Mycol. Res. **109** (12): 1347–1363 (December 2005). © The British Mycological Society doi:10.1017/S0953756205003989 *Printed in the United Kingdom.*

Botryosphaeria species from *Eucalyptus* in Australia are pleoanamorphic, producing *Dichomera* synanamorphs in culture

Paul A. BARBER^{1*}, Treena J. BURGESS², Giles E. St.J. HARDY², Bernard SLIPPERS³, Philip J. KEANE¹ and Michael J. WINGFIELD⁴

¹Department of Botany, La Trobe University, Victoria, Australia 3086.

²School of Biological Sciences & Biotechnology, Murdoch University, Murdoch, Western Australia, Australia 6150.

⁸Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden.

⁴ Department of Microbiology and Plant Pathology, Forestry and Agricultural Biotechnology Institute, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa.

E-mail : *pbarber@murdoch.edu.au*

Received 23 March 2005; accepted 22 July 2005.

Species within the genus *Botryosphaeria* include some of the most widespread and important pathogens of woody plants, and have been the focus of numerous taxonomic studies in recent years. It is currently accepted that anamorphs of *Botryosphaeria* belong to two distinct genera, *Fusicoccum* and *Diplodia*. Species within the genus *Fusicoccum* commonly produce aseptate, hyaline conidia. In the present study, fungi were isolated from foliage and wood of *Eucalyptus* in native forests and plantations in Australia. Although these fungi produced *Dichomera* anamorphs in culture, they clustered within the *Fusicoccum* clade of *Botryosphaeria* based on their ITS sequence data. Four species, *Botryosphaeria dothidea*, *B. parva*, *B. ribis* and *B. australis* produced *Dichomera* conidia in culture. The *Dichomera* synanamorphs are described for these four species of *Botryosphaeria*. In addition, falling within the *Fusicoccum* clade of *Botryosphaeria*. In addition, falling within the *Fusicoccum* clade of *Botryosphaeria*. In addition, falling within the *Fusicoccum* clade of *Botryosphaeria*, two species were found to be distinct from previously described *Botryosphaeria* spp. based on their ITS sequences, but synonymous with *D. versiformis* and *D. eucalypti*. These observations are currently unique to isolates from host trees within the genus *Eucalyptus* in Australia, and the pleoanamorphic nature of these species is discussed.

INTRODUCTION

Eighteen anamorph genera have been linked to the ascomycete genus Botryosphaeria and this has resulted in a confused taxonomic history of the genus. The best known of these anamorphs are Botryodiplodia, Diplodia, Dothiorella, Fusicoccum, Lasiodiplodia, Macrophoma and Sphaeropsis (Sivanesan 1984. Denman et al. 2000). Traditionally, substantial emphasis has been placed on the morphological characters of these anamorphs to distinguish between Botryosphaeria species (Shoemaker 1964, Pennycook & Samuels 1985, Morgan-Jones & White 1987, Denman et al. 2000, Phillips et al. 2002, Slippers et al. 2004a). Unlike the teleomorphs, these anamorphs are frequently observed in nature, sporulate readily in culture, and have a greater variability in spore morphology, including shape, size, colour, septation and ornamentation.

Classical taxonomic studies have resulted in *Macrophoma* being reduced to synonymy with

Sphaeropsis (Sutton 1980), Dothiorella being reduced to synonymy with Diplodia, and Botryodiplodia being regarded as a nomen dubium (Crous & Palm 1999). Studies of the anamorphs based on morphological characters and phylogenetic analysis of ITS rDNA sequence data have supported these findings and provided evidence for the separation of the anamorphs into two groups, one having Diplodia-like, most commonly ellipsoid and broad, thicker-walled and frequently septate and pigmented conidia, and the other with Fusicoccum-like, most commonly fusoid and narrow, thinner-walled, rarely septate and pigmented conidia (Jacobs & Rehner 1998, Denman et al. 2000, Zhou & Stanosz 2001b). Slippers et al. (2004a) sequenced the ITS rDNA, β -tubulin and EF1- α regions to provide a phylogeny supporting the view that Botryosphaeria represents two distinct phylogenetic assemblages, corresponding to species with Diplodia and Fusicoccum anamorphs.

Substantial confusion has surrounded the taxonomy of *Fusicoccum* and whether the type species, *F. aesculi*, should reside in *Fusicoccum* as described and illustrated by Saccardo (1880) or in *Dothiorella* according to

^{*} Present address: School of Biological Sciences & Biotechnology, Murdoch University, Murdoch, Western Australia, Australia 6150.

Petrak (1922). *F. aesculi* has generally been accepted as the anamorph of *B. dothidea sensu* von Arx & Müller (1954). Slippers *et al.* (2004a) characterized *B. dothidea* based on morphology and the ITS rDNA, β -tubulin and EF1- α DNA-sequence data. In their study, epitype, neotype and syntype material was designated and it was shown that the conidia and other morphological structures were consistent with those in the amended description of *F. aesculi* (Crous & Palm 1999). *Fusicoccum aesculi* was thus designated as the anamorph of *B. dothidea*.

Butin (1993) studied oak-inhabiting fungi, and reported Fusicoccum cfr aesculi and Dichomera saubinetii from the bark and Camarosporium oreades and Dothiorella cfr aesculi from the leaves. Monosporous isolates of F. cfr aesculi and D. saubinetii gave rise to pale grey-brown mycelium and produced stromatic structures after six weeks. These structures contained pigmented muriform conidia (Dichomera spore-type) or hyaline, aseptate, fusiform conidia (Fusicoccum spore-type) and a substantial proportion of the isolates contained both spore forms within the same locules. Similar results were observed when single conidial isolates of C. oreades and D. cfr aesculi were compared. Sutton (1980) referred to Dichomera as the stromatic analogue of Camarosporium. Butin (1993) demonstrated a new form-complex comprising F. cfr aesculi, D. saubinetii, C. oreades, and D. cfr aesculi occurring on oak, and also recognized pleomorphism in these conidial forms.

In comparision to Fusicoccum, Dichomera is a relatively poorly studied genus. Sutton (1980) noted that more than 40 species had been described in Dichomera. Conidiomata in the genus were described as eustromatic and the distinctive conidia as muriform, brown, euseptate, globose, pyriform or cylindrical, often variable and irregular in shape, constricted or not constricted at the septa and smooth-walled with truncate bases. A considerable number of species residing in other genera have been transferred to Dichomera. Sutton (1975) reduced Camarosporellum eucalypti (syn. Camarosporium eucalypti) and Coryneum viminale to synonymy with Dichomera eucalypti. In their extensive revision of Hendersonula, Sutton & Dyko (1989) reduced H. botryosphaerioides to synonymy with D. rhamnicola, H. conglobata to synonymy with D. conglobata, and renamed Camarosporium rhamni as D. neorhamni.

The majority of *Dichomera* species have been described outside Australia, and from a wide range of hosts other than *Eucalyptus*. The most recently discussed species from outside Australia are *D. gemmicola*, causing bud blight of conifers in western Canada (Funk & Sutton 1972) and China (Yuan & Wang 1995), and *D. saubinetii* associated with cankers on sycamore (*Acer pseudoplatanus*) in the UK (Bevercombe & Rayner 1978) and twig lesions on oak (*Quercus robur*) in Switzerland (Sieber, Kowalski & Holdenrieder 1995).

Three species of *Dichomera*, *D. eucalypti*, *D. macrospora* and *D. versiformis*, and a number of undetermined *Dichomera* spp. have been described from *Eucalyptus* (Sankaran, Sutton & Minter 1995, Yuan, Wardlaw & Mohammed 2000). Relatively little is known of the taxonomy and biology of *Dichomera* spp. occurring in Australia, where most *Eucalyptus* spp. are endemic.

No definitive links to teleomorph states have been made for this genus, although Sutton & Dyko (1989) referred to species of *Cucurbitaria* as possible teleomorphs of *Dichomera*. This assumption was based on species of *Cucurbitaria* being stromatic ascomycetes producing muriform ascospores of similar size and shape to the conidia. However, there have been no phylogenetic studies on species of *Dichomera*, and connections to teleomorph states remain unclear.

This study was initiated to consider the identity of isolates commonly encountered during surveys of *Eucalyptus* in Australia, having cultural morphologies typical of *Botryosphaeria* spp. but producing muriform conidia in culture typical of *Dichomera* spp. Preliminary phylogenetic studies on isolates that have muriform conidia resembling *Dichomera* spp. showed that they were related to *Botryosphaeria* spp. with *Fusicoccum* anamorphs. Previous morphological studies (Butin 1993) have also suggested a close relationship between these genera and understanding their relatedness was another objective of this investigation.

MATERIALS AND METHODS

Fungal isolates

We examined 16 isolates of the 45 considered in this study microscopically (Table 1). Isolates WAC12398, WAC12400 and WAC12399 were from healthy twigs of *Eucalyptus diversicolor* or *E. marginata* near Denmark, Western Australia in 2001. Isolates WAC12396, WAC12395 and WAC12397 were from stem cankers found in eucalypt species trials near Cairns in Far North Queensland in 2003. WAC12404 was isolated from a stem canker of *Eucalyptus calophylla* growing in the native forest of Western Australia in 2003. WAC12401, WAC12402, WAC12403 and VPRI31988 were isolated from leaf lesions on *E. pauciflora* or *E. camaldulensis* growing in native forests of Victoria between 1999 and 2003.

For comparative purposes, species of *Botryosphaeria* with *Fusicoccum* anamorphs as well as a *Dichomera* sp. were obtained from various culture collections (Table 1). Six of the *Fusicoccum* isolates were included in the study by Slippers *et al.* (2004a, c). All isolates considered were subjected to the same cultural conditions for morphological characterisation and comparison.

