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REVIEW ARTICLE

Combining radiotherapy with immunotherapy: the past, the
present and the future

1EVERT J VAN LIMBERGEN, MD, PhD, 1,2DIRK K DE RUYSSCHER, MD, PhD, 1VERONICA OLIVO PIMENTEL, MD,
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ABSTRACT

The advent of immunotherapy is currently revolutionizing the field of oncology, where different drugs are used to

stimulate different steps in a failing cancer immune response chain. This review gives a basic overview of the immune

response against cancer, as well as the historical and current evidence on the interaction of radiotherapy with the immune

system and the different forms of immunotherapy. Furthermore the review elaborates on the many open questions on

how to exploit this interaction to the full extent in clinical practice.

INTRODUCTION
Only recently, it was noticed that radiotherapy and im-
munotherapy together can lead to a more effective anti-
tumour response than each of the both modalities apart.
The interactions between radiation and immune system
have become a new area of intense research within cancer
research programmes. The goal of this review is to provide
the reader an overview of the new strategy combining ra-
diotherapy with immunotherapy, including its earlier de-
velopment, its current state and the next steps required to
bring this new approach to a success in general clinical
practice.

BASIC OVERVIEW OF THE ANTI-TUMOUR
IMMUNE RESPONSES
A cancer cell is characterized by the loss of its normal
regulatory processes, which gives rise to uncontrolled cell
growth and formation of metastases.1 90% of cancer
deaths are not related to primary tumour but rather at-
tributable to metastatic disease.2 The molecular basis of
this distinct behaviour is governed by aberrant proteins,
also called oncoproteins, regulating several biological
processes such as cytostasis and differentiation, viability
and apoptosis, proliferation and motility, gene regulation,
deoxyribonucleic acid repair etc.1,3,4

Normally, the immune system protects the host against the
formation of cancer, following a process known as the cancer
immunity cycle.5 First, specific antigens are released by the
cancer cells which are picked up by antigen-presenting
dendritic cells to activate and prime näıve T lymphocytes.
Hereby, a very specific reactivity against antigens from the
tumour cells is generated. Subsequently, these activated T
cells infiltrate a tumour to recognize and destroy the can-
cerous cells. Then, dendritic cells pick up antigens of dying
cancer cells again, restarting the whole process (Figure 1).

Among several subclasses of T lymphocytes, there are two
major subtypes governing the cellular immunity against
cancer: the cytotoxic or CD81 T cells and the T-helper
(Th) or CD41 cells. Progenitor Th cells can differentiate in
two different subtypes: (a) the effector Th (Th1) cell, which
stimulates the dendritic cells and the cytotoxic T cells using
surface receptors and by producing ligands such as CD40L
and IL2, respectively,6–8 and (b) the regulatory Th cell or
Treg, recognized by nuclear FOXp3 expression,9,10 which
hamper the immune response. The physiological function
of the latter is to protect against autoimmunity.11

In cancer, however, the above-described normal immune
response is deregulated, allowing cancer cells to escape
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from the immune system and survive. As the cancer immunity
cycle is a very complex sequential process, it can fail when at
least one essential link is disrupted. The reason for a failed
immune response can be diverse and several mechanisms
allowing the tumour to escape exist. Such possibilities are, for
example, “tumour foreignness” questioning whether there are
enough neoantigens that make it possible for the tumour to be
recognized as foreign; general immune status of the patients
defining if there are enough lymphocytes to combat the tumour;
hampered intratumoural immune cell infiltration; the presence
of immune T-cell checkpoints and ligands blocking cytotoxic T-
cell activity, among many others (for more details, see the cancer
immunogram12).

