The evaluation of a performance based curriculum in the language arts.

Mary-Alice B. Wilson
University of Massachusetts Amherst

Follow this and additional works at: https://scholarworks.umass.edu/dissertations_1

Recommended Citation

Wilson, Mary-Alice B., "The evaluation of a performance based curriculum in the language arts." (1970). Doctoral Dissertations 1896 February 2014. 2564.
https://scholarworks.umass.edu/dissertations_1/2564

3」2ロヒヒロリ3572252

THE EVALUATION OF A PERFORMANCE BASED CURRICULUM IN THE LANGUAGE ARISS

A Dissertation Presented
By
Mary-Alice B. Wilson

Submitted to the Graduate School of the
University of Massachusetts in
partial fulfillment of the requirements for the degree of
DOCTOR OF EDUCATION

October 2970
Major Subject Reading and Evaluation

THE EVALUATION OF A PERFORMANCE BASED CURRICULUM IN THE LANGUAGE ARTS

A Dissertation
By
Mary-Alice B. Wilson

ACKNOWLEDGEMENTS

I would like to thank:
the language arts students for filling in all those forms;

Masha Rudman for her inspiration;
David J. Yarington, Daniel C. Jordan, and Jim C.
Fortune for their patience;
the members of SMERD, especially Elizabeth Proper, for
their assistance;
James M. Cooper for his leadership of METEP;
William Wolf for the U.S.O.E. Research Training Fellowship;

Donald Rutherford, Counseling Center, for processing the Optical Scanning forms;
the staff of the Computer Center for the Research Grant; Brayton F. Wilson for help both academic and domestic; and Cathy and Beth for keeping me sane.
M.A.B.W.

TABLE OF CONTENTS

Chapter
I. INTRODUCTION Page
II. REVIEW OF THE LITERATURE 5
III. EVALUATION DESIGN 16
IV. VARIABLES 21
PopulationProgram OperationCurriculumProgram Goals
V. CONCLUSIONS AND RECOMMENDATIONS 81
VI. SUMMARY 88
References 93
APPENDIX A. DATA COLLECTING INSTRUMENTS 98
APPENDIX B. COMPUTER PROGRAMS USED IN THE INFORMATION SYSTEM 159
APPENDIX C. OTHER EVALUATIONS 223
APPENDIX D. PROGRAM GOALS 238
APPENDIX E. APTITUDE TEST BATTERY 254

LIST OF TABLES

Table Page

1. Information on Students: General 22
2. Information on Students: Experience with Children 23
3. Information on Students: Teaching Plans 27
4. The 27 Performance Criteria 43
5. Post Program Questionnaire: Evaluation of IA Types 54
6. Summary of Fall Test Battery 57
7. Correlation of IAs Used with IAs Anticipated 62
8. Semantic Differential, Reliability Information. 65
9. Analysis of Variance: METEP Specialists 70
10. Summary of Spring Test Battery 72
11. Spring Test Battery: Statistical Information 73
12. Correlation of Pre Program Semantic Differential with Aptitude Battery 75
13. Stepwise Fegression Analysis: Generalists 77

LIST OF FIGURES

Figure Page

1. Average Time Per PC 42
2. Total Number of Unsuccessful Attempts Per PC 46
3. Specialists Rating of Their Performence Criteria 49
4. Number of Gereralists Using Each IA Type 51
5. Average Time Per IA 53
6. Report of Learning Preferences 60
7. Item Analysis of Semantic Differential 66
8. Mean Score Per Concept, Semantic Differential 68
9. Report on Teaching Preferences 80

CHAPTERI INTRODUCTION

In May of 1969, the Model Elementary Teacher Education Program (METEP) at the School of Education, University of Massachusetts began a Feasibility Study (Cooper, 1970). Members of the faculty had been developing a performance based curriculum for elementary teacher education for the past two years (Allen and Cooper, 1968). During the summer of 1969 , final preparations were to be made for the fall semester when the new curriculum would be tested. In the fall students would spend three weeks in an introductory program, five weeks in a curriculum block (language arts, math, social studies, and science) and eight weeks practjce teaching. Although the Feasibility Study officially ended In January, the language arts staff planned to test their program for at least two semesters.

Members of the language arts staff had already devised a hierarchy of teaching abilities (Rudman, 1970), some performance criteria based on this hierarchy and the instructional alternatives to accompany the performance criteria (Yarington, 1969). The performance criteria (PCs) covered the four areas of the language arts: reading, writing, Iistening, and speaking. During the summer 28 PCs were
developed specifically for use with language arts generalists, those students seeking to achieve a minimal level of competence In the language arts. Each PC had at least two instructional alternatives (IAs) which the student might use in preparing for the PC.

The language arts staff felt that the selection of learning experiences was an important part of the program and, therefore, the students were encouraged to prepare the PCs in any order they chose and to select as many, or as few, instructional. alternatives as they felt were needed. Students could attempt each PC as many times as was necessary for a successful performance. All. 28 PCs were to be completed during the fiveweok curriculum block.

During the summer while the language arts staff was developing the PCs and IAs to be used in the fall, they were constantly being asked to provide information on the curriculum and on the anticipated operation of the program. Everyone asked questions: the METEP administration, other curriculum components, the simulation component, prospective students, steff assistants, and non-METEP personnel both within and outside the School of Education. One of the major activities during the fall and spring semesters was clearly going to be the processing and reporting of information. The staff would be asked to provide information (1) to students about the operation of the progran and their own progress in it; (2) to
the staff and staff assistants about the activities of each student, the constraints on the operation of the program, the effectiveness of each PC and IA, the degree of attainment of program goals, and the nature of any unspecified effects of the program; (3) to the METEP administration about the academic, administrative, economic, and technical feasibility of the language arts program (Cooper, 1970); (4) to the simulation team about facility use, student and staff time, and the probability of successful student performance;
(5) to the rest of the School of Education about a program which was competing with other programs and other centers for space, money and students; and (6) to METEP clients outside the University of Massachusetts about the operation of the program and the degree and conditions of its success.

How could all this information be provided? Could an evaluation be designed which would at least help provide such different kinds of information to so many different audiences? The performance criteria which were to be used in the program had developed from a tradition of behavioral objectives (Mager, 1962) and a hierarchy of educational objectives (Bloom, 1956; Krathwohl, Bloom, \& Masia, 1964) which incorporated evaluation directly into the curriculum (Metfessel, Michael, \& Kirsner, 1969; Rudman, 1970). Including evaluation within each language arts performance criterion was not the
same, however, as designing an evaluation of the language arts program. Evaluation methodology, rather than curriculum theory, was needed as a basis of the evaluation design.

CHAPTERII

REVIEW OF THE LITERATURE

Methodology

Most of the writing in educational evaluation methodology has been presented as evaluation models. These models can be divided into two general categories: the temporal models which classify evaluations by the time the information is gathered and reported, and the unit size model which classiries evaluations by the size of the unit being evaluated (the information source).

Temporal classifications. One of the best known of the temporal classifications is Sturflebeam's CIPP model (1968). Since, according to Stufflebeam, the purpose of evaluation is to provide information for decision making, the information and the decisions are divided into four categories: Context, Input, Process and Product. These categories provide very practical assistance to the evaluator by helping him define his role within an operating program. They force him to recognize the scope of the evaluation questions he might otherwise ignore. Unfortunately the Stufflebeam model is not deter.. ministic. If it were, the evaluator would be able to take his evaluation problem from its original CIPP categorization into a unique series of design stages. In fact, all four CIPP
categories use the same design stages and, as useful as these are as a checklist for evaluation planning, they do not help the evaluator focus his questioning. They do not help him choose the variables appropriate to his evaluation.

A second temporal model is the formative/summative classification system of Scriven (1967) which distinguishes between information needed during the development of a product, formative evaluation, and that needed during the adoption of a product into a system, summative evaluation. Stake (1967) has argued that formative evaluation, which studies relationships, is the more powerful. Scriven, replying to an earlier article by Cronbach (1963), agreed with Cronbach that the purpose of evaluation is explanation, but argued that summative evaluation which can include comparative studies can provide explanations better than formative evaluation. Summative evaluation was so important to Scriven that formative evaluation became simply summative evaluation of the immediate phase of development--thus destroying the distinction altogether.

While the formative/summative dichotomy now appears to have been a superficial distinction, the debate served to highlight at least three issues which must be considered in a review of evaluation methodology. These are (1) the distinction between rescarch and evaluation; (2) the constrictive effect of the program monitoring approach to evaluation; and
(3) the disproportionate educational and social consequences of summative evaluation. Each of these issues will be discussed briefly.

1. Research evaluation. The distinction between research and evaluation can best be described in terms of the control each can exercise over threats to internal and external validity (Campbell and Stanley, 1963; Campbell, 1969). In general, evaluators have claimed that what they lose in the control of internal threats, they gain in the control of external threats (Guba and Stufflebeam, 1968; Stake and Denny, 1969) or, to put it in slightly different terms, the researcher so carefully controls the external world that generalization is forfeited, the "sterile lab in the ivory tower" argument. It is interesting that in the formativesummative controversy described earlier, each side claimed that research (and explanation) logically belonged on his side. Welty (1969) has argued that it is theoretically possible to implement a rigorous experimental design while providing feedback for managerial decision making, thus cquestioning the folktale of the helpful eveluator who, because he provides information for progran change, must abandon his cherished hope of conducting a "true experiment," of providing explanations.
2. Program monitoring. An oducational program may be described as an open system which, among other characteristics,
exchanges matter, energy and information with its environment and tends to maintain itself in a steady state (Griffiths, 1954). This steady state is maintained by a feedback or cybernetic mechenism. In terms of Guba and Stufflebeam's decision matrix (1968), this would be described as a homeostatic decision making setting. The better the feedback mechanism, the more effective the system is in maintajning its steady state, and hence the more effective it is in resisting change. The formative/summative distinction reflects the conflict between the temporary system (formative evaluation) and the permanent system (summative evaluation) but provides little insight into the problem of designing evaluations for innovations.
3. Consequences of sumnative evaluation. Summative evaluation is dosigned to provide o moment of truth when an innovation is finally adopted or rejected by the system. The finality of this approach has tended to widen the gulf between the innovator and the evaluator. Campbell (1969) has some accurate, if facetious, advice for harried administrators who need to produce gain scores (to provide data for summative evaluation). Many innovative administrators, with such grim national examples as Hi.gher Horizons (Wrightstone, Forlano, Frankel, Lewis, Turner, \& Bolger, 1964) and Headstart (Cicirelli, 1969) and countless local catastrophes, have displayed marked avoidance behavior in the planning and implenentation of program evaluation (Jordan and Speiss, 1970). Porhaps
the solution is not to build bigger and better summative evaluations (Scriven, 1967), but to find an alternative appreach.

Unit size classification. The second major type of evaluation model is the classification of design by the size of the information source, i.e., the unit to be evaluated (Pace, 1968). The size of the unit determines the criteria, and hence the variablos, to be considered. For example, if the unit is small (explicitly defined, limited in scope and of short duration), large contextual variables are of marginal importance or irrelevant while behaviorally defined objectives are important. As the unit size becomes larger, behavioral objectives become increasingly irrelevant while contextual variables, which have greater opportunity for influence in a larger program of longer duration, become increasingly important.

This system allows the evaluator to view his unịt in the context of the surrounding units or systems and to focus his questions accordingly. In fact, an evaluator who is providing information to different audiences is roally describing the characteristics of his unit as part of different sized systems, and hence measuring his unit using different sets of variables. Just as an x-ray, a tape measure and a census form can be used to measure the same person, or unit, so the evaluator becomes radiologist, tailor, and census taker to his program.

Part of the appeal of this system is probably its simjlarity to environmental studies. Educational evaluation has been guilty of the same restriction of variables, what Pace calls single purpose planning, that kept agricultural experts measuring the height of the fertilized crop while ignoring the polluted runoff from the fiolds. Heranowicz (1969) has described this as the need for a macroanalytic approach. In short, this classification system should accomplish an aim of evaluation, which is not to attempt to simplify the educational process, but to portray it in all its complexities (Stake and Denny, 1969).

A second advantage of this classification by unj.t size is its similarity to systems analysis. The systems analysis approach is concerned with the relationships within each subsystem of inputs and outputs and the relationship between subsystems within a larger system (Wittrock, 1966; Alkin, 1967). Of particular interest to the evaluator is cost effectiveness analysis (Forbes, 1969) which studies the relationship between instructional objectives, institutional programs, measurements of achievement of the objectives, and cost of the system.

A third value of Pace's classification system is that it is deterministic, as the temporal classifications are not. Unit size determines variables and since, as Fortune (1969) points out, variables determine measurement, the evaluator
can use the model to determine his evaluation strategy.
Variables

Population. The population, and the sampling from that population, are variables in an evaluation design. The dangers inherent in all but the most rigorous sampling techniques have been extensively documented (Campbell and Stanley, 1963; Campbell, 1969). Campbell has stated that the strongest solution in quasi-experimental design is the use of untreated comparison groups even where these cannot be assigned at random. Another suggestion is that the evaluator consider the logical groups, the naturally occurring subgroups, rather than the individual, when it is the logical group upon whom the program operates and with whom it would be replicated (Wardrop, 1968; Light and Smith, 1970).

Information system. The information system collects, processes and reports data on different variables to different audiences. Part of that reporting is the documentation of the program itself, and part of the program is the evaluation. Evaluations are obtrusive. Their effects can be "minimized or maximized, but they cannot be entirely neutralized." (Bloom, 1969.) This is similar to the problem faced by the researcher with the Hawthorne effect, although Cook (1967) has suggested that there is scant evidence of the mechanism by which the Hawthorne effect works, or of the long-range
effect of that threat to external validity. For the purpose of replication it is perhaps best to regard the evaluation as part of the program, as a characteristic of the environment (Bloom, 2967) which should be documented, and perhaps even manipulated, i.e., treated as a variable. When the curriculum is regarded as eternally dynamic and the evaluation as the provider of data for change (Cooper, 1970), then the gencralizability of the specific program may not be as important as the generalizability of the curriculun-evaluation relationship (Ahmann, 1967).

Goals. Using the Pace model, the evaluator begins deciding which variables are to be used for each evaluation unit. At each level he can try to determine what the goals actually are, keeping in mind that goals themselves are variables (Stake, 2970). Many writers, using such terms as congruence (Stake, 1967) and discrepancy (Provus, 1969), have provided detailed instructions in the process by which goals can be clarified. In this essentially dialectic process, staff and evaluator create a synthesis: a set of goals. In the dialectic process, however, the synthesis immediately becomes the thesis and the process begins again. Unfortunately, that is exactly what happens to the beautifully written, carefully typed set of goals. They are constantly changing, in themselves, and in their relation to other goals of the program (Stake and Denny, 1969; Brickell, 1969).

In the process of goal clarification, the evaluator must accept all goals of the staff, be they "taxonomic, mechanistic, humanistic, even scriptural" (Stake, 1967). Furthermore, he must be aware of the appropriateness of multiple criteria, just as he is aware of the value of multiple predictors for the criteria (Horst, 1966; Wittrock, 1966). He must try to specify program goals so that unspecified results can be describod and studied (BJoon, 1969), but he must be willing to evaluate programs which have not yet clearly defined their goals (Pace, 1968).

Measurement

The type of variable determines the type of measurement (Fortune, 1969). Thus, a highly stable, easily measured variable, such as a behavioral objective, can often be measured with a single instrunent. A very unstable, difficult to measure variable, such as those in the affective domain, will often need multivariant measurement techniques. The increasingly popular use of unobtrusive measures (Webb, Campbell, Schwartz, \& Sechrest, 1966) is based on the assumption that, since all measurements have weaknesses, an attempt should be made to develop a program of obtrusive and unobtrusive measures which will have compensatory strengths and unshared weaknesses (Sechrest, 1958).

Selection of the measuring instruments is a crucial part
of an evaluation design and the testing subprogram should Itself be evaluated for its relevance to the total evaluation (Unks and Cox, 1968). Not only can poor measurement obscure, or even distort, information, it can destroy the credibility of the evaluation (Bloom, 1969). Measuring instruments which did not seem relevant to student, teacher, or administrator at the moment of administration, can hardly gain relevance by being tabulated and analyzed.

Reporting Information

Analysis, like measurement, is determined by the variables chosen (Fortune, 1969). However, the organization and presentation of data sometimes suggest methods for future collection, organization, and analysis (Forbes, 1969). In this manner the data processing serves as information to the evaluator about his design as well as providing information for other groups.

Guba and Stufflebeam (1968), stating that an evaluation should provide useful information, have suggested the following criteria of usefulness:

1. Internal validity--data corresponds to program;
2. External validity--generalizability;
3. Reliability--replicable;
4. Objectivity--publicness of interpretation;
5. Relevance--the decisions to be made;
6. Significance--priority of information;
7. Scope--information;
8. Credibility--information sources;
9. Timeliness--reporting;
10. Pervasiveness--all audiences;
11. Efficiency--proportion to the program. The task, then, was to develop a useful evaluation of the language arts component of METEP.

CHAPTERIII

EVALUATJON DESIGN

The fall semester 1969 began with an evaluation which attempted to provide information to students, staff, METEP administration, the METEP simulation component, and nonMETEP personnel. Information was collected on the population, program operation, curriculum, and program goals. Each student's use of the PCs and IAs (including time taken, PC and IA evaluation, and whether the student had passed or failed) was collected whenever a student attempted a PC (Appendix A). Unfortunately the evaluator had fajled to realize the mammoth data mountain that was going to be built by having 110 students fill out a three-page uncoded questionnaire each time they attempted any one of the 28 PCs.

A data processing system using optical scanning forms (Appendix A), original computer programs (Appendix B) and packaged statistical analysis programs was developed at the close of the fall semester for use during the spring program. Data needed during the program were processed in computer programs written in Fortran by the evaluator for the Control Data Computer (CDC) modol 3600, at the University of Massachusetts Computer Center. These programs were specifically designed to process incomplote data files and to present the material
in an easily understandable format to the specified audiences. Packaged programs were used at the end of the program for analyzing the completed data.

The Statistical Package for the Social Sciences (SPSS) which was developed at Stanford (Nie, 1969) was adapted to the CDC 3600 by members of the Computer Center and School of Education, University of Massachusetts, at the beginning of the spring semester. SPSS is particularly well suited for processing completed data for simple statistical analyses. It is probably best known for its elegant formating and labeling capabilities, but it also has a well written manual, is designed to provide easy processing both by variable and by subgroup, and stores both original and transformed data on magnetic tape for later analysis. At present the SPSS program at the University of Massachusetts has very limited statistical capabilities (descriptive and two-way frequency tables) and can accommodate only 100 variables. Attempts are being made to incorporate all the statistical analyses provided in the original SPSS program and to increase the variable limit to 600.

The Biomedical Computer Programs (BMD) developed at UCLA (Dixon, 1968) have much greater statistical capabilities, but lack the label and format options of SPSS. They are also extremely inefficient for the processing of large numbers of variables in simple statistical analyses. The University of

Massachusetts Computer Center has six of the individual programs on the system and provides binary decks for the rest. The spring semester schedule for the language arts program was generally the same as the fall schedule. The students participated in a five-week curriculum block after they had observed in thejr practice teaching classrooms and before they began their eight weeks of practice teaching. As before, the students could attempt the PCs in eny order and use as many instructional alternatives as they felt necessary. This time, instead of requiring that all PGs be completed at the end of the five weeks, 20 of the revised PCs were due at the end of the five weeks, the remaining seven had to be completed successfully during the first four weeks of practice teaching. The Instructional Alternative (IA) system was enlarged to provide one of each of the 11 IA types for each PC. The 11 alternatives available for each PC were as follows:

1. Live lecturo--schedule providod at beginning of program;
2. Taped lecture--taped at beginning of program;
3. Library packet--selected and annotated readings;
4. Library browsing--annotated bibliographies available;
5. Discussion with staff--office hours posted;
6. Discussion with others--classmates, master teachers, etc.;
7. Audiovisual material--filmstrips, TV tapes, displays, etc.;
8. Observation--in practice teaching classroom, observation corridor of laboratory school, or by appointment;
9. Practice--laboratory school students available, some programmed materials;
10. Pretest--PC itself becomes an instructional alternative;
11. Other....to be devised by the student.

The language arts program was also expanded to include a new category of student, NETEP specialists. Three PCs were written for this group and a weokly seminar scheduled specifically for them.

During the spring senester the evaluator's emphasis was on the accuracy and tireliness of the reporting. The audiences remained the same as those identified during the fall semester: students (both generalists and specialists), staff, METEP administration, simulation staff, and non-METEP personnel. Each audience represented an evaluating unit, and, thus, needed information on different variables (Pace, 1968). The four categories of variables measured during the fall (population, program operation, curriculum, and program goals), were remeasured using revised instruments in the spring. Each audience received information only on those aspects of the
variables of interest to it.
Although the reporting of information was organized by audience, the collecting of information was organized by variable. Thus the evaluator's report can be logically organizod by variables. Each of the four variables in this evaluation will be discussed in a separate soction of the next chapter within which the measuring and reporting prow cedures for both spring and fall semester will be described. Conclusions and recomendations for revisions in the evaluation design are in the following chaptor.

CHAPTERIV

VARIABLES

Population

Fall Semester

Selection. During the fall semester all 110 students enrolled in the language arts methods course were included in the program. An early attempt to divide the course for some sort of controlled sampling was abandoned because many of the students were participating in MENEP programs in other curriculum areas. The interns, students who chose a full semester of teaching rather than half a semester of methods courses and half a semester of teaching, proved to be an equally poor control group because of the high communication rate between the elementary education seniors, the students who were the great majority of both the interns and the student teachers.

Description. Although METEP was designed to have a data collection service, information collected during the Feasibility study was left to the individual curriculum components. At the end of the program, students were asked to provide some data on their previous educational experiencos (Appendix A). That information is sumarized in Tables 1 and 2.
TABLE 1
INFORMATION ON STUDENTS: GENERAI

	Fall Semester	Spring Semester		
	Generalists ($n=110$)	Lecture-Denonstration Section ($n=32$)	METEP Generalists ($n=27$)	Specialists $(n=35)$
$\begin{array}{r}\text { Age } \\ \\ \hline \text { Range }\end{array}$	$\begin{aligned} & 21.7 \mathrm{yrs} . \\ & 20-41 \\ & \hline \end{aligned}$	21. 3 yrs. $20-25$	$\begin{aligned} & 21.9 \text { yrs. } \\ & 20-33 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.9 \text { yrs. } \\ & 19.51 \\ & \hline \end{aligned}$
Status Undergrad.	101	27	24	13
Graduate	4	5	2	19
Sex Male	6	4	5	2
Female	204	28	22	33
Own Elementary Sch	01 Experience			
Rural	15	2	4	11
Suburban	57	26	17	19
Urban	22	4	6	5
Traditional	89	29	24	25
Experimental	5	3	1	1

TABLE 2

A casual observer at that meeting might have noticed two statistics not included in the tables. The height of the students varied from five feet to six feet eight inches, and all the students were white. No information was collected on the 15 staff assistants, two of whon were black.

Spring

Solection. In the spring a number of programs were competing with METEP for students. The intern program operated as it had for the fall semester. Twenty-eight of the practice teaching students volunteered for the Model Elementary Training Sequence (METS). Although METS students had no formal curriculum training, they were encouraged to use METEP materials. All PC and IA information was made available to them. The remaining 59 students were offered a choice between the METEP progran and a lecture-demonstration section taught by Dr. Helen O'Leary. Twenty-eight chose METEP. Some personal data, aptitude and attitude information wero collected on the 59 when they met for a preprogram information meeting (Appendix A). The lecture-denonstration students were not tested at the end of the semester in hopes of avoiding the trap so vividly described by Pace (1968) who pointed out that the smaller the unit being evaluated, and thus the more specific the criteria, the greater the chance that the treated group, who have had explicitly relevant
treatment, will perform better than those with the less rolevant treatment.

Elizabeth Proper, research assistant to the Office of Teacher Preparation, School of Education, University of Massachusetts, did design a pilot evaluation of all the elementary teacher preparation programs. Excerpts from the report are in Appendix C.

In addition to the 27 generalists, 35 language arts specialists were included in the spring program. During the fall semester the 15 students who rated PCs, counseled students and helped administer the program and the evaluation were called staff assistants. In fact, the work they were doing was theoretically that of language arts spocialists and so that category, and the accompanying PCs, were formally incorporated into the spring program. Personal data, aptitude and attitude measures (Appendix A) were collected at one of the first weekly seminars conducted by the progran director, Masha Rudman.

General academic information on the students was not collected from either the generalists or the specialists and was not readily available from the University records. Grade point averages were not easily obtained and the pass/fail system at the school of Education invalidates such averages enyway. Freshman entrance examination scoros were not consistently available for transfer students; entrance
examinations for graduate students vary with the graduate pregram.

Description. Information on the population (Tables 1, 2, and 3) was designed to be used by those planning to replicate or revise the program. The language arts staff, the METEP administration, and METEP clients would all need to know the population with whom the program had been conducted in order to manipulate that variable in future programs.

Data from the Pre Program questionnaire Parts I and II were collected on Optical Scanning Standard Answer Form C (Appendix A). After the data had been transferred in a slightly revised format to IBM card by the Digitek 100 Optical Scanner, the data were processed in the SPSS program CODEBOOK (Nic, 1969). The data for both semesters are summarized in fables 1,2 , and 3.

All students in the program were white. In fact, there were no black students in any of the regular elementary teacher training programs spring semester. It should be noted that the reported average age is slightly low. Not surprisingly, perhaps, those students not reporting their age, and therefore not included in the data, wore all women somewhat above the average age. The students who chose to participate in the lecture-dcmonstration section rather than the METEP program, were not noticeably different on any of the variables reported
TABLE 3
INFORMATION ON STUDENTS: TEACHING PLANS, SPRING SEMESTER STUDENTS ONLY*

	Lecture-Demonstration Section ($n=32$)	$\begin{gathered} \text { METEP } \\ \text { Generalists } \\ (n=27) \end{gathered}$	$\begin{aligned} & \text { METEP } \\ & \text { Specialists } \\ & (n=35) \end{aligned}$
I want to teach:			
rural	1	1	3
suburban	12	10	ユ1
urban	7	4	8
anything, not urban	5	2	3
don't cere	7	10	10
traditional	3	3	3
experimental	15	14	24
don't care	14	10	8
preschool	3	4	3
K-3	12	8	16
4-6	24	25	11
don't care	3	0	4
not elementary	0	0	1

*The information was not collected for fall semester.
from those who chose the METEP program. As might be expected, the specialists, more of whom were graduate students, had had more experience working with children.

Program Operation

Fall Semester

Information for students: program operation. At a general student meeting the beginning of the fall somester, the lenguage arts staff explained the MESEP progran briefly and handed out a 110-page packet (26 pages of program information, 28 copies of the 3-page PC questionnaire) to each student. The program information included the PCs, the schedule of JAs, forms necessary for the preparation of some of the PCs, and general information about the location and use of facilities (Rudman, 1970).

When a student completed a written PC he was asked to hand it in along with the completed PC questionnaire in Masha Rudman's office. PCs were not rated unless accompanied by the completed questionnaire. The $P C$ was rated by a staff assistant and returned to the student's folder in the office. The office was open from $9-5$, five days a week. Each staff assistant was scheduled for two hours of office duty per week. PC questionnaires were also completed for oral demonstration PCs which wero rated during office hours. The student was expected to check his folder regularly
for returned PCs (rated "pass" or "fail") and for any program or curriculum information which might have been placed there. Since lectures, only one of the IAs available for each PC, were optional, the lecture timo could not be used for the giving of program or general curriculum information.

Information for students: individual progress. Students kept track of their progress in the program by checking their returned PCs and by consulting a master list on the back of the office door. This list, which had the PC numbers across the top and the students' names down the side, was kept up to date by the staff assistants who rated the PCs. They filled in the date the $P C$ was passed on the master list as well as keeping a separate pass/fail list of all the students whom they had rated.

The system was far from efficient. At the end of the five weeks it was necessary to send a letter to each student which began: "According to our records, and we admit they may be wrong, you have not passed the following PCs." Studonts received little diagnostic information on their returned PCs from raters who had a minimum of 220 PCs to read, rate and record during the five weeks.

Information for administrators: programoperation. The

 administration relied entirely on informal reporting, or complaining, by students and staff assistants to discover program constraints: a missing library packet, a lecture schedulemix-up, a shortage of TV monitors, the excessive workload of the 20 students who happened to be participating in four METEP programs simultaneously.

It was easy to check if the raters had visited the office to collect unrated PCs, but somewhat more difficult to tell whether PCs were sitting at home unread. Again student complaints were the main source of information.

Information for administrators: student progress. Information on the progress of each student was needed for counseling purposes. The master list provided the only organized source of information on student activities and it only had the date the PCs wore passed.

In fact, it was even difficult to determine exactly who was enrolled in the program. Students entered late, changed courses, were participating in a different program with the same course number, or were enrolled but just hadn't passed in any PCs. The program was over before an accurate list was compiled.

Information for the evaluator. The difficulties of the design were clearly demonstrated by the slow and inaccurate data processing. Information could not be compiled in time for the November 15 th report to the MEIEP administration. As the PC questionaires piled up in cardboard boxes, the evaluator seriously considered weighing rather than processing the data. The eight staff assistants who patiently coded the questionnaire
information (Appendix A) provided many hel pful suggestions on precoding categories which were used spring semester. The comaraderio of that loyal group reminded the evaluator of the esprit of temporary groups so vividly described by Miles (1964). That spirit was never recaptured in the more institutionalized and efficient program of the spring semester.

Spring Semester

Information for students: program operation. The communication system for generalists was only slightly revised for the spring semester. Again after only one general meeting, the student folders in the office were the major communcation link. The student's packet, this time 54 pages, includod the revised PCs and IAs, general facilities information, the criteria upon which each PC would be judged, a statement of the goals of the program (Rudman, 1970), two pages of PC questionnaire instructions and 27 copies of the Optical Scanning General Coding Form (Appendix A). Thirteen pages of program information and three pages of curriculum materials were passed out through the student folders. The office was open and staffed by specialists five days and three evenings a week.

The specialists met once a week in a seminar which was used partially for program and curriculum information. Each specialist also had a folder which was used both for general
information and as a means of passing messages directly between the rater and the rated.

Information for students: individual progress. The system of recording the progress of the generalists was redesigned to take advantage of the data processing equipment available at the University of Massachusetts, specifically the Digitek 100 Optical Scanner at the Counseling Center and the CDC 3600 computor and the unit record equipment at the Computer Center. When the student handed in a PC (or was rated on an oral PC) he was asked to hand in the answers to the PC questionnaire on an Optical Scanning General Coding Form (Appendix A). This form had space for 79 columns of information coded from 0 to 9. For the purposes of monitoring a student's progress, the only important information collected from the student was the student's language arts number, the PC number and the date the PC was turned in.

When the language arts specialist rated the student's work, he was asked to fill in additional information on the same form. The only information essential for the monitoring program was whether the student had passed or not passed. "Not pass" had been substituted for "fail" upon the discovery fall semester that raters were delaying the recording of the borderline PCs until they had discussed the PC with the student to clarify his work, i.e., to make sure he passed. The "not pass" rate was higher spring semester than was the "fail" rate
fall semester (14 percent spring; 8 percent fall) which may be attributed to this change, to the decreased rating load which allowed more careful rating, or to both.

The Optical Scanning forms were taken to the Counseling Center twice a week where the data were transferred to IBM cards. These cards were filed by student in the MASTER program (Appendix B) which printed out a master list with the PCs across the top, the student names down the side, the date on which the PC was passed, and the totals per student and per PC. Twice during the semester the program STUDENT 1 (Appendix B) was run which provided one page of printout per student giving the number of not passes as well as the date passed. Each student's page was filed in his folder as an additional check of the records.

During the fall semester staff assistants acting as raters had been responsible for two PCs, rating all the students attempting those two. The raters found this procedure tedious and felt they had missed important sections of the language arts program. Upon their recommendation, the spring senester specialists were asked to rate at least one of each PC. A list of the PCs each specialist had rated was printed weekly from the program RATER (Appendix B). All the information necessary for the program (rater's number, PC number) was made available from the PC questionnaire. Since the rating of the generalists' PCs was one of the specialists'

PCs, the RATER printout provided the specialists with information about the scope of their performance.

A second specjalists' $P C$, assisting in the administration of the program, was regarded as an expressive objective and so did not need to be rated. The third PC, the preparing of IAs for the generalists' PCs, was rated by the program director. A record was kept of the specific PC and IA number using a slightly revised PC questionnaire (Appondix A). A printout on the style of the master list, SPECPC (Appendix B) which displayed the information per PC and SPECIA (Appendix B) which displayed the information per IA, was available on a weekly basis. A second printout on the style of STUDENT 1 , from the program SPECIAL (Appendix B) provided one page of printout per student and was filed in the specialists' folders near the end of the five weeks.

Information for administrators: program operation. While informal information from students was still an effective means of discovering program difficulties, specialists wore assigned to check library packets, tapes, and other instructional material as part of their office duties. The printout from the program PC (Appendix B) provided additional assistance. The data for the program PC were collected on the PC questionnaire described earlier. Much of the information was designed to provide data about the curriculum and program goals and will be discussed in later chepters, but some of the information,
particularly in the early weeks of the program, was useful for program management.

The printout from the program PC provided information on average time for each $P C$ and $I A, P C$ and IA evaluations, the number of multiple IAs, the number of students passing each PC and the levels of performance, and, upon the suggestion of the program director, the number of pass and not pass for each IA and the performance levels of those passing. During the first few weeks of the program, this information helped to ferret out poor IAs (no one passed who usod them, low performance level, low student evaluation, high multiple IA use) or particularly difficult or ambiguously worded PCs (low pass rate, length of time on PC and IAs, number of mul.tiple IAs, low performance level).