Different methods were used to isolate fungi from leaf or bark specimens. The method described by Park & Keane (1984) for obtaining conidia of *Colletogloeopsis nubilosum* was modified slightly to Table 1. Isolates of Botryosphaeria, Dichomera and Guignardia species considered in the phylogenetic study. Those in bold were examined microscopically.

Culture no.	Other no.	Identity	Host	Location	Isolator	GenBank accession no.
CMW7054	CBS121	B. ribis	Ribes rubrum	New York, USA	N. E. Stevens	AF241177
CMW7772	108	B. ribis	Ribes sp.	New York, USA	B. Slippers/G. Hudler	AY236936
CMW9079	ICMP7933	B. parva	Actinidia deliciosa	New Zealand	S. R. Pennycook	AY236941
CMW9081	ICMP8003	B. parva	Populus nigra	New Zealand	G. J. Samuels	AY236943
CMW6837		B. australis	Acacia sp.	Batemans Bay, Australia	M. J. Wingfield	AY339262
CMW9073		B. australis	Acacia sp.	Victoria, Australia	J. Roux/D. Guest	AY339261
CMW992	KJ93.52	B. lutea	Actinidia deliciosa	New Zealand	G. J. Samuels	AF243396
CMW9076	ICMP7818	B. lutea	Malux imes domestica	New Zealand	G. J. Samuels	AF027745
CMW10126		B. eucalyptorum	Eucalyptus grandis	Mpumalanga, S. Africa	H. Smith	AF283687
CMW10125		B. eucalyptorum	E. grandis	Mpumalanga, S. Africa	H. Smith	AF283686
CMW7024	BRIP24101	F. mangiferum	Mangifera indica	Australia	G. I. Johnson	AY615185
CMW7797	BRIP24083	F. mangiferum	M. indica	Australia	G. I. Johnson	AY615185
CMW7999	119	B. dothidea	Ostrya sp.	Crocifisso, Switzerland	B. Slippers	AY236948
CMW8000	118	B. dothidea	Prunus sp.	Crocifisso, Switzerland	B. Slippers	AY236949
	ZS97-59	B. mamane	Sophora chrysophylla	Hawaii	D. Gardner	AF246930
	ATCC22929	B. corticis	Vaccinium sp.	North Carolina, USA	R. D. Milholland	AF243397
	KJ93.56	B. obtusa	Hardwood Shrub	New York, USA	G. J. Samuels	AF243397
CMW7774		B. obtusa	Ribes sp.	New York, USA	B. Slippers/G. Hudler	AY236953
	ZS94-6	B. stevensii	Malus pumila	New Zealand	N. Tisserat	AF243407
CMW7060	CBS431	B. stevensii	Fraxinus excelsior	Netherlands	H. A. van der Aa	AY236995
	CBS112545	B. corticola	Quercus ilex	Spain	M. A. Sanchez/A. Trapero	AY259089
	CBS112551	B. corticola	Q. suber	Portugal	A. Alves	AY259101
	CBS418.64	B. tsugae	Tsuga heterophylla	Canada	A. Funk	AF243405
	KJ94.07	Diplodia pinea	Pinus resinosa	Winsconsin, USA	D. R. Smith	AF027758
	STE-U2269	B. proteae	Protea laurifolia	Hawaii	P. W. Crous	AF452563
	STE-U4378	B. proteae	Protea sp.	Australia	M. E. Palm	AF452560
	STE-U4365	B. protearum	P. mangifica	South Africa	S. Denman	AF452547
	STE-U4368	B. protearum	Protea repens	South Africa	S. Denman	AF452542
CMW9074		B. rhodina	Pinus sp.	Mexico	T. Burgess	AY236952
CMW10130		B. rhodina	Vitex donniana	Uganda	J. Roux	AY236951
CMW17679	CBS447	Bionectria sp.	Taxus baccata	Netherlands	H. A. van der Aa	AF312014
	CBS 990.70	D. saubinetii	Quercus sp.	Baarn, Netherlands	H. A. van der Aa	AY744379
WAC 12395	FNQ58B	B. ribis	Eucalyptus pellita	Queensland, Australia	T. Burgess/G. Pegg	AY744368
WAC 12396	FNQ27C	B. ribis	E. grandis \times E. camaldulensis	Queensland, Australia	T. Burgess/G. Pegg	AY744369
WAC 12397	FNQ78B	B. parva	E. pellita	Queensland, Australia	T. Burgess/G. Pegg	AY744370
WAC 12398	BOT6	D. eucalypti	E. diversicolor	Western Australia	T. Burgess/KL. Goei	AY744371
WAC 12399	BOT15	B. australis	E. diversicolor	Western Australia	T. Burgess/KL. Goei	AY744374
WAC 12400	BOT29	B. australis	E. marginata	Western Australia	T. Burgess/KL. Goei	AY744375
WAC 12401	VIC1	D. eucalypti	E. pauciflora	Victoria, Australia	P. J. Keane	AY744372
WAC 12402	VIC2	D. eucalypti	E. camaldulensis	Victoria, Australia	G. Whyte	AY744373
WAC 12403	VIC3	D. versiformis	E. camaldulensis	Victoria, Australia	P. A. Barber	AY744376
	VPRI31988	D. versiformis	E. pauciflora	Victoria, Australia	P. J. Keane	AY744377
WAC 12404	WA7	B. dothidea	E. calophylla	Western Australia	T. Paap	AY744378

obtain single conidial isolates from leaves. Sections were made through mature pycnidia embedded within leaves using a fine blade and these were agitated in 1ml DWT20 (40 μ l Tween 20/100 ml distilled water v/v) for approx 1 min to release conidia. Aliquots (0.1 ml) of spore suspension were placed onto the surface of 0.5% malt-extract-agar (MEA) containing 50 µg ml⁻¹ of chloramphenicol in 90 mm Petri dishes individual germinating conidia were transferred to 0.5% MEA and half-strength potato-dextrose-agar (PDA) in 90 mm Petri dishes and incubated at \sim 21 °C in the dark for 2 wk. Fungi were isolated from cankers by surface sterilising (in 70% ethanol) species of cankered bark, flaming, and plating onto half-strength PDA plates containing 50 µg ml⁻¹ of streptomycin. Mycelia were transferred to tap water agar overlaid with sterile pine needles and incubated under near-uv light for 6 wk at 25 $^{\circ}$ to induce sporulation. Single conidial isolates were obtained from pycnidia formed on the pine needles and maintained on half-strength PDA.

DNA isolation and amplification

The ITS regions of the rDNA operon was amplified using the primers ITS1F (5' CTT GGT CAT TTA GAG GAA GTAA 3') (Gardes & Bruns 1993) and ITS4 (5' TCC TCC GCT TAT TGA TAT GC 3') (White et al. 1990). The PCR reaction mixture (25 µl) contained 200 µm of each deoxynucleotide triphosphate, 150 nm of each primer, 10 mm Tris-HCl, 1.5 mM MgCl₂, 50 mM KCl, 5–10 ng of DNA template and 1 U of Taq polymerase (Fisher Biotech, Perth, WA). The reactions were carried out in a Gene Amp 9600 thermocycler (PE Applied Biosystems, Foster City, CA) programmed for an initial denaturization of 2 min at 95 °, followed by 35 cycles of 30 s at 95 °, 45 s at 56 ° and 60 s at 72 $^\circ$ and a final elongation step of 5 min at 72°. PCR products were run on a 1% agarose gel, stained with ethidium bromide and visualized under uv illumination. PCR products were cleaned using Ultrabind[®] DNA purification kit (MO BIO Laboratories, Solana Beach, CA). Products were sequenced with the BigDye terminator cycle sequencing kit (PE Applied Biosystems) using the same primers that were used in the initial amplification. The products were separated by PAGE on an ABI Prism 377 DNA sequencer (PE Applied Biosystems).

Phylogenetic analysis

In order to compare all isolates collected in this study with *Botryosphaeria* spp. used in previous studies, 31 ITS rDNA sequences obtained from GenBank were included in the analyses. Trees were rooted to *Guignardia philoprina*, a species closely related to *Botryosphaeria*. Sequence data were analysed using Sequence Navigator v. $1.0.1^{TM}$ (Perkin Elmer, Foster City, CA) and manually aligned by inserting gaps. Gaps were treated as a fifth character, all ambiguous characters and parsimony uninformative characters were excluded prior to analysis. Phylogenetic analysis based on parsimony was performed using PAUP 4.0bl0 (Swofford 2000). The most parsimonious trees were obtained by using heuristic searches with random stepwise addition in 100 replicates, with the tree bisection-reconnection branch-swapping option on and the steepest-descent option off. Maxtrees were unlimited, branches of zero length were collapsed and all multiple equally parsimonious trees were saved. Estimated levels of homoplasy and phylogenetic signal (retention and consistency indices) were determined (Hillis & Huelsenbeck 1992). In the initial analysis, all characters were unweighted and unordered; thereafter characters were reweighted according to the consistency index. Branch and branch node supports were determined using 1000 bootstrap replicates (Felsenstein 1985), and characters were sampled with equal probability, but weights were applied.

Morphological characterisation

Mature pycnidia were removed from cultures mounted in lactoglycerol, and conidia measured under $1000 \times$ magnification with a light microscope. Morphological observations for at least 50 conidia were determined for each isolate. Some collections contained spores of two different morphological forms: (1) elongate and somewhat fusiform in shape; and (2) smaller, more globose to obpyriform in shape. 50 conidia of each form were measured and conidia were photographed using an Axiocam digital camera (Carl Zeiss, Iena) and spores drawn under $1000 \times$ magnification using a drawing tube.

