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Abstract 
Cooperation is the foundation of human social life, but it sometimes requires individuals to choose 

against their individual self-interest. How then is cooperation sustained? How do we decide when 

instead to follow our own goals? I develop a model that builds on Bacharach’s (2006) ‘circumspect 

we-reasoning’ to address these questions. The model produces a threshold cost/benefit ratio to 

describe when we-reasoning players should choose cooperatively. After assumptions regarding 

player types and beliefs, we predict how the extent of cooperation varies across games. Results from 

two experiments offer strong support to the models and predictions herein.  
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1. Introduction 
 

It used to be said that the laws of aerodynamics can prove the bumblebee is too heavy to 

fly. Magnan (1934) claimed to have proved it was “impossible”; but the bumblebee, being 

unaware of these laws, continues to fly. A similar situation appears to exist in some strategic 

settings for successful human cooperation and coordination and the predictions derived from 

game theory. The most well-known example of unpredicted cooperation involves the Prisoner’s 

Dilemma game, and (primarily for coordination) a game labelled ‘Dodo’ by Binmore (1992) but 

more often known as ‘Hi-Lo’ (e.g., Bacharach, 2006). Here we shall use ‘A’ for Hi and ‘B’ for 

Lo.  

Figure 1: The Hi-Lo Game 

 
 

  

 

 

The reason such a seemingly simple game has been widely debated is that while human 

players find it almost self-evident to choose ‘A’, game theory’s basic assumption of individual 

instrumental rationality (IIR) alone can not provide a coherent reason for a player not to rule out  

‘B’ (see Bacharach 2006, Gold and Sugden 2007). This is because [B, B] is as much a Nash 

Equilibrium of the game as [A, A]. Gold and Sugden (2007) conclude:  

If we find that standard game-theoretic reasoning cannot tell players how to solve the 

apparently trivial problem of coordination and cooperation posed by Hi-Lo, we may 

begin to suspect that something is fundamentally wrong with the whole analysis of 

coordination and cooperation provided by the standard theory. 

  Player 2 
 

Player 1 
 A B 

A 2,2 0,0 
B 0,0 1,1 
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 But as standard theory works well in many other applications, we need to understand why 

IIR is not the sole appropriate foundation on which to apply game theoretic methods. Identifying 

the set of games for which an alternative to IIR is needed is our first task. The games that 

interested Bacharach in his (posthumous) magnum opus (2006) included not just the one-shot, 

simultaneous-move, symmetric, two-player game of Hi-Lo, but also Chicken, Prisoner’s 

Dilemma, Stag Hunt and an alternate form of Stag Hunt sometimes called Tender Trap. It is this 

set of games that will be the focus of the current paper1

 With reference to Figure 2, the following payoff inequalities demarcate the scope of this set 

of games: R>P for mutual cooperation to exceed mutual defection; R>S to ensure cooperating alone 

is risky; T>S for the off-diagonal cells to penalise the cooperator.  

.  

Figure 2: The 2x2 PD Game 

 
 
 
 
    

  

Of the 24 possible rank orderings only five satisfy these inequalities. One of these, R>T>S>P, is 

trivial because cooperation is a dominant strategy under any known mode of reasoning. This leaves 

four payoff rankings of 2x2 symmetric games: Prisoner’s Dilemma (T>R>P>S)2

                                                 
1 Bacharach focused on 2-player games but took his basic arguments to generalise also to n-player versions. While 

he believes group identification is independent of group size (2006, p.112), the likelihood all players cooperate 

probably falls as n rises. Consistent with this, Van Huyk, Battalio and Beil (1990) found cooperation in a stag hunt 

game with 2 players was higher than for that game played with 16 players. We have not attempted to model or test 

this issue here, but their finding suggests it is a suitable issue for future work. 

, Chicken 

2 Note the repeated-game condition 2R > (T + S) is omitted because these are one-shot games. Our interests also 

extend beyond the PD game. Although the (asymmetric) ‘group’ payoff is not maximized through mutual 

  Player 2 
 

Player 1 
 A B 

A R,R S,T 
B T,S P,P 
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(T>R>S>P), Stag Hunt (R>T>P>S) and Tender Trap (R>P>T>S). Other games intermediate 

between these types, for example T>R>P=S, are also of interest. A limiting case of Tender Trap 

as T is lowered to zero is the Hi-Lo game for which R>P>T=S=0.3

The Prisoner’s Dilemma (PD) game is a notoriously barren landscape for cooperation; for 

this reason it is also an important benchmark against which the rationality of cooperation has 

been vigorously debated. Social psychologists use the payoff difference [T-R] to measure the 

greed incentive, and [P-S] to measure the fear motive; both are present in the PD game (Simpson 

2006). In ‘Morals by Agreement’ (1986) Gauthier develops a controversial model he calls 

‘constrained maximization’ which promotes the view that cooperation in a one-shot PD game is 

the uniquely rational choice. His claim was met with staunch opposition from game theorists 

(e.g. Binmore, p.133 in Gauthier and Sugden, 1993) because he advocated the choice of a 

strongly dominated strategy. This criticism also holds if a theory merely allows, rather than 

prescribes, cooperation; despite this, the intuition that cooperation is not obviously irrational has 

not gone away.

 

4

 However, obviously-dominated options are not often chosen in other domains where the 

dominant nature of the choice/strategy is equally transparent to players. Numerous studies of 

choice over lottery pairs have shown that despite the many systematic violations of Expected 

Utility Theory axioms, the one principle that is very rarely violated is transparent dominance. 

For example, Butler and Loomes (2007) make respect for this principle a cornerstone of their 

  

                                                                                                                                                             
cooperation if 2R < (T+S), ‘we’-thinking may still be triggered for PD as for Chicken games, where often 2R < (T + 

S). See also footnote 10. 
3 Hi-Lo is not tested here because the expectation of near universal cooperation is not in dispute. 
4 The PD game is not the only 2x2 game to encapsulate the individual/collective conflict. Both Colman (1995) and 

Thaler and Camerer (2003 p.164) argue the Chicken game is in many ways more suited to investigating cooperative 

versus competitive tensions than the PD game because the ‘fear’ motive for defection is eliminated. 
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model of imprecise preferences. Why then is applying the ‘transparent dominance’ argument to 

PD games controversial?  

In relying solely on IIR, game theory permits only the question ‘what should I do’; not 

one stemming from an alternate perspective ‘what should we do’ (Sugden 2003, p.167).  If I take 

the ‘me-thinking’ view, my preferences, as represented by the payoffs, can be summarised as 

they are written in the normal form matrix and my choice will follow those utilities in the 

standard way. If the payoffs in the matrix are dollars, other sources of utility such as altruism 

may alter these dollar payoffs, possibly to the extent that a payoff-transformation changes the 

game so that its utility ranking no longer constitutes a Prisoner’s Dilemma. A desire to cooperate 

in the new game could not, of course, be used to justify cooperation in a PD.  

But suppose when facing a particular configuration of dollar payoffs I instead perceive 

the problem as one for us and choose as a component of a dyad, when I consider this ‘dyadic 

goal’ sufficiently likely to be shared? If the configuration of individual payoffs leads me to group 

identify, the level of agency of my actions is transformed and I may use ‘we’-reasoning for my 

decision, not payoff transformation.   