THE PAST: FIRST INDICATIONS OF AN
INTERACTION BETWEEN RADIOTHERAPY AND
THE IMMUNE SYSTEM
A strong relation between the radiosensitivity of the irradiated
tumour (murine fibrosarcoma) and the immunocompetence of
the host has already been described in a pre-clinical research
article dating back to 1979. The dose needed to control the
tumour in 50% (TCD50) of immunosuppressed mice was about
double the dose that was needed in immunocompetent mice.13

Consistent with these results, chemoradiotherapy in mice
bearing tumours from tumourigenic tonsillar epithelial cells was

more efficient in immunocompetent C57BL/6 mice than in their
immunosuppressed C57BL/6 rag-1-deficient counterparts.14

Radiotherapy has always been regarded as a highly effective but
local therapy for cancer. However, .20 case reports in the whole
medical literature describe tumour regressions outside of the
radiation treatment fields.15 This effect was referred to as the
abscopal effect, derived from the Latin word ab scopus meaning
on a distant site. The underlying mechanism of these off-target
effects remained obscure, and because of their rareness, these
events were regarded as medically not relevant. In the early days,
several pre-clinical studies evaluated the effect of local irradia-
tion on distant tumour sites, but the results were not consistent;
both inhibition and acceleration of the non-irradiated tumour
sites were seen.16

Although these findings were interesting, they went without
much attention within the scientific community. That is, until
the breakthrough of immunotherapy within the field of oncol-
ogy, which started in 2010 with a Phase III trial investigating
ipilimumab in patients with metastatic melanoma, showing for
the first time a survival benefit.17 The following period was
a rollercoaster of clinical successes, with immunotherapy being
declared the scientific breakthrough of the year in 2013 by the
Science magazine.18 During this period, two case reports were

Figure 1. This figure shows the effects of radiotherapy in relation to the cancer immune cycle. Radiotherapy affects the immune

response by induction of immunogenic cell death releasing new antigens to the components of the immune system. This

subsequently leads to improved priming and activation of effector T cells. Radiotherapy further leads to increased expression of

surface molecules on the irradiated cancer cells making them more vulnerable to cytotoxic T-cell-mediated cell killing. Finally,

radiotherapy leads to the release of cytokines attracting T cells towards the irradiated tumour. Improved influx of effector T cells

and improved T-cell killing of cancer cells could result in new antigen presented to the components of the immune system.
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published of a patient progressive under ipilimumab, now
showing responses to radiotherapy outside the irradiated area
which were linked to a response of the immune system.19,20 The
events described in these case reports were consistent with
earlier pre-clinical work demonstrating a synergy between
CTLA-4 blockade and radiotherapy.21,22 Also, at the same time,
a Phase I trial was published combining stereotactic body ra-
diation therapy together with high dose of IL2 in renal cell
carcinoma and melanoma. The authors found a response rate
that was much higher than what would be expected based on
historical data from IL2-based treatment alone.23 The promising
results of these clinical studies raised a lot of interest in the field
of immunotherapy including in combination with radiation.

THE PRESENT: IMMUNOTHERAPY AS STANDARD
OF CARE, AND EXTENSIVE PRE-CLINICAL
EVIDENCE ON THE INTERACTION OF
RADIOTHERAPY WITH IMMUNOTHERAPY
Over the past few years numerous Phase III trials have dem-
onstrated immunotherapy to confer an overall survival benefit
in advanced, recurrent or metastatic melanoma,17,24 non-small-
cell lung cancer,25–29 renal cell cancer,30 head and neck cancer,31

transitional cell carcinoma of the bladder32 and prostate can-
cer.33 In general, these therapies did show a favourable toxicity
profile. Clearly, based on these results one can say that a corner
has been turned and a new era in oncology has begun. However
despite these successes, not surprisingly, these immunotherapies
show only benefit in a limited number of patients because they
affect only very specific points/processes in the cancer immunity
cycle, and in addition, resistance mechanisms by tumour cells
may be acquired during therapy or may be elicited by the tu-
mour microenvironment. Apart from Sipuleucel-T (Provenge®)
in prostate cancer, which is an active cellular-based vaccine,33

the other forms of immunotherapy depend on checkpoint
blockade. These are very specific antibody-based checkpoint
inhibitors such as CTLA-4-directed ipilumumab or PD-1/PD-L1
axis inhibitors such as pembrolizumab, nivolumab and atezoli-
zumab. In essence, CLTA-4 inhibitors work by blocking a spe-
cific inhibitory interaction between the dendritic cell and the T
cell.34 PD-1/PD-L1 inhibitors block a specific inhibitory in-
teraction between the effector T cell and the cancer and/or
dendritic cell, which normally leads to inhibition of T-cell
growth and loss of effector functions.35