The program PC described above also printed out the average turn around time for rating each PC. Although this did not identify the slowor raters, as it would have during the fall semester when raters were totally responsible for certain PCs, it did provide information about the rating program generally. The number of PCs rated by each specialist was printed out in the program RATER described earlier. There were so many more raters spring semester that all rating was done in the office. PCs still wandered off inside raters' notebooks and were found only with the greatest difficulty. Information for administrators: student vrogress. The
pregran STUDENT (Appendix B) provided more counseling information than would have been available from the MASTER printout. Data for this program were again taken from the PC questionnaire. A singlo page of information per student described the number of unsuccessful attempts for each PC, the date the PC was passed, and the performance level. Weekly printouts thus provided both comparative and historical counseling information.

A history of the performance level is worth recounting briefly. As mentioned earlier, staff and staff assistants had had no real counseling information fall semester. The notion of performance level was introduced reluctantly by the evaluator who, although she had carefully avoided suggesting the probable proportion of "minimals," "adequates," and "outstandings" anticipated at best a lengthy debate on the appropriateness of performance levels in a pass/fail systen and, at worst, a discussion of the dangers of conrusing peer referenced and criteria referenced measurements (Popham and Husek, 1969). However, the specialists, who after a week in the program were apparently conditioned to expect any sort of outrageous request from the evaluator, accepted the system without comment. Although the performance level system was not an official secret, neither of the printouts provided for the generalists (MASTER and STUDENT 1) included information on performance levels, and when the specialists
rated PCs they were encouraged to provide lengthy diagnostic conments on the returned PCs rather than a simple performance level. At the end of the semester the total number of each level was:

minimal	182
adequate	423
outstanding	84

With all the olaborate data processing, it was still almost impossible to determine who was actually enrolled in the progran. "Preventive counseling," calling those students who had passed in little or no work by the end of the second week, helped identify the program participants. While it was an administrative choice to decide what proportion of counseling time should be spent with borderline students, it was clearly the evaluator's problem to separate the students in difficulty from the ghosts. Both semesters a special language arts number was used to identify each student rather than the University ID which was longer and which would have required more card space and sorting time. The process of assigning these numbers, however, slowed down the information system during the early weeks of the program and mede the processing of late enrolling students an unnecessarily lengthy procedure:

Information for the evaluator. The monitoring program was not entirely accurate. Most of the errors were caused by

Incorrectly completed optical scanning forms. The 0-9 General Coding Form (Appendix A) was difficult to use. It was very easy to mark information in the wrong columns, in which case PC \#12 became either PC \#20 or PC \#l. Listing the cards on the IBM 407 was helpful in detecting misalligned columns. The listing was also used to check for logical errors, such as a rater marking a student not pass and then filling in the performance level. Students who found errors in the printouts for MASTER, STUDENT 1 or SPECTAL could contact the evaluator in person or through the evaluator's folder in the office.

Eight hundred eighty-six PC questionnaires for the 28 generalists were processed, or an average of 32 per student (range of 27 to 41). It was usually possible to collect the forms early ore morning and have the printout the following afternoon. Processing time ranged from a four hour miracle to three days. Unfortunately, the counseling center equipment was not available on woekends when computer turnaround time was shortest. Much of the unit record equipment at the Computer Center was being repaired during the spring semester, making it necessary to use the computer for listing and duplicating work which would otherwise have been done on the peripheral machines.

Although the reporting time during the program, the highest priority during the spring semester, was vastly
improved over the fall semester, the post program reporting was slower than had been anticjpated, as some of the data required considerable processing. Post program analyses, such as tests of reliability, analysis of variance between groups in the program, and stepwise regression analysis on the data collected on the generalists, are described in the last section of this chapter with recommendations for revision in Chapter V.

Curriculum

Fall Semester

Performence criteria. Only minor changes in the PCs could be made during the program. Major revisions had to wait until the second half of the fall semester when the students were in the schools practice teaching. Theoretically the information from the PC questionnaire was available to help guide curriculum changes. In fact, however, the coding and processing of the data took so long that most of the changes were made before the information was available. A post program questionnaire designed to provide more rapid information (Appendix A) was available slightly earlier. Staff assistants acting as raters provided suggestions on the PCs they had read. Their information was based on the reading of the PCs during the program and the post program reading and coding of the PC questionnaires.

The PCs had been designed to reflect a hierarchy of
teaching skills (Rudman, 1970). A chart designed for the November 15 th report to the METEP administration describing each PC in terms of the five stages of the hierarchy became an important source of information for the revising of PCs (Appendix D). It was discovered that the PCs which had been unpopular, which had caused difficulty or had been excessively time consuming, often represented only one, or at the most two, stages of the hierarchy, while PCs judged both valuable and interesting by the students often required the students to demonstrate skills on a number of levels of the hierarchy. Instructional alterngtives. In the fall, a lecture IA was offered for each PC along with one or two other instructionel alternatives. Suggestions for revising the IAs came from the same sources described above. Additional information was provided for revising specific aspects of some of the IAs from the open-ended questions in the PC questionnaire. Spring Semester

Performance criteria: generalists. Information on the curriculum was reported to the curriculum directors. They in turn would report revisions on curriculum to non-METEP personnel.

Each of the generalists' PCs was discussed in detail in the weekly seminar for specialists. Specific attention was directed to the revising of the PC and the devising of
additional PCs for the teaching hierarchy. Perhaps the most important revision was made at the end of the program when a sixth level of the hierarchy, evaluation, was added (Rudman, 1970). Revisions and additions in the PCs to cover this new level are being developed for next semester.

The program PC provided information on which to judge each PC and by which to compare it with other PCs. For example, PCs can be compared by the average time it took the students to prepare the PC (including IA time). Figure 1 presents the average student time per PC. A brief description of each PC appears in Table 4. A complete description may be found in the doctoral dissertation describing the curriculum (Rudman, 1970). As expected, the demonstration PCs (13, 20, 27) took the shortest time. The purpose of the chart was not to convince the staff to shorten such lengthy PCs as 1,3 and 18 but to have them aware of these differences when revising existing PCs and developing new ones.

The averages in Figure 1 include those students who chose the option of "talking out" the PC, i.e., oral rather than written presentation. As one might expect, written presentation required more preparation time (an average of 112 minutes for all PCs) than oral presentation (an average of 59 minutes). When the oral option was first offered late in the fall semester, it had been assumed that rating time would be dramatically increased. In fact, however, raters reported spending an average

Figure 1.-Average Time Per PC.

The mean time for cach of the METEP generalists' 27 performance criterion including time of instructional alternatives.

Information was collected on the PC questionnaire from the 28 generalists participating in the program spring semester 1970.

A brief list of the PCs appear in Table 4.

TABLE 4

THE 27 PERFORMANCE CRITERIA

Number of PC
1
2

Comparison of basal reading texts
Discussion of basal readers in schools (expressive objective)
Reading readiness
Grouping for reading
Informal reading inventory
Comprehension skills
Word analysis skills
Phonics approach
$i / t / a$
Linguistic approach
Experience approach
Individualized approach
Demonstration of kits and machines
Special populations
Selecting professional texts
Evaluating reading objectives
Discussion of IQ testing (expressive objective)
Classroom library
Presenting a story
Demonstration of story reading
Creative writing
spelling
Listening

TABLE 4.--Continued

Number of PC

24		Speaking
25	Drama	
26	..	Grammar

27

Description
Speaking
Drana
Grammar
Handwriting demonstration

Source: Rudman, 1970.
of $\mathbf{1 5 . 1}$ minutes rating written PCs and an average of 14.8 minutes rating oral PCs. The staff had also assumed that if an oral option were available most of the PCs would be presented orally. During the spring, however, students chose the oral option only 10 percent of the time. These figures do not include the three demonstration $\operatorname{PCs}(13,20,27)$ or the two expressive objectives $(2,17)$ where students were given no choice of presentation methods.

Figure 2 illustrates another way of comparing PCs--by the number of unsuccessful attempts per PC. Such a chart illustrates, as does the PC program itself, the suggestion of Lindvall and Cox (1969) that evaluation should gather end present information on the performance of students so that it can provide information for the revision of the curriculum. As in Figure 1 , it is not the evaluator's purpose to have the staff revise the difficult fCs (such as 4, 8 and 26) or the easy ones (such as 6, 20 and 27) but to make the staff aware of the differences.

Students spent an average of 90.3 hours in the language arts program. (Last summer the evaluator had estimated an average of 100 hours for 28 PCs.) Comments on the second page of the School of Education evaluation (Appendix C) suggest that the students did not expect to spend that much time in a five-week course (even when the PC deadine was extended another four weeks) while they were taking three other courses

46

Figure 2.--Total Number of Unsuccessful Attempts Per PC Number of unsuccessful attempts ("not pass") made by METEP generalists on each performance criterion. Information was collected on the PC questionnaire from the 28 generalists participating in the program spring semoster 1970.

A brief list of the PCs appears in Table 4.
and for which they received only two academic credits.
In an attempt to provide some outside criteria against which to judge the individual PCs and the scope of the program, a follow-up questionnaire was devised and sent to the students then practice teaching, their supervisors and their master teachers (Appendix A). Not all of the students had university supervisors. Ten of the 22 students practice teaching were participating in the ESSO Field Teaching Environment which had trained master teachers to assume additional supervising responsibilities.

An additional problem arose in the returning of questionnaires. All questionnaires had arrived in the schools by Monday, May 4. On the previous Thursday, President Nixon had announced the sending of troops into Cambodia. On Thursday, May 7, the day a special late afternoon discussion had been scheduled after the Office of Elementiary Teacher Preparation Evaluation Session, the student strike began. The discussjon, which had been designed to gather suggestions for revising the progran as well as to facilitate the returning of the questionnaires, was cancelled by the evaluator. Some of the students did return their questionnaires on that day or within the next few weeks.

Students practice teaching 22, number returned 6
Supervisors (not Esso) 12, number returned 1
Master teachers 22, number returned 13

Even with the problem of collecting responses, some information was obtained. Perhaps the most interesting information was not on the PCs, but on the practice teaching experience. Only half of the mastor teachers (7 out of 13) could report having had their students teach in all areas of the language arts. Two of the intermediate grade student teachers reporting were in departmentalized schools where they had had no language arts experience at all.

The questionnaire had been devised with "for example" printed under each rating situation as a check on the clarity of the hierarchy. Although few of the respondents filled in the examples, those who did demonstrated an understanding of the terms by providing examples relevant to the specific level of the hierarchy being rated.

Performance criteria: specialist. The same infomation frorn the PC program was available for the specialists PCs, although both the questionnaire and the program had to be slightly revised (Appendix A and B). Of particular interest is the specialists' evaluation of the PCs as learning experiences for them (Figure 3). The high rating that office hours received as a means of providing information on materials and methods testifies to the use the specialists made of Masha Rudman's private library during their time in the office. Information on the preparation of IAs was presented two ways: by PC and by IA, programs PCSPEC and IASPEC,

Figure 3.--Specialists Rating of Their Performance Criteria The number of specialists rating their performance criteria on the hierarchy of teaching skills.

The information was collected on the PC questionnaire from the 35 specialists who participated in the program spring semester 1970.

A complete description of the teaching hierarchy can be found in Rudman (1970). The levels may be described briefly as follows:

1. proficiency
2. knowledge of the process
3. ability to diagnose
4. knowledge of methods and materials
5. ability to select appropriate methods and materials

Figure 3
Specialists Rating of Their Performance Criteria
respectively (Appendix B). These two separate printouts of the same data demonstrated the clustering of preparation on certain PCs, or certain PC groups, and, on the other hand, the clustering by certain IA types. The 35 generalists, some of whom prepared more than one IA reported preparing the following IA types:

$$
\text { Live Lectures } 11
$$

Taped Lectures 20
Library Packet 21
A-V 2

Theoretically there was also an outside criteria by which to judge an IA. If the students who used the IA gave it a low evaluation, failed to pass the PC after using it, or regularly used a second IA, the IA was not well prepared. This system worked for unrevised or unrevisable IAs, such as lectures or demonstrations. Library packets, however, were prepared by one specislist at the beginning of the program and often revised by others during the following weeks. It was impossible to discover which revision the student was evaluating.

Instructional alternatives. Spring semester it was decided to offer all 11 IA types for each of the PCs. The popularity of certain IA types can be demonstrated by a bar graph of the number of students selecting each IA type and the number who did not pass using that IA type (Figure 4).

Figure 4.--Number of Generalists Using Each IA Type
Total number of NETEP generalists using each instructional alternative type and of that number those who did not pass the performance criteria.
The information was collected for the PC questionnairo from the 28 generalists who participated in the program spring semester 1970.
A complete listing of each IA type may be found in Rudman (1970). The IA types may be briefly described as follows:

1. Live lecture, prescheduled
2. Audio taped lecture, prepared at the beginning of program
3. Packet of library readings, on reserve in library
4. Browsing in the library, including annotated bibliographies
5. Discussion with staff, including specialists
6. Discussion with others, students, master teachers, etc.

7: Audio-visual materials
8. Observation in laboratory school, practice teaching classroom, etc.
9. Practice, with children, with equipment, programmed texts, etc.
10. Pretest, PC becomes an instructional alternative
11. Other, to be devised by the student

Figure 4 Number of Generalists Using Each IA Type

The efficiency of certain IA types is rather noticeable when the average IA times for the PCs are comparad (Figure 5). Observation, for example, appears to require a rather leisurely attitude toward the program. Additional information was collected in a post program questionnaire (Appendix A). Results (Table 5) particularly the "no opinion" category, seem to reflect the same pattern of usage summarized in Figure 4.

The very limited use of $A-V$ materials (Figure 4), specifically of the $T V$ tapes, had a number of interrelated causes. Few of the students had had previous experience with TV tapes and, therefore, were not only shy of the tapes as a learning experience, but unable to operate the monitors. Furthermore, the check-out systern for one-inch monitors at the School of Education was so complex that only the most determined students actually managed to put tape to machine.

Information on IA usage: time, number of students using the IA, as well as PC information was used by Thomas Richards in the designing and testing of ED Sim IV, a more sophisticated version of the simulation model used in the METEP Feasibility Study. Fall semester data were also recoded to the spring semester format for his use. Ed Sim IV in turn will be able to provide information on the distribution and program completion times for students, the distribution of resource use, and the cost in terms of resource roquirements, for new

Figure 5.--Average Time Per IA

The mean time for each of the 11 instructional alternative types as reported by the NETEP generalists.

Information was collected on the PC questionnaire from the 28 generalists participating in the program spring semester 1970.

A brief listing of the $I A$ types may be found in the key accompanying Figure 4.

Figure 5
Average Time. Per IA
TABLE 5
POST PROGRAM QUESTIONNAIRE: EVALUATION OF IA TYPES

IA Type	1	2	3	4	5	6	7	8	9	10	11
major strength	8	4	6	14	14	16	3	12	14	6	8
needs improving	13	6	14	7	6	6	6	6	3	4	4
major weakness	3	1	1	-	-	1	-	1	1	-	1
no opinion, never used	3	16	6	6	7	4	18	8	9	17	14

Responses from 27 METEP generalists.
variations of the language arts program (Richards, 1970).

Progran Goals

Fall

The goals of the METEP program generally and the specific goals of the language arts component had been described in the final report of NEPEP Phase I (Allen and Cooper, 1968). At the beginning of the fall semester two separate attempts were made to provide some data related to the attainment of those goals (Appendix D).

A semantic difforential (Osgood, Souci, and Tannenbaum, 1957) was chosen as an instrument for measuring attitude change. Students were given a two concept, 36 item semantic differential (SD) at the beginning and the end of the program. The concepts chosen were very broad, Learning and Discipline, and the 36 iters (Appendix A) were taken from a semantic differential developed by Steve Rollins, Counselling Center, School of Education, University of Massachusetts, for the concepts Sex and Race. Unfortunately students were participating in courses in at least three other curriculum areas, so that any change could have been as easily attributed to one course as to another. Furthermore, neither the evaluator nor the program directors were happy about the choice of concepts or items. It was finally decided that the content of the instrument was not sufficiently enough related to the
activities or the goals of the language arts program to justify its further use.

In an attempt to describe the student population and possibly to differentiate between the abilities of individual students, five short tests were given at the end of the program (Appendix E). Table 6 summarizes the tests. Two problems arose. Except for the Surface Development Test (French, 1963), the tests were so difficult to score that reliability was open to question. Secondly, there were no criteria against which to judge the tests. Although lectures had been offered for each PC, library packets and A-V material had not. It proved impossible to set any criterion for the quality or quantity of practical suggestions offered by the students and, finally, there were no criteria against which to judge the Utility Test (French, 1963) since the only information on the students at the end of the course was that all students had eventually passed all PCs. An attempt was made to set up an index of avoidance behavior (inager, , 1968) by using the number of PCs attempted by a given date, but the dates had been recorded by the raters (i.e., date the PC was collected, not the date handed in) and many proved to be incorrect or missing.

Spring Semester
The evaluation of the program goals was much more

Test Name	Source	Purpose
Oral Comprehension: memory for main ideas	Developed from suggestion by Dr. David Berliner, School of Education, U. Mass.	High scorers might prefer oral loarning (lecture)
Written Comprehension: memory for main ideas	"	High scorers might prefer visual learning (reading)
Surface Development Test, Part I	French (1963)	High scorers might prefer 3 dimensional learning ($A-V$) following research of David Coffing (1970), School of Education, U. Mass.
Apparatus Test, most of Part I	"	High scorers might be more able to provide practical sug gestions for improving the program
Utility Test, Part I	"	High scorers might do better in program which encourages continuous changing of mental set (choosing IAs, order of PCs)

Copies of the five tests are in Appendix E.
sophisticated, if not more successful, during the spring gemester. The goals were rewritten a number of times (Appendix D) with the spring semester students receiving a description of the program goals in their curriculum packet. Information on the attainment of the language arts goals was designed to be reported to the language arts staff and nonMETEP personnel. Two other groups at the School of Education, the Office of Elementary Teacher Preparation and the Dean's Office, fan concurrent evaluations designed to provide inrormation specific to their goals (Appendix C).

At the beginning of the spring semester, a number of the language arts goals dealt with learning style. There were various ways to test this cluster of goals using the Instructional alternative system offered in the program.

1. At the beginning and end of the program, students could be asked how well they thought they learned using various instructional modes and the group compared before and after the program;
2. At the beginning of the prograrn, students could be asked which instructional alternatives they thought they might use for each PC and their predictions compared with their actual performiance;
3. Before and after the program students could be asked to describe their feelings about each of the IA types offered;
4. An attempt could be made to assess how competent each student was when learning by certain instructional modes and his competence compared with his prodicted use of them, his actual use, and his expressed feelings about each mode; and
5. When the students were practice teaching, they, their supervisors, and their master teachers could be asked how comfortabje the students were using each IA type in each area of the language arts and their responses compared to their computed and reported preferences.

All of these approaches were tried.
Learning preference. Part II of the pre program and post program questionnaire asked both generalists and specialists how easily they thought they learned from each of the six instructional modes (Appendix A). Some students objected to the limitations of the three part answer, especially the lack of "it depends." Answers were recorded directly on Optical Scanning Standard Answer Form C. The answers were then transferred to IBM cards and processed in the SPSS program CODEBOOK (Nie, 1969). Even with the limitations of the 1-3 format, some general information on generalists and specialists before and after the program was collected and is summarized in Figure 6.

Those students who chose the lecture-demonstration section

Figure 6.--Report of Learning Preferences

The number of students reporting that they learned easily using six different instructional modes: lecture, reading, discussion, audio-visual materials, observation, practice. Information was collected on Part II of the pre program and post program questionnaire from:
group 132 students in the lecture demonstration section. Pre program questionnaire only. group 227 NETEP generalists. Both pre program and post program questionnaire.
group 33 NETEP specialists. Both pre program and post program questionnaire.

rather than the METEP program were asked to fill out the same material at the beginning of the program only. They reported having a somewhat more positive view of the various learning modes than did the generalists at the beginning, although the generalists appeared to be equally positive by the end of the program (Figure 6).

Anticipated IAs. As part of the pre program questionnaire (Appendix A), generalists were asked to describe which instructional alternatives they intended to use for each PC. Students could choose only one IA per PC, which was somewhat unrealistic since only 4 of the 28 students reported using only one IA per PC during the program. Their anticipated use of each IA type (total for that IA type, not IA type per PC) was correlated with their actual use of each IA type, this data coming from the PC questionnaire cards. The correlations were run as part of a Stepwise Regression Program, BMDO2R (Dixon, 1968). There was no significant correlation for any IA type between the number of IAs used and the number anticipated (Table 7). It should be added that the questionnaire may at least have served the pedogogical purposes of providing students with an overview of the program, both PCs and IAs, and with experience in using the 0-9 General Coding Form which they were to use for the PC questionnaires. Attitude toward instructional modes. Both generalists and specialists were asked to complete a six concept semantic

TABLE 7
CORPELATION OF IAS USED WITH IAS ANTICIPATED:
A CORRELATION OF TOTAL PER GENERALIST OF
EACH IA TYPE USED AND EACH JA TYPE

ANTICIPATED

IA Type	Correlation
1. Lecture	-.268
2. Taped Lecture	-.400
3. Library Packet	.257
4. Library Browsing	.028
5. Discussion with Staff -.026	
6. Discussion with Others	.311
7. Audio-visual	.392
8. Observation	.175
9. Practice	-.065
10. Pretest	.073
11. Other - students never anticipated	

differential at the beginning and the end of the program (Appendix A). The six concepts were the six general IA types: lecture, reading, discussion, audio-visual, observation, and practice. The 14-item scale was selected from terms which the fall semester students had used to describe teaching qualities (Post program questionnaire, Appendix A). Fourteen pairs were chosen, then randomly ordered and their poles randomly reversed. The order of presentation of the items used for each concept and of the concepts themselves was the same for each administration. Students completed the SD directly on the l-5 Optical Scanning Standard Answer Form C, thus by necessity reducing the l-7 range recommended by Osgood, Souci and Tannenbaum (1957) to the 1-5 of the form. The information was transferred directly to IBM cards and a program written to realign the randomy reversed poles, to provide a total for each concept and to punch the data for each concept on a single coded card for further analysis. A retest, or third administration of the $S D$ was given to the specialists three weeks after the official post prograin session. In the intervenirg time, the specialists had had one week of vacation and one of the two final seminers.

A number of tests were mado on the instrument itsolf in hopes of providing information for the future developrent of the instrument. The specialists' posttest and retest scores were used for a number of reliability checks: by student (per
item and per concept), by item (for all items and per concept) and by concept score. Reliability by factor, recommended by Osgood, Souci and Tannenbaum (1957) was not attempted because of the controversial nature of the factor loading on new concepts which will be discussed later. The results are presented in Table 8. As might be expected the reliabilities using concept scores were higher than those using only the $1-5$ item scores.

In order to dovelop a stronger instrument, each item was also examined separately. Correlation coefficients, averaged for each item across the six concepts, provided data on the reliability of each item (Table 8).

A second type of test, an examination of polarity, was done on each of the 14 items. This was simply a traditional item analysis using students in the top 17 percent (highest scores for the concept) and the students in the bottom 17 percent (lowest scores for the concept) for each of the six concepts. The responses generally were somewhat to the positive side of neutral which handicaps this type of analysis somewhat, and this approach completely ignores the factorial aspect of the instrument, but the distance between high group's mean and low group's mean, illustrated in Figure 7, does demonstrate the difference between strongly positive items, such as success-failure and relevant-irrelevant, and a more balanced item, such as student-content. Item analysis also

TABLE 8

SEMANTIC DTFFERENTIAL, RELIABILITY INFORMATION POSTTEST AND RETEST OF 21 METEP SPECIALISTS FOR 84 ITEMS, 6 CONCEPTS

Method 1
Average correlation coefficient:

per student, 84 items	.4820
per student, 6 concept scores	.6335
per item, all concepts	.4741
per itern, concept: Lecture	.6121
	Reading
	Discussion
	Audio-Visual
	Observation
	Practice
per concept score	.4448

Method 2
Average correlation coefficient for each item, all concepts Item number Item number

1	.3146	8	.5512
2	.4901	9	.4424
3	.5595	10	.4859
4	.5556	11	.3482
5	.3894	12	.4102
6	.5716	13	.4125
7	.4133	14	.5129

Figiure 7.-- Item Analysis of Semantic Differential

Difference between means of high and low 17 percent of the students on each of the 6 concepts of the semantic differential.

Information was collected on the semantic differential form from 146 responses spring semester 1970:

32 students in the lecture-demonstration section. One pre program administration

27 METEP generalists. Pre program and post progran administration.

35 METEP specialists. Pre program and post program administration.

The 14 semantic differential items:

	negative pole	positive pole
2 narrow	broad	
2 teacher	student	
3 insensitive	sensitive	
4 rigid	flexible	
5 phony	honest	
6 content	student	
7	useless	helpful
9	failure	exciting
10 simple	success	
11 irrelevant	sophisticated	
13 closed	relevant	
14 cold	active	

demonstrates the difference in the distance between means, for example sophisticated-simple with warm-cold, and the difference in the range of certain items when used with different concepts, such as sensitive-insensitive and flexible-rigid under the concept Discussion.

Both the item analysis and the reliability information should provide data for the designing of a better semantic differential for future programs. Both ignore the factorial. aspect of the $S D$ which is at the same time its most intriguing and most ambiguous dimension. If items had a known factorial content no matter what the concept with which they were used, the problem would be relatively simple. Stake (1970) argues that items do retain their factorial identity and that the evaluator should select items from previously developed scales. The developers of the semantic differential, Osgood, Souci and Tannenbaum (1957), however, found a high stability across subjects and items, but not across concepts and Kane (1969) found that sone items used with educational concepts changed both factor and pole.

The scores from the serantic differential were used a number of different ways. The groups were compared by their mean scores on each concept. This information, summarized in Figure 8, suggests a tendency for the two METEP groups, generalists and specialists, to approach a common mean, one shared by the lecture-demonstration section students. The

Figure 8.--Nean Score Per Concept, Semantic Differential

Mean score on each of the six concepts: lecture, reading, discussion, audio-visual materials, observation, practice, for each of the following groups:
group 132 students in the lecture-demonstration section. Pre program administration only.
group 227 NETEP generalists. Both pre program and post program administration.
group 335 METEP specialists. Both pre program and post program administration.

post program changes for the MEIEP groups can be compared to those in Figure 6. The semantic differential, except for reporting the same change in the generalists view of reading, appears to have been more stable than the other instrumont.

The pretest semantic differential scores were also used as predictors of student behavior. It had been hypothesized that the specialists who felt most favorably toward a certain mode of learning (had the high scores on the semantic differential for that concept) would be those specialists who would choose to prepare an Instructional Alternative of that type. Only Lecture (live and taped) and Reading Packets (specialists were not asked to prepare reading lists for library browsing) had enough IAs prepared to test this hypothesis. The results of an analysis of variance, BMDOJV (Dixon, 1968), between the semantic differertial scores of those who did and those who did not prepare an IA type failed to show a significant difference although the difference in means was in the predicted direction (Table 9). Correlations done with the information collected on the generalists will be described after a general discussion of the aptitude tests.

Competence with instructional modes. Four aptitude tests were given at the boginning of the program to the students choosing the lecture-demonstration section, to the METEP
TABLE 9

IA Prepared	Group	Number	Mean	sd		SS	DF	MS	F
Semantic Differential Scores									
Lecture (live and taped)	did	19	41.11	11.30	between group	27.96	1	27.9698.58 .2832	
	did not	16	39.31	7.98	within group	3253.23	33		
Reading (packets)	did	16	55.69	7.27	between group	75.62	1	1.0367	
	did not	19	52.74	9.49	within group	2407.12	33		
Aptitude Test Scores									
Lecture (live and	did	19	10.74	3.93	between group	23.31	1	23.3	. 0821
taped)	did not	16	12.38	2.47	within group	369.43	33	11.19	
Reading (packets)	did	16	$5: 25$	1.39	between groups	0.43	1	$\begin{aligned} & 0.43 \\ & 4.05 \end{aligned}$	
	did not	19	5.47	2.47	within groups	133.74	33		

generalists, and the METEP specialists. The generalists feceived the same battery at the end of the program so that reliablity information could be obtained. Table 10 summarizes the four tests, copies of which appear in Appendix E. The reliability information and a comparison of the mean sceres for each of the three groups is presented in Table ll. The Auditory Letter Span and the First and Last Names Test. had been substituted for the fall semester Oral and Written Comprehension Tests because of the greater ease in scoring. Neither test had as much face validity as the fajll tests; the First and Last Names test had a very high average score (mean 11.2 out of a possible 14) and the Letter Span was difficult to administer uniformly and had a low average score (mean of 5.7 out of a possible 12). Because of the ambiguity of scoring the Utility Test, two scorers read each test (original and Xeroxed copy). Twenty-one percent of the tests which had more than a three point difference between scores had a third reader. An analysis by sex, suggested by Toylor and McKean (1968) on a similar test was not attempted because of the small number of men in the program (5 generalists, 2 specialists).

Like the semantic difforential, the aptitude test scores were treated as predictive as well as descriptive data. It had been hypothesized that the specialists scoring highest on the test related to a specific instructional alternative would
TABLE 10

KYGUIVG

Test Name	Source	Purpose of Test for METEP Program
Surface Development		
Test, Part I		

Copies of the four tests are in Appendix E.
TABLE 11

SPRING TEST BATTERY: STATISTICAL INFORMATION					
Test Name Te	Test-retest correlation	```Lecture- demonstration section (n=28)```	METEP generalists ($n=26$)	METEP specialists ($n=35$)	$\begin{gathered} \text { All } 3 \\ \text { groups } \\ (\mathrm{n}=89) \end{gathered}$
Surface Development (Possible score 030)	0.7580	$\begin{aligned} & 11.04 \\ & (\mathrm{sd}=7.16) \end{aligned}$	$\begin{gathered} 75.04 \\ (\mathrm{sd}=6.98) \end{gathered}$	$\begin{aligned} & 12.34 \\ & (\mathrm{sd}=9.38) \end{aligned}$	$\begin{gathered} 12.78 \\ (\mathrm{sd}=8.08) \end{gathered}$
First and Last Names (Possible score 019)	s 0.7667	$\begin{aligned} & 11.21 \\ & (\mathrm{sd}=3.40) \end{aligned}$	$\begin{aligned} & 10.89 \\ & (\mathrm{sd}=3.12) \end{aligned}$	$\begin{aligned} & 11.34 \\ & (\mathrm{sd}=3.40) \end{aligned}$	$\begin{gathered} 11.23 \\ (s d=3.29) \end{gathered}$
Auditory Letter Span (Possible score 012)	$\text { in } 0.5614$	$\begin{gathered} 5.07 \\ (\mathrm{sd}=1.33) \end{gathered}$	$\begin{gathered} 5.15 \\ (\mathrm{sd}=1.08) \end{gathered}$	$\begin{gathered} 5.37 \\ (\mathrm{sd}=1.99) \end{gathered}$	$\begin{gathered} 5.14 \\ (s d=1.67) \end{gathered}$
Utility (No score limit. Highest recorded score was 19)	0.7415	$\begin{gathered} 8.04 \\ (\mathrm{sd}=3.53) \end{gathered}$	$\begin{gathered} 9.07 \\ (\mathrm{sd}=3.01) \end{gathered}$	$\begin{aligned} & 10.63 \\ & (\mathrm{sd}=4.27) \end{aligned}$	$\begin{gathered} 9.36 \\ (\mathrm{sd}=3.83) \end{gathered}$

choose to prepare an IA of that type. An analysis of variance, BMDOIV (Dixon, 1968), was run for the group who did and did not prepare lectures and for the group who did and did not propare readings. The results (Table 9) failed to demonstrate any significant difference between the groups. Only two specialists prepared A-V IAs, so no A-V test could be run. There was no criteria against which to correlate the Utility Tests. Quantity scores, number of PCs rated, number of IAs prepared, were not logically acceptable standards of success in the program and performance levels had been given for only one of the three PCs, the preparing of the generalist IAs. The pre program semantic differential scores and the aptitude test scores were correlated for the three groups (Table l2.). This was probably the only time in the analysis of the data when low correlations were desirable since the building of a multiple predictive battery depends on the development of instruants which have low correlation among themselves but high correlation with the criteria.

A series of multiple correlations, Stepuise Regression (BMDO2R, Dixon, 1968), was attempted for the generalists using information from the PC questionnaire (total number of each IA type used, total time reported for all attempts, total number of attempts, average time per atterapt, total performance level for all 27 PCs), from the pre program questionnaire, part III (total number of each IA typo anticipated),
TABLE 12
CORRELATION OF PRE PROGRAM SEMANTIC DIFFERENTIAL WITH APTITUDE BATTERY

	Lecture-demonstration section	METEP generalists specialists
SD concept: Lecture with Auditory Letter Span Test SD concept: Reading with First and Last Names Test SD concept: Audio-Visual with Surface Development Test	-0.075	-0.088

semantic differential concept scores (pre program and the difference between pre program and post program scores), and aptitude battery scores. One correlation was run for each of the six IA typos, using the number of that IA type used by the student as the dependent variable (Table 13). A seventh "success" correlation was run using the student's total performance level as the dependent variable (Table 13). As had been anticipated in this seventh correlation, the number of PCs attempted correlated negatively, al though not significantly, both with the performance level (-0.168), and with the Utility Test score (-0.200). In all seven correlations, the evaluator's results have the rather dubious distinction of having both low correlation among predictors and low correlations with the criteria.

