared habitat types across spatial scales in sympatric toads

Indermaur, L; Winzeler, T; Schmidt, B R; Tockner, K; Schaub, M
Differential resource selection within shared habitat types across spatial scales in sympatric toads

Abstract

Differential habitat selection is a central component in the evolution of species, but it has been quantified rarely for sympatric species in relation to the multiple impacts of resources at the spatial scales at which animals operate. Our main goal was to quantify the selection of terrestrial summer habitats in a natural floodplain in Italy by two sympatric amphibians (Bufo bufo spinosus and B. viridis) as a function of habitat type, prey density, and temperature. We applied a Bayesian resource selection model at three spatial scales: (1) home range placement within the floodplain, (2) space use within 95% home ranges, and (3) space use within 50% core areas. Using these data we explored whether processes acting at large scales lead to space use patterns at small scales and whether the two species use the same habitat types in a way that would facilitate coexistence. Habitat selection was determined by habitat type, prey density, and temperature at all spatial scales, resulting in slightly higher prey density and significantly lower temperature within than outside home ranges. We conclude that amphibians perceive the distribution of habitat types as well as gradients in prey density and temperature at all spatial scales. The effects of habitat type dominated home range placement while prey density and temperature most strongly affected space use within home ranges. Our results suggest that home range placement relies on broad habitat features that indicate resource availability at small spatial scales. At the smallest spatial scale, the selection of prey and refugia is most probably facilitated due to the accumulation of environmental information as animals may sample the entire area. Both species largely preferred the same habitat types, but used them differently in relation to resources across the three spatial scales. For example, while one species used the same habitat type for foraging, the other used it for resting or both resting and foraging. Niche differentiation through differential resource selection within shared habitat types at all spatial scales may therefore facilitate the coexistence of the two species in terrestrial summer habitats.
Differential resource selection within shared habitat types across spatial scales in sympatric toads

LUKAS INDERMAUR,1,2,8 THOMAS WINZELER,1,2 BENEDIKT R. SCHMIDT,3,4 KLEMERT TOCKNER,1,2,5 AND MICHAEL SCHAUB6,7

1Eawag, Swiss Federal Institute of Aquatic Science and Technology, Department of Aquatic Ecology, Überlandstrasse 133, 8600 Dübendorf, Switzerland
2ETH, Swiss Federal Institute of Technology, Institute of Integrative Biology, 8092 Zürich, Switzerland
3Zoologisches Institut, Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
4Koordinationsstelle für Amphibien- und Reptilenschutz in der Schweiz (KARCH), Passage Maximilien-de-Meuron 6, 2000 Neuchâtel, Switzerland
5Institut für Gewässerkologie und Inland Fischerei (IGB), Leibniz-Institute for Freshwater Ecology and Inland Fisheries, and Institute of Biology, Freie Universität Berlin, Mueggeosedamm 310, 12587 Berlin, Germany
6Swiss Ornithological Institute, 6203 Sempach, Switzerland
7Institute of Ecology and Evolution, Conservation Biology, University of Bern, Baltzerstrasse 6, 3012 Bern, Switzerland

Abstract. Differential habitat selection is a central component in the evolution of species, but it has been quantified rarely for sympatric species in relation to the multiple impacts of resources at the spatial scales at which animals operate. Our main goal was to quantify the selection of terrestrial summer habitats in a natural floodplain in Italy by two sympatric amphibians (Bufo bufo spinosus and B. viridis) as a function of habitat type, prey density, and temperature. We applied a Bayesian resource selection model at three spatial scales: (1) home range placement within the floodplain, (2) space use within 95% home ranges, and (3) space use within 50% core areas. Using these data we explored whether processes acting at large scales lead to space use patterns at small scales and whether the two species use the same habitat types in a way that would facilitate coexistence.

Habitat selection was determined by habitat type, prey density, and temperature at all spatial scales, resulting in slightly higher prey density and significantly lower temperature within than outside home ranges. We conclude that amphibians perceive the distribution of habitat types as well as gradients in prey density and temperature at all spatial scales. The effects of habitat type dominated home range placement while prey density and temperature most strongly affected space use within home ranges. Our results suggest that home range placement relies on broad habitat features that indicate resource availability at small spatial scales. At the smallest spatial scale, the selection of prey and refugia is most probably facilitated due to the accumulation of environmental information as animals may sample the entire area.

Both species largely preferred the same habitat types, but used them differently in relation to resources across the three spatial scales. For example, while one species used the same habitat type for foraging, the other used it for resting or both resting and foraging. Niche differentiation through differential resource selection within shared habitat types at all spatial scales may therefore facilitate the coexistence of the two species in terrestrial summer habitats.

Key words: amphibian; Bufo bufo spinosus; Bufo viridis; coexistence; floodplain river; foraging behavior; hierarchical habitat selection; home range; Italy; niche differentiation; resource gradient; thermoregulation.