RESULTS

Phylogenetic sequence analyses

PCR products of approximately 570 bp were amplified in all the isolates from Australia considered in this study. Sequence data at each end were deleted in the aligned data set. The aligned data set consisted of 550 characters, of which 375 uninformative characters were excluded prior to analysis. The data set contained significant phylogenetic signal compared to 1000 random trees (P < 0.01, g1 = -0.83). Heuristic searches in PAUP resulted in 42 most parsimonious trees of 488 steps (CI=0.70, RI=0.88), characters were reweighted according to the consistency index and the subsequent heuristic search resulted in 12 trees of 345 steps (CI=0.79, RI=0.91).

The resultant tree consisted of two distinct clades with 100% bootstrap support separating the *Botryosphaeria* spp. with *Fusicoccum* anamorphs from those with *Diplodia* anamorphs (Fig. 1). The *Fusicoccum* clade was further subdivided into groups that represent discrete species. Isolates from *Eucalyptus* in Australia fell into the *Fusicoccum* clade and were identical in their ITS sequence to *B. ribis*, *B. parva*, *B. dothidea* and

Fig. 1. One of 12 most-parsimonious trees obtained through heuristic searches of the ITS-rDNA regions. Support for branches and nodes are indicated respectively as bootstrap values (1000 replicates) below and branch length above the line. The tree was rooted to *Guignardia philoprina*.

B. australis (Fig. 1). In addition, there were five isolates (WAC12401, WAC12402, WAC12398, WAC12403, and VPRI31988) that resided in the *Fusicoccum* clade but were distinct from any known and sequenced *Botryosphaeria* spp. with *Fusicoccum* anamorphs (Fig. 1).

Morphological characterisation

Morphological comparisons were made between all isolates with muriform spores (resembling *Dichomera*

spp.) and isolates of various *Fusicoccum* spp. (Slippers *et al.* 2004a, c) with which they were conspecific based on ITS rDNA sequences. Some isolates collected in this study produced conidia of two different morphological forms. The conidia of one form were dark coloured, rounded or variable in shape, globose, subglobose, obovoid, obpyriform to fusiform with muriform septa. These were typical of the genus *Dichomera*. In contrast, some isolates had conidia that were hyaline, more elongated (ellipsoid or fusiform), and regular

Fig. 2. Conidia of *Botryosphaeria* spp. with *Dichomera* synanamorphs isolated in this study for (*a*) *B. ribis*, (*b*) *B. parva*, (*c*) *B. dothidea*, and (*d*) *B. australis*. Bar = $10 \mu m$.

in shape; these conidia were typical of species of *Fusicoccum*.

Five isolates: WAC12395, WAC12396, WAC12398, WAC12403, WAC12404, and the type specimen of *D. versiformis*, produced both the hyaline, elongate *Fusicoccum*-like conidia, as well as the dark, variable shaped, muriform conidia typical of species of *Dichomera* spp. (Fig. 2). None of the isolates previously studied by Slippers *et al.* (2004a, c) produced *Dichomera*-like conidia. Rather, they all produced spores typical of their respective *Fusicoccum* spp. as previously described (Slippers *et al.* 2004a, c, Pennycook & Samuels 1985) with dimensions as given in Table 2.

The ex-holotype culture of *F. ribis* (CMW7772) produced aseptate, hyaline conidia as described by Slippers *et al.* (2004a). Two isolates (WAC12395 and WAC12396) collected in this study had ITS sequences identical to that of CMW7772 (Fig. 1). Both of these isolates produced only muriform conidia typical of

Dichomera in culture. It was impossible to distinguish between the smaller, rounded conidia of the *Dichomera* form of *B. ribis* (isolates WAC12395 and WAC12396) and the conidia of isolate WAC12397 (Fig. 2), which matched the DNA sequence of the *B. parva* ex-type isolate (ICMP8003) (Fig. 1). However, isolates WAC12395 and WAC12396 produced muriform conidia, which were also broadly fusiform to fusiform in shape, whereas WAC12397 did not produce spores with this shape (Fig. 2).

Conidia of the ex-epitype (CMW8000) of *B. dothidea* produced in culture in this study were somewhat shorter and wider on average than those described by Slippers *et al.* (2004a). This resulted in a smaller 1:b ratio (4.39), and spores from older cultures occasionally had two and rarely three septa. Conidia of the Western Australian isolate (WAC12404) residing in the same clade as *B. dothidea* (CMW8000) (Fig. 1), were distinctly different in shape to all other cultures with

Identity	Culture No.	Spore shape	Range of conidial dimensions (μm)	Mean conidial dimensions (μm)	L:B ratio	Host	Location
B. ribis	CMW 7772 (ex-type)		(13.5–) 15.5–21 (–24) × (4.5–) 5–6.5 (–9.5)	17.5 × 5.5	3.2	Ribes sp.	New York, USA
	WAC 12395	Round	8-10.5 (-13.5) × (6.5-) 7-9 (-9.5)	9.4×8.0	1.18	Eucalyptus pellita	Qld, Australia
		Long	(12-) 13.5-17.5 (-20) × (5-) 5.5-7 (-8)	15.9×6.0	2.65	~ X X	
	WAC 12396	Round	$(7-)$ 8–13.5 $(-17) \times 7-9.5 (-10.5)$	10.8×8.5	1.27	E. grandis \times E. camaldulensis	Qld, Australia
		Long	(13.5–) 15.5–22.5 (–24) × 6.5–8	18.2×6.9	2.63	-	
B. parva	ICMP 8003 (ex-type)	ç	(12-) 13.5-18.5 × 5-5.5 (-6.5)	15.5×5.3	2.92	Populus nigra	New Zealand
*	WAC 12397	Round	8-10.5 (-12) × (6.5-) 7-8 (-9)	9.1 × 7.3	1.25	E. pellita	Qld, Australia
D. eucalypti	WAC 12401	Round	9.5–13 × (8–) 9–10.5 (–11)	11.2×9.4	1.19	E. pauciflora	Victoria, Australia
	WAC 12402	Round	(9-) 10.5-14.5 × 8-10.5 (-11)	12.3×9.4	1.31	E. camaldulensis	Victoria, Australia
	WAC 12398	Round	(9-) 9.5-13 (-14.5) × (6.5-) 8-9 (-9.5)	11.7×8.6	1.36	E. diversicolor	W.A., Australia
		Long (16 conidia)	12–18.5 × 5–7	15.3×6.0	2.55		
B. australis	WAC 12399	Round	(9.5-) 10.5-14.5 (-17.5) × (7-) 9-10.5 (-11)	12.5×9.5	1.32	E. diversicolor	W.A., Australia
	WAC 12400	Round	(9.5-) 10.5-13.5 (-14.5) × 9-11	12.2×9.9	1.23	E. marginata	W.A., Australia
	CMW 9073		(19-) 22-26 × 5-6 (-7.5)	23.5×5.0	4.7	Acacia sp.	Victoria, Australia
D. versiformis	WAC 12403	Round	$10.5-17(-19) \times 7-9.5$	13.6×8.3	1.64	E. camaldulensis	Victoria, Australia
		Long	(17–) 18–24 × 5–8	21.1×6.6	3.18		
	VPRI 31988	Round	8-11.5 (-13.5) × 5.5-8 (-9.5)	9.4×7.0	1.34	E. pauciflora	Victoria, Australia
		Long (15 conidia)	$13-19.5 \times 5-7$	14.9×5.5	2.7	X V	
B. dothidea	WAC 12404	Round	(13–) 16–21 (–28) × (5.5–) 6.5–9	18.9×7.8	2.42	E. calophylla	W.A., Australia
		Long (14 conidia)	$23.5 - 28 \times 5.5 - 8$	26.3×6.8	3.9		
	CBS 990.70	/				Quercus sp.	Netherlands
	CMW 8000 (ex-type)		18.5–26 (–30) × (4–) 5–5.5	22.4 × 5.1	4.39	Prunus sp.	Crocifisso, Switzerland

Table 2. Conidial dimensions of Botryosphaeria and Dichomera isolates (conidia produced in vitro) examined in this study. Isolates in **bold** produced a Dichomera synanamorph in culture.

Figs 3–8. For legend see opposite page.

muriform conidia (Fig. 2). Elongate, muriform conidia were observed in the culture of isolate WAC12404, along with a number of hyaline or pale brown, aseptate, narrowly fusiform conidia that possessed a basal frill (Fig. 2) and were somewhat similar in size (23.5–28 × 5.5–8 µm, mean = 26.3×6.8 µm, 1:b = 3.9) to those of CMW8000 (Table 2). The 1:b ratio of these conidia was significantly larger than in all other isolates in this study that produced *Dichomera* conidia in culture (Table 2). The elongate, obpyriform conidia of WAC12404 also had a greater 1:b ratio than the shorter conidia of other isolates of *Botryosphaeria* spp. with *Dichomera* conidia such as *B. ribis*, *B. parva* and *B. australis* (Table 2).

An isolate labelled as *D. saubinetii* (CBS 990.70) from *Quercus* sp. by H. A. van der Aa in 1970 was shown to be identical in ITS rDNA sequence to *B. dothidea* (Fig. 1). All attempts to induce this isolate to sporulate on pine needles and eucalypt twigs in culture were unsuccessful. It was thus impossible to compare the morphology of this fungus with CMW8000 or WAC12404. The type specimen of *D. saubinetii* could not be located in various herbaria that might have such a collection (IMI, K, P, BP, BRA), therefore, morphological comparison could not be made.