Teaching preference. Another variable which was to have been used, the students reported success using the various instructional modes in the classroom (Follow-up Questionnaire, Appendix A) was not used because of the problem of collecting the data which has already been described in Chapter VI. Students were also asked before and after the program how well they thought they would teach using each of the six instructional modes. Their responses are summarized in Figure 9. The direction of change on the post program questionnaire is similar to the change in their responses to how easily they thought they learncd using the same six instructional modes (Figure 6).
TABLE 13
STEPWISE REGRESSION ANALYSIS: GENERALISTS

RSQ
$\begin{array}{ll}0.3934 & 0.1548 \\ 0.4139 & 0.1713\end{array}$
0.1805 R
Variable Entered Auditory letter
span test
Pro Program SD
No. of lect.
anticipated

$\dot{\sim} \sim N \quad \pm$
TABLE 13.--Continued
The audio-visual instructional alternatives used
RSQ Increase RSQ
No. of Variables

F to enter
4.5448
2.0850
0.7020 0.2335
included:
variable included.
0.1538
0.0676
0.0231 0.0079
(other
alternatives used (both with staff
0.1538
0.2215
0.2445
0.2525
0.3922
0.4706 0.4945 0.5025 R
The discussion instructional No. of dis-
cussion
$\begin{array}{ll}0.2554 & 0.0652 \\ 0.2675 & 0.0715\end{array}$
$\begin{array}{ll}0.2675 & 0.0715 \\ 0.2733 & 0.0747\end{array}$
1.7439
0.1637
0.0786
(no other variable included)
PART II
TABLE 13.--Continued

Figure 9.--Report on Teaching Preferences

The number of students reporting that they thought they would teach easily using six different instructional modes: lecture, reading, discussion, audio-visual materials, observation, practice. Information was collected on Part II of the pre progrom and post program questionnaire from: group 132 students in the lecture demonstration section. Pre program questionnaire only. group 227 METEP generalists. Both pre program and post program questionnaire.
group 335 METEP specialists. Both pre program and post program questionnaire.

CHAPTERV

 CONCLUSIONS AND RECOMMENDATIONS

 CONCLUSIONS AND RECOMMENDATIONS}

Conclusions

An evaluation of the language arts curriculum was designed after it became evident that a number of different audiences required different kinds of information about the program. Pace's unit size model (1958) provided a methodology by which each audience could be identified by the system of which it was a part and by which variables could be selected which would be appropriate to each system. The evaluation did not attempt to report directly to all audiences. It did provide information to the program staff which could be reported to various audiences outside the program, such as the METEP administration, the School of Education, and MEIEP clients.

Although there were a number of sources of information theoretically available, this evaluation concentrated on sources within the program itself. Four variables--population, program operation, curriculum, and program goals-were chosen for which data were collected.

The information collected on population was of the selfreporting type. It had been hoped that the study of the interaction of students and program activities examined as part of
the information on program goals, would suggest some relatively stable and easily administered instrument which would help describe the characteristics of the population. Whether the blame can be laid on the instruments, or on the criteria, or, as is most likely on both, no such instrument was found.
of the information collected, processed, and reported, that on program operation was the most complete. It was relatively easy to check the accuracy of the data against archival records, such as library sign out cards, and feedback from program participants.

The information collected within the program on the cur. riculum was reported in two ways: by the printout from computer programs, which was also used for information on program operation, and by a series of summary charts presented in Chapter IV. Information collected within the program was much easier to gather and verify than was that which the evaluator attempted to collect during the students' practice teaching experience. This time it was not the instrument, but the reliance on a single data collection strategy which was at fault.

All attempts to collect information on the fourth variable, program goals, failed. The range of choice provided on the self-reporting instrument, which was designed simply as support information for the stronger attitude and aptitude moasure, was unrealistic. On the semantic differential
some of the terms used were ambiguous, the 1-5 range may have been too narrow, and the use of the instrument as a measure of change was probably inappropriate. Some information was collected to help develop a stronger instrument. Similar information was collected on the aptitude tests each of which failed to correlate significantly with the appropriate criterion.

The evaluation succeeded in part. Information was provided to students about the program and their progress in it and to the staff about the students' progress, the operation of the program and the students' evaluation of the curriculum. Shortcomings appear to have been due to the limited scope of the information sources and the data collection instruments used rather than the methodology upon which the evaluation was based. The audiences which were given the highest priority by the evaluator, the students participating in the program and the staff operating the program, received the most complete information. That part of the evaluation, the feedback system, worked. It can be transferred with rather minor changes to other performance based curriculum programs. Other parts of the evaluation are not ready to be used elsewhere. The evaluation has been described in detail with the hope of providing information on instruments and data processing which could be useful in the development of the rest of the evaluation design.

Recommendations

The evaluation, like the curriculum or the population, is a variable in the program. Any aspect of an evaluation design can, of course, be changed: the methodology on which it is based, the source of information, or systems which are identified, the variables which are measured, the measuring instruments, the method of data processing by audience, the format, scope, or timing of the reporting. Since most of the recommendations are of a rather practical nature, dealing more with instruments and data processing than with methodology, they will be discussed in terms of the four variables used in this evaluation.

Population. Information on population is necessary when comparing the success of two versions of the program; thus population information becomes increasingly important as the sources of information expand. Such comparisons would be greatly enhanced by the development of an instrument for collection of easily obtained and relevant population data. The fluctuation in the population of a traditionally structured university class, to say nothing of the problems of the population in a modular credit system, influence any collection system. There are at least three alternative systems to be used separately or in combination: the development of a minimal data instrument to be used on all participants; the development of a longer instrument to be used on a random
sample of participants; the development of a university student data file from which relevant information could be obtained easily.

Program operation. Any informal information system is subject to a special kind of sampling bias. What kind of student doesn't come to office hours? Open ended questions on the PC questionnaire, occasional seminars with randomly chosen students, even periodically scheduled group meetings might lessen this bias.

A special problem for evaluation is that the credibility of computer printout is seriously damaged by a single illogical number. Bounds error statements written into the computer programs which inform the evaluator of the type and location of the error while bypassing the incorrect data in the calculations would greatly enhance the evaluator-program staff relations. Many of the errors on the PC questionnaire were caused by poor formating on an already difficult to use form. Special formats should be printed which would lessen this chance of error. A more sophisticated storage system has been developed by Frederick deFriesse (1970) which can be used in conjunction with a revised set of evaluator's computer programs.

Information returned to the students should not only be accurate but be presented as humanely as possible. Such formatting changes as the use of full names and the elimination
of -0 as the method for indicating no information might improve the reporting system.

Gurriculum. The data provided by the evaluator from the PC questionnaire allow the program staff to revise individual PCs and IAs whenever necessary. Unfortunately this very act of revision makes the collection of future data more difficult. Did the student evaluating the IA use the new version or the old? Some coding method designed to identify each revision might help assure the evaluator of the accuracy of his data.

Collecting information from students after they leave the program is time consuming and expensive and tends to produce a very biased sample. If these problems can be solved, there are a number of other sources of information available including the elementary students in the practice teacher's classroom, their parents, other school officials, specially trained observers, and all the groups involved in the teacher's first regular classroom teaching assignment. Comparative curriculum data will soon be available from the Center for Teacher Education and from METEP clients. Ed Sim IV is also available to provide information on alternative curricular and program operation plans.

One of the aspects of the curriculum, the sequencing of performance criteria and the relationship between sequencing and the teaching hierarchy was not investigated in this
avaluation. Certain data are available for this study, such 2s the order in which students attempted the PCs from the BC questionnaire, and the sequence reflected in the lecture schedule, to begin to investigate sequencing. A monitoring system, such as Continuous Achievement Monitoring (Gorth, 2.70) might provide the basis of a study of the relationship between the student, the $P C$ and the hierarchy.

The evaluation did not collect information on the reliability of the individual performance critoria. Procedures for collecting inter-rater reliability could easjly be inaluded in the progrom. Such reliability information would belp the curriculum developers in the preparation of performance criteria and the subsequent increase in reliabjility of the performance criteria would provide the evaluator with * more reliable information source for the evalugtion design.

Program gools. As program gools change, it is necessary to develop new instruments for messuring goals attainment. Instruments in this study focused on the rather nerrow comparison of program activity and certain measurable aptitudes and attitudes. There are, therefore, at least four alternatives for the development of future goal information: the strengthening of the instruments used, the development of instruments designed specifically for the measurement purpose, the use of different crjteria for the goals both within and outside of the program, and a refocusing on other program goals.

CHAPTERVI

SUMMARY

An evaluation was designed for a performance curriculum in the language arts as part of the Model Elementary Teacher Education Program (Cooper, 1970; Rudman, 1970). Both the curriculum and the evaluation were tested during the Fall semester of 1969 with 110 language arts generalists. During the Spring semester of 1970, 28 languege arts generalists and 35 language arts specialists participated in a revised program. The evaluation, which was based on Pace's unit size model (1968), attempted to identify the different sized systems of which the language arts program was a part and to collect information on those variables relevant to each systern. Data were collected on four variables: population, program operation, curriculum, and program goals.

Population. During this first year of the program no attempt was made to control the population. Background information was collected from the students; processed, using the Statistical Package for the Social Sciences (Nie, 1969); and reported as frequency tables for those groups planning to replicate or revise the program. Information on certain attitudes and aptitudes was collected as part of the information on another variable, program goals. Academic information
which was to have been collected from the University of Massachusetts student files was found to be difficult to obtain, and incomplete.

Program operation. An informal communication system using student folders, office hours for the generalists and aditional weekly seminars for the specialists provided information to the program staff on the operation of the program. Additional information was collected from the PC questionnaire which was completed by the student and his rater each time a performance criterion (PC) was attempted. The information was processed in a system which used the Digitek 100 Optical Scanner at the Counseling Center, the unit record equipment, and the Control Data Corporation 3600 computer at the Computer Center, University of Massachusetts and specially written computer programs. A variety of printouts were available to describe to the administration the progress of each student (MASTER and STUDENT for the generalists, RATER, SPECIAL, SPECPC, SPECIA for the specialists). Information on the operation of each PC and its accompanying instructional alternatives (IAs) was availQbIe from other printouts (PC for the generalists, PCSPEC, IASPEC for the specialists).

Studerts also needed information on the program and their own progress in it. In addition to the program packet evailable at the beginning of the semester, students received
mimeographed and personai messages through their folders, could come to office hours, and had computer printouts (MASTER, STUDENT 1 for the generalists, RATER, SPECIAL, SPECPC, SPECIA for the specialists) which described their progress in the program.

Curriculum. The informal comrnunication system described under program operation also provided information on the curriculum. Additional informetion on the PCs and IAs, including amount of use, time spent, student evaluation, and student porformance, was available fron the processed PC questionnaires (PC for the generalists, PCSPEC, IASPEC for the specialists). Summary charts describing the use of PCs and IAs were prepared by the evaluator. The information collectod from the PC questionnaires was generally collaborated in a post program questionnaire. Collection problems prevented the follow-up questionnaire, which was designed to collect information from the generalists practice teaching, their University supervisors, and their master teachers, from receiving any statistical analysis, but did provide some general information on the relationships between the curriculum and the practice teaching experience.

Programgoals. During the program, goals became more specific and more easily communicatod-a list of program goals was included in the students' packets spring semester. A number of the goals were concerned with the interaction of
the student and the instructional alternatives. Instruments used to collect data on the student's attitude toward and his use of instructional alternative types included the pre and post program questionnaire, a pre and post program somantic differential, an aptitude battery, a pre program prediction of the instructional alternatives to be used, a follow-up questionnaire used with the practice teaching students, and the number of each IA type actually used in the program. Information was also collected on the reliability of some of the instruments. Data were processed using various Biomedical Programs (Dixon, 1968).

There was no significant correlation between the number of instructional alternatives of any given type used and the generalists' scores on any other instrument. There was no significant difference between the specialists who chose to prepare certain kinds of instructional alternatives and their scores on either the semantic differential or aptitude tests for that same IA type; nor was there any significant correlation between the total performance level of the generalists (the total score reflecting the level of performance in the program) and an aptitude score, their total time in the program, or the number of PCs attempted.

The evaluation did not attempt to report directly to all audiences. It did provide information to the program staff which could be used in reporting to audiences outside
the program. Perhaps the most successful part of the evaluation was the system for reporting student activity to the students and the staff, the feedback syster. The problems which occurred in collecting the other information appear to have been caused by the limited score of the information sources used and the woaknesses in measuring instruments employed rather than the methodology on which the evaluation was based. Recommendations for future evaluations include a. number of suggestions about practical problems of data collection and processing as well as the use of expanded information sources.

REFERENCES

Ahmann, J. S. Aspects of curriculum evaluation: A synopsis.
In R. E. Stake (Ed.), Perspectives of curriculum evaluation. Chicago: Rand McNally, 1967.

Alkin, M. C. Towards an evaluation model: A systems approach. Center for the study of evaluation of institution progress, U.C.I.A., Working paper $\ddagger 4,1967$.

Allen, D. W., \& Cooper, J. M. Model elementary teacher program. Final report. Project \#8-9023, Grant \#OEC-0-8-089233312 (010). Office of Education, 1968.

Bloom, B. J. (Ed.) Taxonomy of educational objectives: the clessification of ecucational goals. Handbook I: cognitive donin. New York: David McKay, 1956.

Bloom, B. J. Toward a theory of testing which includes measurement-evaluation-assessment. From the procecdings of the symposium of problems in the evaluation of instruction. Occasional Report \#9, U.C.I.A. Center for the Study of Instructional Programs, 1967.

Bloom, B. J. Some theoretical issues relating to educational evaluation. In R. W. Tyler (Ed.), Educational evaluation: New means, now roles. Chicago: U. of Chicago Press, 1969. Pp. 26-50.

Brickoll, H. M. Appraising the effects of innovations in local schools. In R. W. Tyler (Ed.), Educational evaluation: New means, new roles. Chicago: U. of Chicago Press, 1969. Pp. 284-304.

Campbell, D. T. Reforms as experiments. American Psychologist, 1969, 24, 409-429.

Campbell, D. T., \& Stanley, J. Experimental and quasiexperimental designs for rescarch on teaching. In N. L. Gage (Ed.), Handbook of research on teaching. Chicago: Rand McNally, J.953. Pp. 409-429.
Cicirclli, V. C. Impact of head start: An cvaluation of the offect of head start on children's cognitive and affective developrent. Westinghouse Leaming Corporation and Ohio University, 1.969.

Coffing, D. Eye movements--preferences as individual differences in learning. Unpublished doctoral dissertation, Stanford University, 1970.

Cook, D. The impact of the hawthorne effect in experimental designs in educational research. U.S. Dept. of Health, Education, and Welfare, Office of Education, 1967.

Cooper, J. M. A feasibility study of the model elementary teacher education program, Final report. Project \#9-0417, Grant \#OEC-0-9-31417-4040 (010). Office of Education, 1970.

Cronbach, L. J. Evaluation for course improvement. Teachers College Record, 1963, 64, 672-683.
de Friesse, F. A. Data management system for a performance based curriculum in the language arts. Unpublished manuscript, School of Education, University of Massachusetts, 1970.

Dixon, W. J. (Ed.) Biomedical computer progran. University of California publication on automatic computation, \#2. Los Angeles: U. of California Press, 1968.

Forbes, R. Cost effectiveness evaluation. In W. C. Conroy (Ed.) A guide to evaluation: Massachusetts information feedback for vocational education. Woburn, Mass.: Massachusetts Vocational Education Research Coordinating Unit, 1969. Pp. 75-95.

Fortune, J. C. Introduction to evaluation. In W. C. Conroy (Ed.), A guide to evaluation: Massachusetts information feedback for vocational education. Woburn, Mass.: Massachusetts Vocational Education Research Coordinating Unit, 1969. Pp. 1-15.

French, J. W., Ekstrom, R. B., \& Price, L. A. Manual for kit of reference tests for cognitive factors. Princeton: Educational Iesting Service, 1963.

Gorth, W. P. Project CAM, Designing Instructional Systems with Longitudinal Testing Using Item Sampling Techniques. AERA symposium, March 1970.

Griffiths, D. E. Administrative theory and change in organization. In M. B. Miles (Ed.), Innovation in education. New York: Teachers College Press, 1964. Pp. 425-I436.

Guba, E. G., \& Stuffleberm, D. L. Evaluation: The process of stimulating, aiding and abetting insightful action. Evaluation Center, Ohio State University, College of Education, 1968.

Hernanowicz, H. J. The need for macroanalytical approaches to teacher education. Journal of Teacher Education, 1969, 20, 299-302.

Horst, P. Psychological measurement and prediction. Belmont, Calif.: Wadsworth Publishing Co., 1966.

Jordan, D. C., \& Spiess, K. H. Compensatory education in Massachusetts; An evaluation with recommendations. Massachusetts Advisory Council on Education, 1970.

Kane, R. B. Semantic differential factor structure with concepts and subjects from education. Journal of Experimental Education, 1969, 37, 34-37.

Krathwohl, D. R., Bloom, B. S., \& Masia, B. B. Taxonomy of educatjonal objectives: the classification of educational goals. Handbook In: affective domain. New York: David McKay, 1964.

Light, R. J., \& Smith, P. V. Choosing a future: Strategies for designing and evaluating new prograns. Harvard Educational Review, 1970, 40, 1-28.

Lindvall, C. M., \& Cox, R. C. The role of evaluation in programs for individualized instructjon. In R. W. Tyler (Ed.), Educational evaluation: New means, new roles. Chicago: U. of Chicago Press, 1969. Pp. 156-180.

Mager, R. F. Preparjing instructional objectives. Palo Alto, Calif.: Fearon, 1962.

Mager, R. F. Devoloping attitude toward learning. Palo Alto, Calif.: Fearon, 1908.

Metfessel, N. S., Michael, W. B., \& Kirsner, D. A. Instrumentation of Bloom's and Krathwohl's taxonomies for the writing of educational objectives. Psychology in the Schools, 1969, 6, 227-231.

Miles, M. B. On temporary systoms. In M. B. Stiles (Ed.), Innovation in education. New York: Teachers College Press, 1964. Pp. 437-490.

Nie, N. H., Bent, D. H., \& Hull, C. H. Statistical package for the social sciences; Provisional users manual. c/o Nie, National Opinion Research Center, University of Chicago, 1969.

Osgood, C. E., Suci, G. J., \& Tannenbaun, P. H. The measurement of meaning. Urbana, Illinois: U. of Illinois Press, 1957. (Republished: 1967)

Pace, R. Evaluation perspectives: '68. Paper presented at the meeting of the American Educational Research Association, February, 1968.

Popham, W. J., \& Husek, T. R. Implications of criterion referenced measurements. Journal of Educational Measurement, 1969, 6, 1-9.

Provus, M. M. The discrepancy evaluation model: An approach to local program improvement and development. Bureau of Research, Pennsylvania State Dept. of Public Instruction, 1969.

Richards, T. An analysis of resource allocation in planning a performance criteria curriculum. Unpublished doctoral dissertation, University of Massachusetts, 1970.
Rudman, M. K. Feasibility study of a performance based teacher education curriculum in language arts. Unpublished doctoral dissertation, University of Massachusetts, 1970.

Scriven, M. Methodology of evaluation. In R. E. Stake (Ed.), Educational Research Association Monograph Series on Curriculum Evaluation. Chicago: Rand McNally, 1967.

Sechrest, L. The use of innocuous and non-intervening variables as evaluative criteria. Paper presented at Annual Meeting of the American Educational Research Association, Chicago, 1968.

Stake, R. E. The countenance of educational evaluation. Teachers Coljege Record, 1967, 68, 523-540.

Stake, R. E. Two approaches to evaluating instructional materials, American Psychological Association Symposium, San Francisco, August, 1968.
Stake, R. E. Objectives, priorities, and other judgement data. Review of Educational Research, 1970, 40, 181-212.

Stake, R. E., \& Denny, T. Needed concepts and techniques for utilizing more fully the potential of evaluation. In R. W. Tyler (Ed.), Educational evaluation: New means, new roles. Chicago: U. of Chicago Press, 1969. Pp. 370-390.

Stufflebeam, D. L. Evaluation as enlightenment for decisionmaking. Evaluation Center, Ohio State University, College of Education, 1958.

Taylor, B. L., \& McKean, R. D. Divergent thinking and teacher education. Journal of Educational Research, 1968, 61, 417-418.

Unks, N. K. J., \& Cox, R. C. A model for the evaluation of a testing program. Washington, D.C.: American Educational Research Association, 1968.

Wardrop, J. L. Controlled experimentation in multiclassroom settings. Research and development strategies in theory refinement and educational improvement: Theoretical paper ${ }^{\#} 15$. Madison, Wisconsin: Research and Development Center for Cognitive Learning, 1968. Pp. 6-9.

Webb, J., Campbell, D. T., Schwartz, R. D., \& Sechrest, L. Unobtrusive measures; nonreactive research in the social sciences. Chicago: Rand McNally, 1966.

Welty, G. A. The Jogic of evaluation. Paper presented at the Educational Resources Institute, October, 1969.

Wittrock, M. C. A description, Center for the Study of Evaluation of Institutional Programs, U.C.I.A., 1966.

Wrightstone, J. W., Forlano, G., Frankel, E., Lewis, B., Turner, R., \& Bolger, P. Evaluation of the higher horizons program for underprivileged children. Bureau of Educational Research, Board of Education, City of New York, Cooperative Research Project $\# 1124,1964$.

Yarington, D. J. A performance curriculum for training reading teachers. Journal of Readjing, 1969, 13, 21-24.

APPENDIX A
 DATA COLLEGTING INSTRUMENTS

Fall semester: $P C$ questionnaire
PC coding information
Semantic Difforential
Final Questionnaire
Spring semester: PC questionnaire for generalists PC questionnaire for specialists Semantic Differential

Pre Program Questionnaire Post Program Questionnaire Follow-up Questionnaire

Reading and Language Arts

Performance Criteria Questionnaire

PC\#
Date Completed
Name

1. How long did it take to complete the evaluation (the criterion without counting the IA) .
2. Evaluate the PC in terms of its worth to you as a student, and your estimate of its worth to you as a teacher.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
3. Can you suggest a better PC in this general area?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
4. How many times have you attempted this PC?
5. How many Instructional Alternatives did you use for this PC?

Reading and Language Arts

Instructional Alternative Questionnaire

PC\# \qquad Date \qquad Name \qquad

The answers to these items will not influence the grading of this PC, but the PC cannot be graded until this page has been returned. We will use the information to revise and evaluate the program.

1. Which IA did you select? \qquad
Title Description \qquad
2. How long did it take you?
3. What was your reason for selecting this IA?
\qquad
\qquad
\qquad
\qquad
4. Which parts of the IA (materials, readings, tapes, lectures, experiences, etc.) were the most helpful to you?
\qquad
\qquad
\qquad
\qquad
5. Which parts of the IA were the least helpful?
6. Evaluate the total IA in terms of its worth to you. Extremely Helpful Useless \qquad Comments
\qquad
\qquad
\qquad

7. Why didn't you choose the other IA offered on the sheet?

\qquad
8. Can you suggest another IA you might have preferred?
\qquad -
\qquad

Coding Sheet for Performance Criteria Questionnaire

$$
\overline{1} \overline{3} \text { student number (remember } \# 8=008,124=024 \text {) }
$$

PC number (肘 $^{2}=04$)

time to complete $P C$ in minutes (1/2 hr" $=030$;
$2-1 / 2 \mathrm{hrs}=150)$
Answers PC q \#2, evaluate PC in terms of total
15 worth

$$
\begin{aligned}
0= & \text { no answer } \\
1= & \text { terrible, worthless, poor etc. } \\
2= & \text { undecided, } \\
3= & \text { good, great, valuable etc. } \\
4= & \text { no value as student, but good as teacher } \\
5= & \text { great as student experience, no value } \\
& \text { as teacher }
\end{aligned}
$$

(teacher includes as student teacher)

Answers PC q \#3, can you suggest better PC

$$
\begin{aligned}
& 0=\text { no answer } \\
& l=\text { minor suggestion (more, less, procedural) } \\
& 2=\text { major suggestion (new activity, changing } \\
& \\
&
\end{aligned}
$$

Answer $f^{\prime} l_{t}$, number of times attempted

$$
\begin{aligned}
& 0=\text { no answer } \\
& 1=\text { first (some students write "o" meaning } \\
& \text { they did not try it before) } \\
& 2=\text { second } \\
& 3=\text { more }
\end{aligned}
$$

Answers $\# 5$, number of instructional alternatives

$$
\begin{aligned}
0= & \text { no IA used } \\
1= & \text { one } \\
2= & \text { two (sometimes list two here, but mixed } \\
& \text { up PC activity, such as giving IRI with } \\
& \text { IA activity. IF practice was the IA, } \\
& \text { practice) } \\
3= & \text { more than two }
\end{aligned}
$$

(this completes all the questions answered on the "PC q" page)
page two, coaing sheet

25
Answers, which IA did you take
$0=$ none (or no answer) includes pretest
$1=$ the lecture (no matter what IA \# the
$2=$ lecture is
$2=$ Auding and browsing in library
3 = Observation (TV, filmstrip, record)
$5=$ Practice
$6=$ Lecture and Library
$7=$ Lecture and A-V
$8=$ Lecture and practice
$9=$ Other
If student pretested, why?
28
$0=$ no answer, or did not pretest (took an IA)
$1=$ thought I could do it (or wanted to try)
$2=$ previous experience (general)
$3=$ previous experience in academic course
(such as speech course for reading
story)
$4=$ other

Time spent in lecture (check lecture schedule)

Answer what was your reason for selecting
If student did not take lecture IA, skip all of questions in the 30 's (same for other IAs)
this IA (and also why didn't you select other)
$0=$ no answer
$1=I$ learn better listening to someone
2. $=$ want an evaluation of topic (controversies)
3 = like to be able to ask questions
$4=$ most convenient (or other inconvenient)
5 = other
Answers: which parts the most, least helpful
$0=$ no answer
$1=$ specific suggestions
2 = suggestions too vague to be of help
page three, coding sheet

38

39

40 4I 42
45

46

Answers; evaluate IA's worth to you
$0=$ no answer
$1=$ worthless

2 = undecided
3 = good, as preparation for passing PC
$4=$ good, as expressive objective (just doing IA would have been good, even if there weren't a PC)

Answers, suggestions for a different IA

$$
\begin{aligned}
0= & \text { no answer, or none } \\
1= & \text { minor suggestions or very vague } \\
2= & \text { major suggestions (change IA type, } \\
& \text { activity) }
\end{aligned}
$$

Library time, in minutes (if library IA not taken skip to \#50)

Answers: your reason for selecting this IA (and also why didn't you select the other IA)
$0=$ no answer, or "none"
$1=I$ leam better working at my own pace
$2=I$ get more points of view from reading then just listoning to one person talk
$3=$ like $i t$ when it includes examination of materials used in schools (teacher's manuals, cum. files, kits etc.)
4 = like to be able to read only part I need, not have to sit through whole lecture for it.
$5=$ more convenient
$6=$ other
Answers: which part the least or most helpful
$0=$ no answer
$1=$ specific suggestions
$2=$ suggestions too vague to be of help
page four, coding sheet

47

505152

55

56

57

58

606162

Answers: suggestions for different IA

$$
\begin{aligned}
& 0=\text { no answer } \\
& 1=\text { worthless } \\
& 2=\text { undecided } \\
& 3=\text { good, as preparation for passing PC } \\
& 4=\text { good, as expressive objective } \\
& 5=\text { other }
\end{aligned}
$$

$$
\begin{aligned}
& 0=\text { none } \\
& 1=\text { minor suggestions } \\
& 2=\text { major suggestions }
\end{aligned}
$$

A-V time in minutes (if no AV IA taken skip
Answers: evaluate IAs worth to you
to 60)
Ans: reason for taking this IA (or for not taking other)
$0=$ no answer
$1=$ like to watch tapes, learn easily that way
$2=$ like tapes, but equipment was hard to get hold of
3 = more convenient
$4=$ other
Ans: which part least, most helpful
(code under $7^{2} 46$)
Ans: evaluate worth to you
(code under 47)
Ans: suggestions
(code under 48)
time for Observation in minutes (if. no observation skip to 70)
page five, coding sheet

Ans: reasons for selecting this IA
65
$0=$ no answer
1 = like to observe classrooms (generally)
2 = like to observe where I know children
(as in school where I will teach)
3 = convenient to do it while out observing place where I will practice teach)
4 = like to observe when I know just what I am looking for
$5=$ other
see codes under $46,47,48$
666768
$\overline{70} \overline{71} 72$
Ans: reasons for selecting this IA
75
$0=$ no answer
1 = like programed materials (books, kits) where I can work on my own
2 = like practice work which includes working with children
3 = more convenient
4 = other
see codes under $46,47,48$
767778

80
pass or fail
1 = pass
$2=$ fail

The perfect rater's list will include:

1. accurate dates received (numbers filled in)
2. accurate dates returned
3. failed PC will be in right hand columns
4. the dates will have the month and day ($9 / 28,10 / 31$ etc.)
page six, coding sheet
5. the student numbers will be exactly the same on the raters list as on the questionnaire master list. There is some problem of repeated numbers around the K's, and the last few numbers especially should be checked.

Suggested procedure for mounting this operation

1. arrange questionnaires in order of mastor list numbers (marking numbers on questionnaires as you go)
2. check rating list, filling in dates, putting "fail" on proper questionnaires for later reference in filling out questionnaire coding sheet ($\mathrm{H}_{1} 80$)
3. fill out the coding sheets

Please try to keep all the questionnaires in order as you go along.

If for any reason you (or I) need to go back to them, they will be ready (heaven forbid we should need to).
!:! Mary-Alice
As I read the questionnaires for PC \#, I came across the following suggestions which might be considered when the PC (and the IAs) are being revised.
(Include both common suggestions and those which you find particulerly interesting)
S.D. FORM 1

STUDENT I.D. DATE
\qquad
LEARNING
CONCEPT

1. GOOD
2. POTENT
3. PESSIMISTIC
4. DARK
5. COMTYONPLACE
6. INCOMPLETE
7. CURRENT
8. DEEP
9. SUCCESSFUL
10. SMALL
11. FALLING
12. BOTTOM
13. MALE
14. MEANINGLESS
15. PASSIVE
16. USEFUL
17. SLOW
18. FORWARD
19. COMPLEX
20. TRUE
21. SHARP
22. NEGATIVE
S.D. FORM I

STUDENT I.D. DATE
\qquad

LEARNING CONCEPT
23. NEW
24. DISHONEST
25. TOUGH
26. OPEN
27. BLAND
28. RESPECTPUL
29. THOUGHTFUL
30. INTERESTING
31. RELIGIOUS
32. SMOOTH
33. WET
34. SLOPPY
35. COLD
36. FRIEND

\qquad : \qquad
\qquad : OLD
\qquad : - HONEST

\qquad
\qquad : IENDER

\qquad

\qquad
\qquad
________ : \qquad
\qquad : NEAT

\qquad $:$ \qquad : \qquad : ENEMY
S.D. FORM I

STUDENT I.D. DATE
\qquad

DISCIPIINE
CONCEPT

1. GOOD
2. POTENT
3. PESSIMISTIC
4. DARK
5. COMMONPIACE
6. INCOMPLETE
7. CURRENT
8. DEEP
9. SUCCESSFUL
10. SMALL
11. FALIJING
12. BOTTOM
13. MALE
14. MEANINGLESS
15. PASSIVE
16. USEFUL
17. SLOW
18. FORWARD
19. COMPLEX
20. TRUE
21. SHARP
22. NEGATIVE

S.D.