Theorists usually assume any sources of motivation can be combined together to produce 

these utility numbers and that the source of motivation they embody is irrelevant once the 

numbers are identified. It may then be argued that a game intended to be a PD, for example, is 

actually a Stag Hunt game when we include any symbolic meaning5

                                                 
5 Any ‘meaning’ a particular choice may have must clearly depend on the characteristics of the option(s) we reject, 

as well as the choices the other player faces. ‘Meaning’ in this sense can’t attach to a choice in isolation.  

 cooperation in that context 

has for us. But there are profound conceptual reasons why agency transformation can not simply 

be reduced to payoff transformation in this way. As Nozick (1993, p.55) explains: “…if the 
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reasons for doing an act A affect its utility, then attempting to build this utility of A into its 

consequences will thereby alter that act and change the reasons for doing it”.  

Hollis and Sugden (1993) make a related argument. In Savage’s (1954) theory, a 

preference between acts A and B derives from the consequences of those choices under each 

event. Hollis and Sugden point out that to allow these consequences to be slotted into any event 

or choice as Savage’s theory requires the consequences (utilities) must be independent of the 

description of any particular event or choice. There is then no scope for “…reflection to pass 

judgment on the promptings of preference”.6

Savage’s axioms serve to rule out accounts of motivation where the source or character of 

satisfactions affects the agent’s attitude towards consequences or where principles enter 

into the description of acts. To this extent then, the axioms presuppose a particular 

account of motivation. 

 They use these arguments to conclude that:  

For decisions in experimental settings, violations of transparent dominance in the 

Prisoner’s Dilemma exceeding 50% can be observed through suitable choice of dollar payoffs, in 

striking contrast to the violation rate for transparent dominance of 1-2% seen in choices over 

lottery pairs (which also use dollar payoffs). The difference between these cases is so striking it 

suggests that maybe half of all players do not view their decision to cooperate in the context of a 

one-shot PD as the choice of a transparently dominated option. If our aim is to model human 

behaviour, including of the many people who do not accept that a ‘B’ choice is uniquely rational, 

agency transformation offers us an alternative way to reason from payoffs to decisions.  

                                                 
6 Gauthier may have had a similar idea (Gauthier and Sugden 1993, p.186) when he claimed that standard theory: 

“…leaves no conceptual space between preferences [the utilities in the matrix] and choices, and a view that leaves 

no such space is simply too impoverished, in the distinctions that it admits, to provide a model of rational action.” 

Bacharach’s approach would differ as he accepts standard theory does offer a model of rational action, just not the 

only model of rational action for these games. 
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Bacharach modifies we-reasoning to recognise that people won’t always choose 

cooperatively, even under a ‘we’-frame, because they lack assurance others will we-reason; this 

broader perspective he calls circumspect we-thinking. Gold and Sugden (2007) present a formal 

statement of this concept as a reasoning schema. In this paper I shall assume hereon that 

circumspect we-thinking is the missing concept game theory needs to incorporate to predict 

human choice behaviour in these games.  

 

2. Adaptive Origins 

Any adaptation favouring human cooperation would need to be both nuanced and finely 

balanced against selfish concerns to survive the pruning and shaping of natural selection. 

Bacharach argues that if we recognize the diversity of encounters that early humans faced, no 

one game can serve as an adequate model for all kinds and contexts of possible cooperation. But 

selection for many game-specific special-purpose behavioural mechanisms is implausible. 

Instead, the evolution of a single, facultative, mechanism for promoting cooperation in related 

game situations is more probable, offering economies of scope in application across the set of 

relevant games. 

Bacharach (2006, p. 111) argues: 

“… Dispositions to cooperate in a range of types of game have evolved in man, group 

identification has evolved in man, and group identification is the key proximate 

mechanism for the former. … Group identity implies affective attitudes which are 

behaviourally equivalent to altruism in Dilemmas, and it can explain what altruism 

cannot, notably human success in common-interest encounters”.  



 7 

 His perspective fits neatly within the popular ‘social brain hypothesis’ (Dunbar and 

Shultz, 2007). This hypothesis notes that early man’s ecological challenges were mostly solved 

socially, requiring both coordination with and flexibility in interactions with other tribal-group 

members. The capacity for language may also have been selected for because of its facilitation of 

cooperation in groups. Tomasello (in Tomasello et al 2005 p.690) argues that underlying human 

cognition is “an adaptation for participating in collaborative activities involving shared 

intentionality”; this shared, or ‘we’, -intentionality is he argues unique to humans. Any shared 

intentionality might make we-thinking not simply possible, but in many contexts, natural.  

 Social psychologists have arrived at a concept similar to ‘we’-reasoning which they call 

‘transformation of motives’ (De Cremer and Van Vugt, 1999). Those authors investigated the 

consequences of enhancing players’ group identification on their contributions in a public goods 

experiment. They found an increase in contributions from those previously not contributing, but 

no further increase from those who were already contributing. The inference is that the latter 

group already perceived the decision as one for the ‘group’ so the manipulation had no further 

effect. If some forms of ‘cheap talk’ can enhance group-identification which then raises 

contributions from free-riders, such a ‘medium of social exchange’ may be more valuable than 

usually assumed.  

 Finally, our capacity in the marriage dyad to subsume our individual goals within the 

goals of the couple may be a consequence of the evolution of shared intentionality. There is 

evidence that the frequency with which a spouse uses the words ‘we’ and ‘our’ (problem) in 

discussing a partner’s health after an episode of heart failure, rather than ‘he’ and ‘his’ (problem) 

predicts the future health of the partner (Rohrbaugh et al, 2008). 
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 I ignore in this paper constant-sum games (e.g., the Dictator game) that primarily invoke 

altruism or inequity-aversion rather than we-thinking. Dispositions for altruism and equality 

likely draw upon subtly different emotions and instincts than group identification. Price et al 

(2002) argue that any mental module adapted for reciprocity would not also generalize to 

‘fairness’ games. Limited experimental evidence supports this conjecture. Brosig (2002) for 

example found little correlation between the subjects who cooperated in PD games, and the 

generous subjects in Dictator Games, as has other work by Butler et al (2011). 

If the feelings behind man’s intuitively we-thinking approach are adaptations embodying 

information accumulated over thousands of generations of tribal life, our choices today will draw 

upon and build on the messages transmitted by those feelings. In summary, our response to the 

payoff-configurations defining these games may, by agency transformation, be nature’s way of 

helping us extract our mutual benefits from cooperation and coordination. 

 

3. The Models 

3a) Using IIR: The Standard Model 

 Let ‘A’ be the cooperative choice and ‘B’ the defecting choice as labelled in our 

experiments. Here, A is only chosen by a ‘me’-thinker for self-interested reasons. In standard 

game theory we can assign a subjective probability to the strategy choice of the other player. Let p 

denote a ‘me’-player’s estimate of the chance another player will choose option A, and (1-p) choose 

option B, where p ∈ [0, 1] (see Figure 3). 