Two specimens labelled D. saubinetii were obtained on loan from the Kew Herbarium. These included specimens collected by M. C. Cooke (K(M) 122468) from Rhamnus frangula (date unknown), and F. Petrak (K(M) 122471) from *Quercus pedunculata* in 1918. The specimens collected by Petrak and by Cooke produced both long and short conidia in the same pycnidium (Figs 3-4), typical of a number of isolates observed in the present study. Many of the longer conidia were aseptate and hyaline, typical of *Fusicoccum* spp. (Figs 3–4). Dimensions of conidia in both collections were very similar (Table 3), as was the shape and degree of septation (Figs 3-4). The shorter conidia overlapped in dimensions with most isolates producing Dichomera conidia observed in the present study, with the exception of WAC12404. However, the longer conidia were significantly longer than all isolates producing Dichomera conidia with the exception of WAC12404 (Tables 2–3). These collections clearly did not match any of the Dichomera isolates examined in this study according to the morphology of the conidia.

The anamorph (*F. australe*) of *B. australis* is described as having hyaline, fusiform, aseptate conidia rarely forming septa before germination (Slippers *et al.* 2004c). In contrast, the two isolates collected in this

study (WAC12399 & WAC12400) that had the same ITS sequences as *B. australis* (Fig. 1) both formed muriform, brown conidia typical of *Dichomera* in culture (Fig. 2). These *Dichomera* conidia of *B. australis* could be distinguished from the *Dichomera* form of *B. ribis*, *B. parva* and *B. dothidea* based on size or shape or both (Fig. 2) (Table 2). The conidia of the *Dichomera* form of *B. australis* were consistently longer and wider than those of *B. ribis* and *B. parva* (Fig. 2), but all three had similar 1:b ratios (Table 2). The *Dichomera* form of *B. australis* also lacked the longer, ellipsoid or fusiform conidia in culture produced by the *Dichomera* form of *B. ribis* (Fig. 2). *Dichomera* conidia of *B. australis* were very different in size and shape from those of the *Dichomera* form of *B. dothidea* (Fig. 2). (Table 2).

Based on ITS sequence data, three isolates (WAC12401, WAC12402, WAC12398) with muriform conidia in culture grouped together as a distinct species (Fig. 1). This species was most closely related to B. australis, B. parva, and B. ribis. Two isolates (WAC12401, WAC12402) produced pycnidia on eucalypt leaf tissue and these contained conidia of a Dichomera sp. These were identified as D. eucalypti based on morphology. Isolate WAC12398 obtained from woody tissue produced a limited number of subcylindrical, long obovoid or broadly fusiform conidia not seen in isolates WAC12401 and WAC12402. The elongate conidia produced by WAC12398 differed in shape to those produced by the Dichomera form of B. parva (Figs 2, 9). Comparison of the morphological characteristics (Figs 2, 9) (Table 3) of the type specimen of D. eucalvpti (IMI 75054) and a specimen labelled D. eucalypti collected by M. C. Cooke from Eucalyptus sp. in New Zealand in 1886 (K(M) 122474), with isolates observed in this study enabled us to conclude that the species represented by WAC12401, WAC12402 and WAC12398 was synonymous with D. eucalypti sensu Sutton (1975).

DNA sequence comparisons showed that an isolate (WAC12403) from *Eucalyptus* leaves (VPRI 31989) in south-eastern Australia resided in the *Fusicoccum* clade of *Botryosphaeria*, but it was distinct from other species (Fig. 1). This isolate produced abundant pycnidia within lesions typically associated with eulophid wasps (*Hymenoptera*: *Eulophidae*) (Fig. 5). These pycnidia contained aseptate, hyaline conidia typical of *Fusicoccum* (Figs 6–7). Cultures produced from single conidia of this isolate formed muriform, brown conidia (Figs 8–9). These conidia were morphologically similar to *D. versiformis* (Fig. 9) described from foliage of

Figs 3–8. Fig. 3. Aseptate, hyaline conidia and dematiaceous, muriform conidia of K(M) 122468 *Dichomera saubinetii sensu* Cooke stained in lactocotton blue. **Fig. 4.** Aseptate, hyaline conidia and dematiaceous, muriform conidia of K(M) 122471 *Dichomera saubinetii sensu* Petrak stained in lactocotton blue. **Fig. 5.** Lesion of VPRI 31989 *Dichomera versiformis* collected in this study showing presence of wasp within the lesion (*w*) and abundant pycnidia (*p*). **Fig. 6.** Transverse section of pycnidium of VPRI 31989 showing aseptate, hyaline conidia. **Fig. 7.** Squash mount of pycnidium of VPRI 31989 showing aseptate, hyaline conidia. **Fig. 8.** Conidia produced in culture from single conidium isolate of VPRI 31989 after 4 wk on half strength MEA. Bar Figs 3–4, $6–8=10 \mu m$; Fig. 5=1 mm.

	L:B
o) examined in this study.	Mean conidial
specimens (conidia produced in viv	Range of conidial
Table 3. Conidial dimensions of Botryosphaeria and Dichomera s	Spore

Identity	Specimen No.	Spore shape	Range of conidial dimensions (µm)	Mean conidial dimensions (µm)	L:B ratio	Host	Location
D. eucalypti	VPRI 31987 Muru 406	Round Round	$(9-) \ 10-12 \ (-15) \times (7.5-) \ 8-10 \ (-13) (9-) \ 11-13.5 \ (-16) \times (7-) \ 8.5-10.5 \ (-13)$	11.2×8.4 12.1×9.3	1.33 1.30	E. pauciflora E. camaldulensis	Victoria, Australia Victoria, Australia
	IMI 75054 (TYPE)	Round	$9.5-12(-14.5) \times (6.5-)$ 7-9	11.0×8.0	1.38	Eucalyptus sp.	Victoria, Australia
	K(M) 122474	Round	$(9-)$ 10.5-13 $(-15) \times (7-)$ 8-9.5	11.1×8.6	1.29	Eucalyptus sp.	St. Arnaud, New Zealand
D. versiformis	VPRI 31989	Long	$16-22 (-25) \times (5-) 5.5-6.5 (-8)$	19.3×5.9	3.27	$E.\ camaldulensis$	Victoria, Australia
	VPRI 31988	Round	$11-14(-16) \times 8.5-11$	12.7×9.6	1.32	E. pauciflora	Victoria, Australia
	VPRI 22038a (TYPE)	Round	$(9.5-)$ 11–16 $(-17) \times 8-11$	14.5×10.5	1.4	E. mitens	Tasmania, Australia
		Long	$18.5-26(-27.5) \times (5.5-) 6.5-9$	22.0×7.3	3.0		
D. saubinetii sensu Petrak	K(M) 122471	Round	$9.5 - 14(-16) \times 7 - 9$	11.6×8.6	1.34	Quercus pedunculata	Rybno, Poland
		Long	$(17.5-)$ 20–24.5 $(-25.5) \times 4.5-6$	23.9×5.4	4.43		
D. saubinetii sensu Cooke	K(M) 122468	Round	9-14 (-16) × (6-) 7-9	11.2×7.9	1.41	Rhammus frangula	London, England
		Long	$17.5-26.5(-29) \times 5.5-7$	21.9×6.0	3.65		

E. nitens in Tasmania (Yuan et al. 2000) and this was confirmed in a comparision with the type specimen (VPRI 22038a) of D. versiformis (Fig. 9) (Table 3). Conidia were also morphologically distinct from other species examined in this study. Thus, numerous ellipsoid and broadly fusiform conidia, considerably longer than those observed for D. eucalypti and the Dichomera form of B. ribis were produced in culture (Figs 2, 9) (Table 2). Obovoid and obpyriform conidia were produced less commonly and these were also longer than those produced by D. eucalypti and the Dichomera forms of B. ribis, B. parva and B. australis (Figs 2, 9). No elongate, obpyriform conidia characteristic of the Dichomera form of B. dothidea (WAC12404) were produced. A second isolate (VPRI31988) residing in the same clade (D. versiformis) (Fig. 1) produced mainly muriform conidia more characteristic of D. eucalypti with some elongate conidia more typical of D. versiformis. The Fusicoccum-like conidia seen in isolate WAC12403 were not seen in isolate VPRI31988.

The mode of conidiogenesis was not observed for most isolates producing muriform conidia in culture. However, where conidium development could be observed (WAC12404), conidia were produced holoblastically on hyaline, ampulliform to cylindrical conidiogenous cells, proliferating percurrently with up to one annellation. This is in agreement with the mode of conidiogenesis described for Fusicoccum by Crous & Palm (1999) and Slippers et al. (2004a, c). The conidiogenous cells of WAC12404 (B. dothidea) were considerably longer $(8-40.5 - 52.5) \times 3-5 \mu m$; (mean = $22.8 \times 4.1 \,\mu\text{m}$) than those observed for other isolates with muriform conidia and also from the description of B. dothidea provided by Slippers et al. (2004a).

TAXONOMY

A number of species of Fusicoccum have recently been described or reassessed (Phillips et al. 2002, Slippers et al. 2004a, c) as anamorphs of Botryosphaeria. All these Fusicoccum species are described as having hyaline, aseptate, thin-walled conidia that with age become olivaceous and sometimes up to 2-septate. Results of the present study have shown that numerous isolates collected from eucalypts in Australia are identical in their ITS sequence to well-known Botryosphaeria spp. with clearly defined Fusicoccum anamorphs. However, these Australian isolates have muriform conidia typical of Dichomera spp. We, therefore, provide descriptions for these species to include the Dichomera synanamorphs observed in this study.