FORM 1
STUDENT I.D.
DATE

DISCIPLINE
CONCEPT
23. NEW
24. DISHONEST
25. TOUGH
26. OPEN
27. BLAND
28. RES PECTFUL
29. THOUGHTFUL
30. INTERESTING
31. RELIGIOUS
32. SMOOTH
33. WET
34. SLOPPY
35. COLD
36. FRIEND

______________ZENDER

______________(SAVORY

$\ldots: \quad$ ____________(UNINTERESTING
$\ldots: \ldots$ ___________IRRELIGIOUS

_______________(NEAT
________________(HOT

Final Questionnaire

Name \qquad class \#

$$
\overline{1} \frac{}{3}
$$

I.D.\#
sex (male $=1$, female $=2$)
class (graduate $=1$, undergraduate $=2$)
marital status (single $=1$, married $=2$) age

$$
\begin{aligned}
& \frac{6}{7} \\
& \frac{7}{8}
\end{aligned}
$$

$$
\overline{11} \quad 12
$$

I. Describe your own school experiences:
A. Elementary
$1=$ urban, traditional
2 = urban, innovative
3 = suburban, traditional
4 = suburban, innovative
5 = rural, traditional
6 = rural, innovative
$7=$ moved around, had variety of experiences
$8=$
\qquad
B. Junior High

$$
\begin{aligned}
& \text { (please use code under I.A.) } \\
& 8=\text { other: }
\end{aligned}
$$

C. Senior High

$$
\begin{aligned}
& \text { (please use code under I.A.) } \\
& 8=\text { other: }
\end{aligned}
$$

II. Describe your previous experience with children:
A. Individual work (baby sitting, tutoring, etc.)

$$
0=\text { never }
$$

page two

Class number

$$
\begin{aligned}
& 1=\text { infrequently } \\
& 2=\text { once/week for one year (or every day for } \\
& 3=\text { one summer) } \\
& 4=\text { ore than that } \\
& 4=\text { other: }
\end{aligned}
$$

20

B. Group work with children (community service, teacher's aide, camp counseling, etc.)
(please use code under II.A.)
$4=$ other
C. I have worked mostly with:

$$
\begin{aligned}
& 0=\text { none } \\
& 1=\text { preschool children } \\
& 2=\text { children in grades } 1-3 \\
& 3=\text { children in grades } 4-6 \\
& 4=\text { teenagers } \\
& 5=\text { other: }
\end{aligned}
$$

D. I have taught school before:

$$
\begin{aligned}
& 0=\text { no } \\
& 1=\text { elementary, one year } \\
& 2=\text { elementary more than one year } \\
& 3=\text { secondary, one year } \\
& 4=\text { secondary more than one year } \\
& 5=\text { other: }
\end{aligned}
$$

E. I have children at home (check age of oldest child)

$$
\begin{aligned}
& 0=\text { none } \\
& 1=\text { infant to } 1 \text { year } \\
& 2=\text { ages } 2-5 \\
& 3=\text { ages } 6-10 \\
& 4=\text { older } \\
& 5=\text { other: }
\end{aligned}
$$

page three
Class \# $\frac{}{1} \frac{}{3}$
III. Describe your practice teaching position
A. grade level

$$
\begin{aligned}
& 0=\text { I will not be practice teaching } \\
& 1=\text { kindergarten } \\
& 2=\text { primary } \\
& 3=\text { intermediate }(4-6) \\
& 4=\text { other: }
\end{aligned}
$$

B. general description
(Please use code on previous page I.A.)

$$
8=\text { other: }
$$

C. I really wanted to practice teach in:
(Please use code on previous page I.A.)
$8=$ other: \qquad

```
page four
```

$$
\text { Class \# } \frac{}{2} \frac{}{3}
$$

Thoughts on the METEP Language Arts Program
I. General problems:
A. On the whole the Language Arts program has been (you may choose two):

B. My advice to a next semester senior would be
$1=$ try to get in to the METEP Language Arts program
$2=$ try to get in to a Language Arts methods section
3 = switch to the intern program
$4=$ one program is pretty much like another, it doesn't make any difference which one you take
$5=$ get out of elementary ed. completely
$6=$ other:

C. When you revise the rating (grading) system:
$1=I$ liked having different raters
2 = it would be botter if one person had rated all my work
3 = just doing the PC is enough, there is no need to rate the work
$4=$ other:

page five

Class \#
D. When you revise the questionnaires:

$$
\begin{aligned}
& 1=\text { ok as they are, a necessary evil } \\
& 2=I \text { like being able to make suggestions } \\
& 3=\text { should use a "choices provided" form } \\
& \text { like this one } \\
& 4=\text { questionnaires are a terrible nuisance, } \\
& 5=\text { drop } \\
& 5 \text { other: }
\end{aligned}
$$

15

II. When you revise the PCs:
A. circle on line $1=$ should be kept just as they are $2=$ keep, but shorten the assignment 3 = keep as option for those interested in that area 4 = drop, but replace with another covering area 5 = drop, do not replace $6=$ other
$1=12345678910111213141516171819202122$ $23 \quad 2425 \quad 26 \quad 27 \quad 28$
 $\begin{array}{lllllllllllll}23 & 24 & 25 & 26 & 27 & 28\end{array}$
$3=12345678910111213141516171819202122$ $\begin{array}{llllll}23 & 24 & 25 & 26 & 27 & 28\end{array}$
$4=12345678910111213141516171819202122$ $\begin{array}{llllll}23 & 24 & 25 & 26 & 27 & 28\end{array}$
$5=12345678910111213141516171819202122$ $23 \quad 24 \quad 25 \quad 26 \quad 27 \quad 28$
$6=123445678910111213141516171819202122$ 232425262728

Class \qquad

page six

B. Next semester:
$1=$ same number of PCs (approximately) in the 5 weeks
$2=$ fewer PCs in 5 weeks
3 = all of the PCs (approximately) but more time
$4=$ other:
III. Lectures:
A. In general (you may choose two)
$0=I$ don't learn enough that way
$1=I$ like them, learn better listening to someone else
2 = like them, want an evaluation of topic (controversies)
3 = like them because I can ask questions
$L_{4}=$ like them because they are often most convenient 5 = other:

B. When you revise the lectures (please answer only for those you attended):
circle on line $1=$ keep as they were this semester
$2=$ revise to better prepare for PC 3 = revise completely $4=$ other:
$1=134556789101112131415171819202122.23$ $24 \quad 25 \quad 26 \quad 27 \quad 28$
$2=134556789101112131415171819202122 \quad 23$ $\begin{array}{lllll}24 & 25 & 26 & 27 & 28\end{array}$
$3=134456789101112131415171819202122 \quad 23$
$\begin{array}{lllll}24 & 25 & 26 & 27 & 28\end{array}$
 $24 \quad 25 \quad 26 \quad 27 \quad 28$
page seven
IV. Library (includos reading packets and browsing) (1,2,3 class解)
A. In general (you may choose two):
$0=I$ don't learn enough that way
$1=I$ like to, Learn better working at my own pace
$2=$ Like to, get more points of view than just
listening to one person
3 = like to, especially when it includes examination
of materials actually used in the schools
4 = like to, when I only need to know a little bit and don't want to sit through lecture
5 = other:

B. When you revise the library IAs (please answer only for those you used):
circle one line $1=$ keep as they were
2 = revise, better preparation for PC
3 = revise completely

$$
4=\text { other }:
$$

$2=145789111314151719202124262728$
$3=145778111314151719202124262728$
$4=14578911131415171920212426 \quad 2728$
V. Audio-visual (includes TV tapes, filmstrips, records, films)
A. In general (you may choose two)
$0=I$ don't learn well watching tapes
$1=I$ like them, learn easily that way
2 = don't mind watching tapes, if someone else runs machine
3 = next time I would learn how to run TV monitor
$4=$ getting TV monitors was too inconvenient this time 5 = other:
\qquad

page eight

B. When you revise the $A-V$ IAs (please answer only for those you used):

$$
\text { circle on line } \begin{aligned}
l & =\text { keep } \\
2 & =\text { revise for better preparation } \\
3 & =\text { revise completely } \\
4 & =\text { other: }
\end{aligned}
$$

$$
\begin{aligned}
& 1=3691018192327 \\
& 2=3691018192327 \\
& 3=3691018192327 \\
& 4=3691018192327
\end{aligned}
$$

VI. Observation
A. In general (you may choose two)

$$
\begin{aligned}
0= & I \text { don't learn enough just observing } \\
1= & \text { I like to observe in a regular classroom, } \\
& \text { but not in the Mark's Meadow observation } \\
& \text { corridor } \\
2= & \text { I like to observe if I know the children } \\
& \text { (classroom or corridor) } \\
3= & I \text { like to observe if I know exactly what I } \\
4= & \text { I enjooy observing, I learn a lot that way } \\
5= & \text { other: }
\end{aligned}
$$

B. When you revise the Observation IAs (please answer only for those you used)
circle on line $1=$ keep
2 = revise for better preparation
3 = revise completely
$4=$ other:

$1=4$	13	20	21
$2=4$	13	20	21
$3=4$	13	20	21
$4=4$	13	20	21

page nine

Class number \qquad
VII. Practice
A. In general (you may choose two)
$0=I$ don't learn enough that way
$I=I$ like programmed materials (books, kits, etc.) where I can work on my own
2 = Like practice which includes working with children
$3=a m$ uncomfortable practicing on children
4 = other:
B. When you revise the practice IAs (please answer only for those you used):

$$
\text { circle line } \begin{aligned}
2 & =\text { keep } \\
2 & =\text { revise for better preparation } \\
3 & =\text { revise completely } \\
4 & =\text { other: }
\end{aligned}
$$

$1=371218 \quad 22 \quad 25$
$2=3712182225$
$3=371218 \quad 22 \quad 25$
$4=3712182225$
VIII. These are some common suggestions made for next semester. Please judge each one on a scale from 1 to 5

1 = terrible idea, absolutely awful
$2=$ poor
$3=$ no thoughts (or cant decide)
$4=$ all right I guess
5 = absolutely great, brilliant
The program is great; keep it just the same

page ten

Class number \qquad
The most important change would be less work (longer time, less PCs, something, anything, just less work)

59
Spend the time improving the IAs (better lectures, readings, etc.)
Make procedures (questionnaires, handing in, rating, etc.) less complicated

60

Provide more time for small group discussions Provide more times when whole groups get toge ther

61
Provide group discussions
62

Have just a few required PCs, and a large pool of optional ones, so that people could work intensively in areas important to them

Drop METEP approach, give a good methods course \qquad
Other (s) \qquad
IX. My teaching plans:
A. for next year

```
\(0=I\) do not plan to teach
\(1=\) grad. school, then teaching
\(2=\) hope to teach nursery school (head start)
3 = hope to teach kindergarten
4 = hope to teach primary
5 = hope to teach intermediate
\(6=\) want to switch to secondary
7 = other:
```

B. The two most important considerations in choosing my first job will be:
1 = commuting distance to my family

page eleven

Class number \qquad
$2=$ school in rural area
$3=$ school in suburban area
4 = school in urban area
5 = innovativeness of school system
$6=$ for first job, want rather stable school system
7 = working conditions (equipment, facilities, salary)
8 = assurance that I can teach on grade level of my choice
$9=$ other:
C. I anticipate that the most important preparation for teaching will be (rank in order of importance):
$1=m y$ own experience in elementary school
$2=\mathrm{my}$ liberal arts courses at the University $3=\mathrm{my}$ foundations courses
$4=$ my methods courses (METEP and others)
$5=m y$ practice teaching
$6=$ my previous work with children (camp, tutoring, etc.)
$7=$ other:
first ___ 75
second
third \qquad
fourth \qquad
fifth \qquad
sixth \qquad
seventh ___ 81
X. Final thoughts
A. What do you think the METEP Language Arts staff values most highly in a teacher?
1.

```
page twelve (last page)
```

Name \qquad Class \#
2.
3.
4.
5.
B. What do you value most highly in a teacher?
1.
2.
3.
4.
5.

Any last comments? suggestions? any area you feel has not been covered in this questionnaire?

Performance Criteria Questionnaire

The numbers on the left indicate the columns to be blackened in. This will be the only record of your having passed in a PC. Be sure to use pencil and to mark spaces carefully.
column information
A. PC information general

$1,2,3$	LA number (assjgned after first meeting)
$5,6,7$	date PC passed in (feb. $13=213$, Mareh $21=321$)
10,11	PC\# (PC\# 3=03)
13	PC written or talked out
	$1=$ written
	$2=$ talked out
	$3=$ not applicable

15,16,17 PC time in minutes. Do not include IA time. $(15 \mathrm{~min} .=015,2 \mathrm{hrs}=120)$
B. This PC has helped me demonstrate

20 my own proficiency
21 my knowledge of the process (sequence of skills, levels of development, etc.)

22

23

24

25 none of the above because PC is insppropriate

26 none of the above because IAs were inadequate
$1=y e s$ 2=somewhat $3=$ no
my ability to select appropriate methods

PC Questionnaire, page two
C. First IA

30,31 IA\# (Please use the following code)
$1=$ lecture
2 = lecture on audio tape
$3=$ library folder of readings
$4=$ browsing in the library
$5=$ informal discussion with staff
6 = informal discussion with others
7 = audio-visual materials (including TV tapes)
8 = observation
$9=$ practice
$10=$ pretest (taking the PC without taking any IA. If "10" is written in colums 30,31, do not fill in the rest of the questionnaire.
$11=$ other
35,36,37 Time in minutes to do this IA
38 This IA helped me prepare for the PC:
1 = very well
$2=$ not enough so that I felt confident
3 = hardly at all
D. Second IA

40,41 IA.\# (Please use the code above. If only one IA taken, do not fill in this line, or tho rest of the questionnaire.)

45,46,47 Time in minutes to do this IA
This IA helped me prepare for the PC: (please use code above)
E. Third IA

50,51 IAff (Please use the code above. If only two IAs taken, do not fill in this line, or the rest of the questionnaire.)
55,56,57 Time in minutes to do this IA
58
This IA helped me prepare for the PC: (Please use code above.)

Rater's Information (revised February 8, 1970)

Using the same digitex form used by the student, please fill in the following information:

65,66 rater's number
$70,71,72$ date $P C$ returned to student $(\mathrm{Feb} 3=203$, March 11 = 311)

75 rating
1 = did not pass
2. = passed

76 description of performance
$1=$ minimal pass
$2=$ competent
3 = outstanding
77,78 time taken to rate PC in minutes ($5 \mathrm{~min}=05$, $1 / 2 \mathrm{hr}=30$)

79
please mark a "9"

	응
	$\stackrel{\sim}{N}$
	$\stackrel{\infty}{\sim}$
$=\cdots \cdots \cdots \cdots 0$	N
－An Ancorar	$\stackrel{\sim}{N}$
	\cdots
	\sim
－．Amenornom	\sim N
	N
	\bar{N}
	－
b－an \％\％－a	の
－－¢ ¢－－a	$\stackrel{\infty}{-}$
	ㄴ
c－varm \quad－\sim	$\stackrel{\square}{-}$
	$\stackrel{\square}{\sim}$
－－．．\％－\％＝	\pm
－－－－\％＝	$\stackrel{\square}{-1}$
	$\stackrel{\sim}{\sim}$
	$=$
	\bigcirc
二－\％－¢ \％＝	0
＝．．．．．$=$	∞
－\％\％＝\％	－
＝．．－－＝	\bigcirc
$\cdots \cdots, \ldots=$	ω
－	4
－．$=$	m
－．．．．－	N
－	－

＂－n m：\％－－＝	\bigcirc
	in
	in
$=\ldots m$ Ono．．． 0	in
	0
	in
	is
	m
－mom monan	N
$=-n+000 *$	is
	（1）
	$\stackrel{\square}{9}$
	\pm
	$\stackrel{N}{*}$
	－
	$\stackrel{4}{8}$
$=\cdots \cdots \cdots \cdots=0$	¢
	$\stackrel{m}{+}$
－v－¢－＝	N
$=-x+0 \rightarrow 0 \rightarrow=$	$\overline{5}$
－－－－－－\％	－
	m
二．．．．．．．． 0	$\stackrel{\infty}{\infty}$
$\cdots \cdots \cdots \cdots$	\cdots
	∞
二．\because \％\％＝	n n 0
\cdots－．．．	$\stackrel{c}{m}$
\＃．\because－．．．－	\cdots
\cdots	N
	\cdots

Performance Criteria Questionnaire
Form for Specialists

The numbers on the left indicate the columns to be blackened in. This will be the only record of your having passed in a $P C$. Be sure to use pencil and to mark spaces carefully. PC \#30 $=$ rating generalist PCs
\#35 = office hours, assisting in program operation \#-27 generalist PC number of IA you prepared column information
A. PC information general

1,2,3 LA number (assigned after first meeting)
$5,6,7$ date $P C$ passed in (Feb.13=213, March $21=321$)
10,11 $P C \#(P C \# 3=03)$
12,13 if $\mathrm{PC}=1-27$
IA type you prepared
25,16,17 PC time in minutes. Do not include IA tirne. $(15 \mathrm{~min} .=015,2 \mathrm{hrs}=120$.
B. This PC has helped me demonstrate

20 my own proficiency
21 my knowledge of the process (sequence
of skills, levels of development, etc.)
22
my ability to diagnose a child's needs and abilities

23
my knowledge of the variety of approaches and materials

24
my ability to select appropriate methods

1=yes
2=somewhat
$3=$ no

25

26 and materials for the child inappropriate
none of the above because IAs were inadequate
C. First IA

30,31	IA\# (Please use the following code)
	$1=$ lecture
	$2=l e c t u r e ~ o n ~ a u d i o ~ t a p e ~$
	3=1ibrary folder of readings
	$4=$ browsing in the library
	$5=$ informal discussion with staff
	$6=$ informal discussion with others
	7=audio-visual materials (including TV tapes)
	8=observation
	9=practice
	$10=$ pretest (taking the PC without taking any IA. If "I0" is written in columns 30,31, do not
	fill in the rest of the questionnaire.)
	11=other

35,36,37 Time in minutes to do this IA
38
This IA helped me prepare for the PC:
I=very well
$2=$ not enough so that I felt confident $3=$ hardly at all
D. Second IA

40,41
IA\#f (Please use the code above. If only one IA taken, do not fill in this line, or the rest of the questionnaire.)
45,46,47 Time in minutes to do this IA
This IA helped me prepare for the PC: (please use code above)
E. Third IA

50,51

55,56,57 Time in minutes to do this IA
58
This IA helped me prepare for the PC: (Please use code above.)

Rater's information (revised, February 8, 1970) Form for Specialist

Using the same digitex form used by the student, please fill in the following information:

65,66 rater's number
70,71,72 date PC returned to student (Feb 3=203, March 11=311)

75 rating
l=did not pass
2 -pas red
76
description of performance
I=minimal pass
$2=$ competent
$3=$ outs landing
77,78 time taken to rate $P C$ in minutes (5 min =05,
1/2 hr=30)
79
please mark a "9"

1. Please fill in your name on the alphabetic section of the digitex form.
2. As you fill in the answers, keep careful watch of the numbers beside the item. Believe it or not, the strange numbering system makes life easier--even for you.
3. Please follow all the rules of the answer sheet world: use pencil, darken spaces completely, make erasures carefully, etc.
4. Also please follow the rules of semantic differentials:
a. If the concept is closely related to the descriptive term, i.e. "lecture" to "broad, mark the space nearest the descriptive term.
example 1)

broad

narrow or, if you believe it to be closely related to "narrow," mark the space nearest that descriptive term.
example 2)

4
5

b. If the concept is slightly related to either term, mark the next space away from the descriptive term.
example 3)

example 4)
broad
 $\vdots^{2} \vdots:$

narrow
c. If the concept is neutral on that descriptive term, or irrelevant, darken the middle space.
example 5)

Semantic Differential p. 2

Concept: Reading
31. broad
32. teacher
33. sensitive
34. flexible
35. honest
36. content
37. useless
38. exciting

: ___ \qquad :

: \qquad
\qquad : \qquad
 : \qquad
\qquad : \qquad insensitive
rigid
phony
student
helpful
dull

Semantic Differential p. 3
(concept reading continued)
39. success ____ :____ :___ failure
40. simple _____ :___ sophisticated
41. irrelevant _________ re__ relevant
42. passive _______ :___ active

44. cold \quad _____ $: \ldots \quad$ warn

Concept: Discussion
51. broad (etc. same list)
. . 64. cold
Concept: Audio-visual
91. broad (etc. same list)
. . IO L. cold

Concept: Observation

111. broad (etc. same list)
. . 124 . cold

Concept: Practice

131. broad (etc. same list)
. . 144 . cold

\qquad
$\begin{array}{llllll}5 & 16 & 2 & 3 & 4 \\ 0 & 0 & 7 & 1\end{array}$
$\begin{array}{llllll}5 & 1 & 2 & 3 & 4 \\ i & 17 & \square & \pi & 0 & \pi\end{array}$
$\|^{4}{ }^{5}$ 25 ? 2 if $]^{4}$ 31^{1} $\overbrace{1}^{2}]^{4}$ $\begin{array}{llllllllll}2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5 \\ 1 & 1 & 7 & 1 & 32 & 7 & 7 & 7\end{array}$
 ${ }^{4}{ }^{5}$ 271 ${ }_{2}^{2}{ }^{3}$ $\left.\begin{array}{lllllll}4 & 5 & 1 & 2 & 3 & 4 \\ 0 & 1 & 33_{0} & 7 & !\end{array}\right]$
 37
 $4^{7}{ }^{2}{ }^{3}{ }^{3} 45$

π

$$
\frac{1}{x}
$$

$5{ }^{1}$| 2 | 2 | 3 | 4 | 5 |
| :--- | :--- | :--- | :--- | :--- |
| | 7 | 7 | 7 | | \qquad

${ }_{4}^{4} 28 \overbrace{1}^{1}]^{2}$

29 ! f 3

39 ?
12345
$5_{56}{ }^{123}{ }^{2}$

$$
42^{\prime}
$$

$$
12^{3} 45
$$

$$
43
$$

$$
59
$$ 50

$$
60^{\prime}
$$

$$
\left.55^{1} 17\right][1] 60
$$ II

Pre Program Questionnaire, Part I (Jan. 28, 1970)

A. Holding the digitex form horizontally, please

1. Print your name, then blacken the letter boxes just as directed on the form (last rame first).
2. Below the names are some more columns:
a. üse columns $\# 5$ and if 6 to print, and then blacken, your age
b. use the column marked "grace" to describe your academic status:
3 -undergraduate
$4=$ graduate
c. Fill in the column marked "sex"
d. Fill in the columns narked "student numoer"
B. Turning the digitex form vertically, and beginning with number 41

Describe your previous experience with children:
41. individual (baby sitting, tutoring, etc.)
$1=1-10$ times
$2=11-30$ times
3 =more than that
42. group work (club, church, camp, teacher aide, etc.)
$1=1-10$ times
$2=11-30$ times
3 =more than that
43. teaching
$1=1-10$ times
$2=11-30$ times
3 =more than that

Pre Program Questionnaire, Part I, Jan. 28, 1970

Describe your own elementary school experience
44.

I=rural
2=suburban
3=urban
45.
$1=$ traditional
2=experimental
3=had an opportunity to experience both

Program Questionnaire, Part II

A. Eventually I want to teach in:
86.

1=rural
2=suburban
3=urban
$4=$ anything, but not urban
5=don ${ }^{7}$ t care
87.

1=traditional
2=experimental
3=don't care
88.

1=preschool
$2=$ grades $\mathrm{K}-3$
3=grades 4-6
$4=$ don't care
$5=$ don't want to teach elementary
B. I think I learn easily from
91. lecture
92. reading,

1=yes
93. discussion

2=have no idea
94. audio-visual
$3=$ no
95. observiation
96. practice
C. I think I will probably teach easily using:
101...lecture
102. reading
103. discussion
104. audio-visual
105. observation
$1=y e s$
106. practice

 $30^{1} \mathrm{~T}^{3} 3.4$

 $244^{1} \frac{2}{13}$
 $10^{1 t^{2}}{ }^{3}{ }^{4}$

$0_{1}^{1} 3^{3} 4^{5} 86^{1} 5^{3} 4^{4}$

55 . 4

$1^{1234} 5^{1} 1^{23}$
$\pi^{1} \int^{2} 1_{1}^{5} 7$
$1_{1}^{3} 1^{5}$
$5^{1} 5^{123}$

Preprogram Questionnaire, Part IJI

He vould like to know what $I \Lambda s$ you anticinate using. We mould also like to know how sure you are of the choi.ces you make. Please use the accompanying 10-answer dicitex form.

PC\# 1 Comparison of children's reading texts

$$
\begin{aligned}
& (5,6) \text { I intend to use IA: } \\
& \text { 11=1ecture } \\
& \text { 12=1ecture on tane } \\
& \text { 13=library folder of rearings } \\
& 14=\text { browsing in library (suggested list avail.) } \\
& 15=\text { informal discussion with staff } \\
& \text { (not during lecture) } \\
& \text { 16=informal discussion with others } \\
& 17=a u d i o-v i s u a l \text { materials (including IV tape)- } \\
& \text { 13=observation } \\
& \text { 19=practice } \\
& \text { 20=pretest (taking PC without taking any IA) } \\
& \text { 21=0.ther }
\end{aligned}
$$

(7) In making the choice among IAs, I am
$1=$ just guessing
$2=$ pretty sure I will take that IA
$3=$ very sure

PC\# 2 Discussion, Reginning Reading
$(8,9)$ I intenc to use IA (see code above)
(10) In making the choice among IAs, I an (see code above)

PC\# 3 Reading Readiness
(11,12) I intend to use IA (see code above)
(13) In mating the choice among the IAs, I am (see code above)

Preprogram questionnaire, Part III
PC.\# 4 Grouping children for reading
$(14,15)$ I intery to use IA:
11=1cctue
12=1ecture ou tap=
13=1ibraiy folder of readings

15=informel discussion with stafc
(not during lecture)
$16=$ infomal discussion with others
17=aucio-risu-1 meic:ziais (including TV tape)
19=observation
19=uractice
20=piotest (taking PC without taking any IA) $21=0$ ther
(16) In making the choice among IAs, I am

1=just quessing
2=pretty sure I mill tale that IA $3=$ very su:c

PCN 5 IInformal Peading Inrontor"
(17,18) I intend to use iA (sce code absve)
-. (19) On makinc the cinoice among tis, I am isce code above?

PC\# 6 shinis-conorevensioa
(20,21) I intend to use It (sec code above)
(22) In making the choize amone Ins, I am (see code above)

PC\# 7 Word Analysis skeils
(23,24) I intert to vic İ (sre roce above)
(25) In makjeg the choico a-. an? IAs, I am (see code above)

Preprogram questionnaire, Part III
PC/ 8 Phonics as an approach to teaching reading
(26,27) I intend to use IA:

```
11=1ecture
12=lecture on tade
13=library folcer of readings
14=\mathrm{ brovsing in library (suggester list avail)}
15=inforv:al discussion with staff
    (not cluring lecture)
1.6=informal discussion with others
17=audio-visunl materials (including TV tane)
18=observation
19=practice
20=pretest (tal:ing PC vithout taking any IA)
21=other
```

(28) In making the choice among IAs, I am
l=just quessing
2=-pretty sune I will take that IA. ...
$3=$ ve-y sure

PC\# 2 i/t/a - modified alphaber for beginning reading
$(29,30)$ i intend to use IA (sce corle above)
(31) In makinet the choice anong Ins, I am (see code above)

PC^10 Linguistic approach to reading
$(32,33)$ I intend to use IA (see cuda above)
(34) In matring the choice anong. Ins, I am (see code above)

PC\&11 Experience approach to reading,
$(35,36)$ I intend to use IA isee code above)
(37) In makin? the choice among Ins, I am (see code above)

Preprogram questionnaire, Part III
PC\# 12 Individualized approach to reading
$(38,39)$ I intend to use IA;
11=1ecture
$12=$ lecture on tape
13=1ibrary folder of readings
$14=$ browsing in library (suggested list avail)
15:informal discussion with staff
(not during lecture)
16=informal discussion with others 17=audio-visual matcrials (including $T V$ tape)
18=observation
1s=practice
$20=$ pretest (taking PC without taking any IS) 21=other
(40) In maling the choice among IAs, I am
l=just guessing
2=pretty sure I vil. take that in $3=$ very sure

PC\# 13 Kits and machines used in teaching Reading and L.A.
$(41,42)$ I intend to use IA (sce code above)
(43) In malring the choice among Ins, I an (see code above)

PC\# 14 Teaching reading to special populations
(44,45) I intend to use IA (see code above)
(46) In making the choice anong. IAs, I am (sec corle above)

PC\# 15 Tour of library -- selecting professional texts
$(47,43)$ I intend to use IA (seo code above)
(49) In marjing the choice mong IAs, I am (see code above)

Preprogram questionnaire, Part III
PC\# 16 Evaluation of reading objectives
$(50,51)$ I intend to use IA:
11=1ecture
$12=$ lecture on tane
$13=1$ ibrary folder of readings
14_{i} =brovsing in library (suggested list avail)
15=informal discussion with staff
(not during, lecture)
16=informal discussion with others
17=aucio-visual materials (including IV tape) $18=$ observation
$19=$ practice
$20=$ pretest (taking PC without taking any IA)
$21=$ other
(52) In making the choice amone Ins, I an

1=just quessing
$2=$ pretty surc I will tabe that IA
$3=$ very sure

Pe\# 17 I. Q , $=$ no choice

PC\# 18 Class library .. selecting books for class library
$(53,54)$ I intend to use IN (sce code above)
(55) In maling the choice amone. IAs, I am (see code above)

PCl 19 Three ways to tell a story
$(56,57)$ I intend to use In (see code above)
(53) In making the choica among, Ins, I an (see code above)

PC\# 20 Read story aloud
$(59,60)$ I intend to use If (sec code above)
(61) In makine the choice among IAs, I am (see code above)

Preprogram questionnaire, Part III
PC\# 21 Approaches to creative writing
$(62,63)$ I intend to use $I A$:

```
11=1ecture
12=lecture on tape
13=1ibrary folder of readjngs
14=brovsing in library (suggesten list avail)
15=:informal discussion with staff
    (not during, lecture)
16=informal discussion with others
17=audio-visual materials (including TV tape)
18=observation
19=practice
20=pretest (taking PC without taking an IN)
21=other
```

(64) In making the choice among IAs, I an
1=just guessing
2=pretty sure I will take that IA
$3=$ very sure

PC\# 22 Approaches to teaching spelling
(65:66) I intend to use IA (see code above)
(67) In making the choice among Ins, I am (see code above)

PC\# 23 Approaches to teaching listening
$(68,69)$ I intend to use IA (see code above)
(70) In making the choice among IAs, I am (see code above)

PC\# 24 Approaches to teaching sueaking
(71,72) I inten! to use IA (see code above)
(73) In making the choice among IAs, I am (see code above)

PC\# 25 Approaches to teaching drama
$(74,75)$ I intend to use J.A:
11=1ecture
12=lecture on tape
$13=1$ library folder of readings
$14=$ browsing in library (suggester list avail)
$15=$ informal discussion with staff
(not during lecture)
16=infornal discussion with others
17=audio-visual natorials (including TV tape)
18=observation
19=nractice
20=pretest (taking PC without taking an IA) 21=other
(76) In making the choice among Ins, I am

1=just guessing
$2=$ pretty sure I will take that IA
$3=$ very sure

PC\# 26 Approaches to teachinc grammar
(77,78) I intend to use IA (see code above)
(79) In making the choice among Ins, I am (see code above)

PC\# 27 Approaches to teaching handwriting
$(80,31)$ I intend to use Ir (see cole above)
82
(82:) In making the choice among. Ins, I am (see code above)

$\begin{array}{\|l\|l} \hline \cdots \cdots \cdots & 8 \\ \hline \cdots \end{array}$	
….......	
-	
…......	
…	
.	
..	
. \times. \ldots	
\cdots	
, ……	
……....	
$\cdots \cdots \cdots \cdots$	
$\cdots \cdots$	
$\cdots \cdots \cdots$	

Post Program Questionnaire, Part I

A. Fill in your LA number in columns $2,2,3$ (below alphabetic section)
B. Starting with 11 , please evaluate the following aspects of the Language Arts program:
11. Performance Criteria
12. Lecture IAs
13. Lecture on tape IAs
14. Library folder of readins IAs

$$
\begin{aligned}
& 1= \text { major strength } \\
& 2= \text { needs improving } \\
& \text { but should be } \\
& \text { kept } \\
&= \text { major weakness } \\
& 4= \text { never used it, } \\
& \text { no opinion }
\end{aligned}
$$

15. Browsing in the library IAs
16. Informal discussion with staff IAs
17. Informal discussion with others IAs
18. Audio-visual IAs
19. Observation IAs
20. Practice IAs
21. Pretesting (instead of IAs)
22. Other IAs
23. Rating system
24. Record keeping system
25. Progran as preparation for practice teaching
26. Progran as personal learning experience

Program Questionnaire, Part II

A. Eventually I want to teach in:
86.

1=rural
2=suburban
3=urban
$4=a n y t h i n g ;$ but not uiban
$5=$ don 7 t care
87.

1=traditional
2=experimental
$3=$ don't care
88.

1=preschool
2=grades $\mathrm{K}-3$
$3=$ grades 4-6
$4=$ don't care $^{\prime}$
$5=$ don't want to teach elementary
B. I think I learn easily from
91. lecture
92. reading

1=yes
93. discussion
94. audio-visua1

2=have no idea
$3=$ no
95. observation
96. practice
C. I think I will probably teach easily using:
101. . 1ecture
102. reading
103. discussion
104. audio-visual
105. observation
$1=$ yes
2=have no idea....
$3=$ no
106. practice

mmonucaliti of Massachusets

SCHOOL OF EDUCATION

April 28, 1970

Hi!

You hove already received a letter from Bill Fanslow asking you to attend an evaluation session at $2: 30$, Thursday, May Fth in the Mark's Meadow Auditorium.

We would like to invite you to join us immediately after that session (about 4:15) in the kindergarten room of Mark's Meadow for coffee and donuts, for a celebration of completed PC's, for a discussion of the Language Arts program, and for returning the checklists which accompany this letter.

We are now beginning to revise the program for next fall. Please come on the fth. We need your help in making those changes.

Sincerely,

Masher Rudman

Mary Alice Wilson
n mb

There are four packets of material:

1. course evaluation. Please complete, boing sure to fill in the course number (261).
2. a check list. Please fill it in, returning it to us on May 7th. If you cannot join us, be sure we get the check list anyway.
3. a cover letter and a socond copy of the check list. Please ask your supervisor to fill it in and return it to us, either by delivoring it to room 2, by mailing it, or by using you as a personal courier on May 7th.
4. another copy of the cover letter and check list. Please ask your master teacher to fill it in and return it to us (using any of the above delivery methods). In any case, we would like all three copies returned to us by May 7th.

Thank you.

The Gomnnomealis of Massachusetts ${ }^{153}$ University of Massachusets Anhlcorse 01002

Your student teacher participated in a performance criteria program in Language Arts this semester. The following checklist asks you to rate him on certain aspects of the program. Your answers will be of great help to us in revising the course for the fall semester. Please do not hesitate to add additional comments on the back of these pages or on extra paper.

In order to use the material from this checklist, we must have the completed form in our office by Thursday, May 7 th. Your student teacher will be coming here on that date and can bring it, or you may mail it to:

Kasha Rudman
School of Education
University of Massachusetts Amherst, Massachusetts 01002

Thank you for your help.

Mash Rudman

Mary Alice Wilson
nib
page 1

page 2

m
0
60
α
α_{1}

page 4

咠

10. ability to use observa-
tional techniques to
help students learn
for example

$$
\begin{aligned}
& \text { 11. ability to provide } \\
& \text { practice (not just } \\
& \text { workbook pages) as a } \\
& \text { technique to help } \\
& \text { students learn }
\end{aligned}
$$

for example
12. an awareness of his own learning and teaching style
13. an acceptance of the validity
of other learning and teaching
styles
for example
14. a willingness to attempt more
than one learning and teaching
style i.e. willingness to take
risks
for example
15. a commitment to seek and use a
This check list was filled out by:
5 ร8セa

๙өบจยəァ student teacher_master

APPENDIX BCOMPUTER PROGRAMS USED IN THE INFORMATION SYSTEM
Programs for METEP generalists: MASTER
STUDENT
STUDENTI
PC
Programs for METEP specialists: RATER
SPECIALSPECIASPECPC
IASPEC
PCSPEC

Program: MASTER

The program was designed to print out a master list With the generalist's name down the side and the PC numbers accoss the top. The date the PC was passed was entered into the array along with the toval number of PCs passed per student and per PC. The printout was to be used by the students to check thoir rocords and to compare themselves with other students and by the staff to gain an overview of the progress of the students and the PCs.

Information was collected on the PC questionnaire completed by the genoralist and his rater whenever a PC was attemptod.

A flow chart explaining the logic of the program, a listing of the program, and a sarmple page of printout are included.

