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Figure 1. Sketch of differentially pumped ETEM 
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Introduction 

Electron microscopy is an integrated part of materials science and has been since the dawn of electron 

microscopy. In order to link the microscopic structure to materials properties it is beneficial to perform this otherwise 

passive characterization technique in situ. In other words, characterize the materials under various forms of stimuli 

such as heating, gas exposure, light exposure, liquid exposure, electrical bias, magnetic fields, mechanical stress, 

indentation, etc. Here, gas exposure and heating will be in focus, and limitations and prospects of in situ electron 

microscopy will be discussed.  

Scattering of the primary electron beam on gas molecules 

results in loss of coherence of the incoming electron wave and 

thereby influence the performance of the electron microscope, 

mainly in terms of loss of resolution. In order to maintain the 

highest performance of the microscope while the sample is 

exposed to gas, the gas has to be confined around the sample. 

In general, this criteria has been fulfilled by two different 

routes: 

1. The controlled gas atmosphere is confined near the 

sample by means of pressure limiting apertures securing a 

sufficient pressure drop to the remaining column by a 

differential pumping scheme. The pressure limiting apertures 

placed in the objective lens in close proximity to the sample 

ensures the high-pressure zone less than 1 cm thick. The 

concept known as differential pumping was described by 

Boyes and Gai [1] and further exploited on microscopes from 

various vendors [3-6]. A schematic drawing of the differential 

pumping approach in environmental transmission electron 

microscope (ETEM) is shown in Figure 1. This approach 

limits the obtainable pressure to ca. 103 Pa in the sample area. 

However, no solid material is interfering with the electron 

beam on its path to and from the sample. The controlled gas 

atmosphere is supplied by either injection through the 

objective lens resulting in a uniform pressure between the pole 

pieces or direct injection onto the sample via a nozzle in close 

proximity to the sample. 

2. The gas is confined by solid electron transparent 

membranes allowing higher pressures in the vicinity of the 

sample compared to the differential pumping scheme without 

compromising the requirement of UHV near the electron gun. 

Placing two membranes, typically fabricated from silicon nitride 

or oxide, in a holder with a spacing of less than 100 µm, pressures exceeding atmospheric pressure in a closed cell 

can be obtained while preserving atomic resolution [7, 8]. 

 

Experimental Procedures 

The experiments and results presented in this abstract are mainly based on characterization performed using a 

FEI Titan 80-300 ETEM operated at 300 kV following the differential pumping scheme [2]. The pressure of the 



Figure 2. Fast Fourier transforms of images of amorphous carbon as a function of total beam 

current. The damping of the information transferred to the image is highly dependent on the total 

electron beam current in the presence of gas. The resolution of the images acquired in conventional 

vacuum mode do not show the same dependency. 

 

controlled atmosphere varies from 0.1 Pa to 1000 Pa depending on the actual experiment. The sample is directly 

dispersed onto commercially available MEMS-based heating chips, capable of heating the sample to more than 

1000 °C. 

 

Results and Discussion 

Towards quantitative ETEM – Understanding the gas-electron interaction 

Ever since the proposal and first attempts of in situ electron microscopy involving non-vacuum imaging in the 

early days of electron microscopy, addressing the influence of the gas on the fast electron pathway has been crucial. 

The higher the pressure and the longer gas path the fast electrons have to pass, the larger is the probability of 

scattering events between electrons and gas species. 

Scattering on gas molecules results in a significant loss of electrons (intensity) on the viewing screen depending 

on the gas species, total pressure and energy of the primary electrons. Furthermore, the spatial resolution will 

decrease both for Scanning Transmission Electron Microscopy and for broad beam electron microscopy (Figure 2). 

The unusual scattering geometry to be considered in the high-pressure region of differentially pumped ETEMs leads 

to the resolution being dependent on the total beam current during acquisition even at constant beam current density. 

The contrast in the resulting images might be influenced as well depending on the scattering power of the gas 

molecules. 

In addition to the loss of spatial resolution and contrast of the acquired micrographs due to the electron-gas 

interaction, the observations will also be influenced indirectly by ionization of gas species, which can lead to more 

reactive gas species and charge transfer effects. For example, the ionized gas species can be used for charge 

compensation, since ionized gas species act as charge carriers compensating for charging of the sample during 

electron beam irradiation.  

In order to take the next step 

towards quantitative TEM in the 

presence of gas, a more 

descriptive picture of the propagation of electron waves throughout the high-pressure zone of the TEM has to be 

developed. The strong magnetic fields of the objective lens are affecting not only the primary beam of electrons, but 

also secondary electrons and ionized gas molecules making the description of the various phenomena a rather 

complex task [9]. 