Five isolates collected in this study with irregularly shaped, muriform conidia had ITS sequences different from any known Botryosphaeria spp. These fungi resided in two distinct clades in the greater Fusicoccum clade (Fig. 1). Conidial morphology of isolates residing in these two clades was the same as that of the type specimens of D. eucalypti and D. versiformis. Based on

Fig. 9. *Dichomera* spp. falling into the *Fusicoccum* clade of *Botryosphaeria*. (*a*) *Dichomera versiformis* isolated in the present study (*b*) *Dichomera versiformis* holotype (*c*) *D. eucalypti* isolated in the present study and (d) *D. eucalypti* holotype. Bar = $10 \mu m$.

this morphological similarity, as well as the overlap in hosts and geographic occurrence, we propose that the isolates collected here (Clades iv and v) are conspecific with *D. eucalypti* and *D. versiformis*.

- Botryosphaeria dothidea (Moug. ex Fr.) Ces. & De Not., Comm. Soc. Crittog. Ital. 1: 212 (1863).
- Sphaeria dothidea Moug. ex Fr., Syst. Mycol. 2: 423 (1823); as 'Moug.! in litt.'
- Botryosphaeria berengeriana De Not., Sferiacei Itali.: **82** (1863).
- Anamorph: Fusicoccum aesculi Corda, in Sturm *Deutschl. Fl.* 3: 111 (1829).Synanamorph: Dichomera (Fig. 2).

Conidiogenous cells holoblastic, hyaline, subcylindrical to cylindrical, 8-40.5 (-52.5) \times 3-5 μ m $(\text{mean} = 22.8 \times 4.1 \,\mu\text{m})$ proliferating percurrently with 0-1 proliferations. Conidia variable and irregular in shape, mostly elongate obpyriform, less commonly obovoid to ellipsoidal or narrowly fusiform, apex subobtuse to obtuse, base truncate to bluntly rounded, hyaline to pale brown and aseptate when immature becoming darker brown and muriform when mature with 1 to 6 transverse septa, 0 to 1 longitudinal septa and 0 to 4 oblique septa, some cells more darkly pigmented than others, (13-) 16-21 $(-28) \times (5.5-)$ $6.5-9 \,\mu\text{m}$ (mean = $18.9 \times 7.8 \,\mu\text{m}$, 1:b 2.42).

Cultures examined: **Australia**: *Western Australia*: Bedfordale: Camms Rd, ex *Eucalyptus calophylla*, Mar. 2003, *T. Paap* (WAC12404). – **Switzerland**: Ticino: Crocifisso, ex *Prunus* sp., Oct. 2000, *B. Slippers* (CMW 8000 – epitype of *Botryosphaeria dothidea*). – **The Netherlands: Baarn: Maarschalksbos**, ex *Quercus* sp., Dec. 1970, *H. A. van der Aa* (CBS 990.70).

Botryosphaeria ribis Grossenb. & Duggar, Tech. Bull. N.Y. Agric. Exp. Stn. 18: 128 (1911).

Anamorph: Fusicoccum ribis Slippers, Crous & M. J. Wingf. 2004

Synanamorph: Dichomera (Fig. 2).

Conidia multi-cellular, variable in shape from subglobose, obpyriform or rarely obovoid to broadly fusiform or fusiform, apex sub-obtuse to obtuse, base truncate to bluntly rounded. Subglobose, obpyriform or obovoid conidia (7–) 8–13.5 (–17)×(6.5–) 7–9.5 (–10.5) μ m (mean = 10.1 × 8.3 μ m, 1:b 1.2), hyaline to pale brown when immature with one transverse septum and 0–2 longitudinal septa becoming brown and muriform when mature with 1–4 transverse septa, 0–3 longitudinal septa and 0–4 oblique septa. Broadly fusiform to fusiform conidia (12–) 13.5–22.5 (–24)× (5–) 5.5–8 μ m (mean = 17.8 × 6.5 μ m, 1:b 2.74) brown, muriform with 2–7 transverse septa, and 0–2 oblique septa.

Cultures examined: Australia: Queensland: Ingam, ex Eucalyptus pellita, May 2003, T. Burgess/G. Pegg (WAC12395); Ingam, Eucalyptus grandis × Eucalyptus camaldulensis, May 2003, T. Burgess/G. Pegg (WAC-12396) – USA: New York: Ithaca, ex Ribes sp., 2000, G. Hudler (CMW 7772 – holotype of Botryosphaeria ribis).

Botryosphaeria parva Pennycook & Samuels, Mycotaxon 24: 455 (1985).

Anamorph: Fusicoccum parvum Pennycook & Samuels 1985

Synanamorph: Dichomera (Fig. 2).

Conidia variable in shape, from subglobose to obpyriform and rarely obovoid, brown, apex obtuse, base truncate to bluntly rounded, $8-10.5 (-12) \times (6.5-)$ 7–8 (–9) µm (mean = 9.1 × 7.3 µm, 1:b 1.25), muriform, 1–3 transverse septa, 1–2 longitudinal septa, and 1–2 oblique septa.

Cultures examined: Australia: Queensland: Karunda: Atherton tablelands, ex Eucalyptus pellita, 2003, T. Burgess/ G. Pegg (WAC12397) – New Zealand: Bay of Plenty: Te Puke: No. 3 Road, Baldwin orchard, ex Populus nigra, 17 Dec. 1981, G. S. Samuels (ICMP 8003 – holotype of Botryosphaeria parva).

Botryosphaeria australis Slippers, Crous & M. J. Wingf., *Mycologia* **96**: 1037 (2004).

Anamorph: Fusicoccum australe Slippers, Crous & M. J. Wingf. 2004.

Synanamorph: Dichomera (Fig. 2).

Conidia irregular in shape, subglobose, obpyriform or obovoid, apex obtuse, base truncate to bluntly rounded,

(9.5–) 10.5–14.5 (–17.5) × (7–) 9–11 (mean = $12.4 \times$ 9.7 µm, 1:b 1.3), pale brown when immature with 1–2 transverse septa, 0–1 longitudinal septa, and 0–2 oblique septa, becoming darker brown and muriform when mature with 1–3 transverse septa, 1–4 longitudinal septa, and 0–3 oblique septa.

Cultures examined: Australia: Western Australia: Pemberton, Big Brook, ex Eucalyptus diversicolor, 2001, T. Burgess/K.-L. Goei (WAC12399); Denmark, ex Eucalyptus marginata, 2001, T. Burgess/K.-L. Goei (WAC12400); New South Wales: Batemans Bay, ex Acacia sp., 2001, M. J. Wingfield (CMW6837).

Dichomera eucalypti (G. Winter) B. Sutton, *Mycol. Pap.* **138**: 182 (1975). (Fig. 3)

Camarosporium eucalypti G. Winter, Rev. mycol. 8: 212 (1886).

Coryneum viminale Cooke & Massee, *Grevillea* **20**: 36 (1891).

Camarosporellum eucalypti (G. Winter) Tassi, Bull. Lab. Ort. Bot. Siena 5: 62 (1902).

Conidia in vivo variable in shape from globose, subglobose, obpyriform or obovoid, apex obtuse, base truncate to bluntly rounded, (9-) 10.5–13 $(-16) \times (7-)$ 8-10.5 (-13) (mean = 12.0×9.0 , 1:b 1.3), hyaline to pale brown when immature with 0-2 transverse septa, and 0-1 longitudinal septa becoming brown and muriform when mature with 1-2 transverse septa, 0-2 longitudinal septa, and 0-3 oblique septa. Conidia in vitro variable in shape from globose, subglobose, obpyriform or obovoid to rarely subcylindrical, long obovoid or broadly fusiform, apex obtuse, base truncate to bluntly rounded. Globose, subglobose, obpyriform or obovoid conidia (9-) 9.5-13.5 (-14.5) × (6.5-) 8-10.5 (-11) (mean = 11.7 × 9.1 µm, 1:b 1.3), hyaline to pale brown when immature with 0-3 transverse septa, 0-2longitudinal septa and 0-2 oblique septa, becoming brown and muriform when mature with 1-3 transverse septa, 0-3 longitudinal septa and 0-2 oblique septa. Subcylindrical, long obovoid or broadly fusiform conidia $12-18.5 \times 5-7 \,\mu m$ (mean 16 conidia = $15.3 \times 6.0 \,\mu\text{m}$) hyaline to pale brown when immature with three transverse septa, 0-1 longitudinal septa, and 0-2 oblique septa, becoming brown and muriform when mature, with 3-5 transverse septa and 0-1 longitudinal septum.

Specimens and cultures examined: Australia: Victoria: Eucalyptus sp., sine dato, Watts (ex type slide, IMI 59162); Mt Buffalo, on leaf of Eucalyptus pauciflora, 8 May 2000, P. J. Keane (VPRI 31987 – epitypus hic designatus; culture WAC12401); Bundoora, Gresswell Reserve, on leaf of Eucalyptus camaldulensis, Oct. 2003, G. Whyte (MURU 406 – culture WAC12402): Melbourne, Eucalyptus viminalis, Apr. 1886, F. R. (K(M) 122472 – holotype); near Melbourne, Eucalyptus viminalis, Apr. 1850, F. R. (ex TYPE slide IMI 75054); New South Wales: Waste Point, Kosciusko National Park, on leaf of Eucalyptus rubida, Feb. 1972, Y. I. Fripp (K(M) 122473); Western Australia: Denmark, ex Eucalyptus

Key to Botryosphaeria spp. producing Dichomera synanamorphs in culture

1	Conidia subglobose, obpyriform or rarely obovoid, on average $<11 \mu m \log, 1:b \le 1.3$, and (or) broadly fusiform to fusiform on average $<19 \mu m \log, 1:b=2.7$. Conidia in culture either globose, subglobose, obpyriform, elongate obpyriform, obovoid, on average $\ge 11 \mu m \log, 1:b 1.2-2.4$, and/or ellipsoidal, broadly fusiform, fusiform or narrowly fusiform, on average $15-26 \mu m \log, 1:b \ge 2.6$		2
2(1)	Conidia $8-12 \times 6.5-9 \mu m$, never broadly fusiform to fusiform $$	B.p.	arva ribis
3(1)	Conidia predominantly elongate obpyriform or less commonly obovoid, $13-28 \times 5.5-9 \mu m$, occasionally ellipsoidal or narrowly fusiform, $23.5-28 \times 5.5-8 \mu m$		nidea 4
4(3)	Conidia subglobose, obpyriform or obovoid, $8-19 \times 6.5-9.5 \mu\text{m}$, commonly ellipsoidal and broadly fusiform, $16-25 \times 5-8 \mu\text{m}$.	D. versifo	rmis 5
5(4)	Conidia subglobose, obpyriform or obovoid, $9.5-17.5 \times 7-11 \mu m$, never subcylindrical, long obovoid or broadly fusiform	B. aust	ralis
	obovoid or broadly fusiform, $12-18.5 \times 5-7$	D. euca	lypti

diversicolor, 2001, T. Burgess/K.-L. Goei (WAC12398). – New Zealand: St. Arnaud, Eucalyptus sp., Aug. 1886, M. C. Cooke (K(M) 122474).