INTRODUCTION

Coexistence of species can arise through avoidance of competition (Gause 1934, Hardin 1960). Competition may be avoided through the spatiotemporal partitioning of habitats and resources (Hastie 1951, Whittaker 1967, Pianka 1969, Diamond 1973). In this context, differential habitat selection is a key process that stabilizes the coexistence of species (MacArthur and Levins 1967, Rosenzweig 1991, Chesson 2000). The study of differential habitat selection requires environmental information at all the spatial and temporal scales at which animals operate (Hutchinson 1957, Wiens 1973). This information can be methodologically difficult to obtain, perhaps explaining why the combined effects of multiple resources on habitat selection of sympatric species have been rarely studied empirically (Anthony and Smith 1977, Bourget et al. 2007, Gilbert et al. 2008). To understand habitat selection as a potential mechanism for coexistence and to assess the importance of differential habitat selection, we need to explore the interplay of various resources and their gradients on
Habitat selection of sympatric species across multiple spatial scales.

Habitat selection is a spatially hierarchical process. Animals first place home ranges within a larger area and subsequently use patches within home ranges (Johnson 1980). Home range placement is the most important behavioral decision, as it determines the number of patches for exploitation. This then determines resource availability and conditions at smaller spatial scales. Animals are unable to sample every patch when settling within large areas. Hence, home range placement is usually based on broad features of the environment such as habitat types, which should indicate the availability of all key resources (Lack 1940, MacArthur et al. 1966, Cody 1981). Subsequent space use within home ranges is conditional on home range placement and is governed by the resources that are most important at smaller spatial scales such as food availability or thermal and predatory refugia (Rettie and Messier 2000, Chalfoun and Martin 2007). Hierarchical habitat selection is therefore thought to be a solution to cope with spatial variation in resource availability and conditions (Levins 1968, Orians and Wittenberger 1991), an idea that has found empirical support (Nikula et al. 2004, Pinaud and Weimerskirch 2005, Beasley et al. 2007, Ciarniello et al. 2007).

The hierarchical nature of habitat selection suggests that different environmental factors determine habitat selection at different spatial scales (Kie et al. 2002, Börger et al. 2006). Even within home ranges, where patches are repeatedly traversed during daily activities, the ecological relevance of factors can change. This seems intuitive as home ranges are the spatial expression of animal movements and thus integrate different behaviors such as resting, nesting, foraging, and avoidance of predators (Burt 1943). Animals may use different areas within home ranges for different behaviors due to the spatial distribution of different resources (Marzluff et al. 2001, Indermaur et al. 2009). Exploring the relative importance of factors governing habitat selection across spatial scales can therefore shed light on the decision rules underlying animal movements (Roshier et al. 2008).

We quantified the selection of terrestrial summer habitats of two pond-breeding amphibians, the European common toad *Bufo bufo spinosus* and the green toad *B. viridis*, in a riverine floodplain in Italy where they co-occur (Toekner et al. 2006). We studied the terrestrial summer period because of its importance for population viability (Schmidt et al. 2005, Harper et al. 2008). In summer, the factors most important for the survival of these amphibians are the availability of prey and the availability of refugia. Abundant prey is required to build up fat reserves for physiological maintenance and future reproduction (Wälti and Reyer 2007), while refugia are needed for thermoregulation and avoidance of predators (Schwarzkopf and Alford 1996, Seebacher and Alford 2002). Within the summer home ranges, small interior core areas and large peripheral areas are used for different behaviors. Indermaur et al. (2009) concluded that *B. viridis* used the peripheral areas around the core areas (95% home ranges) for foraging and used the interior of home ranges (50% core areas, 10 times smaller than 95% home ranges) for resting (thermoregulation and escape from predators). *Bufo bufo spinosus* used the core areas for both resting and foraging but the 95% home range solely for foraging.

Our main goal was to analyze habitat selection as a function of habitat type, a biotic resource (prey density), and an abiotic condition (temperature) at three spatially hierarchical scales. We used a Bayesian approach to fitting resource selection models to: (1) home range placement within the floodplain, (2) space use within 95% of home ranges, and (3) space use within 50% of core areas. We hypothesized that home range placement is determined by habitat type, prey density, and temperature. Otherwise, relevant resources would not be available at smaller scales. The 95% home range is mainly used for foraging, and we therefore expected that habitat use within the home range is determined by prey density. Both species rest and seek shelter primarily within the 50% core area. As thermal conditions within shelters determine their suitability for resting, we expected that temperature determines space use within core areas. Quantifying hierarchical resource selection seems promising to explore whether processes acting at large scales lead to space use patterns at small scales. In addition, our approach is promising to shed light on the mechanism underlying the coexistence of species. For the two species to coexist within the floodplain, we expect that the same habitat types are used differently in relation to prey density and temperature at least at one spatial scale.