- Figure 3 here - 

 These games possess between one (PD) and three (e.g., Hi-Lo) Nash equilibria in pure or 

mixed strategies. Where it exists, the value of p that equates the expected values of options A and B 
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so that he is indifferent between them, we denote by p* and is the mixed-strategy NE in conjectures 

for the game:  

 

   p* =  
)()(

)(
TRSP

SP
−+−

−      (1) 

 

 If he believes either p > p* or p < p*, then either A or B could offer a greater expected value. 

We can think of p as his estimate of the probability that another player will choose ‘A’. In these 

games a ‘me’-thinker will use (1) to decide his choice. In the PD game he may still expect some 

others to cooperate; but no matter how strong his belief that others will play ‘A’, it will always pay 

him to defect and (if correct) receive ‘T’. He will never cooperate in any one-shot PD game, as no 

value of p ∈ [0, 1] in (1) can ever make EV (A) > EV (B).  

 

3b) The Circumspect We-Reasoning Model 

 Now let us adapt (1) for circumspect we-reasoning. We-thinking players are likely 

heterogeneous in their degree of we-strength, weighing the perceived risks and dyadic benefits 

involved. Let us assume a random player is drawn from a population represented by a continuum 

of circumspect we-thinkers. Denote this new dimension using a continuous variable, c (where c 

∈ [0, 1]), representing the degree to which a player is willing to act as part of the dyad. A 

committed we-player using c = 1 chooses as if either ‘we’ will get R or ‘we’ will get P (although 

recognising there is no causation to guarantee these outcomes). She will then choose option A, as 

R > P in the games of interest in this paper. Similarly, if a player uses c = 0 she is 

indistinguishable from a ‘me’-player and the new model reduces to the standard model in (1).  

 But the most interesting case is the contingent we-thinking player; using 0 < c < 1, her 

circumspect approach leads her to balance her we-goals with an eye to self-protection against 



 10 

both ‘me’-players and potential ‘B’ choices by other contingent we-reasoners. How might we 

incorporate these assumptions into (1) in the most parsimonious way? As in (1), let ‘p’ denote a 

player’s estimate of the chance another player will choose option ‘A’, but where the player is 

now a ‘we’-thinker who also recognises the existence of ‘me’-types in the population.  

 For each of player 2’s options, player 1’s ‘c’ should measure the degree of increased 

decision-weight player 1 assigns to the ‘we’ choice-pairs (at the expense of the off-diagonal 

payoff-combinations). When 0 < c < 1, increasing weight is given to R and P as c rises from 0 to 

1. Her maximizing choice could then be either A or B depending on: i) her degree of we-

thinking, c; ii) her beliefs regarding the likelihood of others’ cooperation, p; and iii) the 

particular payoff-values in the game: R, S, P and T. We may then represent the expected value 

of choosing A and of choosing B for such a player as follows. 

----- Figure 4 here ----- 

Strictly speaking, it is not essential to subscribe to the logic of we-reasoning to make use of 

Figure 4. Even if one were committed to IIR and individual agency, a model that can predict the 

extent of error across this class of games would still be descriptively and practically useful. As an 

analogy, consider the way probabilities are transformed in decision theories such as cumulative 

prospect theory (Tversky and Kahneman 1992), where for example 4% + 4% might be treated as if 

it equalled 10% in the weighting of consequences. While probability transformations are popular 

because they can improve the descriptive fit of some theory, it is arguable whether the resulting 

behaviour should be counted as normatively rational. 

 Returning to Figure 4, the threshold value for c denoted by c*, is that for which EV (A) = 

EV (B). For Player 1, by solving for c we find: 

    p(T-R) + (1-p)(P-S) 
      c* = ________________          (2) 
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              p(T-P) + (1-p)(R-S) 
 

 By symmetry (2) also holds for Player 2. When a ‘we’-thinking individual’s c > c*, her 

identification with the dyadic-goal is sufficient for her to choose A in that game. As her EV (A) > 

EV (B), her maximizing choice is to participate in bringing about [A, A] over [B, B]. Similarly, if 

her c < c*, instead of playing her part in [A, A], she chooses option B. Ceteris paribus, the higher c* 

is in any game, the smaller is the fraction of we-thinkers whose we-strength will satisfy c > c*, and 

so a lower percentage of cooperative choices is predicted.7

The model in (2) can also be understood as follows. The numerator shows Player 1’s 

expected ‘cost’ from selecting the cooperative row, while the denominator shows her expected 

‘benefit’ if Player 2 selects the cooperative column. Ceteris paribus, as the numerator falls 

(denominator rises), the costs of cooperation decline relative to the benefits, lowering the c* 

threshold and raising the predicted percentage of ‘A’ choices. Model (2) then produces a 

threshold level for cooperation and coordination analogous to Hamilton’s ‘cost to donor/benefit 

to recipient’ rule for kin-selection theory (Hamilton 1964); if a player’s c exceeds this threshold, 

cooperation is justified. The model therefore fits comfortably with the underlying logic of both 

evolutionary biology and economics and is consistent with the five rules for the evolution of 

cooperation identified by Nowak (2006). 

  

Interestingly, model (2) can be applied in other contexts if ‘c’ is given a different 

interpretation. For example, suppose a me-reasoning Player 1 were to play these games against a 

Player 2 drawn from a population consisting of proportion (1-c) of other me-reasoning players, 

                                                 
7 Threshold value c* is unique under a positive linear transformation of these payoffs. Indeed, List (2006) presents 

evidence from a TV game show which finds a significant minority of participants choose cooperatively in a situation 

analogous to the PD even when thousands of dollars are at stake. 
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and proportion c of computer programs that simply mirror back the choices of the ‘me’-

reasoning Player 1. The optimal choice can be calculated using precisely this same result.8

 When applying (2) for a game with specified values of [R, S, P, T], we can simplify the 

equation for threshold value, c*. Figure 5 gives two examples and then plots c* as a function of p, 

c*(p), using a unit square diagram in ‘p, c-space’. Here c*(p) separates the area above the EV (A) = 

EV (B) line, the region where option A is preferred by a ‘we’-thinking player (as one’s c > c*), from 

below where option B is preferred (if one’s c < c*).  

 One 

key difference however is that the weights attached to the payoffs in Figure 4 would then be 

probabilities, as a degree of causation between the ‘me’-player’s own choice and that of the 

column player would exist, which is not true for circumspect ‘we’-thinking. 

------ Figure 5 here ------ 

Note that the EV (A) = EV (B) line has no horizontal intercept for PD games, as option A 

can never be optimal when a player’s c = 0. To summarize: 

Claim 1:  ‘Me’-thinking requires p in [0, 1] and c = 0 and predicts individual maximizing 

choices according to p < p* and p > p*. Model (1) is used. 

Claim 2:  Circumspect we-thinking requires p, c in [0, 1] and predicts the circumspect we-

maximizing choice is ‘A’ if the (p, c) pair lies above Figure 5’s c*(p) line; she will choose ‘B’ 

otherwise. Model (2) is used. 