MASTER

09/20/70

PROGRAM MASTER

C TOTAL STUUENTS PASSING GIVEN PC(NPC) CALCULATED 470°
TOTPC (NPC) $=$ TOTPC (NPC) +1 480
C NEW PC CARO HEAD 490
C IF STUDENTS.S PC FILE COMPLETE,NUMBER,NAME,DATES PASSED AND TOTAL 500
c WRITTEN OUT 510
520
60 WRITE (61:70) NSTU,NAME, (KPC(1):I=1,27),TOTST 530
70 FOMMAT $\left(1 \times, 113,1_{x, 1} 1_{A}, 2714,1 x, 1 F 3,0,11\right)$ 530
540
C NEW STUDENT FILE BEGUN 600
GO TO 25 610
C IF ALL STUDENTS FILES FINISHED, TOTALS PER PC WRITTEN OUT 620
110 FこKMAT (lx,*TOTAL PEK PC*,27F4.0) 640
C PROGRAM COMPLETE 650
GO TO 900 660
900 STOP 720
AFTER ENU ANU FOKTRAN CAKOS.DATA STACKED AS FOLLOWS. 738
A. MONTH AND UAY (LCAKU, NOT REPEATED) 750$\begin{array}{ll}C & \text { B. STUDENT NUMBEK AND NAME CARD } \\ C & \text { C. PC CAKU (UP TO } 27 \text { PASSED,NPASS=2, INFINITE NOT PASS, NPASS =1) }\end{array}$760
C D. DUMMY PC (NPC=99) TO END STUUENTOS FILE 770
C E. REPEAI b,CIO SEUUENCE INDEFINIETLY 780
F. DUMMY STUUENT NUMOEK (NSTU=999) TO FINISH DATA DEC̣K 790

 END

-

Program: STUDENT

The program was designed to provide a single page of printout on each generalist listing the dates of PCs passed, the number of unsuccessfully attempted PCs and the performance level for the successful PCs. Printout was to be used by the staff for counseling purposes. A sumary shect also provided the staff with an overview of the PCs in terms of student performance.

Information wes collected on the PC questionnaire completed by the generalist and his rater whenever a PC was attempted.

A flow chart explaining the logic of the program, a listing of the progran, and a sample page of printout are included.


```
    PROgRAM STUDENT
    program UESIUNED tO provide single page of Inf/Student
    ALSO NUMBLR PASSING,FAILING.ANU LEVELS OF PERFORMANCE/PC
    PKOgKAM WR̈ITTEN FOR 2l HCS.UNLIMITEU STUDENTS
    ADUITIONAL PCS ONLY FORMAT PROBLEM
    DATA FOR TOTAL PKOGKAM INCLUDES DATE PROGRAM RUN IMONTH,IAS,DAY,IIZ
    DATA FOR STUUENT,S FILE INCLUDES.
    STUDENT NUMDEK(NSTU,1I3)
    STUDENT NAME (NAME,3A&)
    PCS NOT PASSEU,NPASS=I (JPC,27I3)
    TOTAL PCS NOT PASSEU (TOTNP,1FJ.O,
    PCS PASSEU ,NPASS=で,(KPC,27T3)
    TOTAL PCS PASSEU (TOTP,1F3.0)
    TOTAL PCS ATIEMPTEU (TOTAT,1F3.0)
    LEVEL OF PERFOKMANCE OF EACH PG PASSED (NPEHF,27II)
    TOTAL NO. OF EACH PERFOKMANCE LEVEL (KFREQ,3I2)
    ALSO TOTALS CALCULATEU ANU PRINIED OUT ON SEPARATE PAGE-
        TOTAL NOT PASSEO/PC,TTOINP.1F4.O).AND GRAND TOTAL (SUMTNP,1F4.0)
        TOTAL PASSED /PC(TTOTP.IF4.0%)ANU GKAND TOTAL(SUTIP,IF4.U)
        TOTAL ATIEMPTLU/PC(TTOTAT,IF4.UIAND GRAND TOTAL(SUMAT,lF4.0)
        TOTAL OF EACH PERF. LEVEL/PC(LFREQ,81I4) &GRANO TOTAL(JFGEO,314)
        NUMBER OF STUUENTS KEPORTING (SN,1F4.0)
        avERAGE NUMEEH OF PCS HASSED PER STUDENT (AVG.jF5.2)
        DIMENSION KPC(27),JPC(27), NPEKF(27),TTOTNP(27),TTOTP(27),TTOTAT(
        127), LF REU(4, (7),KFREQ(4),'iFREO(4),NAME (3)
                        UATE PROGKaM DEING KUN READ IN
    READ(60:ZO) MONTH,LUAY
2
```

 NNUE
 DO 3 J=114
 JFKEQ(J)=0
 3 CONTINUE
 variagles for each student page set to zero
 05 SUMTNP=SUMTP=SUMTAT=0.0
 TOINP=0.0
 TOTр=0.0
 TOTAT=0.O
 DO 10 I=1,27
 KPC(I)=0
 JPC(I)=0
 NPERF(I)=0
 1 0
 11 KFRF(J)=0
 11 CONTINUE
 STUDENT TITLE CARD READ
 30 READ (OO,43) NSTU,(NAME (II), II=1,3)
 43 FOKMAT(!13,IX,2A&,1A4)
    ```

C IF STATEMENT TO READ DUMIYY STUDENT NUMBER（999）AT END OF．DATA DECK

IF STATEMENT TO FINU UUMMY PC CARD（99）AT END OF STUDENT，S FILE
IF（NPC．G1．98）心̇O TO 1 IO
IF．STATEMENIS TO SEparare pasSes．NOT passes \(80 \mathrm{JPC}\left(\mathrm{NPC}^{2}\right)=\mathrm{JPC}\left(\mathrm{N}_{2} \mathrm{C}\right) .1\)

TOTNP＝TになNP＋1。
\(T T_{0} T N P(N P C)=T T O T N P(N P C)+1\).
c．GO TO 100
\(90 \mathrm{KPC}(N P \mathrm{C})=\mathrm{NDATE}\)
TOTP＝TOTP＋1．
TTOTP（NPC）＝TOTP（NPC）＋1．
100 TOTAT＝TOTAT＋1．
TTOTAT（NPC）＝TTOTAT（NPC） 1 ．
C TOTALS OF EACH LEVEL OF PERFORMANGE CALCULATED／STUDENT＋／PC 1 auded to eaçh level to avoio problem of zeros
\(J=\operatorname{NPERF}(N P C)+1\)
\(\operatorname{KFREQ}(J)=K F R E W(J)+1\)
LFREQ \((J, N(P C)=L F R E Q(J, \cap P C)+i\)
JFREQ（J）＝JFREG（J），
C NEW PC CARD KEAD
C TITLE WRITTEN FOK EACH STUDENT，S PAGE
110 WRITE（61，120）NSTU，（INAME（II），I \(i=1,3\) ），MONTH，LDAY
120 FORMAT（1HI，\＃STUUENT FILE FOR \(, I I 3,2 x, 3 A 8,5 x, 1 A 5,2 x, 1\) I \(2,1 / 11\) WRITE（6I，130）
 \(\begin{array}{lllllllllllll}14 & 15 & 10 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 \\ 27 & 27 & \text { TOT．N，／11 }\end{array}\)
C ALL INFOR：AATION PER STUUENT PRINTED OUT WKITE（61，141）（JPC（I），I＝1：27），TOTNP
i4l FOKMAT（IX．＊NOT PASSEU＊，D7I4．！F4．0．11）
WRITE（61，142）（KPC（I）：1＝1，27），TOTP，TOTAT
 10．111
WRITE（61，143）（NPERF（I），\(\delta=1,27)\)
143 FOHMAT（lX，＊PEHF，LEVEL＊，27I4．／／）
WRITE（6I，145）（KFREQ（J），J＝2，4）
145 FORMAT I 1 X，OTOTAL NUMBER AT EACH PERFORMANCE LEVELS，／／，10X，\＆MINIMAL

C Number of stulents calculated \(\mathrm{SN}=\mathrm{SN}+1\) ．
c Variable to be recalculated for next student reset to zero
C GO TO 5 IF STUDENT FILES COMPLETE．TOTALS CALCULATED
200 DO \(210 \mathrm{I}=1,27\)
SUMTNP＝SUMTNP＋TTOTNP（I）
SUMTP＝SUITP＋TTOTP（I）
SUMTAT＝SUMTAT＋ITOTAT（I）
210 Continue
c

> FTN5.4B 09/20/70

C TOTALS PRINTED OUT


        \(312223 \quad 24 \quad 25 \quad 20 \quad 21\) TOT. \(24,1 / 1\)
        WRITE(61,241) (TTOTNP(1),I =1,27),SUMTNP
    241 FEKMAT (5X, \#NOT PASS \(\$, 27 F 4.0,1 F 4 \cdot 0,1 /)\)
        WRITE (61,24ट) (TTOTP(I), \(1=1,27\) ), SUMTP
    242 FCKMAT (7X, APASSEU\#, C7F4.0,1F4.0,11)
        WRITE (61, ?43) (TTOTAI (I), \(\bar{i}=1,27\) ), SUMTAT
    243 FORMAT (6X, \#AITEMPT\#, 27F4.0.1F4,0,1/)
        WHITE (61,250)
    250 FOKMAT (lX, \&LEVELS OF PERFORMANCE- \(1=M I N I M A L, \quad 2=A D E Q U A T E, \quad 3=O U T S T A\)
        l NOING*, //
            2,4 BEING WKITTEN OUT SINCE \(1=Z E R E S\) OR BLANKS
        DO 270 IU=2,4
        \(J=I Q-1\)
        WRITE (61,260) J, (LFREQ(IU,I),I=1,27)
    260 FOKMAT (10x,1Il,2x,2714, /1)
    \(27^{\circ}\) CONTINUE
        WRITE (61: 280) (JFREU(J),J=2,4), AVG
    280 FOHMAT (IX, \#NUMUEK OF MLIVIMAL PERF. ON ALL PCS\#, 1 I4, \({ }^{\circ} \mathrm{A}\) OF ADEQUATES,
        11I4, OF OUISTANDING", \(114,1 / \%\) ON THE AVERAGE, STUDENTS HAVE PASS
        \({ }^{2} E D^{*}, 1 F 6.2\), PCS*)
            STOP
                data cardos, fileo exactly as in master, are as followso
                A. DATE PROGRAM RUN
                B. STUDENI TITLE CARD
                C. PCS CARDS FER THAT STUDENT
                D. Vummr PC CAHU (NPC=99)
                E. REPEAT OF THE STUDENT FILE (B,C•D) UNTIL NO MORE STUDENTS
                F. UUMMY STUDENT I ITLE CARU (NSTU=999)
        END
\[
\begin{aligned}
& \text { on the average, students have passed } 26.62 \text { pcs }
\end{aligned}
\]


\section*{Program: STUDENTI}

The program was designed to provide a single page of printout on each generalist with the date of PCs passed and the number of unsuccessful attempts per PC. The printout was designed for the students themselves in order that they might check their own records against the program records.

Information was collected on the PC questionnaire completed by the generalist and his rater whenever a PC was attempted.

A listing of the program and a sample page of printout are included. For a flow chart explaining the logic of the program please see the flow chart for STUDENT.
    PROGRAM STUDENTI
            variatION of prggram to give pass/not pass data to students
    PROGHAM UESIGNED TO PHOVIDE SINGLE PAGE OF INFISTUDENT
    ALSO NUMDER PASSING,FAILING.AND LEVELS OF PERFORMANCE/PG
    PHOGRAM WRITIEN FON CT PCS.UNLIMITED STUDENTS
    ADUITIONAL PCS ONLY FOHMAT PROBLEM
    DATA FOR TOTAL PKOGKAM INCLUDES DATE PROGRAM RUN (MONTH,IAS,DAY,IIII)
    DATA FOR STUDENT,S FILE INCLUDES.
    STUDENT NUMBER(NSTU,lI3)
    studENt NamE (NAME,3ay)
    PCS NOT PASSEU,NPASS=1 (JPC.27[3)
    TETAL PCS NOT PASSEU (TOTNP,1F3.0)
    PCS PASSEU ,NPASS=2,(KPC,2713)
    TOTAL PCS PASSEU (TOTP.1F3.0)
    TOTAL PCS ATIEMPTEU (TO AT,1F3.0)
    LEVEL OF PERF OKMANCE OF EACH PC PASSED (NPERF,27II)
    TOTAL NO. OF EACH PERFOHMANCE LEVEL (KFRE(\.3I2)
    alSO TOTALS Calculated anu printed out on SEPaRate page=
    TOTAL NOI PASSEU/PC,TTOTNP,1F4:0),AND GRAND TOTAL(SUMTNP,1F4.0)
    TOTAL PASSED /PC(TTOTP,1F4.0)ANU GHAAND TOTAL(SUMTP,IF4.0)
    TETAL ATTEMPTEU/PC(ITOIAT,1FG.V)AND GRAND TOTAL(SUMAT,1F4.0)
    TOTAL OF EACH PEKFF. LEVELIPC(LFKEQ.81I4) &RAND TOTAL(JFREQ,3I4)
    NUMBER OF STUUENTS REPOKTING (SN,IF4.0)
    average numger of pCS fassed per student (avg,1f5.2)
    DIMENSION KPC(27),JPC(27), NPERF(27),TTOTNP(27),TTOTP(27),TTOTAT(
    127).LFRRE(4, (7), KFREQ(4),'iFREO(4),NAME (3)
    CALCULATEU VARIAOLES SET TO ZEKO,BOTH ARRAYED AND UNARRAYED
    DATE PROGRAM DEING RUN READ.DATE PRINTED ON EACH STUDENT,S PAGE
    READ(60,20) MONTH,LUAY
    20 FORMAT(1AS,1X,1I2)
    SN=O.
    DC ? I=1,27
    TTOTNP(I) =0.0
    TTOTP(1)=0.0
    TTETAT(I)=0.0
    DO 2 J=1,4
    LFREQ(I,J)=0
2 CONTINUE
    DC 3 J=1,4
    JFKEQ(J)=0
3 CONTINUE
                variables for each student page set to zero
05 SUMTNP=SUMTP=SUMTAT=0.0
    TOTNP=0.0
    TOTp=0.0
    TOTAT =0.0
    DO 10 F=1,27
    KPC(I)=0
    JPC(I)=0
    NPERF(I)=0
10 CONTINUE
    DE 11 J=1,4
    KFREQ(J)=0
    1l cONTINUE
    STUDENT TitlE CARD READ
    30 READ (60,43) NSTU,(NAME(II),II=1,3)
```

```
FIN5.4B
09/20/70
```

C
$80 \mathrm{JPC}\left(N^{\prime} \mathrm{C}\right)=\mathrm{JPC}(N P C)+1$
TたTNP=TにTNP+1.
TTOTNP (NPC) $=1 T \backsim T N P\left(N P_{C}\right)+1$ 。
GO TO 100
FOR PASSES, DATE PC RETURNED BECOMES VALUE IN ARRAY
90 KPC $(N P C)=$ NDATE
$T O T P=T O T P+1$.
TTOTP (NPC) $=T \operatorname{TOTP}(N P C)+1$ 。
100 TOIAT=TOTAT+1.
TTOTAT (NPC) $=1$ TOTAT $(N P C)+1$.
TOTALS OF EACH LEVEL OF PERFORMANCE CALCULATED/STUDENT $1 P C$
$J=\operatorname{NPERF}(N P C)+1$
$\operatorname{KFHEQ}(J)=\operatorname{KFHL} Q(J)+1$
LFKEQ (J,NPC) =LFREQ (J,NPC) 1
JFKEN(J) = JFREG(J)+1

C

C
110 TITLE WRITTEN FOR EACH STUDENT,S PAGE
110 WRITE (Gl, 120) NSTU, (NAME (II), ID=1,3), MONTH,LDAY
120 FOKMAT (lHI, MSTUUENT FILE FOR 4,1 I $3,2 x, 3 A 8,5 x, 1 A 5,2 x, 1$ I $2,1 / 1)$
WRITE (61,130)

C
141 FOKMAT(1X, 1 NOT PASSEU*, $5714.1 F 4.0,1 / 1$
WRITE (61,142) (KPC(1), 1=1,271,TたTP
142 FOMMATIIX,* PASSEUN, $4 x, 2714,1 F 4.0,1 / 1$
NUMAER OF STUUENTS CALCULATED
C VN=SN+I. VARIAULE TO OE RECALCULATED FंOR NEXT STUDENT RESET TO ZERO
GOTO 5
200 STOP
a. VATE PHOGRAM RUN
B. STUDENT IITLE CAHO
C. PCS CARDS FEH THAT STUDENT
D. VUMMY PC CARD SNPC=99' EILE (B,C,D) UNTIL NO MORE STUDENTS
E. UUMMY STUDENT TITLE CAKO (NSTU=999)
ENO
6
C
c

c

Program: PC

The program was designed to provide a two-page printout for each PC listing the time taken by students for the PC, their evaluation of it on the teaching hierarchy, Information on each IA used including time, evaluation, whether it was used alone or with other IAs, number passing the PC using the IA and their performance level if they passed. The printout also included the average rating time, the turn around time in days, the frequency of each performance level and the number passing and not passing. The printout was to be used by the staff in monitoring program operation and in making curriculum changes.

Information was collected on the PC questionnaire completed by the generalist and rator whenever a PC was attempted.

A flow chart explaining the logic of the program, a listing of the program, and a sample of the printout are included.

09/20/70

PROGRAM PC

PROGHAM UESIGNED TO PROVIDE 2 PAGES OF PRINTOUT PER PC INPUT DATA INCLUOES

DATE PKOGKAM BEING RUN. MONTH(1A5), LDAY(1İZ)
PC NUMOER, NPC(1I2)
STUDENTS NUMDER, NSTU(İ3)
OATE PL PASSEU IN, KDATE (IJ4)
WHETHER PC WAS WKITTEN OUT OR TALKED OUT, NWRITE(l!l)
TIME TAKE FOR PC, TIMPC(IF3.0)
EVALUATION OF PC ON HIEKARCHY, LEVPC(I) (7II)
FIRST IA TYPE TAKE, IAAIII3)
TIME FOR FIKST IA. TIMIAA(IF3.O)
EVALUATION OF FIRST IA,LEVIAA(III)
SAME INFOKMATION FOR SECOND IA.IAB,TIMIABILEVIAB
SAME INFORMATION FOR THIRO IA,IAC,TIMIAC,LEVIAC
OATE PC RETUFIVEU 「O STUDENT, NUATE (II 4)
PC PASSEU/NOT PASSED. NHASS(III)
PERFORMANGE LEVEL OF PASSED PC,NPERF(III)
TIME TAKEN TO RATE PC,RTIME (IF2.0)
CaLCulated variables incluve
IF PC WRITTEN OUT, WTIME, TOTAL TIME TAKEN,SUMWT, NUMBER OF STUUENTS;WTN,LONGEST TIME REPORTED,BIGWT.SHORTEST TIME. SMLWT, aVERAGE TIME, AVGWT
IF PC TALKED UUT,TTIME,TOTAL TIME•SUMTT, NUMBER OF STUDENTS TTN•LONGEST TIME•BIGTT, SHORTEST TIME•SMLTT, AVEHAGE,AVGTT
IF PC NEITHEH WRITTEN OR TALKEO OUT, TIME, TOTAL TIME, SUMT, NUMUER OT STUUE,NTS,TN, LOIVOEST TIME, BIGT,SHOKTEST,SMLT, AVEKAGE TIME,AVGT
FOK EACH OF 3 REPERTEO JAS
TOTAL TIME, SUMIAT(K) WHEN K=IA TYPE
NUMEER OF STUUENTS, INIA(K), AVERAGE TIME,AVGIAT, EVALUATION
OF I $A, L F K E Q(K, L)$, FREQUENCY OF PASS/NOT PASS,MFREQ(K.M),
FREUUENCY OF EACH PERFORMANCE LEVEL,MMFREQ(K,MM), NUMBER USING I
[A ALONE, ONEIA(K), USING IT WITH ONE OTHER IA,TWOIA(K), USING IY
WITH 2 OTHEKIASITHRIA(K)
FOR TUKN AROUNU TLME IN DAYS - DIFFERENCE BETWEEN DATES, DATEDF, SUM OF UATES, SUMUTDF, AVERAGE,AVGDTDF. NUMBER OF CASES,TNDTDF.
LONGEST TIME•GIGDD. SHORTEST TIME,SMLOD
FOR FNEGUENCIY OF PASS/NOT PASS, NFREQ(NPASS)
FOK FREGUENCY OF PERFORMANCE LEVEL NNFREQ(NPERF)
FOR RATING TIME,RTIME. SUM OF TIMES,SUMRT, NUM甘EK REPORTING,RATN, AVERAGE REATING TIME, AVGRT
OIMENSION LEVHC(7), SUMEV(7,4), TIMIA(II),SUMIAT(II),TNIA(11), AVGIAT
1(II),LFREQ(1I,4),ONEIA(II),TWOIA(11),THRIA(II),MFREQ(II,3),MMFREQ
2(11,4), NFREQ(3), NNFNEQ(4)
C READ DATE PROGRAM KUN
READ (60.100) MONTH,LDAY
100 FOHMAT(1AS,IX,II2)
SET ALL VARIABLES TO zERO
10 TIMPC=0.
$W T$ I $M E=0$.
SUMWT $=0.0$
$W T N=0$,
$B I \cup W T=0$.
SML $W T=999^{\circ}$
AVGWT $=0.0$
FTN5.4̈B . 09/20/70

TTIME＝0．
SUMTTT $=0.0$
TTN＝O．
BIGTT＝0。
SMLTT $=999^{\circ}$
AVGTT $=0.0$
TIME＝0．
SUMT $=0.0$
$T^{N}=0$ 。
BIGT＝0．
SMLT $=999$ 。
AVGT $=0.0$
KOATE $=0$
NDATE $=0$
DATEDF $=0$ ．
SUMDTDF $=0$ 。
TNDTDF $=0$ 。
$B I G O D=0$ ．
SMLDO $=0$ ．
AVGOTDF $=0.0$
NPASS $=0$
NPERF $=0$
RTIME $=0.0$
SUMRT $=0.0$
RATN $=0.0$
AVGRT $=0.0$
DO $20 \quad I=1.7$
SUMEV SI，J）$^{2}=0.0$
CONTINUE
DO $30 \mathrm{~K}=1$ 111
$\operatorname{TIMIA}(K)=0$
SUMIAT $(K)=0$ ．
$T N I A(K)=0$ ．
AVGIAT $(K)=0.0$
ONEIA $(K)=0$ ．
TWOIA $(K)=0$ ．
THHIA $(K)=0$ ．
$0030 \mathrm{~L}=1.4$
LFREQ $K, L)=0$
30 CONTINUE
（C
©
c
\mathbb{T}

C

0

35
$\operatorname{MFREQ}(K, M)=0$
5 CONTINUE
$\begin{array}{lll}00 & 40 & K=1,11 \\ 00 & 40 & M M=1,4\end{array}$
MMFREQ $(K, F M M)=0$
40 CONTINUE

$$
0050 \quad N=1,3
$$

NFHEO $(N)=0$
50

60
C
c
$09 / 20 / 70$
READ $(60,110)$ NPC
ilo FORMAT (9x.1IC)
IF STATEMENT USING DUMMY PC CAHD (NPC=99) TO END PROGRAM
IF (NPC.EG.9y) GO TO gU0
120 READ (60,130) NSTU,KUATE,NWRITE TIMPC, (LEVPC(I), I=1,7),IAA,TIMIAA,
ILEVIAA, IAS, TIMIAE, LEVIAB, IAC, TIMIAC,LEVIAC, NDATE,NPASS,NPERF, RTIME

$12,3 x, 1 F 3, n, 111,1 x, 112,3 x, 1 F 3,0,111,10 x, 11^{4}, 2 x, 111,111,1 F 2,0$,
IF STATEMENT TO ENU PC FILE WLTH DUMMY STUUENT CARD (NSTU=999)
IF instu. EO. Y99) GO TO 500
c If statements to separate talked out and writien pc times
IF iNWRITE.EU.1) GO TO 150
IF (NWRITE.E(Q.2) GO TO 160
IF (NWRITE.EQ. 3) GO TO 110
c
150 WTIME =TIMPC
SUMWT $=$ SUMWT + WTIME
$W T N=W T N+1$.
IF (WTIME•GT•OIGWT) 甘IGWT =WTIME
IF (WTIME•LT.SMLWT.AND.WTIME.NE•O.0) SMLWT=WTIME
GO TO 200
160 TTIME=TIMPC
SUMTT $=$ SUMTT $T+T$ TIME
TTN=TTN+1.
C RaNGE CALCULATED GY GETTING Bíg and SMALL
IF (TTIME.GT. BIGT) BIGTT=TTIME
IF(TTIME.LT.SIMLTT.AND.TTIME.NE•O.0) SMLTT=ITIME
GO TO 200
170 TIME=TIMPC
SUM $\dot{T}=$ SUMT + TIME
$T N=T N+1$.
IF (TIME.GT.DIGT) BIGT=TIME
If (TIME•LT•SMLT•ANU•TIME•NE.0.0) SMLT=TIME
c
c
c
c
210 CONEINUE
FIRST IA TYPE PUT INTO IA ARRAY
if STatement to eliminate zero ias ano blanks
If (IAA.LT.l) GO to 270
$K=I A A$
c FIRST IA TIME PUT INTO ARRAY
$\operatorname{TIMIA}(K)=T I M I A A$
TOTAL TIME FOR IA CALCULATED
SUMIAT $(K)=\operatorname{SUMIAT}(K)+$ TIMIA (K)

- NUMBEK OF STUUENTS USING iA TYPE calculated
$\operatorname{TNIA}(K)=\operatorname{TNIA}(K)+1$.
FREQUENCY OF EACH EVLUATION RANKING CALCULATED
1 aUded to avoio probley with blanks or zeroes
L=LEVIAA 1
LFKEU(K,L)=LFREU(K,L) +1
FHEQUENCY FOR EACH PASSINOT PASS CALCULATED 1 ADUED TO AVOIO PROBLEM WITH BLANKS OR ŻEROES

```
FTN5.48
09/20/70
```


$M=N P A S S+1$

```
    MFHEQ(K,M)=MFREQ(K,M)+I
    FKEQUENCY OF EACH PEHFOHMANCE LEVEL CALCULATED
                            1 AUUED IO AVOIU PrOblem WITH BLaNKS OR ZEROES
    MM=NPERF+1
    MMFREU(K,MM) =MMFREO(K,MM) +1
    IF STATEMENTS TO SEPAKATE NUMUER OF IAS USED
    IF (IAB.EO.O) GO TO 220
    IF (IAB.GT.O.ANU.IAC.EQ.O) GO TO 230
    IF (IAC.GT.O) GO TO <35
    220 ONEIA(K)=ONESA(K)+1.
    GO TO 27O
    230 TWOIA(K)=TWO\A(K)+1.
    GO TO 237
    235 THKIA (K)=THRIA (K) +1.
                            IA TYPE(K) RESET TO ZERO SO SECOND \A CAN BE ADDED TO ARRAY
                SEE FIRST IA FOR EXPANATICN
```

 \(237 K=0\)
 \(K=I \bar{A} B\)
 TIMIA(K) =TIMIAB
 SUIAIAT \((K)=\) SUMIAT \((K)+T I M I A(K)\)
 TNIA \((K)=T N I A(K)+1\).
 LELEVIAB+1
 C LFKEU(K,L) $\quad \operatorname{LFREQ}(K, L)+1$
FREQUENCY FOK EACM PASS/NOT PASS CALCULATEO
$M=N P A S S+1$
$\operatorname{MFREQ}(K, M)=\operatorname{MFREU}(K, M)+1$
FHEQUENCY OF EACH PEHFOKMANCE LEVEL CALCULATEO
$M M=N P E R F+1$
$\operatorname{MMFREQ}(K \cdot: M M)=M M F K E Q(K, M M)+1$
C IF STATEMENT iO CALCULATE NUMBER of STUDENTS TAKING ONLY TWO IAS
IF (IAC) $240,240,250$
240 TWOIA $(K)=T W O L A(K)+1$.
GO TO 270
250 THKIA $(K)=$ THRIA $(K)+1$.
SAME INFORMAIJON CALCULATED FOR THIRD IA TYPE
$K=0$
$K=I A C$
$\operatorname{TIMIA}(K)=T I M I A C$
SUMIAT $(K)=\operatorname{SUMIAT}(K)+T \operatorname{IMIA}(K)$
TNIA $(K)=T N I A(K)+1$ 。
LELEVIAC+1
LFREQ(K,L) =LFREG(K,L) +1
C FREQUENCY FOK EACH PASS/NOT PASS CALCULATED
M=NPASS*1
$M F R_{E Q}(K, M)=M F K E G(K, M)+I$
C FKEQUENÇY OF EACH PERFOKMANCE LEVEL CALCULATED
$M M=N P E R F+1$
MMFREQ (K,MM) $=$ MMFKEQ $(K, M \mid H)+1$
THRIA $(K)=$ THRLA $(K)+1$.
C IF STATEMENTS TS BYPASS UATA WITH MISSING DATES
270 IF (NDATE) 300:300:200
280 IF (KDATE.GT.NUATE) GO TO 200
IF (KDATE) $300,300,290$
if statement to convert feb dates to jan scale

290 IF ¡KDATE.GT.200.ANU.KUATE.LT.229) KDATE=KDATE-69
IF (NDATE.GT.200•ANU.NDATE.LT.229) NDATE=NDATE-69
if statement to loinvent march vates to jan scale
IF (KDATE.GT. З'CO.AND.KDATE.LT.332) KUATE=KDATE-141

IF STATEMENT TO CUNVERT ALDRIL VATES TO JANUARY SCALE IF (KDATE.GT.400.ANU.KUATE.LT.431) KUATE=KDATE-210.
IF (NDATE.GT.4VO.AINU.NUATE.LT.431) NUATE=NDATE-210
IF STATEMENT TO CONVERT DATES IN MAY
IF (KDATE•GT•כOU•ANU.KUATE,LT.532) KUATE=KOATE-280
IF (NDATE.GT, לOU.ANU.NUATE.LT.532) NUATE=NUATE-280
IF STATEMENT TO CONVERT DATES IN JUNE
IF(KDATE.GT.00V.ANU.KUATE.LT.631) KUATE KDDATE-349
IF (NDATE.GT.60U.ANU.NUATE.LT.631) NUATE =NDATE=349
IF STATEMENT TO CONVERT DATES IN JULY
IF (KDATE.GT. TOU.ANU.KUATE.LT.732) KUATE=KDATE-419
IF (NDATE.GT. 7OU.ANU.NUATE,LT.732) NUATE=NUATE-419
IF STATEMENT TO CONVERT DATES IN AUGUST
IF (KDATE.GT. O OU.ANL.KUATE.LT.832) KDATE KDATE-488
IF (NDATE.GT. 甘UU.ANU.NUATE.LT.B BC) NUATE=NOATE-488
IF STATEMENT TO CONVERT DATES IN SEPTEMBER

IF (NDATE.GT. YOU.ANU.NUATE.LT.931) NUATE=NDATE-557
IF STATEMENT TO CONVERT DATES IN OCTOBERER
IF (KDATE.GT. 1000•ANU.KUATE.LT. 1032) KDATE=KDATE-62T
IF (NDATE.GT. 10UO. ANU. NUATE.LT. 1032) NDATE=NDATE-627
If Statement to convert dates in navember
IF (NDATE.GT.1100•ANU.NDATE.LT.1!31) NDATE=NDATE-696
IF (KDATE.GT.AIUO.ANU.KUATE.LT.II31) KDATE=KDAPE-696
IF(KDATE.GT.12UO.ANU.KUATE.LT.1232) KDATE=KUATE-766
IF (NDATE.GT. $1200 \cdot A N U$. NUA TE.LT.1232) NOATE =NDATE-766
IF JAN UATES ARE TO FOLLOW DECEMBER, 1231=465, SO WOULD ADD 365 To JAN date to continite year, may want to keep SEPAKATE PKOUHAM OF DATES FOR FALL OR SPRING SEMESTER SINCE beth Share Jandaky
DIFFERENCES. TOTALLS ANU NUMBERS OF CASES CALCULATED FOR AVERAGING DATEUF =NUATE-KUATE SUMDTUF $=$ SUMD TUF \rightarrow OATEUF TNUTDF = TNOTUH +1 . IF (DATEDF.GT•OlGUD) BIGUU=DATEDF IF (DATEDF•LT•DMLUD) SMLUD=DATEUF
C FREQUENCY OF NOT PASS/ PASS CALCULATED
C 1 added 10 aVOIo probley with blanks or żeroes
$300 \mathrm{~N}=$ NPASS +1
$\operatorname{NFREQ}(N)=\operatorname{NFREQ}(N)+1$
C FREQUENCIES OF LEVEGLS OF PERFORMANCE CALGULATED $N N=N P_{E R F}+1$
NNFREG(NN) $=\operatorname{NNFREQ}$ (NN) +1
C SUM and number of hating time calculated
SUMIRT $=$ SUINHT T RTI LME
RATN=HATN+1
C READ ANOTHER STUUENT,S CARD
6OTO 120
C
500 AVGTTESUMTT/TTN
AVGWT $=$ SUMINT/WTN
AVGT=SUMT/TN
AVGRT $=$ SUMRT/KATNDO $510 \mathrm{~K}=1,11$
AVGIAT(K) =SUMIAT(K)/TNIA(K)aVGotof = Sumdtuf /TnUTUF
IF (SMLWT•E(3.y99.) SMLWT $=0.0$
IF (SMLIT•EO.999.) SMLTT=0.0.C TITLE FOK PC PAGE WRITTENWRITE (GI: 20) NPC, MONTHDLDAY
510
510
TIME FOR PC WRITEN OUTWRITE(G1:530) AVGWT,WTN,SMLWT,BIGWT,AVGTT,TTN,SMLTT,BIGTT,AVGT,TN,1 SMLTOBIGT
530 FORMAT(5X, ©AVEHAGE TIME TAKEN FOR THE PC IN MINUTES\&, /1,10X.1F10. 2
1, \#MIN. WHEN PC WKITTEN NUMBEH=\#,1F4.0.\# RANGE=\#1F4.0.\# TO$2,1 F^{4} \cdot 0,11,10 \times 1 F 10.2, \# M 1 N$. WHEN PC TALKEU OUT NANGEER=\#,1F4.0,4 cs NUMBER=*,1F4.0, KANGE=*,1F4.0, TO $\# 1 F 4,0,1 / 1)$
C . WRITE OUT PC EVALUATIONWRITE(61:540)
540 FOKMATIX, \#EVALUATION OF PCB, $, 5 x, * 1=P R O F I C I E N C Y, ~ /, 5 x, * 2=K N O W L E D G$
IE OF THE PROCESS", /,5X.*3=ABILITY TO DIAGNOSE",/,5X, "4=KNOWLEDGE2OF OIFFERENT MATERLALS AND METHODS $\%, 01,5 x, \% 5=A B I L I T Y$ TO CHOSE APPRO3PRIATE MATERIALS ANO NETHOOS $\#, 1,5 x, \# 6=N O, P C$ INAPPROPKIATE\#, $/, 5 X, \% 7$DC $54 \mathrm{~g} \quad \mathrm{I}=1,7$
WRITE (61,545) I, (SUMEV (I, J), J=2,4)

549 COMTINUE5 AVG.TIME NUMBER OF IAS USED IA AS HELP IN PASSING PC6 PC NOT PASS PC PASS PERFOKMANCE LEVEL*:/.6X,*STUOENTS*,21X,7 PONE TWO THKEE GOOD SOME NOTA.34X.MMIN. AUEQ. OUTST.8*1/11
D0 $559 \mathrm{k}=1,11$
WRITE (61,555) K,TNIA (K), AVGIAT (K), ONEIA (K), TWOIA (K), THRIA (K), (LFRE

559 CONTINUE
C WRITE OUT AVERAGE NETURN TIME
WRITE (61.560) INDTUF.AVGUTDF.SMLDD.BIGDU
560 FOKMAT(IX,/,1X. *AVERAGE RFTURN TIME IN UAYS, FOR*, 1 F4.0, "STUDENTS

2, /1/1
WRITE OUT NUMGEK OF STUDENTS PASSING/NOT PASSING
WRITE(61,570) (NFREQ(N),N=2,3)