Dichomera versiformis Z. Q. Yuan, T. Wardlaw & C. Mohammed, *Nova Hedwigia* **70**: 140 (2000).

(Figs 6–9)

Conidia in vivo either regular in shape, broadly fusiform, hyaline and aseptate or irregular in shape from subglobose, obovoid or obpyriform to ellipsoidal or broadly fusiform, aseptate or muriform, hyaline or brown, apex subobtuse to obtuse, base truncate to bluntly rounded. Subglobose, obovoid or obpyriform conidia (9.5–) 11–16 (–17) × 8–11 μ m (mean = 14.5 × $10.5 \,\mu\text{m}$, 1:b 1.4), hyaline to pale brown when immature with 0-4 transverse septa and 0-1 oblique septa becoming brown and muriform when mature with 1-3 transverse septa and 0-1 longitudinal septa and 0-3 oblique septa. Ellipsoidal or broadly fusiform conidia (17-) 18-24 $(-27.5) \times (5-)$ 5.5-8 $(-9) \mu m$ (mean = 21.4 × 6.9 µm, 1:b 3.1), hyaline to pale brown, aseptate to muriform with 0-6 transverse septa and 0-1 oblique septa. Conidia in vitro variable in shape from subglobose, obovoid or obpyriform to ellipsoidal or broadly fusiform, apex subobtuse to obtuse, base truncate to bluntly rounded. Subglobose, obovoid or obpyriform conidia 8–17 (–19) \times 6.5–9.5 µm (mean = $13.6 \times 9.3 \,\mu\text{m}$, 1:b 1.5), hyaline to pale brown when immature becoming brown when mature, with 0-3 transverse septa, 0-1 longitudinal and 0-1 oblique septa. Ellipsoidal and broadly fusiform conidia 16-22 $(-25) \times (5-) 5.5-6.5 (-8) \mu m (mean = 19.3 \times 5.9 \mu m, 1:b)$ 3.3), hyaline to pale brown when immature with 0-4transverse septa and no longitudinal or oblique septa becoming brown and muriform when mature with 4-5 transverse septa and 0–2 oblique septa.

Specimens and cultures examined: Australia: Victoria: Nareen, Eucalyptus camaldulensis, 7 Sep. 1999, P. A. Barber (VPRI 31989 – epitypus hic designatus; culture WAC12403); Mt Buffalo, 'The Hump', Eucalyptus pauciflora, 8 May 2000, *P. J. Keane* (VPRI 31988 – culture VPRI 31988). *Tasmania*: Smithton, *Eucalyptus nitens*, 27 Aug.1998, *Z. Q. Yuan & T. Wardlaw* (VPRI 22038a – holotype of *Dichomera versiformis*).

DISCUSSION

In this study, isolates representing *B. dothidea*, *B. ribis*, *B. parva* and *B. australis*, from eucalypts in Australia, were shown to have synanamorphs with muriform, irregular shaped conidia typical of the genus *Dichomera*. These conidia are formed in addition to their well recognised hyaline, regular-shaped *Fusicoccum* anamorphs, which have previously been described. Two other *Dichomera* spp. (*D. eucalypti* and *D. versiformis*) were found to group with *Botryosphaeria* with *Fusicoccum* anamorphs. Based on the DNA sequence analyses and morphological examination of freshly collected isolates and type specimens, descriptions have been provided for the *Dichomera* synanamorphs of the respective *Botryosphaeria* spp., and for *D. eucalypti* and *D. versiformis*.

Taxonomy

Our observations of the ex-type cultures of Botryosphaeria ribis and B. parva confirm the finding by Slippers et al. (2004a) that conidia of both species can become septate with age. Results of the current study show that certain isolates of *B. ribis* (WAC12395, WAC12396) and B. parva (WAC12397) from Australia can also produce a Dichomera synanamorph. Isolates of these two species collected in this study could be distinguished from each other based on the conidia of their Dichomera synanamorph. However, care should be taken when considering these differences as only one isolate of *B. ribis* with a *Dichomera* synanamorph was examined and additional isolates may show that B. ribis also has the ability to produce fusiform or broadly fusiform, muriform conidia in culture.

Our observations based on ITS sequence comparisions, as well as the morphology of conidia of the *Dichomera* synanamorph indicate *B. parva* and *B. ribis* are more closely related to each other than either of them is to *B. dothidea*. Zhou & Stanosz (2001b) reported similar results after comparing ITS sequences and this was confirmed more recently by Slippers *et al.* (2004a) after characterising each species using morphological, cultural and multi-allelic DNA sequence datasets from the rDNA (ITS 1, 5.8S, and ITS 2), β -tubulin and EF1- α genes. Our observations show that the variability in size and shape of conidia produced in culture is consistent with the separation of *B. ribis*, *B. parva* and *B. dothidea* based on sequence data.

Analysis of the ITS sequences of two isolates (WAC12399 and WAC12400) collected from healthy stems of Eucalyptus diversicolor and E. marginata, respectively, in native forests in Western Australia, and which produced Dichomera synanamorphs in vitro, showed that they are identical to *B. australis* described by Slippers et al. (2004c). Slippers et al. (2004c) recently described B. australis and its anamorph, Fusicoccum australe, from native Acacia and exotic Sequoiadendron trees in eastern Australia. They found this species was closely related to, but taxonomically distinct from B. lutea, based on morphology and sequence data within the ITS, β -tubulin and EF1- α regions. The collection of additional isolates of B. australis in this study and their separation from B. lutea based on sequence data for the ITS region support the findings by Slippers et al. (2004c).

An isolate of F. aesculi (WAC12404) collected from stem cankers of E. calophylla in Western Australia and forming a *Dichomera* synanamorph in culture, had an ITS DNA sequence identical to B. dothidea. Furthermore, an isolate labelled D. saubinetii (CBS 990.90) was also identical in ITS sequence to B. dothidea. This raises the question whether D. saubinetti, the type species of Dichomera, is a synanamorph of B. dothidea along with F. aesculi. Butin (1993) presented a synonymy for D. saubinetii and a fungus closely related to F. aesculi, suggesting a single biological species had the ability to produce two different spore types with intermediate forms in different pycnidia, as well as within the same pycnidium in culture. The observations of Butin (1993) were made prior to the clarification of the identity of F. aesculi (Smith, Michailides & Stanosz 2001, Smith & Stanosz 2001, Slippers et al. 2004a). They also came before the publication of significant DNA-based phylogenetic studies on the relationships between species of Botryosphaeria and Fusicoccum. Sutton (1980) described specimens of D. saubinetii from Rhamnus frangula, the same host referred to for B. berengeriana (asynonym of B. dothidea) in the original description by De Notaris (1863). There are, however, no cultures linked to the type of D. saubinetii, which precludes us from critically testing the relatedness of F. aesculi and D. saubinetti on morphological and molecular bases.

The original description of D. saubinetii (as Hendersonia saubinetii; Montagne 1856) describes conidia as pleomorphic, cellular, brown and pedicillate without giving dimensions. von Höhnel (1918) later designated D. saubinetii as the lectotype of the genus. His description did not refer to the pleomorphic and pedicellate nature of conidia, although it gave dimensions of conidia $(20 \times 11 \,\mu\text{m})$. Sutton (1980) described D. saubinetii as having determinate, holoblastic conidiogenous cells, $7.5-14 \times 3-4 \mu m$, and conidia which were globose, subglobose, clavate or fusiform, $11-13 \times 7-10 \,\mu\text{m}$. The type specimen was not included amongst the specimens examined by Sutton. The Dichomera synanamorph produced by B. dothidea collected in our study differs from this description in having significantly longer conidiogenous cells and conidia. Sutton's description includes fusiform conidia, however, none are illustrated and the conidia that are illustrated do not resemble those observed for the Dichomera synanamorph of B. dothidea in the present study.

Attempts to locate the type specimen of *D. saubinetii* in the present study were unsuccessful. Two specimens labelled *D. saubinetii* (K(M) 122471 and K(M) 122468) had conidia that were morphologically similar, yet still distinct from all other species examined here. The short conidia observed in these herbarium specimens were similar in size to those previously described by Sutton (1980) and fell within the range of those described by von Höhnel (1918); however, the longer conidia were substantially different from any previously described for *D. saubinetii*. Hyaline, aseptate conidia typical of *Fusicoccum* were also observed in these specimens, suggesting a link to *Botryosphaeria*.