 

3c) Assumptions for Predicting Cooperation 

 If we hope to make predictions for the frequency of cooperation that could hold true across a 

population for this set of games, we require simple assumptions on the use of ‘we’-thinking and on 

                                                 
8 See Section 5a for still another possible use of Model (2). 
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how p is distributed. As there is no greed motive for defection in Stag Hunt and Tender Trap 

(including Hi-Lo) games, all players will be assumed to use circumspect we-thinking to coordinate. 

For the game-types with a ‘greed’ motive, a meta-analysis of PD games by Sally (1995) suggests 

around half of subjects are potentially willing to cooperate; in their works both Sugden and 

Bacharach take this figure to be approximately correct. There is also extensive evidence from 

social psychology (summarised in Van Vugt and Van Lang, 2006) that measures of social value 

orientation generally find some 60% of people are disposed to maximise mutual gains (pro-

socials), some 30% seek to maximise individual gain (individualists) and 10% to maximise 

relative gains (competitive types); the latter two categories can’t be separated by observing play 

in our experiments. In the experiments reported here the highest frequency of cooperation in a 

PD game is 55% which is consistent with that literature (see also footnote 14). Drawing upon 

this body of evidence the relevant figure for a typical subject pool is likely between 50-60%. For 

simplicity I use a figure of 50% we-reasoners to make predictions.9

 While these traits are usually taken to be broadly stable characteristics of individuals, this 

does not imply we can measure such traits precisely, or that an individual’s actual choices will 

always express an underlying trait consistently. We know from numerous individual choice 

experiments that subjects may reverse their preferences over lotteries within the course of a 

single experiment and there is no reason to assume choices in our experiments are any less 

stochastic. But nor would it be supportive of our model if the aggregate cooperation patterns 

were driven by wildly inconsistent choices at the level of the individual, as judged against the 

 The other 50% are assumed 

to use model (1) in PD and Chicken games. 

                                                 
9 If the figure were substantially different, we would need to modify the ‘overall predicted %A’ column in Tables 3 

and 4 accordingly. A substantially lower figure would pull that column closer to the ‘me-frame predicted %A’ value 

and a significantly larger value would push us closer to the ‘we-frame predicted %A’ value. 
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model’s c* values. While within-subject variability of c can not be fully investigated here as each 

subject completed just one experiment, we can at least see whether our subjects chose 

consistently when facing the same game a second time in the same experiment. Although the 

initial purpose of using some games twice in an experiment was to check whether aggregate 

cooperation rates were sufficiently stable for prediction to be meaningful, the data can also be 

used at the level of the individual. We can then see whether a game with a given c* value is 

treated consistently by an individual. The results are reported in Section 4. 

 That player’s are heterogeneous is a necessary assumption: first, to allow for both me- 

and we-thinkers to exist and second, to generate a distribution of c for when we-thinking is used. 

We have no theory to tell us how the frequency of use of ‘we’-reasoning might otherwise vary with 

game parameters. Without such a theory I make the simplest and most tractable assumptions based 

on the stylized facts. 

Assumption 1:  In Prisoner’s Dilemma and Chicken games, half of players’ use ‘we’ 

reasoning (model (2)) and half ‘me’ reasoning (model (1)). For Stag Hunt, Hi-Lo and other games, 

assume all players use ‘we’ reasoning (model (2)). 

Assumption 1 can easily be adapted if factors known to affect the generation of emotions 

behind group identity, such as the contextual framing and ‘social distance’ individuals experience 

in an experiment so require. A double-blind design for example may fail to trigger human social 

cues sufficiently to engage our latent tendency to group identification. These factors may lower 

the prevalence of we-thinking and therefore the level of cooperation/coordination achieved, just as 

manipulations to enhance group identity as in De Cremer and Van Vugt (1999) may raise it. An 

implicitly uniform distribution of p is also the simplest benchmark assumption to use. 
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Assumption 2: When a player uses ‘me’-reasoning, the proportion of the p-line where EV 

(A) > EV (B) gives the predicted level of cooperation. 

Assumption 3: When a player uses ‘we’-reasoning, the fraction of (p, c)-space where EV 

(A) > EV (B) is the predicted level of cooperation.  

Assumption 3 effectively flattens each game’s c*(p) line (see Figure 5) at its mean c 

value for that game. This generates a ranking of the inherent tensions (or lack of ‘harmony’, cf. 

Zizzo and Tan, 2008) of each game, as measured by the degree of we-identification required for 

cooperation: the larger is c*, the fewer ‘we’-thinkers will possess sufficient dyadic-identification 

to risk participation in achieving [A, A].  

Model (2) combined with assumptions 1-3 also predicts a consistently high level of 

coordination in the Hi-Lo game. For R=5 and P=1, (S=T=0), (2) predicts 98.2% will choose ‘A’. 

Reducing R to 3 would, ceteris paribus, lower predicted ‘A’ choices to 95.3%, and if R=2, to 

89.8%. Although reassuringly high, these calculations likely understate the true level of 

cooperation, because only a low p can support a B choice; in reality fewer players than is implied 

by our uniform p-distribution assumption are likely to hold such beliefs. 

 

4. The Experimental Design and Results 

4a) Experimental Design 

 Experiment 1 involved eighty one subjects playing 25 2x2 one-shot games at the Economic 

Science Laboratory at the University of Arizona. The games used are listed in Table 1. The payoffs 

of these games were chosen to reflect a variety of incentives to cooperate or defect, as measured by 

model (2).  

- Table 1 here- 
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 Six sessions were run, each with 12-15 undergraduate subjects. No subject participated in 

more than one session. Players were seated at computer terminals in booths separated by screen 

walls. Each session began with an introduction to the experiment, including an opportunity to ask 

questions. Players worked through the introduction and sample games with the administrator, who 

projected his computer screen onto a large white screen visible to all. The administrator read the 

instructions out loud to the players, to ensure common knowledge of the experimental conditions. 

 Each player was randomly paired with another player in the lab using a ticket sealed in an 

envelope previously placed in each booth. The set of envelopes contained two copies of each 

ticket number and the single ticket in each envelope was the subject’s ID; her ID number 

matched one other person’s, he or she being the pair. Players knew they had an ID which paired 

them with some random person from the same session, and understood they would later briefly 

meet face-to-face to determine payment. The identity of the other player was concealed until 

after the completion of the experiment, as the envelopes were not opened until all decisions of 

both players were completed. In other words, there were no opportunities for communication or 

feedback, minimising potential super-game effects. As a choice is more likely to be perceived as 

one for ‘us’ when there is symmetry of circumstance, only symmetric payoffs were used in these 

experiments.10

 An incentive-compatible payment method analogous to the random lottery incentive system 

was used for the 25 decisions to cooperate or defect. When the players had been paired, one of them 

 Players also had only intermediate social distance from each other, and shared a 

common experience of being students seeking to earn money from Professors. In these senses at 

least, they constitute a well-defined group sharing a common goal. 