METHODS

Study site

The study was conducted from mid-June through September in 2005 and 2006 on the seventh-order Tagliamento River in northeastern Italy (46° N, 12°30’ E). The Tagliamento (catchment area 2580 km²) originates at 1000 m above sea level (asl) in the southern European Alps and flows almost unimpeded by dams for 172 km to the Adriatic Sea. The Tagliamento floodplain is characterized by summer droughts and retains its essentially pristine morphological and hydrological characteristics. The main study area was the active tract (1.1 km²) of an island-braided floodplain complex (river km 79.8–80.8; 135 m asl). The study reach contains a spatially complex and temporally dynamic mosaic of water bodies, large wood deposits, pioneer vegetation, and vegetated islands, embedded into an extensive matrix of exposed riverine sediments (Petts et al. 2000, Indermaur et al. 2009; Appendix A). The active tract is 650 m wide and bordered by riparian forest, with the steep hillslope of Monte Ragogna on the eastern side. Detailed information on the Tagliamento...
catchment and the main study area can be found elsewhere (Ward et al. 1999, Arscott et al. 2002, Tockner et al. 2003).

Study species

Bufo bufo spinosus (European common toad) is a widespread species and typically associated with densely vegetated habitats of late-successional stages. *Bufo viridis* (green toad) is a characteristic species of the hot continental and Mediterranean steppes and prefers early succession habitats (Giacoma and Castellano 2006). *Bufo b. spinosus* travels farther while foraging than *B. viridis* (Indermaur et al. 2009). Both species may burrow to withstand harsh environmental conditions. An earlier study of these species at the same locality showed that prey density was twice as high in densely vegetated habitats mainly occupied by *B. b. spinosus* compared with the open habitats mainly occupied by *B. viridis* (Indermaur et al. 2009).

Habitat mapping

In 2005 and 2006, the entire study area was mapped in detail at base flow (≈20 m³/s) using a differential GPS (Trimble GeoXT, Trimble, Sunnyvale, California, USA) (Appendix B). The GPS data were processed using ArcView GIS 9.0 (Environmental Systems Research Institute, Redlands, California, USA). We discriminated six habitat types that were mutually exclusive: exposed gravel sediments (70.3 ha; average values for both years), water (13.5 ha), established islands (8.3 ha), edge of established islands (6.4 ha), dense pioneer vegetation (3.9 ha), and area of large wood deposits (1.2 ha) (Table 1). The habitat type water was excluded for analysis because it was used rarely by only a few toads. The edge of established islands was included because edge habitat can provide complementary food resources (Morris 1987).

Determinants of habitat selection

Four explanatory factors were used for modeling the selection of 1-m² grid cells: log(prey density) (PD), temperature (T), habitat type (HT, five levels), and species (S, two levels). A single habitat type (Table 1) was assigned to each grid cell. We chose grid cells of 1-m² resolution because animals rarely used smaller areas of the most preferred habitat type (large wood deposits; see Results).

Temperature and prey density were calculated as follows: temperature loggers (Maxim thermochron ibuttons DS1921G [Maxim Integrated Products, Sunnyvale, California, USA], 0.5°C resolution, ±1°C accuracy from –30°C to 70°C; 2005, 67 loggers; 2006, 57 loggers) were randomly distributed in proportion to the area cover of individual habitat types. Temperature was logged at the sediment surface at hourly intervals. Every habitat type showed a similar temperature pattern over the season (parallel temperature curves); therefore we assigned a habitat-type-specific mean maximum day temperature to each corresponding grid cell. These assigned temperature values were linearly weighted using measured temperature gradients across the flood-
plain in order to better reflect the temperature variation within habitat types. Specifically, temperature decreased from island cores to the island edge by 1.3°C and from the island edge until 10 m into exposed gravel sediments by 8.5°C. Gravel was 3.8°C cooler between proximal islands than distant islands, and northern edges of islands were, on average, 4°C cooler than southern edges.

Prey density was quantified in 2006 by arrangement of 100 pitfall traps (9 cm diameter, 12 cm depth, 0.5 L volume) randomly along three transects perpendicular to the river corridor. The traps were sampled three times in 2006 (21 and 22 July, 8 and 9 August, 7 and 8 September) and were opened (set) at twilight (20:00–21:30) and closed at sunrise (05:00–07:00). Assuming that all the contents of the pitfall traps were consumable, mean prey density within the active tract was determined per sampling date by applying an inverse distance-weighted interpolation method in ArcGIS 9.0 using log-transformed prey densities. We used interpolated values instead of assigning average habitat-type-specific prey densities to grid cells to reflect the large variation in prey density within habitat types observed. Inverse distance weighting models work on the premise that observations farther away should have their contributions diminished according to how far away they are (de Smith et al. 2006). The three interpolations were averaged, and the fit of the averaged cross-validated interpolation was assessed ($R^2 = 0.466$).