On the momentum of the success of these new forms of
immunotherapies, several efforts were made to study the in-
teraction of radiotherapy and the immune system in more
depth, aiming to exploit the current immunotherapy successes
even further. How radiotherapy contributes to an enhanced
immune response has been reviewed in detail elsewhere.36–39 A
recent and extended review focusing on the molecular pathways
involved can be found here.40 To summarize, radiotherapy has
been shown to trigger the immune response by (1) induction of
immunogenic cell death (ICD) broadening up the immune
repertoire of T cells, (2) recruitment of T cells towards the
irradiated tumour and (3) increasing vulnerability towards
T-cell-mediated cell killing (Figure 1). ICD is associated with
a pre-mortem stress response allowing the cell to attract the
attention of the immune system.39 This process allows the immune

system to distinguish cell death from a pathogenic process (e.g. viral
infection or cancer) or cell death in the context of normal tissue
homeostasis.39 ICD is characterized by the release of tumour-
associated antigens in the form of apoptotic bodies and debris,
together with adenosine triphosphate, calreticulin, HBMG-1, which
induce dendritic cell recruitment and result in their activation,
antigen uptake and maturation.37–39 By doing so, radiotherapy
delivers new antigens to the adaptive immune system, promoting
the priming and generation of new anti-tumour T cells. Secondly,
radiation recruits effector T cells towards the tumour by releasing
T-cell-attracting chemokines such as CXCL-9 and CXCL-10.41 In-
terestingly, CXCL-10 secretion has also been linked to the process
of ICD through type I interferon signalling.39 Thirdly, radiotherapy
induces a transient overexpression of MHC class I and Fas surface
receptors rendering tumour cells more vulnerable to cytotoxic T-
cell killing.42–45 However, obviously, radiotherapy alone is not
sufficient to induce curative anti-tumour immune response espe-
cially against metastatic cancer, highlighting the need for combi-
natorial immunotherapy approaches to boost immune system.

Numerous pre-clinical studies reported improvement of the
local radiotherapy and/or abscopal response with CTLA-4
inhibitors.21,22,46–49 Interestingly, a retrospective case series on
101 patients treated with ipilimumab seems to confirm these
findings. Of these 101 patients, 70 patients received concurrent
radiotherapy. These 70 patients showed a significant increase in
overall survival over the patients who did not receive concurrent
radiotherapy, as well as increases in response.50 The interaction
of PD-1/PD-L1 inhibition with radiotherapy has also been
reported to enhance both local51–55 and abscopal effects.53,56

Furthermore, in the context of radiotherapy, there seems to be
a clinical rationale to combine PD-1-directed therapy and
CTLA-4 as both immunotherapeutic agents activate non-
redundant immune mechanisms.48 IL2 is a cytokine with an
essential role in the activation of immune response. Although it
also stimulates proliferation of regulatory T cells, it also activates
cytotoxic T and natural killer cells resulting in an activation of
the immune system augmenting together with radiotherapy
local as well as abscopal tumour responses.57 As IL2 is associated
with significant morbidity (capillary leak syndrome, ischaemia,
flu-like syndromes),58 efforts were made to reduce its toxicity by
making its delivery more tumour specific.59 These tumour-
targeting “immunocytokines”, such as NHS-IL2 (targeting free
deoxyribonucleic acid) and L19-IL2 (targeting external domain
B (EDB) of fibronectin in newly formed vessels), have shown to
enhance local radiotherapy effects.60–62 L19-IL2 was only effec-
tive in tumours expressing EDB, and the effect was greatly de-
pendent on the presence of CD81 cytotoxic T cells.62,63

However, even in a MHC class I-deficient tumour model, where
cancer cytotoxicity is not dependent on specific antigen-targeted
activity of the CD81 T cells but rather on natural killer cell
activity, an additive effect of radiotherapy over L19-IL2 alone
was seen.60 Our research group has also found an abscopal effect
of radiotherapy/L19-IL2 combination on secondary non-
irradiated tumours (Personal communication Dr Rekers, pre-
sented at ESTRO 35, 2016). These results are in line with an
earlier clinical study evaluating high dose IL2 treatment with
stereotactic radiotherapy showing much higher than expected
clinical response rates for an extended period of time.23
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These promising data provided a rationale for the start of a mul-
titude of currently running clinical trials (.70), testing combi-
nations of radiotherapy (fractionated or stereotactic body
radiation therapy) together with CTLA-4 inhibition, PD-1/PD-L1
inhibition, vaccination or cytokine treatment such as IL2, anti-
transforming growth factor-beta or granulocyte-macrophage
colony-stimulating factor. Recent overviews of ongoing
radiotherapy–immunotherapy trials are provided elsewhere;64–66

for an up-to-date version, see clinicaltrails.gov.