                                                 
10 Evidence suggests that cooperation rates are lower in asymmetric PD games, and lower still as the asymmetry 

widens (Marwell and Schmitt, 1975). Anomalous cooperation may be less common in society under asymmetric 

conditions if fewer people perceive such choices as a problem for ‘us’ or if assurance declines. 
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drew a ticket from a box containing a number from 1-25. This selected the game to be played for 

real. Each player’s choice in this game was then retrieved, and they were paid according to their 

choice combination. Payments averaged US$16.50 per player, with a range from US$0 to US$36 

(US$2 for each unit of payoff).11 The experiment took approximately 1 hour of participants’ time.12

 Experiment 2 was held subsequently at the University of Western Australia. While the main 

focus of that experiment was to investigate the causes of individual differences in play which is not 

the topic of the current paper, the aggregate results from that set of games are included here to add 

to the weight of experimental evidence bearing upon model (2). Experiment 2 focused on Chicken 

and PD games; there were 20 of each type of game, for a total of 40 games in all. One hundred and 

three subjects played each of these 40 games.

 

To observe any inherent variability in aggregate cooperation, three games were presented twice: in 

Table 1 compare games 9 with 23, 12 with 25 and 15 with 21.  

13

----- Table 2 here ----- 

  

 Six games were repeated in Experiment 2: in Table 2 compare games 15 with 33, 18 with 

34, 24 with 32, 2 with 36, 11 with 37, and 21 with 39. Finally, across Experiments 1 and 2, 

Experiment 2’s games 9 and 10 were identical to Experiment 1’s games 5 and 4, so any difference 

in cooperation across subject pools can be observed. Combining Experiment 2’s 40 games with 

Experiment 1’s 25 games, overall we have data from 65 games to investigate our claims.  

 
                                                 
11 A couple of times there were an odd number of players in a session due to no-shows. One random player then 

received two envelopes so that his/her responses could be played against two people. That player would however 

only receive payment for the first pairing. 
12 After making their choice for each game, each player then answered four supplementary questions regarding that 

game. That data is not used in this paper. 
13 The same procedures were used as for Experiment 1 except that the Lab had no screens between computer 

terminals. As the venue we used was never crowded, this had little effect on privacy. 
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4b) Experimental Results  

Experiment 1 

 Table 3 reports the predictions and percentage of players choosing option A in each game.  

Table 3 here 

 The first column in Table 3 shows the c* equations derived for each game in Table 1. The 

second column calculates the fraction of [p, c] space where the cooperative choice is optimal.14

 The variation in %A across these 25 games, from 8.8% to 91.2%, shows a very strong 

correlation with our predictions. The Pearson correlation coefficient is r = +0.966, significant at any 

level (giving R2 = 0.933). Encouragingly, not only the direction of change but the level of 

cooperation fits these predictions very well. A simple OLS regression offers further insight; 

regressing ‘actual A’ on the ‘predicted A’, here x, gives: 

 For 

Stag Hunt and Tender Trap games this fraction constitutes the model’s prediction for the proportion 

of cooperative choices. For the PD and Chicken games we use p* to calculate the fraction of the 

horizontal axis where EV (A) > EV (B) and this is shown in column 3. In column 4 we then sum 

half of column’s 2 and 3 for our predicted value, x, to account for both ‘we’ and ‘me’-thinkers in 

those games. 

Actual %A = 3.12 + 0.887x  F = 348.35 

            (t = 1.47)  (t = 18.66) 

 As the predicted value (x) ranges from 0% to 93.5% (see Table 3, column 4), the regression 

implies actual cooperation varies from 3% to 86.1%, only slightly under-predicting the 8%-91% 

observed. Because the dependent variable is a proportion, a generalised linear model (GLM) is more 

                                                 
14 Integration by parts calculates the area of the definite integral between the equal EV line and the horizontal axis. 

As the result gives the fraction where B is preferred, we subtract this figure from 1 to obtain the fraction where A is 

preferred. PDF files of the calculations are available in the web appendix. 
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precise. Estimating with the GLM gives a predicted range for cooperation of 9.4% to 85%. The 

partial effect at the sample mean is 1.062, which compares with the fixed slope coefficient in OLS 

of 0.887. On an aggregate basis then, the new model performs very well in representing the balance 

of incentives for a population to choose A or B within a game. The three games played twice reveal 

only fairly minor differences of between 1 and 8 percentage points of cooperation, suggesting 

aggregate predictability. At the level of the individual, choice switching rates were 9%, 12% and 

28%. If we then see how many switches each person had in these three cases, we find 47 of the 81 

players were fully consistent, 26 switched once, 6 switched twice and 2 switched at each of the three 

occasions. So for some 90% of subjects, play appears to be fairly consistent. 

 Two minor caveats to our assumptions (and/or model) are noted. First, in the severest PD 

games (as measured by c*), actual cooperation is consistently several points higher than predicted. 

Unconditional co-operators may be driving this finding (i.e., the distribution of c may contain a 

small peak at c = 1 rather than being uniform for we-thinkers). However such players are not strictly 

circumspect ‘we’-thinkers.15

 Second, four games have a cooperation level 10+ points below our predictions and all four are 

SH or TT games. The most likely reason is that unlike Hi-Lo, somewhat fewer than 100% of 

players use we-thinking for every SH or TT game. While these caveats may well play a small but 

genuine part in the solution to the puzzle of human cooperation and coordination, our emphasis on 

developing a parsimonious and tractable predictive model leads us to not pursue them here. 

  

 

                                                 
15 At the completion of experiment 1 we presented subjects with a list of several possible ways to best describe their 

play across the set of games. Of the 81 players, 41 selected the disposition which comes closest to circumspect we-

thinking, consistent with the ideas in this paper. However a further 5 selected the disposition closest to unconditional 

cooperation, suggesting 57% are pro-social. Nearly all others chose either the self-interest or ‘maxi-min’ 

descriptions. 
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Experiment 2 

  For the 40 PD and Chicken games in Experiment 2, the Pearson correlation coefficient across 

the 40 games is r = +0.961 (giving R2 =0.923). A simple OLS regression of actual cooperation on 

predicted cooperation shows: 

Actual %A = 0.076 + 1.036x  F = 525.75 

      (t = 0.03)  (t = 22.93) 

 As x here varies from 6.4% to 93.4% (see Table 4, column 4), actual cooperation is predicted 

to vary from 6.5% to 96.8%. Cooperation across these games actually varies from 7% to 89%. 

Using the GLM, the comparable prediction is from 10.8% to 91.1%. The partial effect at the sample 

mean is 1.266, compared with 1.036 for the fixed slope in OLS.  

 The six games that were played twice showed little aggregate variability: differences were 

once again between 1 and 8 percentage points of cooperation; implying cooperation rates are 

sufficiently stable for prediction, as in Experiment 1. At the level of the individual, choice-switching 

rates varied between 15% and 32%. Across the 6 opportunities, 31 of 103 subjects are fully 

consistent, 39 switched once and 18 switched twice, suggesting for 87% of subjects play is fairly 

consistent.  This finding is strikingly similar to that seen in Experiment 1. For completeness, 9 

subjects switched three times and 6 switched four times. No subjects switched either five or six 

times. 