Radiotelemetry

Adult toads were caught during random searches at night, at the end of the breeding season, and marked with radio transmitters LT2-351 (2 g) or LT2-392 (5 g) (Titley Electronics, Ballina, New South Wales, Australia). The radio transmitters were tightly fitted with an aluminium beaded-chain belt (Ball Chain Manufacturing, Mount Vernon, New York, USA) around the waist (Rathbun and Murphey 1996, Indermaur et al. 2008). The mass of the transmitter, including the belt, did not exceed 10% of the body mass of toads ($B. b. spinosus$, 4.32% ± 1.51%; $B. viridis$, 6.86% ± 0.94% [mean ± SD]) as recommended by Richards et al. (1994). As reported elsewhere, environmental factors explained changes in individual toad body mass better than transmitter mass and duration of the tracking period (Indermaur et al. 2008). We therefore assume that any bias in movement data due to tracking methods is minimal.

Australis 26k scanning receivers and hand-held three-element Yagi antennas (Model AY/C, Yagi collapsible; Titley Electronics) were used for tracking toads. We followed 56 radio-tagged $B. b. spinosus$ and 59 $B. viridis$ between one and three months ($B. b. spinosus$, mean = 44.5 d, range = 13.4–99.5 d; $B. viridis$, mean = 33.1 d, range = 13.5–71 d). The exact position of each toad was recorded six days per week, once during the day and once at night, using a differential GPS (average tracking resolution, 1 m). Two observers simultaneously located toads in different parts of the study area, randomly varying the tracking time and the sequence of tracked animals.

Estimation of home ranges

For home range estimation, 3079 locations of 56 $B. b. spinosus$ and 2545 locations of 59 $B. viridis$ that were collected in 2005 and 2006 were used. On average, we obtained $55 ± 27.6$ (mean ± SD) locations for each individual of $B. b. spinosus$ and $43 ± 16$ locations of each individual of $B. viridis$. Fixed-kernel home ranges were calculated with software Ranges 7 (grid, 160 × 160 cells; cell size, 1 m2) using either 50% or 95% of the locations (Kendward and Hodder 1996) and by applying a least-squares cross-validated smoothing factor ($h = 0.3$). In 95% home ranges and 50% core areas, toads spend approximately 95% or 50% of their time, respectively. The 50% core area was determined by applying a regression of probability of use against the proportion of total area (Clutton-Brock et al. 1982, Powell 2000, Indermaur et al. 2009). The 50% core area was 10 times smaller than the 95% home range and located at the interior of the home range (Indermaur et al. 2009; Fig. 1).

Statistical analysis

We quantified habitat selection for each individual at three spatial scales: (1) home range placement within the floodplain, (2) space use within 95% home ranges, and (3) space use within 50% core areas. For analyses, we used only the radio locations (n) of 2006 because prey density was not sampled in 2005: 27 individuals of $B. b. spinosus$ and 32 individuals of $B. viridis$ (home range placement, $B. b. spinosus$, $n = 1354$, $B. viridis$, $n = 1379$; space use within 95% home ranges, $B. b. spinosus$, $n = 1229$, $B. viridis$, $n = 1347$; space use within 50% core areas, $B. b. spinosus$, $n = 665$, $B. viridis$, $n = 793$).

Used/available design.— We quantified the amount of used habitat (number of 1-m2 grid cells in which an animal was located) and available habitat (all 1-m2 grid cells) per species and spatial scale. Hence, the amount of used and available grid cells varied per individual of both species and spatial scale. A random sample of available grid cells per individual was chosen in proportion to used grid cells as done by Engler et al. (2004), because the power of logistic regression models to detect effects is maximal when the expected selection probability is 0.5. When individuals place home ranges within the floodplain, the entire floodplain habitat (552,822 grid cells) is available for selection. Because some animals crossed the entire study area within a single night (L. Indermaur, unpublished data), we considered all grid cells within the study area to be available to animals. Similarly, all grid cells within home ranges and core areas potentially could be used by animals, thus we varied habitat availability per individual across spatial scales in proportion to used habitat (Fig. 1).
Bayesian regression model.—We used a hierarchical logistic-regression model within the Bayesian framework for modeling habitat selection by toads. Bayesian analyses of resource selection models account for variation among individuals (Gillies et al. 2006, Thomas et al. 2006, Hebblewhite and Merrill 2008). This is important, as individuals may differ in habitat selection due to variation in physiological state, tolerance to limiting resources, age (experience), and competitive ability.

The hierarchical logistic regression model fits a curve for each individual and then regards the curves of each individual as a further sample from which the overall relationship is estimated. The dependent variable \(y_{i,j} \) was 0 when the corresponding grid cell was available and 1 when the grid cell was used by toads. Thus, for each individual \(j (j = 1, \ldots, J) \) and each observation \(i (i = 1, \ldots, I) \), the dependent variable \(y_{i,j} \) follows a Bernoulli distribution:

\[
y_{i,j} \sim \text{Bern} (\mu_{i,j}).
\]