 

In situ TEM on operating model solid oxide fuel cells 

The necessity of going towards a sustainable production and storage of energy requires alternative solutions. The 

implementation of solid oxide cells (SOCs) represents an important milestone to fulfil. In the last years, several 

studies were addressing the understanding of degradation effects in SOCs, mostly implementing post mortem 

analyses for the characterization of solid oxide fuel and electrolysis cells [10, 11]. Here, we present in situ 



Figure 3. LSC-YSZ-LSC model cell mounted on 

electrothermal chip for in situ TEM characterization 

allowing both heating and biasing. 

characterization within a TEM allowing the observation in real time of degradation effects in a model cell during 

exposure to reactive gasses, elevated temperatures and electrical potential. We prepared a symmetric model SOC by 

depositing two thin layers of lanthanum strontium cobaltite, La0.6Sr0.4CoO3-δ (LSC), as electrodes, and one layer of 

yttria stabilized zirconia ZrO2: 8% mol Y2O3 (YSZ) as electrolyte, on a single crystal of 1% Nb doped strontium 

titanate (STO) by pulse laser deposition (PLD). 

The sample was exposed to different conditions in the microscope. At first, the stability of the sample was 

investigated during in-situ heating in high vacuum. A high mobility of electrode cations was observed when the 

temperature exceeded 600 °C [12]. At 900°C heavy depletion of Sr and 

Co were observed leading to an irreversible degradation of the cathodes. 

Electrodes for standard bulk SOC are porous and sintered above 

1000 °C [13] and a similar degradation effect at these temperatures is 

not observed in literature. It is hypothesised that Sr and Co depletion 

takes place by surface migration due to the small dimension of the 

sample.  

In situ heating in oxygen (P(O2) = 200 Pa), revealed faster grain 

growth within the electrode layers in comparison with heating in 

vacuum. Moreover, STEM-EELS showed a higher amount of oxygen 

at the interface between LSC and YSZ. Cobalt white lines ratio 

calculations showed a transition to a higher average oxidation state 

already at 500 °C. 

Finally, in order to study the effect of the electric biasing on the 

symmetric model SOC, we have prepared experiments that involve 

current together with heat and oxygen gas. These experiments 

require the implementation of a TEM heating and biasing 

Protochip™ chips and a special FIB procedure for sample 

preparation of the TEM lamella (Figure 3). I-V measurements have 

been performed in the temperature range that goes from 25°C to 

700°C win the presence of 200 Pa of oxygen.  

 

In situ growth of Single-Wall Carbon Nanotubes 

A deep understanding of the formation mechanisms of low-dimensional nanostructures from bottom-up 

processes is of great importance in order to exploit the controllability of the nanostructures and their applications in 

photovoltaics, electronics, sensors, etc. on an industrial scale. 

A well-established nanostructure formation process, which is based on thermally driven growth of a solid from a 

gas source, is the growth of carbon nanotubes (CNTs). Single-wall CNTs (SWCNTs) show either metallic or 

semiconducting behavior depending on the exact geometry of the rolled-up single carbon layer. In order to facilitate 

large scale production of CNTs with specific properties, a better understanding of the initial growth from the catalyst 

particles is essential. The growth of individual SWCNTs is monitored by ETEM allowing for direct determination of 

growth rates, catalyst-CNT structure relationship, etc. [14]. 

Figure 4 shows a TEM image sequence of a transition from gaseous carbon to solid carbon to form a CNT. The 

elongation process of a SWCNT is shown by a series of images extracted from a movie, acquired during exposure of 

a Co/MgO sample to a mixture of CO and H2 at elevated temperature [15]. The diameter and thereby the chirality of 

the SWCNTs strongly depends on the access to carbon atoms, which can be incorporated into the tube securing 

growth. Changes in the amount of accessible carbon either by changes in the carbon source supply (gas pressure of 

CO) or by changes in the catalytic cracking of CO to free carbon atoms, strongly influence the growth and can be a 

limiting step for the CNT growth. External forces such as stress will also lead to growth termination, because in this 

case, the incorporation rate of active carbon atoms into the tube is limited. However, we observe that the same 

catalyst particle stayed active in terms of nucleating additional solid carbon structures after the growth termination of 

the first SWCNT. These observations elucidate the importance of an in-depth understanding of the role of catalysts 

and carbon sources in the continued growth of SWCNTs. 

 

 



Figure 4: Co/MgO sample exposed to a mixture of CO and H2 precursor gas (5:2 in mole ratio, totally 760 Pa) at 700˚C resulting in the 

formation of a SWCNT and its growth termination [15]. 

 

 

The above examples of ETEM illustrate the possibilities and prospects of the technique within materials research. 

The dynamics of nanostructures when exposed to stimuli such as heat and gas are monitored and thereby give direct 

evidence for phenomena hinted at with other techniques. The understanding and insight into these phenomena at the 

sub micrometer and atomic scale ultimately leads to development of the next generation functional materials. 
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