 

Experiments 1 and 2 Combined 

A bigger challenge is to combine the predictions and results from both of these 

experiments; if the model is to be useful it should have explanatory power both within and across 

broadly similar subject pools and experiments. We now obtain a Pearson correlation coefficient 
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of predicted against actual cooperation across the 65 games of r = +0.957 (giving R2 = 0.916), 

significant at any level. An OLS regression of actual on predicted cooperation now finds: 

Actual %A = 1.39 + 0.974x  F = 690.23 

     (t = 0.71) (t = 26.27) 

That is, as x varies from 0% to 93.5% (see Tables 3 and 4, column 4); cooperation is 

predicted to increase from 1.4% to 92.5%. Actual cooperation in fact varies from 6.8% to 91.2%. 

Using the GLM, the comparable predictions are 8.7% to 88.7%. The partial effect at the sample 

mean is 1.175, compared with 0.974 for the fixed slope in OLS. 

The two games from Experiment 1 also used in Experiment 2 reveal very similar 

aggregate behaviour: just a 1 point and a 5 point difference in %A, on a par with the games 

played twice within an experiment and subject pool. Overall, 11 games were used twice, either 

within or across the two experiments. The mean absolute difference in percentage cooperation is 

4.7 percentage points, low enough to suggest predictable and broadly replicable cooperation 

levels within and across similar subject pools for this class of games. 

A scatter plot of %A against c* for all 65 games is shown in Figure 6. The scatter plot, 

which separately identifies the experiment and game type for each observation, provides visual 

evidence of predictive success within and across game types. The overwhelming impression 

remains of how closely our combination of models (1) and (2) capture variations in actual 

cooperation in a population, both within and across game types. 

 

---Figure 6 here--- 
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5. Discussion and Conclusion 

a) Related Models 

i) The model proposed in (2) for circumspect we-thinkers can be linked to Bergstrom’s 

(2002) evolutionary “assortative matching” model. Bergstrom (2002 p.212-14) defines x as the 

proportion of evolutionarily ‘hard-wired’ cooperators, or ‘C-strategists’, and (1-x) as the proportion 

of ‘D-strategists’. He then defines p(x) as the conditional probability that a cooperator is 

encountered, given that one is a cooperator, and q(x) as the conditional probability a cooperator is 

encountered, given that one is a defector. This yields [1-p(x)] as the probability a C-strategist 

encounters a D-strategist and [1-q(x)] as the probability a D-strategist encounters a D-strategist.  

 He then introduces an “index of assortativity”, a(x) = p(x)-q(x), which he defines as 

“...the difference between the probability that one meets one’s own type and the probability that 

a member of the other type meets one’s own type”. Bergstrom goes on to show from the 

difference between the expected values of cooperation and defection, that under assortative 

matching, the growth rate of the proportion of cooperators in the population will be given by: 

δ(x) = (S – P) + a(x)(R-S) + x(1-a(x))[(R+P) – (S+T)]   (3) 

 Suppose we set δ(x) = 0, thereby equating the expected success of cooperation and 

defection, and then rearrange (3) to solve for a(x). We can derive a threshold value for the 

assortative matching index for each game, based upon that game’s payoffs, R, S, P and T, and 

the proportion x. After some algebra, re-interpretation of the variables and translation of 

notations, the threshold value for a(x) can be shown to be identical to that which we found for c* 

in (2). So while the motivation, aims and interpretations differ, our models can be shown to share 

a common mathematical structure.16

                                                 
16 There is a still closer analogy between the hypothetical example given in Section 3b) and Bergstrom’s model. 
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ii) Bacharach’s (2006) model shares our goal of describing how circumspect we-thinking 

might be implemented in practice; that is, can it accurately describe variations in the extent of 

observed cooperation and coordination across a diversity of encounters that constitute the root of 

the puzzle? Bacharach took circumspect we-reasoning to ‘function’ (i.e., the [A, A] equilibrium 

will prevail over the [B, B] equilibrium) in an ‘unreliable coordination context’ with a 

probability ω (see 2006, p.132). Expressed in terms of the game’s payoffs and translating to our 

notation, Bacharach’s threshold value ω* can be rewritten as follows:  

( )
2P (S T)

(R P) S T
− +

ω =
+ − +

∗    (4) 

So, if the probability ω exceeds the threshold value ω* in (4), he predicts outcome [A, A] 

will prevail. The greater is ω*, the more likely the unreliable coordination context is to fail to 

function and so outcome [B, B] will prevail. Bacharach also suggests that ω can be interpreted as 

the probability a representative individual group-identifies (and therefore we-reasons) in some 

game. When ω is bounded between 0 and 1 it can be compared with model (2)’s parameter c for 

prediction purposes. But when the numerator is zero or negative, he adds the claim that all we-

thinkers will bring about [A, A].  

However, while the present paper endorses and in general draws upon the essence of 

Bacharach’s ideas, this is not so for his model of circumspect team-reasoning. Bacharach’s 

model does not lead to a ratio capable of a cost-benefit interpretation; indeed, for PD games with 

‘additive’ payoffs, Bacharach’s denominator is always zero, leaving his ω* undefined. More 

generally, when 2P ≤ S + T 17

                                                 
17 Bacharach (2006, p.152) explicitly recognises his model requires cooperation when this inequality holds, even if 

ω=0. 

, model (4) predicts 100% of we-thinkers cooperate every time in 
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that broad range of PD games. If we assume half the population we-reasons in these games, then 

the overall level of cooperation would be fairly stable at about 50% of players across a broad 

sweep of parameter values within the PD structure, a prediction strongly contradicted by the data 

reviewed in Section 4.  

 

5b) Other Approaches 

The agency question has been approached from other angles by authors such as Ainslie 

(1992) and Ross (2007). Ainslie argues that we have sub-personal interests within the interests of 

the whole person and sometimes they may dominate our behaviour contrary to the long-term 

goals of the individual. For instance when making long-range plans I may set myself a weight-

loss target for the New Year. But each day my short-run self must decide whether to cooperate 

with the plan or defect and eat junk food. A possible application of circumspect we-reasoning to 

these questions would see the short-run self taking the interests of the set of selves into account 

to degree c in (2). Some days may confront the short-run self with modest temptation, a low c*, 

or severe temptation, a high c*. The team in this case would be the set of sub-personal agents and 

‘we’ is the individual’s long-term interests. 

Ross (2007) builds upon Ainslie’s approach to offer a defence of the theorems game 

theory generates. Instead of applying to an individual person, he argues the theorems apply as a 

tautology to the interactions of agents and those agents are not human individuals. He maintains 

that what GT can prove for these sub-personal agents still matters to us, even though those 

results do not directly apply to the whole human individual. His approach also is not obviously 

inconsistent with the perspective of the current paper, although different issues have been 

addressed to date. 
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Other existing theories seem designed to apply to either a much broader (e.g., Tan and 

Zizzo, 2008) or a much narrower class of games than we require. For example, Dufwenberg and 

Kirchsteiger (2004) present a sophisticated model within the framework of psychological game 

theory, which was inspired by, and is an extension of, Rabin’s (1993) paper. Their theory 

introduces the concept of ‘sequential reciprocity equilibrium’ (SRE) for a broad set of games. 

But when applied to our narrower set of simultaneous-move games, the SRE predictions are not 

well-suited to explaining variations in the frequency of cooperation observed in experiments 1 

and 2.  