The expected value \(\mu_{i,j} \) is modeled by factors describing the grid cell using the logit link function in various combinations (Table 2, Appendix C). For simplicity, we present a model including the main effects only (Table 2, model 10):

\[
\text{logit}(\mu_{i,j}) = \alpha_{i} \text{Pd}_{i,j} + \beta_{j} T_{i,j} + \gamma_{j,h} \text{Ht}_{i,j}
\]

where \(\text{Pd}_{i,j} \) is prey density, \(T_{i,j} \) is temperature, and \(\text{Ht}_{i,j} \) is habitat type (five levels: exposed gravel sediments, large wood deposits, dense pioneer vegetation, established islands, edge of established islands) for individual \(j \) at observation \(i \). Because the habitat is categorical, there are different parameters for each habitat type. The individual slope parameters are then modeled with a normal distribution to estimate the population mean and variance:

\[
\alpha_{i} \sim \mathcal{N}(\bar{\alpha}, \sigma_{\alpha}^{2})
\]

\[
\beta_{j} \sim \mathcal{N}(\bar{\beta}, \sigma_{\beta}^{2})
\]

\[
\gamma_{j,h} \sim \mathcal{N}(\bar{\gamma}_{h}, \sigma_{\gamma,h}^{2}).
\]

We were particularly interested in estimating the population slope parameters (\(\bar{\alpha}, \bar{\beta}, \bar{\gamma}_{h} \)). The variability (\(\sigma_{\alpha}^{2}, \sigma_{\beta}^{2}, \sigma_{\gamma,h}^{2} \)) is a measure of how strongly the...
individuals differed regarding the preference for specific habitat characteristics. For a more detailed description of hierarchical models we refer readers to Gelman and Hill (2007). We specified noninformative priors for all parameters to be estimated. We used $N(0, 0.001)$ priors for the slope parameters and, following Gelman (2005), uniform priors $U(0, 100)$ for the variance parameters.

To calculate the posterior distributions of the parameters of interest, we used Markov chain Monte Carlo simulations implemented in WinBUGS software (Lunn et al. 2000) that we executed from R (R Development Core Team 2005) with the package R2WinBUGS (Sturtz et al. 2005). We ran three independent chains and checked the convergence using the Brooks-Rubin-Gelman diagnostic (Brooks and Gelman 1998). Convergence usually was obtained quickly. For each candidate model, we ran three chains with 80,000 iterations, discarded the first 25,000 iterations, and saved every 10th sample. The explanatory factors were all standardized (mean = 0, SD = 1) prior to analysis.

Model selection strategy

Model selection was performed in two steps. First, we evaluated how each species responded to factors by modeling habitat selection separately for each species and spatial scale. Seventeen models were fit per species and scale, each reflecting a hypothesis (Table 2). The most complex model included habitat type, prey density, temperature, and all interactions among these factors (model 1). The simplest models included single factors (models 10–13, 15–16). Using the best model (deviance information criterion score = 0) we predicted habitat selection separately for each species to graphically explore which habitat types were preferred and how species respond to varying levels of prey density and temperature within a given habitat type.

In the second step, we explored whether resource selection was species-specific using the pooled data of both species. We therefore formulated a further set of seven candidate models based on the model that best fit our data from the first step (Appendix C). These models included the additive and interactive effects of the factor species with all factors in the best selected model out of the first step. Better support of models including interactive effects of species with prey density, temperature, and/or habitat type than models without these interactions would provide evidence for differential resource selection.

The graphical output of predicted habitat selection (the first step) and the model selection results that include factor species as a factor (the second step) allowed us to evaluate the potential for differential resource selection. The graphs are illustrative while the model selection results provide statistical evidence for differential resource selection. For brevity, we show graphical results and refer to appendices for detailed model results.

RESULTS

Composition of floodplain habitat

Both species preferred the same habitat types when placing home ranges within the floodplain, except that *B. viridis* avoided established islands (Table 1). Large wood deposits were most preferred and provided the lowest temperature of all habitat types (Table 1).
Established islands provided the highest prey density of all habitat types. Prey density was slightly higher and temperature significantly lower within than outside home ranges (mean log(prey density), B. b. spinosus, within home range, 0.175 prey/m², outside home range, 0.145 prey/m², t = 1.243, df = 27, P = 0.224; B. viridis, within home range, 0.198 prey/m², outside home range, 0.148 prey/m², t = 1.655, df = 31, P = 0.107; mean temperature, B. b. spinosus, within home range, 33.8°C, outside home range, 42.8°C, t = 17.353, df = 29, P < 0.001; B. viridis, within home range, 36.4°C, outside home range, 42.6°C, t = 9.558, df = 37, P < 0.001). Prey density and temperature were uncorrelated at the level of home range placement (B. b. spinosus, r = 0.076; B. viridis, r = 0.088), within 95% home ranges (B. b. spinosus, r = 0.141; B. viridis, r = 0.099), and within 50% core areas (B. b. spinosus, r = 0.23; B. viridis, r = -0.042).