```
FTN5.4B
                                    09/20/70
```

```
    570 FOKMAT (1X,#NUMBËR OF STUUENTS NOT PASSING=#,1I3.//.5X,#NUMBER OF S
```

 570 FOKMAT (1X,#NUMBËR OF STUUENTS NOT PASSING=#,1I3.//.5X,#NUMBER OF S
 ITUUENTS PASSLNG=%, II 3,////)
 ITUUENTS PASSLNG=%, II 3,////)
 C WHITE OUT LEVELS of PERFORMANCE
 C WHITE OUT LEVELS of PERFORMANCE
 WRITE(61,580) (NNFKEU(NIV),NN=2,4)
 WRITE(61,580) (NNFKEU(NIV),NN=2,4)
 580 FOKMAT IIX, #NUMOEK OF STUUENTS WITH MINIMAL PERFORMANCES *,II 3./.
 580 FOKMAT IIX, #NUMOEK OF STUUENTS WITH MINIMAL PERFORMANCES *,II 3./.
 123x,#ADEGUATE PENFÖKMANCES *,II3,/,23x,#OUTSTANDING PEKFGRMANCE
 123x,#ADEGUATE PENFÖKMANCES *,II3,/,23x,#OUTSTANDING PEKFGRMANCE
 2s*,1I3,///1
 2s*,1I3,///1
 WRITE IUT AVERAGE RATING TIME
 WRITE IUT AVERAGE RATING TIME
 WRITE(61,590) AVURI:RATN
 WRITE(61,590) AVURI:RATN
 590 FOHMATIIX,# AVEHAGE HATING TIME IN MINUTES ©,1F6.2,* AS REPORTED
 590 FOHMATIIX,# AVEHAGE HATING TIME IN MINUTES ©,1F6.2,* AS REPORTED
 1 8Y &,1F4.0.# RATEKS#)
 1 8Y &,1F4.0.# RATEKS#)
 VARIABLES RESE゙T TO ZERO BEFORE NEW PC TITLE CARD READ
 VARIABLES RESE゙T TO ZERO BEFORE NEW PC TITLE CARD READ
 GO TO 10
 GO TO 10
 900 STOP
 900 STOP
 DATE DECK AS FOLLOWS
 DATE DECK AS FOLLOWS
 A SINGLE CARU WITH MONTH ANU DAY (FORMAT lOO)
 A SINGLE CARU WITH MONTH ANU DAY (FORMAT lOO)
 B PC TITLE CARD (F GHMAT 11O)
 B PC TITLE CARD (F GHMAT 11O)
 C PC QUESTIONNALHE CARDS (FORMAT 120)
 C PC QUESTIONNALHE CARDS (FORMAT 120)
 O DUMMY STUUENT CARD (NSTU=999) TO CGMPLETE PC FILE
 O DUMMY STUUENT CARD (NSTU=999) TO CGMPLETE PC FILE
 E OTHER PC FILES, SEQUENCE BOCDD
 E OTHER PC FILES, SEQUENCE BOCDD
 F DUMMY PC TJILE CARD (NPC=99) TO END PROGRAM
 F DUMMY PC TJILE CARD (NPC=99) TO END PROGRAM
 END
    ```
        END
```


Program: RATER

The progrom was designed to provide a list with the raters' names down the side and the PC numbers across the top. The number of each $P C$ rated and the total number per rater were listed. The program was designed to be used by the raters to check their records and compare themselves to other raters in the program and by the staff to monitor the ectivities of the raters. Information was collected from the PC questionnaire completed by the genoralist and his rater whenever a PC was attempted.

A flow chart explaining the logic of the program, a listing of the program, and a sample page of printout are included.

RATES

PROGRAM KATER

 DIMENSION TOT（27）date program being run read ano printeo ouí
REAO（60，20）MONTH，LUAY

WRITE（61，30）MONTH，LDAY
30 FORMATIX，ARATERS LIST FOR \＃，1AS，1X，II2，／／）
COLUMN HEAUINGS PRINTED OUT
WRITE（61：40）

2 Tot．か／ノ
C 50 TOTST $=0.0$

DO $60 \quad \mathrm{I}=1,27$
$T O T(I)=0.0$
60 CONTINUE
title caru with raters number and name read
READ $(60,70)$ NKATE，NAMER
70 F OKMAT（113．1人，1A8）
IF STATEMENT TO END PHOGRAM USING DUMMY RATER NUMBER（NRATE＝S9
IF（NRATE．EO．999）GO TO 130
pC NUAGER FROM PC GUESTIONNAIRE CARD READ
80 READ $(60,90)$ NPC
90 FOKMAT（9x，1I2）
IF STATEMENT USING DUMMY PC NUMBER（NPC＝99）TO END RATEH，S FILE
IF（NPC．EQ．99）GO TO 100
TOTAL IPC FOK THE RATER CALCULATEO
$T O T(N P C)=T O T(N P C)+1$ 。
grand total for the rater calculated
TOTST＝TOTST＋1．
new pCu card read
GO TO 80
IF NO MORE PCU C CARDS（NPC＝99），RATERS NUMBER，NAME，AND＋BOTH TOTA PRINTED OUT
100 WRITE（ 61,110 ）NRATE，NAMER，（TOT（I），I $=1,27$ ），TOTST
110 FORMAT（1X．1I3，1X．1AO，C7F4．0，1X．1F4．0，1／1
VARIADLES KESET TO ZEKO AND NEW RATERS CARO READ
GO TO 50
－IF NO MORE RATER TITLE CARDS（NRATE＝99），PROGRAM COMPLETED
130 STOP
data deck as follows－
a．DATE PROGKAIA OEING RUN（ 20 FORMAT）
B•RATERS TITLE CAKU（70 FORYAT）
C．PCU CARO（BO FOKMAT）
C D．ADDITIONAL PCQ FILED BEHIND RATER UNTIL DUMIYY PC（99）
C E．ADDITIONAL RATERS FILES（B，C，D）UNTIL DUMIMY RATER（99 END

 N $0000 \rightarrow 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad \rightarrow$

 $\therefore 000 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 1 \quad 0 \quad 0 \quad 0 \quad 0 \quad N$

 $\begin{array}{lllllllllllllll}\ddagger & 0 & 0 & 0 & 0 & \rightarrow & 0 & \rightarrow & 0 & \rightarrow & \sim & \rightarrow & \rightarrow & \rightarrow & 0 \\ 円 & - & 0 & 0 & 0 & \sim & 0 & \rightarrow & 0 & 0 & \rightarrow & 0 & 0 & 0 & 0\end{array}$

 $\begin{array}{lllllllllllllll}\circ & - & 0 & \rightarrow & 0 & 0 & 0 & \rightarrow & 0 & \rightarrow & \rightarrow & N & \rightarrow & \rightarrow & \rightarrow \\ 0 & 0 & - & m & 0 & \rightarrow & 0 & \rightarrow & + & \sim & 0 & 0 & 0 & 0 & 0\end{array}$ ∞ in 0 o $0 \rightarrow 0 \rightarrow 0 \rightarrow 0 \rightarrow 0$

 (n) paters list for may 19 - \rightarrow m \qquad
\square

Program: SPECIAL

The program was designed to provide one page of printout per specialist listing each PC attempted, whether the PC was passed or not passed and the performance level. The printout was designed to be used by the specialist to check his records against those of the program and by the staff for counseling purposes.

Information was collected from the PC questionnaire completed by each specialist and his rater whenever a PC was attempted.

A flow chart explaining the logic of the program, a listing of the program, and a sample page of printout are included.

SPECIIAL

PROGRAM SPECIAL
PKOGHAM OESIGNEU TO PROVIDE SINGLE PAGE OF INFO PER SPECIALIST
C DATA FOR TOTAL PHOGKAM INCLUDES DATE PROGRAM RUN (MONTH,1AS,DAY,IIZ)
OATA FOR STUUENT,S FILE INCLUOES.
STUDENT NIMMBER(NSTU,II3)
STUDENT NAME (NAME,3AE)
PC NUMBER (NPC,IIZ)
IA NUMBER (NIA,IIC)
PCS NOT PASSED, NPASS =1 (JPC,lI3)
PCS PASSED,NPASS=2, (XPC,1I3)
LEVEL OF PERFORMANCE OF EACH PC PASSED (NPERF,III)
DIMENSION NAME(3)
READ(60,2O) MONTH,LDAY
20 FOKMAT,1AS,1X,1I2)
vARIABLES USLO PER STUDENT SET TO ZERO
30 NSTU=0
OO 35 II =1,3
NAME (II) =84
35 CONTINUE
studEnt Title card read
40 REAO(60,50) NSTU, (NAME (I I),II=1,3)
50 FOHMAT(1I3,1X,2AB,1H4)
IF STATEMENT 10 KEAU DUIMMY STUDENT NUMBER (999) AT ENO OF DATA DECK
IF INSTU.EO.Y99) GO TO 200
WRITE (6I:45) NSTU, (NAME (II).II=1,3),MONTH,LDAY
45 FOKMAT(1H1,*STUDENT FILE FER ,1I3,2X,3A8,5X,IA5,2X,112,///1)
WRITE (61,46)
4 6 ~ F O N M A T ~ (1 X , S ~
PC NUMBER
IA NUMBER
DATE
INOT PASSED DATE PASSED PERF LEVEL`,////
VARIABLES USED PER PC CARD RESET TO ZERO
55 NPC=0
NIA=0 \$ NDATE=0 \$ NPASS=0
NPERF=0 \$ NPC=0 NPC=0
C INDIVIOUAL CAHD PER PC FILEO BEHIND STUDENTS TITLE C̄ARD
READ(60,60) NPC,NIA,NUATEE,NPASS,NPERF
60 FOKMAT(9X,2IL,55X,1I4,2X,2Il)
IF STATEMENT TO FIND DUMMY IA CARO (99) AT END OF STUUENTS FILE
IF (NIA.EU.9Y) GO IO 30
IF STATEMENTS TO SEPARATE PASSES, NOT} PASSES
IF (NDASS.EQ.1) JPC=NUATE
IF (NPASS.EU.2) KPC=NDATE
WRITE(61,70) NPC,NIA,JPC,KPC,NPERF
70 FORMAT(1X,5(17X,1I3))
GO TO 55
200 STOP
END

```

\section*{NNON}

PERF LEVEL'


\(\stackrel{9}{0}\)
\(00.0^{\circ}\)
FOR 40 KERVIAN GEORGANN
PC NUMBER


27
27
27
7

\section*{Program: SPECIA}

The progran was designed to provide a list with the specialists' names down the side and the instructional alternative types across the top. The number of each instructional alternative type plus the total per specialist and per IA type was included. The printout was to be used by specjalists for checking their records and comparing themselves to other specialists in the program and by the staff for monitoring the specialists' ectivities and the preparation of instructional alternatives.

Information was collected from the PC questionnaire completed by the specialist and his rater whenever the \(P C\) of preparing an instructional alternative was attempted.

A flow chart explaining the logic of the program, a listing of the program and a sample page of printout are included.

```

FTN5.4B
09/20/70
PROGRAM SPECIA
PROGRAIA UESIGINED TO LIST
TOTALSS BOTH/IA AND GRAND TOTAL FOR RATER CALCULATEU AND PRINTEO
PROGRAM DESIGNEU FOR II IA TYPESSUNLIMITED RATERS. CHANGE IN
IA NUMBEK OINLY FOHMATING PROBLEM
INPUT VARIABLES INCLUDE.
DATE PROGRAM RUIN, MONTH(1A5), LOAY (1I2)
HATERS NUMDER, INRATE,113)
HATERS NAME,NAMER(1AB)
IA NUMBER,NIA(1I2)
CALCULATEU VARIABLES INCLUDE
TOTAL PER IA TYPE FOH EACH RATER, TOT(NIA)
GRANU TOTAL FOR EACH HATER, TOTST
TOTAL PER IA FOR ENTIRE GROUP, TOTIAINIAI
DIMENSION TOT(11).TOTIA(11)
DATE PROGRAM HEING HUN READ AND PRINTEU QUF
READ(60,2O) MONTH,LDAY
20 FORMAT (1AS,1X,1I2)
WRITE(61,30) MONTHILOAY
3O FORMAT IIX,\# LIST OF IAS PREPARED BY EACH RATER BY IA NUMBER FOR \#
11A5,1X,1I2,//1
COLUMN HEADINGS PRINTED OUT
WRITE(61:40)
4O FOHMAT ILX,NNC. NAME
111 TOT.*://)
TOTALS FOR ENTIRE GROUP SET TO ZERO
DC 45 I=1.11
TOTIA(I)=0.0
45 CONTINUE
50 TOTST=0.0
DO 60 I=1,11
TOT(I)=0.0
60 CONTINUE
TITLE CARU WITH RATERS NUMBER ANU NAME READ
READ(60,70) NRATE,NAMER
70 FOMMAT (1L3,1X,1AB)
IF STATEMENT TO END PKOGRAM USING DUMMY RATER NUMBER (INRATE=999)
IF(NRATE.EQ.Y99) GO TO l30
IA NUMHER FROM PC QUESTIONNAIRE CARD READ
8O READ(60,YO) NIA
90 FOKMAT(1] I,ILE)
IF(NIA.EW.99) GO TO 100
TOTAL IIA FOR THE RATER CALCULATED
TOT(NIA)=TOT(NIA)\&1.
GRAND TOTAL FOR THE RATER CALCULATED
T^TST=TこTST+1.
TOTALS PER IA FOR ENTIRE GROUP CALCULATED
TOTIA(NIA)=TOTIA(NIA)+1.
NEW PCQ CARD READ
GO TO 8O MORE PCQ CARUS (NIA=99), RATERS NUMBER,NAME, AND+BOTH TOTALS
PRINTED OUT
j00 WRIT:PRINTE1,110)NRATE,NAMER,(TOT゙(I),I=1,11),TOTST

```

\section*{FTN5.4B \\ \(09 / 20 / 70\)}

C VARIAULES KESET TO ZEKO AND NEW RATERS CARD READ

\section*{C}

130 WRITE (61;140) (TOTIA(I) I \(=1,11 j\)
140 FOKMATIIX, \#TOTAL PEKIA IIIF4.0)
STOP
DATA DECK AS FOLLOWS-
A DATE PROGRAM BEING RUN ( 20 FORMAT)
B RATERS TITLE CAKD ( 10 FERMAT)
C PCG CARD ( \(\triangle O\) FOKMAT)
D ADDITLONAL PCQ FILED BEHIND RATER UNTIL OUMMY CARD (99) REACHED E ADOITIONAL RATEK SETS(B,C,D) UNTIL DUMMY RATER CARD (999) REACHED END


\section*{Program: SPECPC}

The program was designed to provide a list with the specialists' names down the side and the PC numbers across the top. The number of instructional alternatives for each PC, plus the total per specialist and per PC was included. The printout was to be used by specialists for checking their records and comparing themselves to other specialists in the program and by the staff for monitoring the specialists and the preparation of instructional alternatives. Programs SPECIA and SPECPC were designed to be used to provide two different views of the same information.

Information was collected from the PC questionnaire completed by the specialist and his rater whenever the PC of preparing an instructional alternative was attempted.

A listing of the program and a sample page of printout are included. For a flow chart explaining the logic of the program please see the flow chart for SPECIA.

\section*{PROgRAM SPECPC}
program deshgned io list number of pcs phepared by each rater
            PKOGRAM FOH 27 PCS, UNLIMITED RATERS. CHANGE IN PC NUMBER
            only formating piroulem
            input variables incluoe
                datt phogram kuiv, month (iA5) , LDAÝ(1iz)
                RATEKS NUMBEE, NOATE(1I3)
                    RATEKS NAME, NAMER. (1A8)
                PC NUMBEH,NPC (112)
                    IA NUMEER,NIA (1I2)
        Calculateu vakiables include
                TOTAL PER HC FOK EACH KATER; TOT (NPCi)
            - GKAND TETAL FER EACH RATER' TOTST
                TOTAL PER PC FOK ENTIRE GROUP, TOTPCINPGI
    DIMENSION TOT(27),TOTPC(27)
        date frogmam being run read and printed out̄
        READ \((60,20)\) MONTH,LUAY
    20 FORMAT(1AS,1^,112)
    WRITE (61,3U) MONTH.LUAY
    30 FORMAT (IX, LIST OF IAS PREPARED GY EACH RATER BY PC NUMBER FOR G.
    11 A5, \(1 \times 1\) 12, //)
        COLUMN HEAUINGS PRINTED OUT
        WRITE (61:40)
    40 FOHMAT (1X,ANO. NAME \(\quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10\)
    \(\begin{array}{lllllllllllllllllllll}111 \\ T_{0} & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 & 24 & 25 & 26 & 27\end{array}\)
        TOTALS FOR ENTIRE GK̇OUP SET TO ZERO
    DO \(45 \mathrm{I}=1,27\)
    TOTPC(I) \(=0.0\)
45 CONTINUE
    calculated variables set to zero bef ore each raters data read
    50 TOTST \(=0.0\)
        DO \(60 I=1,27\)
        TOT (I) = 0 。
    60 CONTINUE
            TITLE CARU WITH RATERS NUMBER aND NAME READ
        READ ( 60,70\()\) NKATE, NAMEK
        70. FOKMAT(1 [3,1入,1AU)
            IF STATEMENT TO END PKOGRAM USING DUMMY RATER NUMBER (NRATE=999)
        IF (NRATE.EO.У9ソ) GO TO 1 Jin
            PC NUMISER PROM PC UUESTIONNAIRE CARD READ
        BO READ \((60,90)\) NPC,NIA
        90 FORMAT (9x,2Iट)
            IF STATEMENT USING DUMMY [A NUMBER (NIA=99) TO END RATERS FILE
        IF (NIA.EW.99) GO TO 100
    TOTAL /PC FOR the rater calculated
        TOT \(\left(N^{\prime} C\right)=T O T(N P C)+1\).
            gHaND TOTTAL FOR THE RATER CALCULATED
        TOTST=TOIST+1。
            TOTAL PEK PC FOH ENTIRE GROUP CALCULATED
        TOTPC \((N P C)=T O T P C(N P C)+1\)
            NEW PCG CARO KEAD
        GO TO 80
        IF NO MORE PCQ CARUS (NPC=99), RATERS NUMBER,NAME, ANU+BOTH TOTALS

\section*{FTN5. 4 B}
\(09 / 20 / 70\)
C PRINTED OUT
100 WRITE (61:110)NFATE,NAMER, (TOT(1), \(1=1,27)\),TOTST
110 FOMMAT(1X.113,1X,1AX,27F4.0,1X,1F4.0.11)
c VAHIABlES heset to zefo and new raters card read
c IF NO MORE RATER TITLE CARUS (NRATE=999) TOTALS WRITTEN OUT 130 WRITE(61,140) (TOTPC(I),1=1,27)
140 FORMATIX, \#TOIAL PEK PC\#,27F4.0) STOP
data veck as follows.
a date phogham delng ruiv (20 format)
B RATERS TITLE CAKD ( 70 FORMAT)
C PCO CAHD ( 80 FOKMAT)
D ADUITIONAL PCQ IILEO BEHIND RATER UNTIL DUMMY CARD (99) REACHED E ADUITIONAL RATERS SETS (B,COU) UNTIL DUMMY RATER (999) REACHED END








 \(\therefore \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0\) \(\therefore 0 \rightarrow 000000000000000000\) \(\Rightarrow \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0\) \(\therefore 00000000000000000000\)
 \(\pm 000000000000000000000\) m \(0<00000000000000000000\)


\section*{Program: IASPEC}

The program was designed to print out the same information available for the generalists \(P C\) in the program \(P C\) for the specialist PC of preparing instructional alternatives. For each instructional alternative type prepared, the two-page printout included: time taken for the PC, rating on the teaching hierarchy, information on the TAs used including time, evaluation, whether used alone or with others, passed or not passed, and performance level. Printout also included rating time, and turn around time, number of pass and not pass, and frequency of each performance level. The printout was to be used by the staff to help in monitoring program operation and in making curriculum changes.

The information was collected from the PC questionnaire completed by the specialist and his rater each time the PC of preparing an instructional alternative was attempted.

A listing of the program and a sample printout are included. For a flow chart explaining the logic of the program please see the flow chart for PC.
```

PROGRAM IASPEC
PROURAM DESIGNEU TO PROVIDE ? PAGES OF PRINTOUT PER IA TYPE
INPUT DATA INCLUDES
DATE PKOGHAM GEING RUN, MONTH(1A5). LDAY(IİZi
IA NUMBER, NIA(lI<)
STUDENTS NUMDER, NSTU(1I3)
-DATE PC PASSEU IN. KDATE (114)
TIME TAKE FOK PC, TIMPC(1F3.0)
EVALUATION OF PC ON HIEKARCHY, LEVPC(I) (iII)
FIKST 1A TYPE TAKE, IAA(II3)
TIME FOH FIRST IA. TIMIAA(IF3.O)
EVALUATION OF FIHST IA,LEVIAA(III)
SAME INFOKMATION FOR SECOND IA,IAB,TIMIAB,LEVIAB
SAME INFOKMATION FOR THIHD IA,IAC,TIMIAC,LEVIAC
- date PC REturived TO studENt, NoATE(1I4)
PC PASSEU/NOT PASSED. NPASS(lIl)
PELRFOKMANCE LEVEL OF DASSED PC,NPERF(III)
TIME TAKEN TO RATE PC.RTIME(IF2.0)
CALCULAIEU VAKIAdLES INCLUNE
TOTAL TINE TAKEN,SUMTINUMOER OF STUOENTS REPORTING!TN,LONGEST
IIME HEPORTEU,BIGT,SHORIEST TIME,SMLT,AVERAGE TIME,AVGT
FOR EALH OF 3 REPORTED IAS
TOTAL TIME, SUMIAT(K) WHEN K=IA TYPE
NUMBER OF STUULNTS. INIA(K), AVERAGE TIME,AVGIAT, EVALUGTION
OF IA,LFKEQ(K,L),FREUUENCY OF PASS/NOT PASS,MFREO(K,M),
FRELGUENCY OF EACH PEKF GRMANCE LEVEL,MMFREQ(KOMM), NUMRER USING I
IA ALONE,ONEIA(K), USING IT WITH ONE OTHER IMPTWOIA(KI, USING IT
WITH < STHEN LASITHRIA(K)
FOR TUKN AROUND TIME IN UAYS - DIFFERENCE BETWEEN UATES,DATEDF:SUM
OF UATES,SUMUTOF, AVERAGE,AVGOTDF, NUMBER OF CASES,TNDTDF,
LONGEST TIME,GIGDO, SHORTEST TIME,SMLDD
FOK FREQUENCIY OF PASSINOT PASSONFREG(NPASS)
FOR FKEGUENCY Or PERFORMANCE LEVEL.NNFREQ(NPERF)
FOK RATING TIME,RTIME, SUM OF TIMES,SUMRT, NUMBER REPORTING,RATN,
AVEHAGE HEATING TIME,AVGKT
DIMENSION LEVHC(7),SUMEV(7,4),TIMIA(11),SUMIAT(II),TNIA(II),AVGIAT
1(II),LFREQ(II,4),ONEIA(11),TWOIA(I1),THRIA(11),MFREQ(II,3),MMFREQ
2(11,4),NFHEQ(3),NNFREU(4)
READ UATE PROGKAM HUN
READ (60,100) MONTH,LUAY
100 FOKMAT(1AS,1X,I I2,
SET ALL VARIAOLES TO ZERO
10 TIMPC=0.
TIME=U.
SUM T=0.0
TN=0.
BIGT=0.
SMLT=999.
AVGT=0.0
KDATE=0
NDATE=0
DATEDF=0.
SUMDTDF=0.
TNUTDF=0.
BIGDD=0.
SMLDD=0.

```
```

 AVGDTDF=0.0
 NPASS=0
 NPERF=0
 RT\ME=0.0
 SUMRT=0.0
 RATN=0.0
 AVGRT=0.O
 DO 20 I=1.7
 DO 20 J=1.4
 SUMEV (I'J)=0.0
 2O CONTINUE
 DO 30 K=1.11
 TIMIA(K)=0.
 SUMIAT (K)=0.
 TNIA(K)=0.
 AVGIAT (K)=0.0
 ONEIA(K)=0.
 TWOIA(K)=0.
 THRIA(K)=0.
 DO 30 L=1.4
 LFREQ(K,L)=0
 30
 DO 35 K=1.11
 DO 35 M=1,3
 MFHEQ(K,M) =0
 35
 CNNTINUE
 DO 40 K=1,11
 DC 40 MM=1,4
 MMFREQ(K,MM)=0
 40 CONTINUE
 DO 50 N=1.3
 NFHEQ (N)=0
 5 0 ~ C O N G I N U E ~
 DO 60 NN=1.4
 NNFREG (NN) =0
 60 CONTINUE
 C
READ Ia TITLE Caro at deGINNING ©F FIlE
READ (60.110) NIA
110 FOHMAT(11x,1I2)
C IF STATEMENT USING DUMMY IA CARD (NIA=99) TO ENO PROGRAM
IF (N{A.E(J.99) GO TO gU0
120 REAU(60,130), NSTU,KDATE,TIMPC, (LEVPC(I),I=1,7),IAA,TIMIAA,LEVIAA,
IIAG,TIMIAB,LEVIAB, IAC,TIMIAC,LEVIAC,NDATE,NPASS,NPERF,RTIME
I30 F CHMAT 1113,1x,1 I 3,7x,1F3,0,2x,7I1,3x,1I2,3x,1F3,0,1I1,1x,1I2,3x,1F
13.0,1 I1,1x,11 2,3x,1F3.0,1 I 1,11x,1 I 3, 2x,1 I 1,1 I 1,1F2,0)
IF SIATEMENT TO ENU PC FILE WITH DUMMY STUDENT CARD (NSTU=999)
IF (NSTU.EQ.YG9) GO TO SUO
C SUM ANO NUMBER OF CGASES CALCULATED FOR AVERAGING IA TIME
TIME=TIMPC
SUIMT=SUMT +TIME
TN=TN\&1.
C RANGE CALCULATEU BY GETTING BIG AND SMALL
IF (TIME.GT.OIGT) BIGT=TIME
IF (TIME.LT.SMLT.ANO.TIME.NE.O.0) SMLT=TIME
GO TO 200
C DO LOOP TO SUM ANSWEHS ON }7\mathrm{ EVALUATION QUESTIONS

```
    200 DO \(210 \quad I=1,7\)
    C 1 AUDED TO AVOIO PROBLEM WITH BLANKS OR ZEROES
        \(J=L E \vee P C(I)+1\)
        \(\operatorname{SUMEV}(I ; J)=\operatorname{SUMEV}(I ; J)+1\) 。
    210 COITINUE
C FIHST IA TYPE PUT INTO IA ARRAY
    IF STATEMENT TO ELIMINATE ZERO AND BLANK IAS
    IF (IAA.LT.I) GO TO 270
    \(K=I A A\)
C FIHST IA TIME PUT INTO ARRAY
    \(\operatorname{TIMIA}(K)=T I M I A A\)
C TOTAL TIME FOR IA CALCULATED
    SUMIAT \((K)=\) SUMIAT \((K)+\operatorname{TMIA}(K)\)
C NUMBEH OF STUUENTS USING IA TYPE CALCULATED
    TNIA \((K)=T N I A(K)+1\).
    FREQUENCY OF EACHi EVLUATION RANKING CALCULATED
        1 AUDED TO AVOIU PROBLEM WITH BLANKS OR ZEROES
    \(L=L E V[A A+1\)
    \(\operatorname{LFREQ}(K, L)=\operatorname{LFREQ}(K, L)+1\)
C FKEQUENCY FOK EACH PASS/NOT PASS CALCULATED
            1 avdeo TO aVOID PROBLEM WITH BLaNKS OR ŻEROES
    \(M=N P A S S+1\)
    \(M F K E Q(K, M)=M F K E Q(K, M)+1\)
    Frequency of each performance level calculated
                            1 AUUED 10 AVOIO PROBLEY WITH BLANKS OR ZEROES
    \(M M=N P E R F+1\)
    \(\operatorname{MMFREQ}(K, M M)=\) MMF REQ \((K, M M)+1\)
C IF STATEMENTS TO SEPAHATE NUMBER OF IAS USED
    IF (IAB.EQ. \()\) ) GO TO 220
IF (IAR•GT. O.ANU.IAC•EQ.O) GO TO 230
    IF (IAC.GT.O) GO TO 235
    220 ONEIA \((K)=O N E I A(K)+1\).
    GO TO 270
    230 TWOIA \((K)=\) TWOlA \((K)+1\) 。
        GO TU 237
C 235 THRIA \((K)=T H R I A(K)+1\). IA TYPE (K) RESET TO ZERO SO SECOND IA CAN BE ADDED TO ARRAY
    C SEE FIRST IA FOH EXPANATION
    \(237 k=0\)
    \(K=I \dot{A} B\)
    TIMIA \((K)=T I M I A B\)
    SUMIAT \((K)=\operatorname{SUMIAT}(K)+T I M J A(K)\)
    TNIA \((K)=T N I A(K)+1\).
    \(L=L E V I A B+1\)
    \(L=\operatorname{LEVIAB}\)
\(\operatorname{FHE}(K, L)=L F H E U(K, L)+1\)
        FHEQUENCY FOKR EACH PASS/NOT PASS CALCULATED
    \(M=I N P A S S+1\)
    \(\operatorname{MFHEQ}(K, M)=M F K E Q(K, M)+1\)
    C MFEQUENCY OF EACH PEHFOKMANCE LEVEL CALCULATED
    \(M M=N P E R F+1\)
    M \(M F\) REQ \((K, M M)=M M F K E Q(K, M M)+1\)
    C IF STATEMENT TO CALCULATE NUMEER OF STUDENTS TAKING ONLY TWO IAS
    IF (IAC) \(240,240,250\)
    240 TWOIA \((K)=T W O I A(K)+1\).
    GO TO \(27^{\circ}\)
    250 THHIA \((K)=T H R I A(K)+1\).

IF STATEMENT TO CONVERT FEB OATES TO JAN SCALE
SAME INFORMATION CALCULATED FOR THIRO IA TYPE \(K=0\)
\(K=I A C\)
TIMIA \((K)=\) TIMIAC
SUMIAT \((K)=\) SUM \(A T(K)+T I M I A(K)\)
\(T N I A(K)=T N I A(K)+1\).
\(L=L E V I A C+1\)
\(\operatorname{LFREQ}(K, L)=\operatorname{LFREQ}(K, L)+1\)
FREQUENCY FOK EACH PASS/NOT PASS CALCULATED \(M=\operatorname{NPASS}+1\)
\(\operatorname{MFREQ}(K, M)=M F R E Q(K, M)+1\)
FREQUENCY OF EACH PERFORMANCE LEVEL CALCULATED \(M M=N P E R F+1\)
MMF REQ \((K, M M)=M M F R E Q(K, M M)+1\)
THRIA \((K)=T H R \perp A(K)+1\).
270 IF STATEMENTS
IF (NDATE) 300:300.200
IF STATEMENT TO BYPASS DATES WHEN INDATE LATER THAN RETURN DAT :
280 IF (KDATE.GT.NDATE) GO TO 300
IF (KDATE) 300,300,290

IF (NDATE.GT. 200 .AIVU.NUATE.LT. ¿29) NDATE=NOATE-69
IF STATEMENT TO CONVEKT MAHCH DATES TO JAN SCALE
IF (KDATE.GT. JUU.ANU.KDATE.LT.332) KUATE=KDATE-141
IF (NOATE.GT. 3OU.ANU.INUATE.LT.332) NDATE=NDATE-141
IF STATEMENT TO CNVVEHT APRIL UATES TO JANUARY SCALE
IF (KOATE.GT.400.ANU.KUATE.LT.431) KDATE=KDATE-210
IF. (NDATE.GT.4UU.ANU.NUATE.LT.431) INDATE=NUATE-210
IF STATEMENT TO CONVERT DATES IN MAY
IF (KDATE.GT. כOU.ANU.KUATE.LT.532) KDATE=KOATE-280
IF (NDATE.GT.50U.ANU.NLATE.LT.532) NUATE=NDATE-280
IF STATEMENT TO COIVERT DATES IN JUNE
IF (KDATE•GT.OOO.AND.KUATE.LT.631) KDATE=KDATE=349
IF (NDATE.GT.OUU.ANU.NUATE.LT.631) NDATE=NDATE.349
IF STATEMENT TO CONVERT DATES IN JULY
IF (KDATE.GT. IOU.ANU.KUATE..LT.732) KDATE=KDATE-419
IF (NDATE.GT.7OU.ANU.NUATE.LT.732) NOATE=NDATE-419
IF STATEMENT TO CONVERT DATES IN AUGUST
IF (KDATE.GT. 8OO.ANO.KDATE゙.LT.832) KUATE=KDATE-488
IFINDATE.GT. OOU. ANU.NDATE.LT. 832) NDATE =NDATE 488
IF STATENENT TO CONVERT DATES IN SEPTEMBER
IF(KDATE•GT.YOU.ANW.KOATE.LT.93H) KDATE=KDATE-557
IF (NDATE.GT.GOU.ANU.,NUATE.LT.g3I) NUATE=NDATE-557
IF STATEMENT TO CONVFRT OATES IN OCTOBERER
IF (KDATE.(GT. 100 U.ANU.KUATE.LT. 1032 ) KDATE=KDATE-627
IF (NDATE.GT. 1000 .ANU.NUATE.LT. IU32) NOATE=NUATE-627
IF STATEMENT TO CONVERT DATES IN NOVEMBER
IF (NDATE.GT. \(1100 \cdot A N U . N U A T E . L T .1131)\) NUATE=NDATE-696
IF (KDATE. GT. 11 UO. ANU.KUATE.LT. 1131) KDATE \(=\) KDATE-696
IF STATEMENT TO CONVERT DATES IN DECEMBER
IF (KDATE.GT. 1200.ANU.KUATE.LT.1232) KDATE=KUATE-766
IF (NDATE.GT. 1200 . AIVU.NDAIE.LT. 123?) NOATE \(=\) NDATE-766
IF JAN UATES ARE TO FOLLEW OECEMBER. \(1231=465\), SO WOULD ADD 365 TO JAN DATE TO CONTINUE YEAR, MAY WANT TO KEEP
TO JAN DATE PGOKATE PHOKAM OF DATES FOR FALL OR SPRING SEMESTER SINCE

C DIFFERENCES, TOTALS ANU NUMBERS OF CASES CALCULATED FOR AVERAGING DATEDF = NUATE-KUATE
SUMDTDF =SUMDTUF \(\& D_{A}\) TEUF
TNUTDF = TNDTDF + I.
IF (DATEOF.GT.OIGUD) BIGUU=DATEOF
IF (DATEDF.LT.SMLUD) SMLUD \(=\) DATEDF
C FREQUENCY OF NOT PASSS PASS CALCULATED
\(300 \mathrm{~N}=\) NPASS +1
\(\operatorname{NFREQ}(N)=\operatorname{NFREG}(N)+1\)
c FREQUENCIES OF LEVELS of PERFORMANGE CALCULATED N \(N=\) NPERF \({ }^{1}\)
NNFREQ(NN) \(=\operatorname{NIFFREQ}(N N)+1\)
C SUM AND NUMBER OF RATING TIME CALCULATED
SUMART=SUMKT + RTIME
RAT \({ }^{2}=R A T N+1\)
C READ ANOTHER STUUUENT,S CARD GO TO 120
if all student cahus in pc file completed, totals/pc calculateo
500 AVGT=SUMT/TN
AVGRT = SUMRT/RATN
DO \(510 \mathrm{~K}=1,11\)
AVGIAT(K) =SUMIAT(K)/TNIA(K)
510 CONTINUE
avGotof=sumutda/tnotuf
- \(\quad\) IF (SMLT.EU.9Y9.) SMLT \(=0.0\)

C TITLE FOK IA PAGE WRITTEN OUT
WRITE (6I,520) NIA, MONTH,LOAY
 11A5,1x,1I2,/1/1
C TIMEFOR PC WRITTEN OUT
WRITE (61.530) TN, AVGT,SMLT, BIGT
530 FORMATIX,1F4.0." SPECIALISTS REPGRTED TAKING AN AVERAGE OF iniflo

C WRITE OUT PC EVALUATION
WRITE(61,540)

1E OF THE PROCEESS, \(1,5 x, 83=A B I L I T Y\) TO OIAGNOSE*, \(/, 5 x, * 4=\) KNOWLEDGE
2OF OIFFEHENT MATERIALS AN METHOUS \(\% / .5 \mathrm{X}\), © \(5=A B I L I T Y\) TO CHOSE APPRO 3PRIATE MATERIALS ANO METHODS \(\%, 1,5 \mathrm{X}, \$ 6=N O, P C\) INAPPROPRIATE\#, \(/, 5 \mathrm{X}, \# 7\)

DO \(549 \quad \mathrm{I}=1,7\)
WRITE (61,545) I, (SUMEV (I,J), \(j=2,4\) )
545 FORMAT (1X,45X,111,3X,IF4.0,10X,1F4.0,10X,1F4.0)
549 CONTINUE
WRITE OUT InFORMATION ON EAGH IA
WRITE(6I,550)
 IURE ON TAPE\#, \(/ 5 x\). \({ }^{2}\) 3=READING IN LIBRARY\#, \(/, 5 x, * 4=8\) ROWSING IN LIB 2RARY\#, /,5x, " \(5=0\) ISCUSSION WITH STAFF", \(/, 5 \times\), * \(6=0\) ISCUSSION WITH OTH

 5 AVG. TIME NUMBER OF IAS USED IA AS HELP IN PASSING PC. 6 PC NOT PASS PC PASS PERFORMANCE LEVEL\#, \(1,6 \times\), \#STUDENTS*, 2IX, 7\#ONE TWO THREE GOOD SOME NOTA,34X,\#MIN. AUEG. OUTST.
```