THE FUTURE: INTEGRATING RADIOTHERAPY AND
IMMUNOTHERAPY IN THE CLINICAL SETTING
To optimize a radiotherapy regimen or treatment in the context
of immunotherapy, several factors need to be considered. These
are optimal fractionation schedule and dosing, the timing be-
tween radiotherapy and immunotherapy, the radiotherapy
technique to deliver the dose, implications for the clinical target
volume (CTV), lesion selection and safety.

When considering fractionation and dose to be combined with
immunotherapy, one must first consider the goal of the treatment
approach: does the treatment aim for an improved local effect or
to create an abscopal effect on the non-irradiated (micro) me-
tastasis? As described above, radiotherapy stimulates the immune
system by broadening up the immune repertoire of T cells (vac-
cination effect), by attracting T cells to the irradiated site (homing
effect) and by rendering irradiated cells more vulnerable towards
T-cell-mediated cell kill (vulnerability effect). It is expected that
only the broadened immune repertoire is useful for the immune
system to produce a generalized systemic response, meaning that
the underlying biology is different and perhaps more critical when
one aims for an abscopal response. Several groups have in-
vestigated different fractionation schedules and doses. Gandhi
et al67 provided recently a very extensive review on the matter.
Several authors describe a dose-dependent increase of cell surface
molecules such as FAS, MHC1 or ICAM142,44,45 using doses
varying between 1 and 50Gy in humans (HCT116 colorectal
carcinoma and Mel JuSo melanoma) and murine (MC38 colon
carcinoma) cell lines. As these receptors are important for T-cell
vulnerability, they are presumed in the first place to be important
for enhancing the local effect of radiotherapy. When comparing
fractionated (533Gy) and single-dose (15Gy) radiotherapy in
a B16 melanoma model in their capacity to activate dendritic cells
in the lymph nodes (as measured by activation/priming of a hy-
brid reporter T-cell line), it was demonstrated that 15-Gy single
dose was more efficient.41 By contrast, in a similar tumour model
(B16-OVA melanoma), another group showed T-cell priming, this
time measured by an INFg Enzyme-Linked ImmunoSpot assay on
splenic T cells, to be more efficient with 237.5Gy than 15-Gy
single dose.68 Several groups did also investigate the impact of
fractionation when combining radiotherapy with immunotherapy.
Dewan et al21 showed that while all fractionation schedules
showed comparable local tumour control as monotherapy in
combination with CLTA-4 inhibition, 338Gy was superior to
536 or 1312Gy in a TSA breast and MCA38 colon carcinoma
model, with respect to local tumour control and abscopal re-
sponse. Clinical data from a retrospective review in patients with
melanoma receiving ipilimumab suggested fraction doses #3Gy
to be associated with abscopal responses.69 By contrast, work from

our group investigating the interactions of the L19-IL2 immu-
nocytokine with radiotherapy in a C51 tumour model show that
a larger dose per fraction is more efficient to induce an abscopal
response, as only 1315Gy and not 535 or 532Gy was able to
induce tumour cure of the non-irradiated tumours. However,
fractionated irradiation was as efficient as single-dose irradiation
in eradication of the primary locally irradiated tumours (un-
published data). To conclude, fractionation and dose are of vital
importance to maximize the effect of associated immunotherapy,
but no consensus exists on which schedule is optimal. The con-
flicting results from the literature let us presume that optimal
fractionation is highly context dependent, and therefore con-
clusions should be cautiously drawn. Insights may come from
clinical trials, evaluating local and/or abscopal response to (dif-
ferent kinds of) immunotherapy combined with different frac-
tionation schedules. This is, however, a cumbersome procedure
and only allows for indirect measurement of the immune-
stimulating radiotherapy effect. As tumour response is not only
dependent on the radiotherapy schedule but also on the elements
in the cancer immune cycle, the impact of choosing the right
fractionation schedule when looking at local or abscopal tumour
control will be diluted. More elegant and straightforward ways to
evaluate the efficiency of different fractionation schedules
therefore may rely on innovative new biomarker approaches,
such as the release of immunogenic cell death-related chemo-
kines and cytokines70 in blood or biopsies, or on methods
allowing large-scale measurement of extension in the T-cell
repertoire—novel techniques based on barcode-labelled peptide-
MHC-1 multimers are able to screen .1000 T-cell specificities
in a single sample.71 Such an approach could allow us to com-
pare the impact and efficiency of different radiotherapy sched-
ules on increasing the variety of specific T-cell responses towards
different tumoural antigens.