Home range placement within the floodplain

For both species, the most complex model (habitat type, temperature, prey density, and all interactions) was the best fit to the data (model 1; Table 3, Appendix D). For B. viridis, a model excluding the three-way interaction habitat type × prey density × temperature (model 2) performed as equally well as the most complex model as indicated by the similar model weights (Table 3). Hence, all the three factors, habitat type, prey density, and temperature, were important at the home range placement scale, in line with our expectation. When the data from both species were jointly analyzed, the selection procedure favored a model that included habitat type, prey density, temperature, species, and the interaction species × habitat type (model 22, weights = 0.756; Appendix E). The second ranked model included the interactive effects of species with prey density and temperature, in addition to all other factors in the top-ranked model (model 23, weights = 0.213). The two top-ranked models together accounted for 96.9% of the model weights, thereby providing evidence for species-specific resource selection at the home range placement scale.

Both species clearly placed home ranges in areas containing any habitat type except exposed gravel sediments (Fig. 2). Though all factors were important in determining home range placement (Table 3), habitat-type-specific selection probabilities varied little in response to prey density and temperature (Figs. 3a, b, 4b, and 5a, b). An exception was that B. b. spinosus placed home ranges in areas that contained dense pioneer vegetation with high prey density (Fig. 4a). The effects of habitat types therefore outweighed the effects of prey density and temperature at the home range placement scale (Fig. 2; Appendix F). For habitat types that were most avoided by B. b. spinosus (exposed gravel) and B. viridis (exposed gravel, established islands) (Table 1, Fig. 2), see Appendices G and H.

Space use within 95% home ranges

Similarly to home range placement, the most complex model (habitat type, temperature, prey density, and all interactions) was the best fit for both species (model 1; Table 3, Appendix D). For B. viridis, the distribution of model weights indicated model selection uncertainty with model 1 being ~3.6 times better supported than model 2 (evidence ratio, 0.782/0.218 = 3.6). Hence, all three main factors, as well as their interactive effects, were important in the explanation of space use within 95% home ranges, in contrast to our expectation. The model selection when both species were combined favored the most complex model (model 23, weights =
0.676; Appendix F). This model included the four main effects as well as the interactions of species with prey density, temperature, and habitat type, thereby providing evidence for differential resource selection within 95% home ranges.

Both species preferred large wood deposits, dense pioneer vegetation, and island edges, but differed in their use of exposed gravel sediments and established islands within 95% home ranges (Fig. 2). *Bufo b. spinosus* preferentially used large wood deposits with high prey density, whereas *B. viridis* used large wood deposits independent of prey and temperature (Fig. 3c, d). *Bufo b. spinosus* used dense pioneer vegetation with high prey density, whereas *B. viridis* used the same habitat type largely independent of prey density or temperature (Fig. 4c, d). *Bufo b. spinosus* used island edges with lower temperatures (Fig. 5c), whereas *B. viridis* used island edges with high prey density (Fig. 5d).

Space use within 50% core areas

For *B. b. spinosus* the most complex model (model 1) was favored by the selection procedure, while for *B. viridis*, model 2 was the best fit (Table 3, Appendix D). Model 2 differed from model 1 by excluding the three-way interaction habitat type \times prey density \times temperature (Table 2). Hence, space use at the smallest spatial scale depended on the interactive effects of habitat type, prey density, and temperature, which was against our expectation. For larger spatial scales, the analysis of both species combined favored the most complex model (model 23, weights $= 0.941$; Appendix E). This provides evidence for differential selection of prey density and temperature within shared habitat types.

Large wood deposits were highly preferred by both species within 50% core areas (Fig. 2). Established islands were preferred by *B. b. spinosus* but avoided by *B. viridis*. *Bufo b. spinosus* randomly used dense pioneer vegetation and the island edge. *Bufo viridis* preferred dense pioneer vegetation (Fig. 2). Within core areas, the effects of habitat types were lowest, as evidenced by selection probabilities that are closer to 0.5 than at the larger spatial scale (Fig. 2). Large wood deposits were preferentially used by *B. b. spinosus* when they had high prey density, whereas those with low temperatures were preferred by *B. viridis* (Fig. 3e, f). Dense pioneer vegetation with high prey density and high temperature were preferred by *B. b. spinosus* (Fig. 4e), while *B. viridis* preferred low temperature rather than high prey density in this habitat type (Fig. 4f). *Bufo b. spinosus* used the coolest island edges with lowest prey density (Fig. 5e), whereas *Bufo viridis* preferentially used the coolest island edges with highest prey density (Fig. 5f).