 80,///1
 00 559 K=1,11
 WRITE(6I,555) K,INIA(K),AVGIAT(K),ONEIA(K),TWOIA(K),THRIA(K), (LFRE
 1O(K,L),L=2,4),(MFREQ(K,M),M=2,j),(MMFREQ(K,MM),MM=2,4)
 555 FOKMAT(1X,1IL,5x,1F4,0,8X,1F6,2,7x,1F4,0,2x,1F4,0,2x,1F4,0,9x,1I3,
 14x,113,4x,1I3,15x,1I3,5x,1I3,7x,1]3,3x,1I3,3x,113,///1)
 559 CONTINUE
 WRItE OUT average return time
 WRITE(61.560) TNDTUF,AVGDTDF.SMLDD,BIGDO
 560 FOKMATIIX,/,1X,QAVEKAGE RETURN TIME IN DAYS, FOR*,IF4.O, # STUDENTS
 1 REPOHTING WAS*,lFG.2,* (WITH A RANGE OF #,1F4,0,% TO #,1F4,0,&)0
 2,/1/1
 WRITE(61,570) (NFREQ(N),N=2,3)
 570 FOKMAT (IX,&NUMBER OF STUDENTS NOT PASSING=&,III3,//,5X, NNUMBER OF S
 lTUUENTS PASSING=$,1I],////)
 WRITE OUT LEVELS OF PERFGRMANCE
 WRITE (61,580) (NINFREQ(NNV),NN=2,4)
 580 FOKMAT(IX,&NUMBEH OF STUUENTS WITH MINIMAL PERFSRMANCES *,1I3,/,
 123X,*ADEQUATE PERFORMANCES #,II3./,23X.कOUTSTANDING PERFORMANCE
 22S*,1!3,///1
 WrITE OUT average rating TIMe
 WRITE(61.590) AVGRT,RATN
 590 FORMAT(IX,# AVERAGE RATING TIME IN MINUTES :IIFG.2* AS REPORTEO
 l BY #,1F4,0,* RATERS*)
 VARIABLES RESET TO ZERO BEFORE NEW IA TITLE CARD READ
 GO TO 10
 900 STOP
 A SINGLE CARD WITH MONTH AND DAY (FORMAT l0O)
 B IA TITLE CARU (FORMAT 110)
 C PC UUESTIONNNAIRE CARDS (FORMAT IZO)
 D DUMMY STUUENT CARD (NSTU=999) TE COMPLETE PC FILE
 E OTHEK PC FILES, SEQUENCE B,C.O
 F OUMMY IA TITLE CARD (NIA=99) TO ENO PROGRAM
 END
    ```


\begin{tabular}{cccccc}
\(n\) & 0 & 0 & 0 & 0 & \(n\) \\
0 & \(N\) & 0 & 0 & 0 & \(1-1\)
\end{tabular}
\(0 \quad 0 \quad 0 \quad 0 \quad 0\)
A \(N\) O 0 m



\section*{Program: PCSPEC}

The program was designed to provide a printout similar to the information available on the generalists from the program PC. A double page of printout was avajlable for each specialist \(P C\) including the two expressive objectives: the rating of generalists \(P C s\) and the assisting in program management during office hours. The printout was to be used by the staff to help in monitoring program operation and in making curriculum changes.

Information was collected from the PC questionnaire completed by the specialist and his rater whenever a PC was attempted.

A listing of the program and a sample printout are included. For a flow chart explaining the logic of the program, please see the flow chart for PC.
```

C
C
PROGRAM PCSPEC
PROGRAM UESIGNEU TO PROVIDE 2 PAGES OF PRINTOUT PER PC
INPUT OATA INCLUDES
date Program oeing run, menth(1a5), loay(1Iz)
PC NUMOER, NPC(IIC)
STUDENTS NUMGER, NSTU(II3)
DATE PC PASSEU IN. KDATE (1I4)
TIME TAKE FOK PC, TIMPC(IF3.0)
EVALUATION OF PC ON HIEHARCHY: LEVPC(Ij (7I\overline{1)}
FINST IA TYPE TAKE, IAA(II3)
TIME POR FIKST IA, TIMIAA(IF3.0)
EVALUATIEN OF FIHSTIIA.LEVIAA(III)
Same IINFOHmATION FOR SECOND IA,IAB,TIMIAB,LEVIAB
SAME INFOKMATIOIV FOR THIKD IA,IAC,TIMIACDLEVIAC
- date pe retumiveu ro student, ndate(II4)
PC PASSEU/NOT PASSED, NPASS(III)
PEKFORMANCE LEVEL OF'PASSED PC,NPERF(1II)
TIME TAKEN TO RATE PC,RTIME(IF2.0,
CALCULATLU VAKIAOLES INCLUDE
TOTAL TIME TAKEN,SUMT NUMBER OF STUDENTS REPORTING,INPLONGEST
TIME REPORTED,BIGT,SHOHTEST TIME,SmLT,aVERagE TIME,avgT
FOH EALH OF 3 REPORTED IAS
TOTAL IIME, SUHIAT(K) WHEN K=IA TYPE
NUMGEH OF STUOENTS, TNIA(K), AVERAGE TIME,AVGIAI, EVALUATION
OF IA,LFKEQ(K,L),FREQUENCY OF PASS/NOT PASS,MFREQ(K,M),
FREWUENCY OF EACH PEHF ORMANCE LEEVEL,MMFREQ(K.MM), NUMBER USING I
IA ALOINE,ONEIA(K), USING IT WITH ONE OTHERIA,IWOIA(K), USING IT
WITH 2 OTHEH IASOTHRIA(K)
FOK TUKN AROUINU TIME IN UAYS - DIFFERENCE bETWEEN UATESIDATEDF,GUM
OF UATES,SUNUTUF, AVERAGE,AVGDTDF, NUMBER OF CASES,TNDTDF:
LONGEST TIME,OLGDD, SHERTEST TIME,SMLDD
FOK FREQUENCIY OF PASS/NGT PASS,NFREQ(NPASS)
FOR FREQUENCY OF PERFORMANCE LEVELONNFREQ(NPERF)
FOK HATING TIME,KTIME, SUM OF TIMES,SUMRT, NUMDER REPORTING,RATN,
avekave kEatIING TIME,AVGRT
DIMENSIOIN LEVFC(7),SUMEV(7,4),TIMIA(II),SUMIAT(II),TNIA(II),AVGIAT
1(II), OFREN(II,4),ONEIA(II),TWOIA(I|),THRIA(II),MFREQ(Id,3),MMFREQ
2(1II,4),NFNEW(3),NNFREU(4)
C READ DATE PROGKAM RUN
READ (60.100) MENTHILDAY
iOO FOKMAT(IAS,IX,II2)
SET ALL VARIABLES TO ZERO
10 TIMPC=0.
TIME=0.
SUM}\frac{T}{T}=0.
TN=0.
8IOT=0.
SMLT=999.
AVQTi}=0.
KOATE=0
NOATE=O
DATEDF=0.
SUMDTDF=0.
TNUTDF=0.
BIGDD=0.
SMLDO=0.

```

AVGDTDF \(=0.0\)
NPASS \(=0\)
NPERF \(=0\)
RTIME \(=0.0\)
SUMRT \(=0,0\)
RAT \(N=0.0\)
AVGRT \(=0.0\)
DO 20 I \(=1,7\)
DC． \(20 \mathrm{~J}=1,4\)
SUMEV \((I, J)=0.0\)
20 CONTINUE
DO \(30 \mathrm{~K}=1,11\)
TIMIA \((K)=\tilde{n}\) ．
SUMIAT \((K)=0\) ．
TNIA \((K)=0\) ．
AVGIAT \((K)=0.0\)
ONEIA \(K\) ）\(=0\) ．
\(T W O 1 A(K)=0\) ．
\(\operatorname{THKIA}(K)=0\) ．
DC \(30 \mathrm{~L}=1,4\)
LF \(H_{E Q}(K, L)=0\)
30 CONTINUE
DO \(35 \mathrm{~K}=1,11\)
D \(035 \mathrm{M}=1,3\)
MFREQ（K，M）\(=0\)
35 CONTINUE
DC \(40 \mathrm{~K}=1,11\)
DC \(40 \mathrm{MM}=1,4\)
MMFREQ \((K, M M)=0\)
40 CONTINUE
DO \(50 \quad N=1,3\)
\(N F R E Q(N)=0\)
50 CONTINUE
DO \(60 \mathrm{NN}=1.4\)
NNFREG \((N N)=0\)
60 CONTINUE
C READ PC TITLE CARD AT BEGINNING OF FILE READ（ 60.110 ）NPC
110 FOKMAT（9X，112）
C ．IF STATEMENT USING DUMMY PC CARD（NPC＝99）TO END PROGRAM
IF（NPC．EU．9y）GO TO yuo
120 READ 60,130 ）NSTU，KDATE゙，TIMPC．（LEVPC（I），I＝1，7），IAA，TIMIAA，LEVIAA，
IIAB，TIMIA甘，LEVIAB，IAC，TIMIAC，LEVIAC，NDATE，NPASS，NPERF，RTIME
i30 FOKMAT \(113,11 I^{4}, 7 x, 1 F^{3}, 0,2 x, 711,3 x, 1 I^{2}, 3 x, 1 F 3,0,1,1,1 x, 1 I^{2}, 3 x, 1 F\) \(\left.130,111,1 x, 112,3 x, 1 F 3,0,111,10 x, 11^{4}, 2 x, 111,111,1 F 2,0\right)\)
C IF STATEMENT TO ENU PC FILE WITH UUMMY STUUENT CARD（NSTU＝999）
IF iNSTU．EQ．प99）GO TO 500
C SUM AND NUMBEK OF CASES CALCULATED FOR AVERAGING PC TIME
TIME＝TIMPC
SUNT＝SUMT＋TIME
\(T N=T N+1\) ．
C RANGE CALCULATEU BY GETTING BIG AND SMALL
IF（TIME•GT．甘IGT）BIGT＝TIME
IF（TIME．LT．SMLT．ANU．TIME．NE．O．0）SMLT＝TIME
C DO LOOP TO SUM ANSWERS ON 7 EVGLUATION QUESTIONS
GO TO 200
        GOTO \(27^{\circ}\)
    230 TWOIA \((K)=T W O I A(K)+1\).
        GO TO 237
    235 THRIA \((K)=\) THRIA \((K)+1{ }^{\circ}\) ZERO SO SECOND IA CAN BE ADOED TO ARRAY
    \(237 K=0\)
        \(K=I A B\)
        \(\operatorname{TIMIA}(K)=T I M I A B\)
        SUMIAT \((K)=\operatorname{SUMIAT}(K)+\operatorname{TIMIA}(K)\)
        \(\operatorname{TNIA}(K)=\operatorname{TNIA}(K) \neq 1\).
        \(L=L E V I A B+1\)
        \(\operatorname{LFKEQ}(K, L)=\operatorname{LFREQ}(K, L)+1\)
            C FKEQUENCY FOH EACH PASS/NOT PASS CALCULATED
        \(M=N P_{A} S S+1\)
        \(\operatorname{MFKEQ}(K, M)=M F \operatorname{REQ}(K, M)+1\)
    C FMEQUENCY OF EACH PERFOKMANCE LEVEL CALCULATED
    C \(\quad \operatorname{MMFREQ}(K, M M)=\operatorname{MMFKEQ}(K, M, M)+1\)
        IF(IAC) \(240,240,250\)
        240 TWOlA \((K)=T W O \& A(K)+1\).
GO TO 270
        250 THKIA \((K)=T H R I A(K)+1\) 。

C SAME INFORMATION CALCULATED FOR THIRD IA TYPE \(K=0\)
\(K=I A C\)
TIMIA \((K)=T I M I A C\)
SUMIAT \((K)=\) SUMIAT \((K)+T I M I A(K)\)
TNIA \((K)=T N I A(K)+1\) 。
L＝LEVIAC＋1
\(\operatorname{LFKEQ}(K, L)=\operatorname{LFREQ}(K, L)+1\)
frevuency for each pass／not pass calculated M＝NPASS 1
\(\operatorname{MFREQ}(K, M)=\operatorname{MFREQ}(K, M)+1\)
Frequency of each performance level calcuilated \(M M=N P E R F+1\)
\(\operatorname{MinFREQ}(K, M M)=M M F R_{E} Q(K, M M)+1\)
\(\operatorname{THKIA}(K)=T H K I A(K)+1\) ．
C
IF STATEMENTS TO BYPASS DATA WITH MISSING DATES
270．IF（NDATE） \(300,300,200\)
If STATEMENT TO yYPaSS dates when indate later than return date 280 IF（KDATE．GT．NUATE）GO TO 200

IF（KDATE） \(300,300,290\)
if statement to convert feb dates to jan scale
290 IF（KDATE．GT・とUO•ANU．KDATE．LT．2＜9）KDATE＝KDATE－69
IF（NDATE．GT．LUU．ANU．NUATE．LT． 229 ）NDATE＝NDATE－69
if statement to converit march dates to jan scale
IF（KUATE．GT．3UU．ANU．KDATE．LT．332）KDATE＝KDATE－141
IF（NOATE．GT． \(3 \cup U . A N U . N U A T E . L T .332) ~ N D A T E=N D A T E=141\)
If statement to cưnvert april dates to january scale
IF（KDATE．GT．40U．ANU．KDATE．LT．431）KDATE＝KDATE－210
IF（NDATE．GT．4UU．ANU．NDATE．LT．431）NDATE＝NDATEの2IO
if Stathaint to convert．dates in may
IF（KDATE．GT．．〇OU．ANU．KUATE．LT．532）KUATE＝KDATE－280
IF（NDATE．GT．50U．ANU．NUATE．LT．532）NDATE＝NDATE＝280
IF STATEMENT TO CONVERT DATES IN JUNE
IF（KDATE．GT．0OU．ANU．KDATE．LT．631）KDATE K KDATE－349
IF（NUATE．GT．OOU．ANU．NUATE．LT．631）NDATE＝NDATE． 349
IF STATEMENT TO CONVERT OATES IN JULY
IF（KDATE．GT．TOU．AND．KUATE．LT．732）KUATE＝KDATE＝419
IF（NDATE．GT．7OU．ANU．NUATE．LT．7SZ）NUATE＝NDATE－419
IF STATEMENT TO COIVEERT DATES IN AUGUST
IF（KDATE．GT．OOU．AND．KDATE．LT．832）KUATE＝KDATEM 888
IF（NDATE•GT．8OU．ANU．NUATE．LT．R3़C）NDATE＝NDATEの488
IF STATEMENT TO COIVVERT DATES IN SEPTEMBER
IFIKDATE．GT．YUU．AND．KUATE．LT．931）KDATE＝KDATE－557
IFINDATE．GT．gUU．ANU．NUATE．LT．931）NUATE＝NDATE－557
if Statement to coinvert dates in octoberer
IF（KDATE•GT•1000•ANU．KUATE．LT．1032）KDATE＝KDATE－627
IF（NDATE．GT．LOUU．ANU．NUATE．LT．LU32）NDATE＝NDATE－627
if Stateiment to convert oates in november
IF（NDATE．GT．11U0．ANU．NUATE．LT．1131）NDATE＝NDATE－696
IF（KDATE．GT． 1100 ．ANU．KDATE．LT．1131）KDATE KKDATE－696
if statement to convert dates in decemóer
IF（KDATE．GT．12UO．ANU．KUATE．LT．1232）KDATE＝KDATE－766
IF（NDATE．GT．12UO．ANU．NUATE．LT．1232）NDATE＝NDATE－766
If Jan Uates are to follow december，123i＝465，so wOULO ADD 36 ！
TO JAN DATE TO CONTINUE YEAR，MAY WANT TO KEEP
SEPAHATE PKOGRAM OF DATES FOK FALL OR SPRING SEMESTER SINCE 1145,1x,112,///1
6
WRITE(61,530) TN,AVGT,SMLT,BIGT
530 FOKMAT (IX, IF 4.0 . © SPECIALISTS REPORTED TAKING AN AVERAGE OF B, IFIO

C WRITE OUT PC EVALUĀTICN

 1E OF THE PROCESS", /, bx,*3=ABILHTY TO OIAGNOSE*,/,5X, *4=KNOWLEDGE 2OF DIFFEKENT MATERIALS AND METHODS", \(1,5 \mathrm{x}\), "5=ABILITY TO CHOSE APPRO 3PKIATE MATERIALS AND METHOOS*./.5X:"6=NO,PC INAPPROPKIATE\#, /,5X,*7 4=NO,IAS INAPFKOPKIATE\#,//.50X, \#YES\#,10X."SOMEWHAT\#SX,\#NO\#
DO \(54 y \mathrm{I}=1,7\)
WRITE (61,545) I, (SUMEV(I, J), \(=2,4\) )

549 CONTINUE
WHITE OUT INFORMATION ON EACH IA
WRITE (61,550)
 lURE ON TAPE", \(/ .5 x\). " 3 =READING IN LIGRARY*./.5x.* \(4=8\) KOWSING IN LIB


 5 AVG.TIME NUMBER OF IAS USED IA AS HELP IN PASSINGPC 6 PC NOT PASS PC PASS PERFORMANCE LEVEL",/,6X, "STUUENTS\#,21X, 7AONE TWO THREE GOOD SOME NOTA.34X.MMIN. ADEQ. OUTST.
\[
\text { FTN5.48 } \quad \because \quad 09 / 20 / 70
\]
```

 8#!///1
 00 559 K=1,11
 WHITE(61,\55) K,TNIA (K),AVGIAT}(K),ONEIA (K),TWOIA(K), THRIA (K), (LFAE
 1Q(K,L),L=2,4),(MFREW(K,M),M=2,3), (MMFREQ(K,MM),MM=2,4)
 555 FOKMAT (1X,1IL,5x,1F4,0,8x,1FG,2,7x,1F4,0,2x,1F4,0,2x,1F4,0,9x,1I 3,
 14x,11 4,4x,1! 3,15x,113,5x,1 I 3,7x,11 3, 3x,1! 3, 3x,1! 3,///)
 559 CONTINUE
 C WRITE OUT AVEHAGE RETURN TIME
WRITE (61:560) TNUTUF,AVGOTDF,SMLDD,BIGDO
560 FOKMAT(1X,/,1X, \#AVEKAGE KETURN TIME IN DAYS, FOR*.1F4,0,G STUDENTS
1 REPORTING WAS*,lFG.2,% (WITH A RANGE OF *,lF4.0,\# T0 *,1F4.0,*):
2,/1/1
C WRITE OUT NUMBER GF STUDENTS PASSING/NOT PASSING
WRITE(61,570) (NFREQ(N)ON=2,3)
570 FOKMAT (IX,\#NUMDEK OF STUDFNTS NOT PASSING=a,113,//,5X, \#NUMBER OF S
1TUOENTS PASSING=*,1I3,///1
C WRITE OUI LEVELS OF PERFORMANGE
WRITE(61,580) (NNFREQ(NN),NN=2,4)
580 FOKMAT (IX, \&NUMEEK OF STUUENTS WITH MINIMAL PERFORMANCES *,II3,1.
123x;*ADEQUATE PERFOKmANCES *,1I3./.23x,\&OUTSTANDING PERFORMANCE
2s*,1I3,///1
WRITE OUT avERAGE RATING TIME
WRITE(61,590) AVGRT,RATN
590 FOKMAT (IX;\# AVERAGE RATING TIME IN MINUTES Ä,1F6.2,* AS REPORTEO
l Br *,1F4.0, " RATERS*)
C VARIABLES RESET TO ZERO GEFORE NEW PC TITLE CARD READ
GO TO 10
900 STEP
DATE DECK AS FELLOWS
A SINGLE CARU WITH MONTH AND DAY (FORMAT lOO)
B PC TITLE CARU (FORMAT 1IO)
C PC WUESTIONNINAIKE CARDS (FERMAT 120)
D OUMMY STUUENI CARD (NSTU=999) TO COMPLETE PC FILE
E OTHER PC FILES, SEQUENCE B,C,D
F OUMMY PC TITLE CARD (NPC=99) TO ENO PROGRAM
ENO

```

\(\bigcirc 0\)
\(0 \quad 0\)
0.0
\(m\)
-
0
0
0

\(\begin{array}{ccccc}m & 0 & 0 & 0 & 0 \\ m & 0 & 0 & 0 & 0\end{array}\)
30 RATERS

\section*{APPENDIX C \\ OTHER EVALUATIONS}

School of Education: data collection forms example of printout available to instructor

Office of Teacher Preparation: data collection forms

\title{
TEACHER EVGLUAXYON OUESMTOMATRE
}

\section*{Written Response Sheet}

INSTETUCTOR
DATE \(\qquad\)

Crieck one:
Undergraduate
Graduate
COUESE TITLE \(\qquad\)

Written responses by stucents are crucial to the impucvement of teaching. please describe frankly what were the major strengths and weakressea of this course and its teacher. Please comolete your conmonts berore answering the multiole choice section of the questiommaire.

\section*{Form A: To Be Completed by the Student}

SCHOOL OF EDUCATION
Dwight W. Allen, Dean

UNIVERSITY OF MiASSACHUSETTS
Earl Seidman, Assistant Dean

Because good teaching is important, we are asking for your cooperation in completing the following questionnaire. The information that you provide will be especially valuable in helping us assess your needs as learners in a university environment. Your teacher will read any coments you care to write on the separate page provided for that purpose and he will review the ratings ne receive from the multiple-choice questions. He will then pass these results along to me so that we can be aware of student ideas and use them to help raise the level of intruction in our school.

Do not write your name anywhere on either of the two parts of this question: naire. We want all answers to remain anonymous so that you will feel free to give your teacher your horest opinions.

Instrictions for miltiple cnoice questions: indicate your responses by filling in the appropriate numbered space on the Standard Answer Sheet. Use a soft lead pencil only, otherwise the optical scanning equipment will not be able to read your replies. Do not use ink or ball point pen.
1. What is your student status? Mark the appropriate space.
1. graduate student, 2. undergraduate student. Do not mark 3, 4, or 5 .
2. What is your major field of study?
1. education, 2. some other major (or undecided). Do not mark 3, 4, or 5.
3. Are you'a full time student or a part time student?
1. full time, 2. part time: Do not mark 3, 4, or 5 .

Questions 4 and 5 are parts of the same inquiry. If the answer to question 4 is contained in suo-number \(1,2,3,4\) then ignore the next question. If the same answer is not listed in question 4 then mark response 5 and go on to question 5.
4. I enrolled in this class because: (if more than one reason is applicable to you, select the reason which was most important)
1. It is a requirement in my major field or a university requirenent
2. I am interested in the subject matter
3. The reputation of the teacher was known to me beforehand
4. It fit into my schedule better than other available courses
5. Arother reason not listed above. See question 5.'
5. Same as question 4 above.
1. One or more of my friends are enrolled and we wanted to be together
2. I need this course for credits toward graduation or certification
3. I wanted to be exposed to something new
4. The course would probably be of great benefit for my career
5. Another reason not listed in either question 4 or 5 .

There are not questions numered from 6 to 40 . The next question is number
41. Please 30 to number 41 on the Standard Answer Sheet when responding to.
the next question.

TEACHER EVALUAPION QUESTIONMATRE
Form \(A\) (Continued)

When answering the following questions use thjs rating scale:
1. highest possible evaluation, or an absolute yes for yes-no type inquiries
2. very good evaluation, or a qualified yes
3. satisfactory evaluation, or sometimes yas, or maybe
4. unsatisfactory evaluation, or definitely no
5. the question DOES NOT APPLY to this class
41. Were the objectives of the course developed in an understandable manner?
42. Was course content consistent with the objectives?
43. Were student responsibilities made clear?
44. Were the methods used in evaluating your work fair?
45. Has there been adequate provision for pursuing individual interests within the structure of this course?
46. Did the teacher take an interest in you as an individual?
47. Was the teacher effective in facilitating class discussion?
48. Have written coments on returned papers or spoken coments in response to your presentations in class been helpful?
49. Did the teacher Iisten to and respect ideas different from his own?
50. Was the teacher clear in explanation of abstract ideas and theories?
51. Did the teacher seen to be enthusiastic about teaching this course?
52. Did the teacher inspire your confidence by his knowledge of the subject?
53. How suitable were the teaching methods used?
54. How suitable were the readings used in this class?
55. How would you rate your involvement and motivation in this class?
56. How much did this course contribute to your professional growth?
57. How much did this course contribute to your personal growth?
58. What is your overall evaluation of the course?
59. What is your overall evaluation of the teacher?
60. Your teacher will be asked to estimate the overall rating your class gives him. What rating do you think he will estimate?


\(I_{1}^{12345}\)
12345
! 12305 3 . 12345 123 \(12=\) \(5^{123} 35\) 123451234512345范
\(12345123+\)
 12345 123:5 12345

 12345 30 菏

 2



31
12345


32
\(1_{1}^{1} \quad 2 \begin{array}{lllllllll}1 & 4 & 5 & 1 & 2 & 3 & 4 & 5\end{array}\)
\(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5\end{array}\)



2
\(\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 1 & 2 & 3 & 4 & 5\end{array}\)


\(66^{1} 23^{3} \quad 5 \quad 5\)
12345
\(6^{\prime}\)
- 3

\section*{Evaluation of Selected Aspects of the Elementary Teacher Preparation Program Spring 1970}

> Language Arts (reading) Excerpts

For those subjects who actually chose a situation, Whether or not they wrote answers, there was a statistically significant difference in math, situation 1 , at the .05 level for times 1, 123, and 1236. Reading, situation 1 , showed statistically significant differences at the .05 level for times 1 and 123 and at the . 01 level for time 1236.

When the subjects who had chosen a situation but Who did not respond in writing to it were removed from the data, statistically significant differences at the .05 level were still noted for reading, situation 1 , for each time--1, 123, 1236.

\section*{READING}

Choose one of the following two situations. Circle the number of the situation which you choose. please think through your answer (making notes if you wish on this sheet) before writing jit. Plan to spend between ten and fifteen minutes on this Reading situation.

Write your answer on the attached blank sheet if you choose situation \#1.

Each set of parentheses offers you a choice; be sure that you circle your choice.

Situations
\#1
Given a heterogeneously grouped (1, 2, 3, 4, 5, 6) grade, prepare a brief spelling lesson plan indicating the chief activity involving the teacher in a 15 to 20 minute period on each of five days. Your plan should incorporate attention paid to individusl differences, small-group instruction, emphasis on success, methods recommended for studying words, and suggested report card marks.
\#2
It is March in a heterogeneously grouped (1, 2, 3, 4, 5, 6) grade of 28 students. You have been using one of the most popular basic reading series, but you are considering introducing some changes into the program. Answer the questions on the following pages to indicate what you have been doing.

\section*{Situation \#2 Questions}

Answer the following questions on the answer sheet provided. Identify your answer sheet by placing your code number in the place at the lower right marked "student number."

If you choose "other," please give explicit answer in space provided.
1. How many groups would be recommended in this heterogeneously grouped class of 28?
1/ one
2/ two
3/ three
\(4 /\) four
\(5 /\) other \(\qquad\)
2. In this self-contained class what is the usual length of one group's single period with the teacher?
1/ 0-10 minutes
2/ 10-20 minutes
3/ 20-30 minutes
\(4 / 30-40\) minutes
\(5 /\) other \(\qquad\)
\(\qquad\)
3. What has been the major emphasis in the word analysis program for the grade you have selected?
1/ vowels
2/ consonants
3/ syllabication
\(4 /\) emphasis on dictionary
\(5 /\) other \(\qquad\)
4. Which group in a self-contained classroom should have the fewest number of students?
1/ high
2/ average
3/ accelerated
\(4 /\) very slow
\(5 /\) other \(\qquad\)

Situation \#2 Questions continued
5. In a basic reading program in a self-contained classroom
at least how many levels of reading difficulty might be
in use?
1/ two
2/ three
3/ four
4/ five
\(5 /\) other \(\qquad\)
6. In using the workbook which accomponies the basic reader, which of the following procedures would you most strongly recommend: choose only one
1/ The children should work out the exercises independently with no or very little help from the teacher.
2/ The teacher should go over the entire exercise with the children before assigning it to them. 3/ The teacher should carefully correct the workbook before handing it back to the student.
4/ A child should correct his own workbook in the regular period with the leadership of the teacher.
\(5 /\) The teacher should expect each page to be finally marked onehundred percent after the student has made necessary corrections.
\(6 /\) other (if you choose \#5, do not mark the answer sheet; but do write your response here)
7. In introducing an individualized reading program, the teacher usually finds success with which lovel of readers?
1/ high
2/ average
3/ Iow
\(4 /\) mentalily retarded
\(5 /\) other \(\qquad\)
\(\qquad\)

Mark each of the following statements either I/ agree or 2/ disagree
8. Guided reading is the form silent reading takes at the early primary level.
9. Oral reading precedes silent reading at the primary level.
10. Oral reading of each story is important even at the intermediate level.
11. Phonetic analysis is strossed more at the primary level than at the intermediate level.
12. In a non-graded reading organization ten-year-olds might be reading with children who have been in school only two years.
13. If a child in an oral reading situation meets a word he doesn't know, the teacher should stop and teach the word immediately.