Treatment techniques such as volumetric modulated arc therapy
better shape the volume around the target tissue but also lead to
a low-dose bath to a large part of the body.72 Lymphocytes are
among the most radiosensitive cells in the body with a D10 (dose
to reduce the total amount of surviving cells to 10% of the initial
value) of around 3Gy only.73 In this context, the dose to the
tumour-draining lymph nodes and the timing of the fraction-
ation may be of importance, especially in daily fractionated
schedules. The normal transit time of a naı̈ve helper of cytotoxic
T lymphocyte is 12 h to a day.74 However, when confronted with
a dendritic cell-presenting antigen, these T cells remain in
contact with the dendritic cell and undergoes a “blasting”
transformation. This process again takes another 24 h, even
before clonal expansion ensues.75,76 For cytotoxic T cells, how-
ever, it was shown that the stable interaction with the dentritic
cell was dispensable, still allowing to undergo successful effector
differentiation, but long-lived memory was hampered.77 It is
possible that even a low dose given in short daily intervals to the
lymph nodes may interfere with the priming process of T
lymphocytes and its memory functions. The impact of the low-
dose bath and daily fractionation to date is unknown and needs
further investigation.

Integration of radiotherapy within an immunotherapy schedule
may also need rethinking of the classical definitions of target
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volumes. When, for example, in a more diffusely metastatic
patient radiotherapy is added as a form of immune adjuvant, it
may not be necessary to expand the target volumes for mi-
croscopic tumour extension (CTV or CTV margins) or apply
wide margins around the volume to account for deviations in
daily treatment setup (planning target volume or planning
target volume margins), as it may suffice to irradiate a part of
the tumour to induce immune stimulation. The narrower
margins would allow for better sparing of the organs at risk, to
reduce complication probability. This approach, which is
theoretically promising, however, needs validation in clini-
cal trials.

Little is known on the selection of the right target for radio-
therapy in the context of creating an abscopal effect together
with immunotherapy. Some authors proposed a mathematical
model to predict the lesions with the highest potential.78 This
model was based on T-cell trafficking and the assumption that
abscopal effects can only be achieved when activated T cells from
the irradiated tumour can reach the distant sites in sufficient
numbers. However, with no clinical data sets to validate this
virtual model, extreme care should be taken before using this
model in practice, as it lacks many other important parameters
determining abscopal responses.79

The timing seems to be of essential importance when embed-
ding radiotherapy into an immunotherapy approach to get the
most optimal results. The ideal timing between immunotherapy
and radiotherapy depends on the mechanism of action of the
specific form of immunotherapy.52,80 For example, Young et al80

investigated the optimal timing of radiation in combination with
an OX-40 agonist antibody and a CLTA-4 antagonist antibody.
Best results were seen when CTLA-4 was given before radio-
therapy. Nonetheless, other authors did find synergistic activity
also for CTLA-4 inhibition when given concurrently or se-
quentially with radiotherapy.21,22 By contrast, OX-40-based
immunotherapy worked best when given immediately follow-
ing radiotherapy.80 The authors proposed that OX-40 would
function by boosting antigen-specific T-cell numbers,80,81