 Other authors such as Rappoport and Chammah (1965) propose a simple formula to predict 

cooperation, but only in PD games. Translating to our notation (and inverting the ratio for 

comparability with c*) they used: r1 = (R-P) / (T-S). While ad hoc, empirically this ratio captures 

the tensions in the PD game fairly well; however it is not sufficiently general for our purposes. Roth 

and Murnighan (1978) proposed an alternative ratio, in our notation: e1 = (T-R) / (T-P). This ratio is 

equivalent to c*(p) if and only if p = 1, but once again it is not sufficiently general for our class of 

games.  

 

5c) Conclusion 

 In this paper I build on Bacharach’s insight that in some games a player’s perceptions, as 

triggered by the configuration of individual payoffs, may transform their method of reasoning from 

the payoffs to a decision via agency transformation. As an explanation for actual choice patterns, 

Bacharach’s predictions for when the [A, A] outcome will prevail are not consistent with 

observation. The current paper therefore proposes a different model of circumspect we-reasoning 

to capture the way such players balance the competing motives. 
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 A related aim of this paper has been to derive predictions for the extent of cooperation in a 

given game so we might understand when cooperation is most and least likely to be sustained in 

human society. We find strong support from two experiments for our predictions. It appears likely 

that just one underlying cause of ‘excess’ cooperation spans the set of these games, rather than a 

series of different ‘causes’ each confined to a specific game-type. This ‘economy of scope’ for we-

reasoning in turn offers support to the proposition that the capacity for we-reasoning has an adaptive 

origin.  

 In recent years scientists discovered that the bumblebee’s wing stroke creates a vortex 

effect, generating extra lift that had gone unrecognised in the physical laws used for calculations 

in earlier decades (Altshuler et al, 2005). These authors comment that since Magnan (1934), 

“…bees have symbolized both the inadequacy of aerodynamic theory as applied to animals and 

the hubris with which theoreticians analyse the natural world”. Although the ‘hubris’ of the 

theoreticians declined in the decades after Magnan, the paradox of bee flight was confirmed as 

recently as Ellington (1984) and only fully solved with Altshuler et al. This example provides us 

with a reminder to respect empirical facts and a caution against overconfidence in any prevailing 

scientific paradigm, including IIR. Might a deeper understanding of the possible levels of agency 

embodied during choice take us close to resolving the long-standing paradox of successful 

human cooperation and coordination? This paper aims to be a step towards that goal. 
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Table 1: The Games Used in Experiment 1 

 
Game   Payoffs    Game Type 
 
 
1.  12,12  0,10   Stag Hunt 
 
  10,0  7,7 
 
 
2.  6,6  0,13   Prisoner’s Dilemma 
 
  13,0  4,4 
 
 
3.  12,12  2,5   Tender Trap 
 
  5,2  7,7 
 
 
4.  8,8  6,14   Chicken 
 
  14,6  4,4 
 
 
5.  6,6  0,15   Prisoner’s Dilemma 
 
  15,0  5,5 
 
 
6.  14,14  3,8   Tender Trap 
 
  8,3  11,11 
 
 
7.  14,14  2,18   Prisoner’s Dilemma 
 
  18,2  5,5 
 
 
8.  12,12  4,5   Tender Trap 
 
  5,4  7,7 
 
 
9.  10,10  6,14   Chicken 
 
  14,6  4,4 
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Table 1 (continued) 

 
10.  9,9  0,7   Tender Trap 
 
  7,0  8,8 
 
 
11.  12,12  0,16   Prisoner’s Dilemma 
 
  16,0  3,3 
 
 
12.  10,10  0,9   Stag Hunt 
 
  9,0  8,8 
 
 
13.  6,6  0,12   PD/NC Game 
 
  12,0  6,6 
 
 
14.  12,12  8,16   Chicken 
 
  16,8  6,6 
 
 
15.  8,8  0,10   Prisoner’s Dilemma 
 
  10,0  5,5 
 
 
16.  12,12  0,10   Stag Hunt 
 
  10,0  8,8 
 
 
17.  8,8  2,11   Prisoner’s Dilemma 
 
  11,2  6,6 
 
 
18.  12,12  1,6   Tender Trap 
 
  6,1  9,9 
 
 
19.  11,11  7,12   Chicken 
 
  12,7  0,0 
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Table 1 (continued) 
 
20.  7,7  5,16   Chicken 
 
  16,5  4,4 
 
 
21.  8,8  0,10   Prisoner’s Dilemma 
 
  10,0  5,5 
 
 
22.  12,12  0,7   SH/TT Game 
 
  7,0  7,7 
 
 
23.  10,10  6,14   Chicken 
 
  14,6  4,4 
 
 
24.  10,10  0,16   Prisoner’s Dilemma 
 
  16,0  4,4 
 
 
25.  10,10  0,9   Stag Hunt 
 

9,0 8,8 
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 Table 3: Predictions and Results for Experiment 1 

Game c*(p) We-Frame 
(c*(p))   

Predicted %A 

Me-Frame (p*) 
Predicted %A 

Overall 
Predicted %A 

Experiment 1 
Results 

%A 
1. 

p
p

912
97
−
−  70.8% 22.2% 70.8% 60.5% 

2. 
p
p

36
34

+
+  

27.0% 0% 13.5% 11.1% 

3. 
p
p

1210
125
−
−  87.2% 58.4% 87.2% 86.1% 

4. 
28
28

+
−

p
p  

70.9% 25% 47.9% 43.2% 

5. 
64
54

+
+

p
p  

12.8% 0% 6.4% 12.6% 

6. 
p
p

1411
148
−
−  

70.7% 42.8% 70.7% 73.1% 

7. 
p
p

+
+

12
3  

72.0% 0% 36.0% 39.5% 

8. 
p
p

108
103

−
−  

93.5% 70% 93.5% 91.2% 

9. 
46
26

+
−

p
p  

84.4% 33.3% 58.8% 65.8% 

10. 
p
p

109
108

−
−  

42.0% 20% 42.0% 50.6% 

11. 
p
p

+
+

12
3  

72.0% 0% 36.0% 35.8% 

12. 
p
p

910
98
−
−  

46.9% 11.1% 46.9% 50.0% 

13. 1 0 0% 0.0% 8.8% 
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14. 
46
26

+
−

p
p  

84.4% 33.3% 58.8% 54.3% 

15. 
p
p

38
35

−
−  

47.0% 0% 23.5% 22.2% 

16. 
p
p

1012
108
−
−  

63.9% 20% 63.9% 50.6% 

17. 
p
p

−
−

6
4  

36.5% 0% 18.2% 17.3% 

18. 
p
p

1411
148
−
−  

70.7% 42.8% 70.7% 60.5% 

19. 
48
78

+
−

p
p  

99.5% 87.5% 93.5% 90.1% 

20. 
210
110

+
−

p
p  

51.6% 10% 30.8% 22.5% 

21. 
p
p

38
35

−
−  

47.0% 0% 23.5% 23.7% 

22. 
p
p

1212
127
−
−  

78.1% 41.6% 78.1% 56.8% 

23. 
46
26

+
−

p
p  

84.4% 33.3% 58.8% 57.5% 

24. 
102
42

+
+

p
p  

54.7% 0% 27.3% 21.0% 

25. 
p
p

910
98
−
−  

46.9% 11.1% 46.9% 43.2% 
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Table 4: Predictions and Results for Experiment 2 

Game c*(p) We-Frame 
(c*(p))   

Predicted %A 

Me-Frame (p*) 
Predicted %A 

Overall 
Predicted %A 

Experiment 2 
Results 

%A 
1. 