Conidia of some isolates collected in this study showed close similarities to those of two Dichomera spp. previously described from eucalypts in Australia. Sutton (1975) combined two taxa, Camarosporellum eucalypti and Coryneum viminale, to describe D. eucalypti. There has been no published account of this fungus occurring on eucalypts subsequent to its first description. We examined the type specimen of D. eucalypti and an additional specimen labelled D. eucalypti by Cooke (K(M) 122474), and found the morphological characteristics to be the same as those of some isolates collected in this study. This fungus was commonly associated with lesions containing eulophid wasps. This association was observed in the foliage specimens collected in this study, as well as the Cooke specimen (K(M) 122474). The ITS sequence data produced in this study show that D. eucalypti is a Botryosphaeria species grouping in the Fusicoccum clade, with the teleomorph and synanamorph forms in these genera still awaiting collection and description.

Two isolates (WAC12403 and VPRI31988) residing in the *Fusicoccum* clade had morphological characteristics indistinguishable from those of the type specimen of *D. versiformis*. *Dichomera versiformis* was described from a single collection of foliage from E. nitens in Tasmania, Australia (Yuan et al. 2000). Barber, Smith & Keane (2003) recorded D. versiformis from leaf lesions on an additional five eucalypt species and noted that the fungus was relatively common on eucalypts in Victoria. One specimen (WAC12403) produced in vivo aseptate, hyaline spores typical of a Fusicoccum sp. These spores remained hyaline and aseptate during germination. Muriform, brown conidia were only discovered some weeks later in cultures. In the current study, D. versiformis was found on E. pauciflora and E. camaldulensis for the first time, increasing the host range described by Barber et al. (2003). As with D. eucalypti, this study shows that it is likely that this species has a Botryosphaeria teleomorph and Fusico*ccum* synanamorph yet to be collected and described.

The muriform conidia of the type of *D. versiformis*, as well as each of the *Dichomera* synanamorphs of *B. ribis*, *B. australis*, and *B. dothidea*, could be grouped into two general categories. These include those that are globose, sub-globose, obovoid, obpyriform or elongate obpyriform and those that are ellipsoid or somewhat fusiform. This feature of having conidia with variable shape has been previously considered unique to *D. versiformis* in the genus *Dichomera* (Yuan *et al.* 2000). Both the type of *D. eucalypti* and the anamorph of *B. parva* (WAC12397) have muriform *Dichomera* conidia, but lack the ellipsoid or somewhat fusiform conidia for this anamorph.

The discovery of Dichomera synanamorphs with distinctly muriform conidia has provided additional features for morphological comparison between taxa of Botryosphaeria. There has been a great deal of research carried out in recent years to clarify the taxonomic confusion surrounding *Botryosphaeria* and its anamorphs (Palmer, Stewart & Wingfield 1987, Jacobs & Rehner 1998, Denman et al. 2000, Smith & Stanosz 2001, Smith et al. 2001, Zhou & Stanosz 2001a, Phillips et al. 2002, de Wet et al. 2003, Alves et al. 2004, Slippers et al. 2004a, c). Considerable debate has surrounded the correct identification of species such as B. dothidea, B. parva, B. ribis and B. lutea, which have been regarded as either synonyms or closely related due to the overlap in morphological features. Results of this study have shown that these four Botryosphaeria spp. can clearly be separated based on morphology of the *Dichomera* spore form, when this synanamorph is present.

Pleoanamorphy of Botryosphaeria

Pleoanamorphy is the term applied when two or more anamorphs (synanamorphs) are characterised based on morphology, but are identical according to DNA sequence data. The issue of classification and nomenclature of pleoanamorphic fungi has been discussed in detail (Hennebert 1971, 1987, Carmichael 1981, Gams 1982, Seifert & Samuels 2000), with opinions differing on what constitutes a synanamorph, and whether they should be grouped under a single anamorphic name or given their own unique identity. For well known genera with synanamorphs (e.g. Fusarium, Phoma), the difference in morphology of the synanamorphs and (or) the mode of conidiogenesis is usually very obvious. The application to Dichomera and Fusicoccum is more complicated as the mode of conidiogenesis is similar in both, and there is considerable overlap in conidial morphology between conidia of Fusicoccum and the more fusiform and elongate Dichomera spore types (e.g. B. dothidea, D. versiformis). Despite these similarities, the Dichomera and Fusicoccum spore-types are clearly different, and are consistently distinguishable from each other and mostly occur independently of each other (hence the association escaping notice before). The decision was thus made to retain Dichomera as a synanamorph name rather than to synonymise it with the older generic name Fusicoccum.

Ecological consideration

Our results show that *Botryosphaeria dothidea*, *B. parva*, B. ribis, and B. australis, as defined by Slippers et al. (2004a, c) have a wider host and geographical distribution than previously thought. Despite previous reports of B. dothidea (Slippers et al. 2004b) and B. ribis from Eucalyptus (Webb 1983, Shearer, Tippett & Bartle 1987, Crous, Knox Davies & Wingfield 1989, Old et al. 1990) a recent survey showed that B. dothidea was rare on this host and failed to identify B. ribis (Slippers et al. 2004b), adding support to the contention that *B. ribis* is limited to *Ribes* sp. in the USA (Slippers *et al.* 2004a). Confusion may have arisen because a large number of species were synonymised with B. dothidea (including B. ribis) (von Arx & Müller 1954), a situation which was not universally accepted and has been discounted in recent studies. We have shown that B. dothidea occurs on Eucalyptus in Western Australia, where there is a well-established eucalypt plantation industry. Furthermore, the anamorph of B. ribis, F. ribis sensu Slippers et al. (2004a), was shown to occur on E. pellita and E. grandis \times E. camaldulensis plantations in Queensland, Australia. This is, however, only based on ITS data and requires further investigation using sequence data of more gene regions for this cryptic species (Slippers et al. 2004a).

Botryosphaeria parva sensu Slippers et al. (2004a) has been isolated from Eucalyptus and other hosts outside Australia (Slippers et al. 2004a) and recently from Tibouchina in Australia (Slippers et al. 2004b). Our findings show that B. parva also occurs on E. pellita plantations in Queensland, Australia. Similarly, B. australis was found for the first time on E. globulus plantations in Western Australia, possibly originating from nearby native forests. Slippers et al. (2004a, b) concluded that B. australis was probably native to the southern hemisphere, most likely Australia, but it has not been commonly found on Eucalyptus.

Results of the present study have shown that *D. eucalypti* occurs on both woody tissue and leaves of

several species of eucalypt in southern Australia. The three host species, *E. pauciflora, E. camaldulensis* and *E. viminalis*, were situated in native forests or woodlands in south-eastern Australia. The remaining isolate was collected from woody tissue of *E. globulus* growing in plantations in south-western Australia. The fungus could have been transferred to Western Australia from the eastern states in infected tissue, or it may have moved into the plantations from surrounding native eucalypt forests. Further collections will be required to resolve this question.

All the species of *Botryosphaeria* that produced a Dichomera synanamorph in culture were collected from eucalypts in Australia. Ex-type cultures of B. dothidea, B. parva, B. ribis and B. australis used in this study were from hosts other than eucalypts, and, with the exception of B. australis, countries other than Australia. These ex-type isolates produced only hyaline, fusiform, aseptate conidia typical of Fusicoccum, despite being subjected to the same cultural conditions as the isolates collected from eucalypts in this study. This raises the question: Is the Dichomera synanamorph a characteristic restricted to *Botyryosphaeria* spp. occurring on eucalypts in Australia? Morphological comparisons of D. saubinetii specimens from stems of deciduous trees including Quercus and Rhamnus in Europe, and those previously made by Butin (1993) suggest not. Whilst documenting the fungal assemblages in stem and twig lesions of Quercus robur in Switzerland, Sieber et al. (1995) noted that D. saubinetii was found during their study, but had never been mentioned in other studies of fungi associated with oak decline (Dellavalle-Fedi, Moricca & Ragazzi 1991, Kowalski 1991, Kehr & Wulf 1993). However, these same studies had recorded species such as Diplodia mutila and D. quercina (syn. F. quercus) but not D. saubinetii, and these fungi might have been confused with each other. It thus appears that the link between Botryosphaeria and Dichomera may have been overlooked, partly because of the lack of cultural and molecular studies of Dichomera and Australian isolates of Botryosphaeria, and needs careful attention in future.

CONCLUSION

Important questions arising from the current study include the abundance, distribution, ecological role (including endophytic status, role in survival of spores, and pathogenicity) and genetic mechanism behind the expression of these distinct phenotypes. A recent study carried out by Whyte (2003) on *Dichomera eucalypti* has suggested that there is a close relationship between eulophid wasps and the fungus. It was hypothesised that the lesions were initially caused by the wasp and that the fungus, which is endophytic, subsequently developed in these lesions. Further work is required to confirm this, but detailed studies like this will help us to understand the biology of these fungi and, therefore, their ability to cause disease. It is also clear that the genus *Dichomera* and its so called 'stromatic analogue', *Camarosporium*, require extensive revision. This will be a difficult task considering that there are over 400 taxa in these combined genera. Other anamorphic genera which appear to be somewhat related to *Dichomera* and *Camarosporium*, such as *Hendersonula* and *Camarosporellum*, should also be reconsidered. Such a revision would require a combination of morphological and DNA sequence comparisons as well as the examination of types. The effort will clearly be frustrated by the lack of cultures for many species and significant new collections will be required.

ACKNOWLEDGEMENTS

P.A.B. was the recipient of an Australian Post-graduate Award scholarship for part of this study and would like to thank Timbercorp Ltd for their financial assistance. We are most grateful to Alan Philips for reviewing the manuscript. In addition we would like to kindly thank the curators of culture collections and herbaria worldwide (VPRI, K, IMI, CMW, CBS) and Gilbert Whyte and Trudi Paap for kindly supplying specimens and cultures.