DISCUSSION

Differential habitat selection is a central component in the evolution of species because it determines distribu-
Fig. 3. Predicted selection probabilities in relation to the large wood deposits habitat type, log(prey density), and temperature, separately by scale and species: the European common toad (Bufo bufo spinosus) and the green toad (B. viridis). The model that best explained habitat selection was used to predict selection probabilities (Table 3; Appendix D). Predictions were done for constant low (0.0), intermediate (0.5), and high (0.7) log(prey density), as well as for 14 temperature values ranging from 20°C to 46°C. Prey density was measured as number per square meter. Shaded areas are mean selection probabilities, whereas transparent areas indicate the lower and upper 95% confidence interval. If there is no selection, the selection probability (Pr) is 0.5; if there is avoidance, Pr < 0.5; and if there is preference, Pr > 0.5. When the selection surface parallels the x- and y-axes, selection is independent of prey and temperature.
tion and abundance and allows species coexistence (MacArthur et al. 1966, Werner et al. 1983). Nonetheless, differential habitat selection among sympatric species rarely has been quantified in relation to the joint impacts of multiple resources at the spatial scales at which animals operate (Anthony and Smith 1977, Bourget et al. 2007, Gilbert et al. 2008). We found that habitat type, prey density, temperature, and all interactions among these factors determined home range placement as well as space use within home ranges. We conclude that these two amphibians perceive the distribution of habitat types as well as gradients in prey

![Fig. 4. Predicted selection probabilities in relation to the dense pioneer vegetation habitat type, log(prey density), and temperature, separately by scale and species: the European common toad (Bufo bufo spinosus) and the green toad (B. viridis). See Fig. 3 for details.](image-url)
Density and temperature at all spatial scales. Moreover, we found that the two species differentially used a biotic resource (prey density) and an abiotic condition (temperature) within shared habitat types across spatial scales, thereby providing an explanation why two species coexist in terrestrial summer habitats.

Placement and use of terrestrial home ranges

As expected, we found that home range placement depended on habitat type, prey density, temperature, and the interactive effects among these factors (Table 3), resulting in slightly higher prey density and significantly lower temperature within than outside home ranges.
Home range placement therefore determined resource availability and conditions within home ranges (Orians and Wittenberger 1991) and is most probably done such that all the toad’s food and refuge requirements are met during the terrestrial summer period. Whether a factor becomes limiting at small spatial scales is hence influenced by the placement of home ranges, which is why home range placement is considered most important (Rettie and Messier 2000). At the home range placement scale, the habitat-type-specific selection probabilities did not vary strongly in relation to prey density and temperature (Figs. 3–5), suggesting that prey density and temperature were less important for home range placement than habitat type (Fig. 2; Appendix F). Our results support the idea that broad landscape features, such as available habitat types, have a dominating effect on home range placement because they indicate availability of resources and conditions (Lack 1940, MacArthur et al. 1966, Cody 1981).

Space use within 95% home ranges and within 50% core areas was governed by the same factors seen for home range placement, which was in contrast to our expectation (Table 3). Thus, both species perceived the distribution of habitat types as well as gradients in prey density and temperature at all spatial scales. Within core areas, the effects of habitat types were lowest (Fig. 2). Consequently, resources and conditions most strongly affect space use and hence the distribution of species at small spatial scales (Figs. 3–5). This has been noted elsewhere and appears to be a general pattern in habitat selection (Rettie and Messier 2000, Dussault et al. 2005, Chalfoun and Martin 2007). The environmental information obtained by animals at small spatial scales is theoretically maximal (Orians and Wittenberger 1991) because individuals can sample the entire area. Consequently, knowledge about resource patches must decrease with increasing distance between patches (Fauthald 1999, Roshier et al. 2008). Our results suggest that the selection of food as well as refuge (from predators and desiccation) at small spatial scales is facilitated by the accumulation of environmental information by individuals.

Differential use of shared habitat types between species

Both species generally preferred the same habitat types, although *B. viridis* avoided established islands at the two smaller spatial scales (Fig. 2). Habitat types that were preferred by both species, however, were used differentially in relation to prey density and temperature by both species at all spatial scales (Figs. 3–5; Appendices D, E, F, G, and H). Our findings suggest niche differentiation through differential resource selection within shared habitat types as a mechanism that stabilizes the coexistence of *B. b. spinosus* and *B. viridis* in terrestrial summer habitats. Similarly, scale-dependent niche differentiation has been found recently in mosquito larvae (Gilbert et al. 2008).

The differential use of shared habitat types likely reflects the regulation of different behaviors such as feeding, thermoregulation, and/or avoidance of predators (Figs. 3–5). For example, *B. b. spinosus* likely used large wood deposits within core areas for feeding while *B. viridis* selected large wood deposits most probably for thermoregulation (Fig. 3). Large wood deposits were clearly preferred by both species and provided lowest temperature but also low prey density. For *B. viridis*, large wood deposits are often the only habitat type in a matrix of exposed gravel sediment and therefore are crucial in providing refuge from high temperatures and predators (Indermaur et al. 2009). The fact that the same habitat type was used to regulate either foraging behavior or thermoregulation suggests that the mechanistic basis of niche differentiation might be due to differences in physiological requirements (Denton and Beebee 1994).

We would have expected that selection probabilities are highest when prey density is high and temperature low; however, this was not always the case (Figs. 4e and 5e). An explanation for this phenomenon might be that high prey density or low temperature correlates with predation risk, which may affect habitat selection. We have no spatially explicit data on predation mortality. Anecdotal observations suggest that predation mortality is negligible (L. Indermaur, personal observation), most likely because the toads are not palatable. Nonetheless, a comprehensive understanding of habitat selection would require that habitat-type-specific predation mortality is also quantified.