whereas anti-CTLA-4 would rather function as a downregulator
of regulatory T cells.80,82 Therefore, OX40 inhibition would be
most beneficial just following radiation-induced antigen release.
It is possible that in the case of CTLA-4 inhibition, antigen
release created by radiotherapy is most efficient only when the
regulatory T-cell fractions are depleted first. Dovedi et al52 in-
vestigated the ideal treatment sequence for inhibition of the PD-
1 axis, and found the best effect was found when the PD-L1 was
given concurrently or immediately following the radiotherapy.
Delaying the PD-L1 infusions for 1 week abrogated the in-
teraction between radiotherapy and PD-1 axis inhibition.83 In-
hibition of the PD-1 axis increases the lytic activity of the
cytotoxic T cells.35 Therefore, an optimal interaction is expected
just at that moment when radiotherapy temporarily induces
surface ligands on the cancer cell increasing its vulnerability to
T-cell attacks.42–45 The authors also showed that radiotherapy
temporarily induced overexpression of PD-1 axis molecules on
the tumour cells as well as on the tumour-infiltrating T cells.52

Inhibition of the PD-1 axis is therefore expected to be most
efficient when it attenuates the radiation-induced immune

response most efficiently, in close temporal relation to the ra-
diation treatment.

Hypoxia is associated with both radioresistance and immune
suppression.84,85 This hypoxia can be quantified by hypoxia
positron emission tomography tracers such as HX4, FAZA or
F-MISO.86,87 Unravelling these resistance mechanisms associated
with hypoxia could lead to the identification of new therapeutic
targets. Furthermore, reducing hypoxia with hypoxia-targeting
drugs88,89 could potentially lead to a reduction of immuno-
suppresion in the tumour microenvironment. Currently, this is
an area of active investigation in our research team.

Finally, only limited clinical information is available on the dif-
ferent combinations of immunotherapy and radiotherapy. It is
possible that radiation-induced acute toxicity, which is associated
with an inflammatory response, could be aggravated by an acti-
vation of the immune system following immunotherapy.90 Kroeze
et al91 recently reviewed the evidence on stereotactic radiotherapy
and concurrent anti-CTLA4 and anti-PD-1/PD-L1. Regarding the
combination with anti-CTLA4 and cranial stereotactic irradiation,
they seem to show that the approach is safe, although the available
studies are small. Very limited data are available on the combi-
nation of extracranial stereotactic radiotherapy with anti-CTLA4.
Regarding the combination of concurrent anti-PD-1/PD-L1, they
concluded that there was insufficient data to allow for con-
clusions. Following this report Levy et al92 published the results of
a small Phase I/II trial investigating the combination of the PD-L1
inhibitor durvalumab with conventional and stereotactic radio-
therapy. The combination was well tolerated. Kwon et al93 eval-
uated the combination of 8-Gy conventional radiotherapy
followed by ipilimumab vs placebo in a large Phase III trial of
metastatic castration-resistant patients with prostate cancer. Al-
though the primary end point (overall survival) was negative, they
did not see a higher-than-expected toxicity of the radiotherapy–
ipilimumab combination than what would be expected from
ipilimumab alone. Two small Phase I trials showed that NHS-IL2-
or IL2-based immunotherapy could be safely administered fol-
lowing conventional61 or high-dose stereotactic radiotherapy,23

respectively. The combination of stereotactic radiotherapy fol-
lowed by L19-IL2 is currently under evaluation in our Phase I trial
(NCT02086721). To summarize, the available data show no in-
dication of induction of excessive toxicity of radioimmunotherapy
over immunotherapy alone. However, as data are mostly imma-
ture and limited, prudence remains imperative.90 Therefore, it is
advised to test these combinations preferably within the context of
a clinical trial.

CONCLUSION
The advent of immunotherapy is currently revolutionizing the
field of oncology, where different drugs are used to stimulate
different steps in a failing cancer immune response chain. Ex-
tensive pre-clinical data have shown that radiotherapy can syn-
ergize with these agents by broadening up the immune repertoire
in T cells (vaccination effect), by attracting T cells to the irradiated
site (homing effect) and by rendering irradiated cells more vul-
nerable towards T-cell-mediated cell kill (vulnerability effect).
There are many open questions on how to integrate radiotherapy
into an immune treatment in patients in the most optimal
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fashion; these questions are about optimal fractionation and dose,
target volume, treatment technique, timing and safety. A plethora
of clinical trials are currently ongoing investigating these
radiotherapy–immune interactions in patients.
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