2
1  50% 0% 25% 34% 

2. 
111
211

+
−

p
p  56% 18.2% 37.1% 34% 

3. 
3
2  33.4% 0% 16.7% 35% 

4. 
48
48

+
−

p
p  90.5% 50% 70.2% 76.7% 

5. 
72
54

+
+

p
p  13% 0% 6.5% 15.5% 

6. 
66
46

+
−

p
p  97.5% 66.6% 82% 82.5% 

7. 
64
54

+
+

p
p  12.8% 0% 6.4% 15.5% 

8. 
511
211

+
−

p
p  70.8% 18.2% 44.5% 67% 

9. 
64
54

+
+

p
p  12.8% 0% 6.4% 13.6% 

10. 
28
28

+
−

p
p  70.8% 25% 47.9% 48.5% 

11. 
3
1  66.6% 0% 33.3% 33% 

12. 
111
211

+
−

p
p  56% 18.2% 37.1% 35% 

13. 

10
1

 90% 0% 45% 55.3% 
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14. 
92
12

+
−

p
p  97.7% 50% 73.8% 88.3% 

15. 
2
1  50% 0% 25% 22.3% 

16. 
114
714

+
−

p
p  85.9% 50% 67.9% 72.8% 

17. 
3
2  33.3% 0% 16.7% 10.7% 

18. 
18
78

+
−

p
p  99.3% 87.5% 93.4% 89.3% 

19. 
4
1  75% 0% 37.5% 29.1% 

20. 
92
12

+
−

p
p  97.7% 50% 73.8% 77.7% 

21. 
3
2  33.3% 0% 16.7% 17.5% 

22. 
112
112

+
−

p
p  39.5% 8.3% 28% 15.5% 

23. 
74
54

+
+

p
p  22.6% 0% 11.3% 6.8% 

24. 
64
24

+
−

p
p  94.6% 50% 72.3% 82.5% 

25. 
4
1  75% 0% 37.5% 37.9% 

26. 
64
24

+
−

p
p  94.6% 50% 72.3% 78.6% 

27. 
2
1  50% 0% 25% 19.4% 

28. 
48
48

+
−

p
p  90.5% 50% 70.2% 75.7% 

29. 
3
1  66.6% 0% 33.3% 26.2% 
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30. 
26
46

+
−

p
p  95.4% 66.6% 81% 79.6% 

31. 
10
1

 90% 0% 45% 49.5% 

32. 
64
24

+
−

p
p  94.6% 50% 72.3% 77.7% 

33. 
2
1  50% 0% 25% 13.6% 

34. 
18
78

+
−

p
p  99.3% 87.5% 93.4% 88.3% 

35. 
3
1  66.6% 0% 33.3% 33% 

36. 
111
211

+
−

p
p  56% 18.2% 37.1% 30.1% 

37. 
3
1  66.6% 0% 33.3% 24.3% 

38. 
114
714

+
−

p
p  85.9% 50% 67.9% 74.8% 

39. 
3
2  33.3% 0% 16.7% 15.5% 

40. 
26
46

+
−

p
p  95.4% 66.6% 81% 84.5% 
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Figure 3: The standard model 
 

Player 2 
        A           B 
 
  EV(A):  pR +       (1-p)S 
Player 1          

  EV(B):  pT +  (1-p)P 
 
 
 

Figure 4: The circumspect we-thinking model 

Player 2 

        A         B 

 

  EV(A):  [p(1-c) +c]R +      [1-p(1-c) -c]S 

Player 1          

  EV(B):  [p(1-c)]T + [1-p(1-c)]P  
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Figure 5: Unit Diagrams in [p, c] Space 

 

 
Example 1:     A    B 
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Example 2:     A  B 
 
  A 10, 10  0, 12   

  B 12, 0  4, 4  Therefore C p
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Figure 6 
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Table 2: Games from Experiment 2 
 

Prisoner’s Dilemma Games 

1. 4, 4 0, 6 

 6, 0 2, 2 

3. 6, 6 0, 10 

 10, 0 4, 4 

5. 7, 7 0, 16 

 16, 0 5, 5 

7. 8, 8 2, 17 

 17, 2 7, 7 

9. 6, 6 0, 15 

 15, 0 5, 5 

11. 6, 6 0, 8 

 8, 0 2, 2 

13. 10, 10 0, 11 

 11, 0 1, 1 

15. 8, 8 0, 12 

 12, 0 4, 4 

17. 12, 12 0, 20 

 20, 0 8, 8 

19. 8, 8 0, 10 

 10, 0 2, 2 

 

 

Chicken Games 

2. 5, 5 4, 14 

 14, 4 2, 2 

4. 10, 10 6, 14 

 14, 6 2, 2 

6. 10, 10 4, 12 

 12, 4 0, 0 

8.  7, 7 2, 16 

 16, 2 0, 0 

10.  8, 8 6, 14 

 14, 6 4, 4 

12.  7, 7 6, 16 

 16, 6 4, 4 

14. 10, 10 1, 11 

 11, 1 0, 0 

16. 8, 8 7, 15 

 15, 7 0, 0 

18. 8, 8 7, 9 

 9, 7 0, 0 

20. 12, 12 3, 13 

 13, 3 2, 2 
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Prisoner’s Dilemma Games 

21. 10, 10 4, 14 

 14, 4 8, 8 

23. 9, 9 2, 18 

 18, 2 7, 7 

25. 10, 10 2, 12 

 12, 2 4, 4 

27. 8, 8 4, 10 

 10, 4 6, 6 

29. 10, 10 4, 12 

 12, 4 6, 6 

31. 12, 12 2, 13 

13, 2 3, 3 

33. 8, 8 0, 12 

 12, 0 4, 4 

35. 12, 12 0, 16 

 16, 0 4, 4 

37. 6, 6 0, 8 

 8, 0 2, 2 

39. 10, 10 4, 14 

 14, 4 8, 8 

 

 

Chicken Games 

22. 4, 4 3, 15 

 15, 3 2, 2 

24. 8, 8 2, 10 

10, 2 0, 0 

26.  10, 10 4, 12 

12, 4 2, 2 

28. 8, 8 4, 12 

 12, 4 0, 0 

30. 8, 8 6, 10 

 10, 6 2, 2 

32. 8, 8 2, 10 

 10, 2 0, 0 

34. 8, 8 7, 9 

 9, 7 0, 0 

36. 5, 5 4, 14 

 14, 4 2, 2 

38. 10, 10 9, 17 

 17, 9 2, 2 

40. 10, 10 8, 12 

 12, 8 4, 4 
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