Conclusions

The two sympatric amphibian species differentially used the same habitat types in relation to a biotic resource (prey density) and an abiotic condition (temperature) at all spatial scales. Thus, niche differentiation through differential selection of resources and conditions at multiple spatial scales most probably stabilizes the coexistence of the two species in their terrestrial summer habitat. In other words, while one species used the same habitat type for foraging, the other used it for resting or both resting and foraging. Differential use of shared habitat types at multiple spatial scales can therefore reduce competition for prey and refuges, thereby facilitating coexistence and consequently high species richness.

Our results demonstrate that the ecological relevance of factors varied with spatial scale (Rettie and Messier 2000, Beasley et al. 2007, Chalfoun and Martin 2007, Ciarniello et al. 2007) as well as species. Home range placement was primarily governed by broad habitat features (habitat type), while space use within home ranges was largely controlled by food resources and an abiotic condition (temperature). These results contradict the idea that broad-scale movement patterns simply reflect the underlying resource distribution (Bennetts and Kitchens 2000, Eide et al. 2004). Rather, processes
acting at large scales include a fixed behavioral response leading to movement patterns at small spatial scales. Consequently, species distributions and species richness likely result from processes operating at large and small scales. The scale-specific movement patterns observed imply that orientation and decision making in animal ecology is behaviorally complex. As is often illustrated when animal dispersal and species distributions are modeled, movements are not random and do not arise from a predefined set of local decision rules (Pulliam et al. 1992, Gustafson and Gardener 1996). Instead, decision rules change with the amount of environmental information collected by the individual, with information about resource availability decreasing with distance (Fauchald 1999). Thus, the integration of behavioral complexity in the modeling of dispersal and species distributions is needed.

Failure to view habitat selection as a spatially hierarchical process results in a simplified view of the behavioral requirements of animals. For example, the role of the core area for regulating resting and foraging behavior would have remained undetected by focusing only on the home range placement scale. Hence, an individual management of species should include information from multiple spatial scales such as core areas, home ranges, and landscapes. At the landscape scale, increasing habitat availability most probably increases the landscape's connectivity, thereby facilitating the colonization of habitats. Within home ranges, refuge provisioning, for example by adding large wood deposits, seems most suitable to promote amphibians in terrestrial summer habitats. Large wood deposits are a key habitat type (Indermaur et al. 2009) even though it covers only a tiny fraction of the floodplain area. The availability of large wood deposits depends on an unconstrained channel, a natural flow regime, and a fringing riparian forest (Arscott et al. 2002, van der Nat et al. 2003). Flow regulation will reduce the availability of the most preferred habitat type. Consequently, species would either disappear or be forced to compete for resources in the remaining habitat types.

Acknowledgments

We are grateful to Marianne Gehring and Wendelin Wehrle for field data collection, to Urs Richard for help with the raster data, and to Christopher Robinson and Michael Monaghan for language polishing. We especially thank Jonathan Rhodes and an anonymous reviewer for their comments and criticism that improved the manuscript. All methods applied conform to the ethical and animal care guidelines issued by national (Ministero dell'Ambiente e della Tutela del Territorio, Direzione per la Protezione della Natura, Roma) and regional (Direzione Centrale Risorse Agricole, Forestali e Naturali, Regione Friuli Venezia Giulia, Udine) authorities in Italy that kindly provided permits. The project was funded by the MAVA Foundation (Switzerland).

Literature Cited

Gause, G. F. 1934. The struggle for existence. Williams and Wilkins, Baltimore, Maryland, USA.

Tockner, K., I. Klaus, C. Baumgartner, and J. V. Ward. 2006. Amphibian diversity and nestedness in a dynamic floodplain river (Tagliamento, NE-Italy). Hydrobiologia 565:121–133.

APPENDIX A
View of the study site from Monte Ragogna (Ecological Archives E090-240-A1).

APPENDIX B
Map of the study site (Ecological Archives E090-240-A2).

APPENDIX C
Candidate models used to evaluate the potential for differential resource selection within shared habitat type (Ecological Archives E090-240-A3).

APPENDIX D
Model selection results for predicting habitat selection separately per species and spatial scale (Ecological Archives E090-240-A4).

APPENDIX E
Model selection results for exploring the potential for differential resource selection within shared habitat types (Ecological Archives E090-240-A5).

APPENDIX F
Effect sizes and measures of precision for the 23 parameters of the best selected model (Table 3) (Ecological Archives E090-240-A6).

APPENDIX G
Predicted selection probabilities in relation to the exposed gravel sediments habitat type, log(Prey density), and temperature (Ecological Archives E090-240-A7).

APPENDIX H
Predicted selection probabilities in relation to the established islands habitat type, log(Prey density), and temperature (Ecological Archives E090-240-A8).