Criteria for Reading

The criteria below apply to situation l. The correct responses for situation 2 are indicated on the sample instrument.

1- Did the plan use small groups?
(2)

2- Did the plan include specially selected words for the lowest group?

3 - Did the plen emphasize the importance of emphasizing word analysis in small group instruction?

4 - Was the highest group excused from usual spelling study and involved in some type of word enrichment program?

5 - Did the plan visualize success for all groups?

6 - Did the plan suggest marks equivalent to \(A\), \(B\), and \(C\) for the high, average, and low groups respectively?

7 - Was the teacher involved in each daily lesson?

Total number of possible points - lo; points for individual criteria are as indicated in parentheses.

\section*{Language Arts Concepts}

Seatwork
Teacher Demonstrations
Lesson Plans
Use of Pictures
Book Reports
Workbooks
GOOD
POTENT
PESSIMISTIC
COMMONPLACE
INCOMPLETE
CURRENT
DEEP
SMCCESSFUL
FALLING
BOTTOM
\(M A L E\)


Mark number 2 in answer blank \(\qquad\)

identified by numbers \(1,2,3,4,5,6-\)
in column 1
mark 4 if you are a student teacher
mark 5 if you are an intern
in column 2
mark 3 if you were enrolled in Miss O'Leary's class
mark 4 if you were enrolled in Mrs. Rudman's class
mark 5 if you were enrolled in METS

\title{
Appendix D \\ PROGRAM GOALS
}

As presented in Phase I Report, 1958
As presented in Phase II Report, January 1970
As presented to student, February 1970
As presented by Program Director, May 1970

\author{
Final Report
}

Contract No. OEC-0-8-089023-3312 (010)

\title{
MODEL ELEMENTARY TEACHER EDUCATION PROGRAM
}
\begin{tabular}{lll} 
Principal Investigator & - & Dwight W. Allen \\
Project Director & James M. Cooper
\end{tabular}

\author{
University of Massachusetts \\ Amherst, Massachusetts
}

October 31, 1968

The research reported herein was performed pursuant to a contract with the Office of Education, U. S. Department of Health, Education, and Welfare. Contractors undertaking such projects under Government sponsorship are encouraged to express freely their professional judgment in the conduct of the project. Points of view or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.
U.S. DEPARTMENT OF

HEALTH, EDUCATION, AND WELFARE
Office of Education
Bureau of Research

Communication is the prime focus of the Reading and Language Arts area. The function of a teacher in this content field is to develop or improve the students' ability to communicate. This ability must include the communication of self and of emotion--areas in the repertoire of language as communicaton which up to now have been ignored in education. ThenLanguage Arts include listening, speaking, reading and writing. We believe that it is necessary that, an individual be able to freely communicate information, ideas, attitudes and emotions effectively, commensurate with today's and tomorrow's needs and developments. It is important, therefore, that techniques of communication, such as nonverbal cues, use of new technological developments and simultaneous use of multiple media be incorporated into curricula for the education of children and of future teachers. This is not to dispute the effectiveness of books and other printed materials for use in reading; records, tapes, and traditional classroom verbal activities for speaking and listening; and typewriters, pencils, pens and paper in writing. Traditionally, successful media need not be ignored or discarded, but their use must be maintained only when they are the most relevant and applicable materials.

In order that the Language Arts teacher perform his function adequately, he must satisfy four aims:
1. He must demonstrate knowledge of the process of comunication. That is, he must be able to analyze what acts are necessary for effective communicaton, whether or not the process depends upon a sequence of skills or any special combination of skills, and what the specific skills of listening, speaking, reading and writing entail. In addition, no knowledge of content process is possible without knowledge and understanding of the developmental and learning processes involved in the acquisition of the content knowledge.
2. He must demonstrate proficiency in the content areas. Proficiency or lack of it may be self-evident in the demonstration of the teaching of the content; nevertheless proficiency is of sufficient importance so as to require explicit demonstration.
3. He must demonstrate the ability to assess the child's level of deveopment and to diagnose his skills needs formally and informally. He must recognize strengths as well as weaknesses, and must help the child to do the same.
4. He must demonstrate the ability to select an appropriate
approach from many known approaches based on the individual child's diagnosed strengths, weaknesses, developmental stage, and observed learning patterns. Part of the ability to select an approach is the ability to help a child acquire a given skill by dividing the skill into a number of levels ranging from the simple to the complex, the familiar to the unfamiliar, and the concrete to the abstract. The teacher must also be able to interrelate the skills as well as the areas of communication and to integrate them into the child's domain.

Flexibility and individualization are prime emphases in the Language Arts. Approaches and evaluative criteria will be used only as long as they demonstrate their usefulness. No specific item or suggested procedure is so crucial to the program that it cannot be amended or eradicated, should the need for so doing become evident.

A high and low level of competence for each performance is suggested. Alternate routes by which candidates may prepare themselves for satisfying the criteria are listed. These alternate routes do not include all the available options, and are structure so that a high degree of flexibility is maintained. One route, for example, is "appropriate practical experiences," which could include any or all, or other than the suggested practical experiences listed in the appendix. "Appropriate activities in the curriculum and learning center," and "appropriate field trips" carry the same kinds of alternatives.

As innovations and new techniques arise they will be incorporated into the program. If certain techniques or practices prove ineffective, they will be changed or discontinued.

Candidates' suggestions will be welcomed. Individual research studies will be encouraged. Especially here in the content area of the Language Arts, communication will be open and continuous.

\title{
A FEASIBILITY STUDY ON THE MODEL ELEMENTARY TEACHER EDUCATION PROGRAM (PHASE II)
}

\author{
Director . - James M. Cooper \\ Assistant Director - Milton H. Ojala
}

University of Massachusetts Anherst, Massachusetts

January 1, 1970

Che research reported herein was performed pursuant to a contract with the Office of Education, U. S. Department of Health, Education, and Welfare. Contractors undertaking such projects under Government sponsorship are encouraged to express freely their professional judgment in the conduct of the project. Points of view or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.
U. S. DEPARTMENT OF

HEALTH, EDUCATION, AND WELFARE
Office of Education
National Center for Educational Research and Development

\section*{LANGUAGE ARTS}

\section*{Introduction}

Coals. Communication is the prime focus of the Reading and Language Arts area. The function of a teacher in this content field is to develop or inprove the students' ability to communicate. This ability nust include the communication of self and of emotion - areas in the repertoire of language as communication which up to now have been f nored in education. The Language Arts include listening, speaking, reading and writing. We believe that is is necessary that an individual be able to freely communicate information, ideas, attitudes and enotions effectively, commensurate with today's and tomorrow's needs and developments. It is important, therefore, that techniques of communication, such as non- verbal cues, use of new technological developments and simultaneous use of multiple media be incorporated into curricula for the education of children and of future teachers. This is not to dispute the effectiveness of books and other printed materials for use in reading; records, tapes, and traditional classroom verbal activities for speaking and listening; and typewriters, pencils, pens and paper in writing. Traditional successful media need not be ignored or discarded, but their use must be maintained only when they are the most relevant and applicable, materials.

Our goals in terms of teacher characteristics emphasize an openness to all approaches, new and old, and a constantly expanding repertoire for presenting concepts and materials in the Language Arts (with, of course, the assumption that this openness and expansion will carry over to the other curricular areas, and to the teacher's entire performance). With the willingness to try new and different approaches, in other words, the willingness to take risks, we are hoping to develop and encourage the understanding that there is no one right way of doing anything, but rather that there are a number of viable alternative routes; an awareness of one's own learning style, and the concomitant awareness that one learning style is not superior to another. We would further encourage an awareness in the candidates of their own variety of learning preferences in terms of materials and approaches. Some students, for example, vastly prefer reading on their own to attending a lecture; others prefer the lecture; some enjoy and profit from a combination of the two; still others prefer some audio or visual media. The assortment and combinations are limitless. Nevertheless, some students come to us unaware that they have a particular learning preference, or are unaware that others do not share their particular preference. Our goals are to have the students use their awareness of the different leaming preferences in their own teaching by learning to provide a variety of learaing experiences for their students.

Our goals for this program include what we believe teachers should be able to do as well as what we believe they should be. We have, therefore, provided performance criteria which include demonstrating proficiency and knowledge in the specific content of the language arts. Certainly a knowledge of, and ability to use many approaches in the teaching of reading, or any of the areas within the Language Arts, is of outstanding importance. The ability to plan activities with a specific population in mind, rather than having sowe notion that a particular lesson can be good in the abstract or out of context is another ability we propose to develop in our students. These and other abilities are derived directly froni a hierarchy of teaching abilities which we have postulated. This hierarchy specifically delineates our goals. We have formulated our performance criteria for the operational study based on the four elements in the hierarchy.

The Language Arts feasibility study samples the essential phases of the eventual operational program. Our intention when the program is operational is to develop in our teaching candidates the following hierarchy of abilities:
1. proficiency in the language arts content (i.e., the ability to communicate effectively, both verbally and non-verbally)
2. knowledge of the processes of each of the language arts areas (such as the physiological, emotional, intellectual and social aspects of speech development). In other words, the candidate must be able to analyze what acts are necessary for effective communication, whether or not the process depencis on a sequence of skills or any special combination of skills, and what the specific skills of listening, speaking, reading, and writing entail. We will at the same time expect the candidate to understand the developmental and learning processes involved in the acquisition of content knowledge.
3. ability to assess the child's level of development and to diagnose his skill needs, using both formal and informal devices. The candidate must recognize strengths as well as weaknesses, and must help the child to do the same. Further, the candidate must be aware that the diagnostic process is a continuous one.

4a. knowledge of a variety of approaches and materials available in each area of the language arts (i.e., the linguistic, phonic, eclectic, experience, individualized, programmed, and i.t.a. materials for teaching reading)
4b. ability to select from the many available materials and approaches, or to generate new approaches and materials to satisfy the needs
of the children based on the individual child's diagnosed strengths, weakensses, developmental stage, and observed learning patterns. Part of the ability to select an approach is the ability to help a child acquire a given skill by dividing the skill into a number of levels ranging from the simple to the complex, the familiar to the unfamiliar, and the concrete to the abstract. The teacher must also be able to interrelate the skills as well as the areas of communication and to integrate them into the child's domajn.

We have presented these abilities in hierarchical order. These constitute a taxonomy of teaching abilities. We assume that, in order to be able to select an effective approach, ( 4 b ) the candidate must be eble to draw from any knom approaches ( 6,0 ) after having assessed the student's abilities and needs (3) based on the candidate's knowledge of the process (2.) which in turn comes at least partly from his abjility to perform the act (1).

Table \(I\) on the following page illustrates the distribution of performance criteria (PC) in our feasibility study. A brief key to wht the performance criteria contain follows below: a full description and rationale appear later in the report.

PC 1. comparing and evaluating 3 readers
2. discussing basals (in small sroups)
3. administering Informal Reading Inventory
4. Dividing a class into reading groups
5. developing a quiz to test comprehension
6. devising 3 technig̨ues for analyzing words
7. taking a phonics test
8. reviewing a linguistic reader
9. writing and evaluating i.t.a.
10. devising 5 different materials for the language experience approach to teaching reading
11. conducting an initial "interests suryey" interview. with a child
12. demonstrating the use of 3 reading machines and/or kits
13. devising one week's activities in language arts for a special population
14. selecting a personal professional lỉbrary, given a hypothetical \(\$ 100.00\)
15. selecting 3 methods of evaluating a reading objective
16. observing, taking and discussing the administration of I.Q. tests
17. selecting a class library
18. reading a portion of a story aloud
19. describing 3 ways of presenting a story

\section*{HIERARCHICAL DISTRIBUTION OF THE PERFORMANCE CRITERIA}
(Feasibility Study)


Key:

\section*{Level 1 = Proficiency}

Level 2. = Knowledge of process
Level 3 = Ability to diagnose
level. \(4 a=\) Knowledge of different materials and approaches
Level \(4 b=\) Ability to select appropriate approaches and/or materials
20. describing 3 activities for motivating creative writing
21. outlining a formal and informal method of teaching spelling
22. demonstrating writing on a challbboard in manuscript and cursive forms
23. devising 3 dramatic activities for a specific class
24. describing 3 ways for achieving a speech objective
25. describing 3 ways for achieving a listening objective
26. constructing an annotated bibliography on one topic
27. writing a paper on readiness
28. writing a paper on the different approaches to word analysis

Qutcome of the Feasibility Study. The findings in this report are based on a tentative summary of the data. A comprehensive data analysis is now being processed. This report contains descriptions of the instrunents we used, and the kinds of data we received. It also contains suggestions for revisions based on the information we have thus far examined.

He can, however, with some assurance, report at this time that the study demonstrated both the managerial and pedagogic feasibility of the SETEP Language Arts component.

Goals in terms of teacher characteristics appropriate for the elenentary school emphasize an openness to all approaches, new and old, and an expansion of the teacher's repertoire of skills of presentation. With the willingness to try new and different approaches should come the understanding that there is no exclusive solution to any educational probien, but rather that there are a number of viable alternative routes. We should further encourage an awareness in teachers of their own varicty of learning preferences in terms of materials and approaches. Some people, for example, linow that they learn more easily from a book they have selected than from a lecture, while with others it is exactly the reverse. Sone people perfer looking at a TV presentation: others perfer a live demonstration to any form of media. The assortment and conbinations are limitless. Our goal is to have the teaciner provide a variety of learning experiences for his or ing students, accepting the view that the different preferences on the part of the students are valid.

In acdition to a knowledge of and ability to use many approaches should come the ability to plan activities with a specific audience in mind: rather than having some notion that a particular lesson can be effective for all situations and all populations.

These and other abilities are derived directly from the following hierarcly of teaching abilities:

Level 1. Proficiency in the content of the language arts (i.e., the ability to read, write, listen, and speak well).
Level 2. Knowledge of the processes of eacil of the areas vithin the content of the Language Arts (i.e., the teacher must be able to analyze whether or not an act requires specific skills, whether or not these skills are sequential, and what the specific skills of reading, kriting, speaking, and listening are).

Level 3. Ability to assess the student's level of develonment and to diagnose his skills needs, usine both formal and infornal procedures. The teacher must be able to recognize strengths as well as needs, and must help the child to do the same. Further, the teacher must understand that the diagnostic process is a continuous one.

Level 4a. Knowledge of a variety of approaches and materials available in each area of the Lanquage Arts (such as the Linguistic, Phonic, Basal cclectic, Programed, Experience, Individualized, and \(i / t / a\) materials for teaching reading).

Level 4b. Ability to select from the many available materials and approaches; or to generate new ones to satisfy the neeks of the students (based on the individual child's diagnosed strengths, wealnesses, develonmental stage, and observed learning patterns and preferences). Part of the ability to select an approach is the ability to liclp a child acguire a given skill by dividing the still into a number of levels ranging from the simple to tie complex, the familiar to tine unfamiljar, and the concrate to the abstract.

The above abilities are arranced in hierarchical order. They constitute a taxonomy of teaching abilitjes. The perfornance criteria have been formulated using the levels of the lierarchy as a quide and base.
FEASIEILITY STUDY OF A PERFORMANCE-BASED TEACHER EDUCATION CURRICULUM IN LANGUAGE ARTS
A Dissertation Presented

\section*{By}
Masha Kabakow Rudman

Submitted to the Graduate School of the University of Massachusetts in partial fulfillment of the requirements for the degree of DOCTOR OF EDUCATION

Major \(\frac{\text { May } \frac{1970}{\text { Subject }} \text { Teacher Education }}{}\)

The goals are divided into categories for the student and the program itself and are outlined as follows:
i. Student
A. Attitudes
1. The student will demonstrate
a. self-awareness of preferences in learning and teaching styles (including pacing, sequence, and approaches)
b. acceptance of the validity of other learning and teaching styles
c. willingness to attempt more than one learning and teaching style i.e. willingness to take risks
d. commitment to seek and use a multiplicity of
- learning and teaching styles
B. Abilities
1. The student will demonstrate
a. proficiency in the language arts: reading, writing, listening, speaking
b. knowledge of the process of each area within the language arts (this entails the ability to decide which skills an act requires and whether or not these skills are sequential)
c. ability to assess the student's level of development and to diagnose his skills needs, using both formal and informal procedures. The abilities to
recognize strengths as well as needs, to communicate this information, and to keep this procedure continuous rather than sporadic are included in this goal
d. knowledge of a variety of approaches and materials available to each area of the language arts (such as linguistic, phonic, basal, programmed, experience, individualized, and i/t/a materials for teaching reading.)
e. ability to select from the many available materials and approaches, or to generate new ones to satisfy the reeds of the students
II. Program.
A. Provide an overview of the content of the elementary language arts curriculum
B. Provide a structure for constant reexamination
of the theoretical bases, content, and approaches
in the language arts
C. Provide a model for the learner's future behavior
D. Permit the participants to achieve a number of unspecified but probable behaviors such as:
1. Pace his own learning appropriately
2. Experiment with different learning environments and materials
3. generate new approaches for his own learning
4. Develop a particular interest in the language arts, leading to a specialization in the area

Chapter two includes a review of literature pertinent to curriculum development, instructional alternatives, and use of media in teacher education. The review of literature dealing with the content area of language arts is contained in chapter three. The curriculum for the feasibility study was included in this chapter as well as a summary of the participants' comments and suggestions. Chapter four represents the outcome of the suggestions offered in chapter three: it contains the follow-up curriculum.

Conclusions and suggestions for future research are presented in chapter five. The conclusions indicate that it is pedagogically feasible to design and offer a curriculum to future teachers based on performance and offering multiple instructional routes to the achievement of these performances.

\section*{APPENDIX E \\ APTITUDE TEST BATTERY}

Fall semester: Surface Development lest Oral Comprehension Test Apparatus Test Written Comprehension Test Utility Test

Spring semester: Surface Development Test Auditory Letter Span Utility Test First and Last Names Test Instructions for Grading Utility Jest

\section*{SURFACE DEVELOPMENT TEST - Vz-3}

In this test you are to try to inasine or visualize how a piece of paper can be rolded to form sone kind of object. Look at the two drawings below. The drawing on the left is of a piece of paper which can be folded on the dotted lines to form the object drawn at the right. You are to imagine the folding and are to figure out which of the lettered edges on the object are the same as the numbered edges on the piece of paper a.t the left. Write the letters of the answers in the numbered spaces at the far right.

Now try the practice problen below. Numbers 1 and 4 are already correctly marked for you.




NOTE: The side of the flat piece marked with the \(X\) will always be the sar:e as the side of the object marked with the \(X\). Therefore, the raper must always be folded so that the \(X\) will be on the outside of the object.

In the above problem, if the side with edge 1 is folded around to form the back of the object, then edge \(l\) will be the same as edge \(H\). If the side with edge 5 is folded back, then the side with edge 4 may be folded dom so that edge 4 is the same as edge \(C\). The other answers are as follows: 2 is \(\mathrm{H} ; 3\) is G ; and 5 is H . Notice that two of the answers can be the same.

Your score on this test will be the number of correct letters minus a fraction of the nuraber of incorrect letters. Therefore, it will not be to jour advantiage to ghess unless you are able to elfninate one or more of the answer choices as wrong.

You will have 6 minutes for each of the two parts or this test. Each part has 2 puges. Then you have finished Part 1 (arges 2 and 3), STOP. Please do not go on to Part 2 until you are asked to do so.

DO NOT TURN TIIS FAGE UNTII, ASKED TO DO SO.

Copyright (c) 1962 by Elucational Tiesting Service. All rights reserved. Adapted from Surface Develoment by L. I. Thurstone

\section*{Part 1 (6 mirutes) \(\quad\),}


2






\(\qquad\)

\section*{APPARATUS IEST ---Sep-I}

You will be given e list of twenty implements which are familiar to everyone. Your tazk is to suggest two improvements on each of them. Do not saggest as on improvement something that is now comonly part of the object. You do not need to worry ebout the techricnl possibility of your iden as long as it is a reasonable one. If, for example, you were asked to sugesest improvements on the telephone, you right recomined:
1. A device that tells you who is celling before you pick up the receiver.
2. Luminous dials to operate the telephene in the dark.

It is not necessary to expluin your reeson for a suggested inprovement. Your suggestion shonld be specific. A suggested improvement like "the irnpiement should be mate rone efficient" is too general to be acceptable.

If you have difficulty with one itan do not spend too mach time on it but go or: to the nexl, item. Hemember, you are to cugsest two improvements for each jmplement. Do not sugest aimilar jumporents for two or more implements, becanse duplications will not be counted.

This test has two pertis. Ench part has ten items. You wili have 1 minules for ench part. Wher you have completed the first part, SYOP. Do not es on to the secont part until esked to do so.

DO NOT TUNT TESE FAOB UNTI, ASKST 10 DO SO.

Copright (c) 2.962 by J. F. Guilfurc. AJl rights reserven.
This test was prepared under U. S. Governent. Contrant, N6Onr--23810.

Fage 2
Pert 1 ( 7 wnates)

\section*{bist two 1 merovements for euch ftem.}
1. Tosster:
\&.
b.

2. Refrigerator:
e.
b.
3. Vacuvan clleaner:
a.
b. \(\qquad\)
4. Windsnield wfer:
8.
b. \(\qquad\)
\(\qquad\)
5. Doorbell:
a.
b.
6. Sifety rezor:
a.
b.
7. Autonatic pencin:
a.
b. \(\qquad\)

\section*{Paragraph \# \#}

Directions: You will have two minutes to read this paragraph. At the end of that time, you will be asked to turn to a new page and list all the main ideas you remember from the paragraph.

Excerpt from an article entitled "Polynesian Surfing":

Like just about everything else in ancient Hawaii, surfing also had its sacred aspect. There is even evidence that surfing had its own stone temples. Two of these were still standing in the early 1960's on the south coast of the island of Hawaii. Although how these temples were associated with surfing is not entirely clear, it is notable that both structures stend opposite well-known surfing breaks and were probably fine sitos for observing the surf, for resting after surfing or even for invoking the waves. One consists mainly of an upper stone terrace on a larger foundation. A deep, stone-lined water pool is sunk into one side of the foundation terrace, ideal for bathing or for rinsing off salt water. The terraces themselves are so aligned that from the upper level, which is like a bleacher, spectators might easily watch surfers riding waves less than a hundred yards away.

\section*{UTIIITY TEST--Xs-I}

In this test you are to list as nany uses as you can think of for a common object.

Write as rapidly as you can. Give all the uses you can think of. Your answers do not have to be complete sentences. You may use short phrases.

There will be numbered lines on which to write. Use one line for each answer. When the signal is given (not yet) turn the page, read the name of the object and the example, then list all the uses of the object that you can think of.

There are two parts in this test. You will have 5 minutes for each part. No questions will be answered.

STOP HERE. WAIT FOR FURTHER JISSTRUCTIONS.

Copyright 1962, Sheridan Supply Company, Beverly Hills, California

This test was prepared under U. S. Government Contract Noonr- 23810 .

List as many uses as you can think of for a brick. Write each use on a separate line.

Example: build a house.
1.
2.
3.
4.
5.
6.
7.
8.
9. \(\qquad\)
10.
11.
12.
23.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

STOP HERE. WAIT FOR FURTHER IMSTRUCTIONS.

\section*{AUDITGRY LeJrem span lest -m Mos}

This is a test of your ability to remember series of letters, The examiner will call out the letters. After he finishes, you are to write down the letters in the exact order in which they were enlied out. Please do not write any letters unity the examiner has finisher the whole series.

Some of the series will be too long for you to reniember all of the letters. If you do not remember some of them, leave a blank space for them and write down all the letters you do remember. Try to remember ald the letters if possible, and be sure to write them down in the exact order in which they were called out.

For example, the examine might call out, "Series One. H H L Begin.".

When he says "Regin" (showing that the series is complete), write the letters on the shower page in this manner:
3.


Only the following letters will be used: \(C, F, G, H, K, L, P\), \(R, S, W, Y\).

It is very important that you do not write letters while a series if be ing called out, because this is e test of your memory for letters.

Your score on tins test will be the number of series you remember correctly.

DO NOT MEN THIS PAGE UNTIL ASHED TO DO 50.

Letter Span-Auditory--Ms-3
(1) \(\mathrm{K}, \mathrm{F}, \mathrm{C}\)
(2) \(\mathrm{H}, \mathrm{S}, \mathrm{L}, \mathrm{Y}, \mathrm{G}\)
(3) \(P, F, R, C, W, S, G, K, Y\)
(4) \(\mathrm{P}, \mathrm{L}, \mathrm{S}, \mathrm{C}, \mathrm{W}, \mathrm{K}, \mathrm{R}, \mathrm{F}, \mathrm{H}, \mathrm{G}\)
(5) R, G, S
(6) \(L, W, C, Y, K, R, P\)
(7) F, S, Y, I, C, H
(9) Y, \(\mathrm{C}, \mathrm{G}, \mathrm{P}, \mathrm{W}, \mathrm{L}, \mathrm{S}, \mathrm{K}, \mathrm{H}, \mathrm{R}, \mathrm{F}\)
\begin{tabular}{l} 
(10) \(W, Y, S, C, L\) \\
(II) \(C, F, G, W, K, S, R, L, ~\) \\
\hline
\end{tabular}

\section*{Page 2}

\section*{ANSWER FAGE}
1.
2.
3.
4.
5.
6.

7 -
8.
9.
20.
11.
12.
13.
14.
15.
16.
27.
18.
19. \(\qquad\)
20.
21. \(\qquad\)
22.
23. \(\square\)
24.

DO NOT GO ON TO ANY OTHER TEST UNTIL ASKED TO DO 50 .
STYP.

Thi: is a test of your abilitj tio learm first and iant numes. In each pert. of the test you will study a page of \(i 5\) full names, first ent? last. After studying the page showing : bill names you will turn to ar page showing a 1 i at of the last names in a different racier. Yod will be asked te write the first names that go with each last name.

Here are some pasetice nanes. Study them until you are asked to. turn to the next page (1 minute).

Janet Gregory
Trioness Adams
Rol.and Donaldson
Patrinia Fletcher
Bestuy Eronson

DO NOT TUEN MEIS PAGE WHILI ASKEL TO DO SO.

\section*{Page 2}

\section*{PRACDCS PRTI PACE}

The fi. st name in the Jist belon has been :umpleted. wiste sil of the ofiter firct names that oul cant remember.


Your score will be the number marea corvectiy. Even if you are not sure of the cormect answer to a guestion, it will be to your advantage to guess.

There are two parts in this test. bech part has two pages:
The linst of these is a menory page winch you are to stuay for 2 minutes.

The second is a test page on which you are tu write the first manes that go with tre jast names. You will have ? minutes to write.

When you have Einjshed. Part 2, Snos. Please do not go on to Part ? until you are asted to de so.

\section*{Face 3}

MEMORY PAGE FOR PARE: 1

Study this List. You will be allowed 3 rainutes.

\author{
Claire Sullivan \\ Jack Thompson \\ Leon Chapin \\ John Reynolds \\ Joan White \\ Dontid Lantuert \\ Daniel Shan \\ Kenneth Murray \\ Edward Nichols \\ Jean Wolfe \\ Carl Brown \\ Blanche Clar'. \\ Roges Lemon. \\ Eloise Cooper \\ Davie Eurecss
}

DO NOI MURN THIS EAGE UNETL ASHED TO DO SO.

STOP.

\section*{WhS EAGE FOK PART I}

Complete the names betow. You heve 2 matutes.


DO WOT INTM TO EART 2 UNTLL ASKED SO DO 30 .

STOE.

The best way to explain the grading procedure, is to offer you three examples. After you have looked at the grading, go to the next page, read the exact instructions, then return to this page to make sure you understand them. Uses for a brick:
1. build a wal.
2. build a dormitory
1. sit on
1. school
/ 3. paper weight
4. doorstop
\(\sqrt{3 .}\) build a fire- 3. sidewalk
place
\(\sqrt{4}\). smash a window 4. road
\(\sqrt{5}\). build a bookcase
\(\sqrt{6}\). break a window
5. hit a cop on
the head
5. wall as fence
\(\sqrt{6}\). play catch
\(\sqrt{6}\). raise object from floor
7. use under projector to raise it
8. stand on it to reach some thing
V. paint it and use for decoration
7. wear as a hat 7 . separate shelves
8. smash a micro- \({ }^{1}\). bookends teaching unit
V. tie the \(P C \quad\) 9. steps
list to and
throw in ocean

If this were a test of fluency, all three lists would have the same score, each has 9 items. If it were a test of creativity, the middle list would probably have the highest score. It is, however, a test of flexibility. Flexibility is here defined as the ability to change mental set. It is not the item (build a wall) that is scored, but the difference between that item and the next (build a dormitory). In this case the student has not changed the use to which the brick is being put. No point. Between (build a dormitory) and (paper weight) the student has changed use. One point. If the student went right back to building churches, post offices etc. he would not receive a point for going back. However, if he goes to a third use (smash a window), or another use like paperweight (doorstop), then going back to buildings would give him a point.

I have made a list of some of the uses I found when reading. They are not all listed. In setting up the categories of use, I have tried to focus on the quality of the brick which makes the use unique. You will surely find other categories as you score.

To summarize: 0 pointis if no shift in type of use I point whenever shift occurs. Only 1 point if ono item interposed between two of the same use (i.e. where two shifts would normally be credited.)

\section*{Types of use:}
1. construction: step ladder, wall, house, street, garden wall, all manner of permanent buildings
2. weight: block wheels of car, doorstop, bookend, lamp base, paperweight
3. tools: hammer,
4. toys or recreation: car, train, chip and use of blocks
5. decoration: statue, paint it, display for object
6. demonstration and examples: sets, density, like-unlike, color
7. brick products: clay, mosaic chips
8. support (focusing on small increment), bookcase, step stool, arch
9. business: put people to work
10. weapon: injure someone, throw in window,
11. cleaning: scouring surface
12. furniture (more than support), bench, table, bed, chair
13. occupy space: fill in hole
14. unit of linear measure: something is 3 bricks long, 5 wide
15. unit of weight: 3 bricks heavy
16. heat retention: foot warmer (or reverse, wet for cooling effect)
17. opaqueness: hiding place for worms
18. fireproof: chimney, fireplace, barbecue, kiln,
19. small value: give a present
20. absurdity: brick soup, wear as hat, kick, dance around

The papers really are fun to read. Have a good time. Please check wherever you are giving a point. Total at the bottom of the page. Return to my folder at your convenience, but by next Friday if at all possible (April 24th). Thank you.

The Evaluation of a Performance Based Curriculum in the Language Arts. (October 1970) Mary-Alice B. Wilson, A.B., Radcljffe College M.A., University of California, Berkeley Directed by Dr. David J. Yarington

An evaluation was designed for a performance based curriculum in the language arts as part of the Model Elementary Teacher Education Program. Both the curriculum, designed by Dr. Masha Rudman, and the evaluation were used during the 1970 academic year.

The evaluation, which was based on a unit size model, attempted to identify the different sized systems of which the language arts program was a part, and to collect information on those variables relevant to each system. Information was collected on four variables: population, program operation, curriculum, and program goals.

Population. No attempt was made to control the population on the program. Background information was collected on each student, processed and reported in frequency tables. Information on certain attitudes and aptitudes was collected as part of the information on another variable, program goals.

Program operation. An informal communication system for administrators included office hours, folders, and seminars. Each time a student attempted a performance criteria, he and his rater completed a questionnaire which was used to provide data for a number of computer programs. The printout provided for the staff information on program operation and counseling information on the progress of each student in the program. The students, in addition to an informal system of student folders and office hours, also had computer printouts which described their progress in the program.

Curriculum. Information on the generalists' performance criteria was processed from the questionnaire which accompanied each completed PC. Similar information was available on the specialists' PCs. The printout included average student time, their rating of the PC on the teaching hierarchy, information on the time, evaluation and success of each IA, rating time, and the number and degree of successful performances for each \(P C\).

Goals. Goals were rewritten during the program. Since a number of the goals dealt with the interaction of the instructional alternative system and the student, a number of attemptis were made to investigate this relationship. Information included students' reported preferences to instructional modes, their anticipated use of various
instructional alternatives, their attitude toward instructional modes as measured on a semantic differential, their competence in certain instructional modes as measured by aptitude tests, and their use of the modes in their practice teaching classroom. Although some interesting information was collected, none of the correlations run on the generalists or the specialists demonstrated any significant correlation between variables or any significant differences between groups; neither was there any significant correlation between the students' total performance level and time in the program, the number of PCs attempted, or score on an aptitude test. The evaluation design attempted to collect information on four variables, process them using packaged and original computer programs and report them to specified audiences. Certain parts of the evaluation, specifically the program information system, were successful. The difficulties with other aspects of the evaluation appear to have been caused by limited scope of the information sources used and the weaknesses of the measuring instruments, rather than the methodology upon which the design was based. The design itself is one of the variables in the program. Like the currjculum or the population it can be varied. What has been described, and therefore what can be replicated or revised, are both the specific instruments and activities of this evaluation and the evaluation design.```