REFERENCES

- Alves, A., Correia, A., Luque, J. & Phillips, A. (2004) Botryosphaeria corticola, sp. nov. on Quercus species, with notes and description of Botryosphaeria stevensii and its anamorph, Diplodia mutila. Mycologia 96: 598–613.
- Barber, P. A., Smith, I. W. & Keane, P. J. (2003) Foliar diseases of *Eucalyptus* spp. grown for ornamental cut foliage. *Australasian Plant Pathology* 32: 109–111.
- Bevercombe, G. P. & Rayner, A. D. M. (1978) *Dichomera saubinetii* and bark-diamond canker formation in Sycamore. *Transactions of the British Mycological Society* **71**: 505–507.
- Butin, H. (1993) Morphological adaptation and spore pleomorphism in the form-complex *Dichomera-Camarosporium* and *Fusicoccum-Dothiorella*. Sydowia 45: 161–166.
- Carmichael, J. W. (1981) Pleomorphism. In *Biology of Conidial Fungi* (G. T. Cole & W. B. Kendrick, eds) 1: 135–143. Academic Press, London.
- Crous, P. W., Knox Davies, P. S. & Wingfield, M. J. (1989) A summary of fungal leaf pathogens of *Eucalyptus* and the diseases they cause in South Africa. *South African Forestry Journal* **149**: 9–16.
- Crous, P. W. & Palm, M. E. (1999) Reassessment of the anamorph genera *Botryodiplodia*, *Dothiorella* and *Fusicoccum*. *Sydowia* **51**: 167–175.
- De Notaris, G. (1863) Sferiacei Italici. Vol. 1 (1). Genova.
- de Wet, J., Burgess, T., Slippers, B., Presig, O., Wingfield, B. D. & Wingfield, M. J. (2003) Multiple gene genealogies and microsatellite markers reflect relationships between morphotypes of *Sphaeropsis sapinea* and identify a new species of *Diplodia*. *Mycological Research* 107: 557–566.
- Dellavalle-Fedi, I., Moricca, S. & Ragazzi, A. (1991) Mycoflora of declining *Quercus robur*. In *Oak decline in Europe* (R. Siwecki & W. Liese, eds): 135–139. Polish Academy of Sciences, Kornik.
- Denman, S., Crous, P. W., Taylor, J. E., Kang, J. C., Pascoe, I. & Wingfield, M. J. (2000) An overview of the taxonomic history of *Botryosphaeria*, and a re-evaluation of its anamorphs based on morphology and ITS rDNA phylogeny. *Studies in Mycology* 45: 129–140.
- Felsenstein, J. (1985) Confidence intervals on phylogenetics: an approach using bootstrap. *Evolution* **39**: 783–791.

- Funk, A. & Sutton, B. C. (1972) A disease of conifer buds in western Canada associated with *Dichomera gemmicola* n. sp. *Canadian Journal of Botany* **50**: 1513–1518.
- Gams, W. (1982) Generic names for synanamorphs? *Mycotaxon*, **15**: 459–464.
- Gardes, M. & Bruns, T. (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. *Molecular Ecology* **2**: 113–118.
- Hennebert, G. L. (1971) Pleomorphism in Fungi Imperfecti, In *Taxonomy of Fungi Imperfecti* (B. Kendrick, ed.): 202–223. University of Toronto Press, Toronto.
- Hennebert, G. L. (1987) Pleoanamorphy and its nomenclatural problem. In *Pleomorphic Fungi: the diversity and its taxonomic implications* (J. Sugiyama, ed.): 263–290 Elsevier, Amsterdam.
- Hillis, D. M. & Huelsenbeck, J. P. (1992) Signal, noise, and reliability in molecular phylogenetic analyses. *Journal of Heredity* 83: 189–195.
- Hohnel, F. von (1918) Fungi imperfecti. Beitrage zur Kenntnis derselben. *Hedwigia* 60: 184–186.
- Jacobs, K. A. & Rehner, S. A. (1998) Comparison of cultural and morphological characters and ITS sequences in anamorphs of *Botryosphaeria* and related taxa. *Mycologia* **90**: 601–610.
- Kehr, R. D. & Wulf, A. (1993) Fungi associated with above-ground portions of declining oaks (*Quercus robur*) in Germany. *European Journal of Forest Pathology* 23: 18–27.
- Kowalski, T. (1991) Oak decline. I. Fungi associated with various disease symptoms on overground portions of middle-aged and old oak (*Quercus robur* L.). *European Journal of Forest Pathology* **21**: 218–233.
- Montagne, J. P. F. C. (1856) Sylloge Generum Specierumque Cryptogamarum. Baillière, Paris.
- Morgan-Jones, G. & White, J. F. J. (1987) Notes on coelomycetes. II. Concerning the *Fusicoccum* anamorph of *Botryosphaeria ribis*. *Mycotaxon* 30: 117–125.
- Old, K. M., Gibbs, R., Craig, I., Myers, B. J. & Yuan, Z. Q. (1990) Effect of drought and defoliation on the susceptibility of *Eucalyptus* to cankers caused by *Endothia gyrosa* and *Botryosphaeria ribis*. *Australian Journal of Botany* 38: 571–581.
- Palmer, M. A., Stewart, E. L. & Wingfield, M. J. (1987) Variation among isolates of *Sphaeropsis sapinea* in north central United States. *Phytopathology* 77: 944–948.
- Park, R. F. & Keane, P. J. (1984) Further Mycosphaerella species causing leaf diseases of Eucalyptus. Transactions of the British Mycological Society 83: 93–105.
- Pennycook, S. R. & Samuels, G. J. (1985) Botryosphaeria and Fusicoccum species associated with ripe fruit of Actinidia deliciosa (kiwifruit) in New Zealand. Mycotaxon 24: 445–458.
- Petrak, F. (1922) Beitrage zur Kenntnis der Pilzflora der sudlichen Alpenlander und Norditaliens. Annales Mycologici 20: 126–159.
- Phillips, A. J. L., Fonseca, F., Povoa, V., Castilho, R. & Nolasco, G. (2002) A reassessment of the anamorphic fungus *Fusicoccum luteum* and description of its teleomorph *Botryosphaeria lutea* sp nov. *Sydowia* 54: 59–77.
- Saccarado, P. A. (1880) Conspectus generum fungorum italiae inferiorum nempe ad sphaeropsideas, Melanconieas et Hyphomyceteas pertinentium. Systemate sporologico dispositu. *Michelia* 2: 1–38.
- Sankaran, K. C., Sutton, B. C. & Minter, D. (1995) A check-list of fungi recorded on *Eucalyptus*. *Mycological Papers* 170: 1–376.
- Seifert, K. A. & Samuels, G. J. (2000) How should we look at anamorphs? *Studies in Mycology* 45: 5–18.
- Shearer, B. L., Tippett, J. T. & Bartle, J. R. (1987) Botryosphaeria ribis infection associated with death of *Eucalyptus radiata* in species selection trials. *Plant Disease* 71: 140–145.
- Shoemaker, R. A. (1964) Conidial states of some *Botryosphaeria* species on *Vitis* and *Quercus*. *Canadian Journal of Botany* 42: 1297–1301.

- Sieber, T. N., Kowalski, T. & Holdenrieder, O. (1995) Fungal assemblages in stem and twig lesions of *Quercus robur* in Switzerland. *Mycological Research* 99: 534–538.
- Sivanesan, A. (1984) The Bitunicate Ascomycetes and their Anamorphs, Cramer, Vaduz.
- Slippers, B., Crous, P. W., Denman, S., Coutinho, T. A., Wingfield, B. D. & Wingfield, M. J. (2004a) Combined multiple gene genealogies and phenotypic characters differentiate several species previously identified as *Botryosphaeria dothidea*. *Mycologia* 96: 83–101.
- Slippers, B., Fourie, G., Crous, P. W., Coutinho, T. A., Wingfield, B. D., Carnegie, A. J. & Wingfield, B. D. (2004b) Speciation and distribution of *Botryosphaeria* spp. on native and introduced *Eucalyptus* trees in Australia and South Africa. *Studies in Mycology* **50**: 343–358.
- Slippers, B., Fourie, G., Crous, P. W., Coutinho, T. A., Wingfield, B. D. & Wingfield, M. J. (2004c) Multiple gene sequences delimit *Botryosphaeria australis* sp. nov. from *B. lutea. Mycologia* 96: 1028–1039.
- Smith, D. R., Michailides, T. J. & Stanosz, G. R. (2001) Differentiation of a *Fusicoccum* sp causing panicle and shoot blight on California pistachio trees from *Botryosphaeria dothidea*. *Plant Disease* 85: 1235–1240.
- Smith, D. R. & Stanosz, G. R. (2001) Molecular and morphological differentiation of *Botryosphaeria dothidea* (anamorph *Fusicoccum aesculi*) from some other fungi with *Fusicoccum* anamorphs. *Mycologia* 93: 505–515.
- Sutton, B. C. (1975) Coelomycetes V. Coryneum. Mycological Papers 138: 1–224.
- Sutton, B. C. (1980) The Coelomycetes: fungi imperfecti with pycnidia, acervuli and stromata, Commonwealth Mycological Institute, Kew.
- Sutton, B. C. & Dyko, B. J. (1989) Revision of Hendersonula. Mycological Research 93: 466–488.
- Swofford, D. (2000) *PAUP*: Phylogenetic analysis using parsimony* (**and other methods*). Sinauer Associates, Sunderland, MA.
- von Arx, J. A. & Müller, E. (1954) Die Gattungen der amerosporen Pyrenomyceten. *Beitrage zur Kryptogamenflorade Schweiz* **11** (1): 1–434.
- Webb, R. S. (1983) Seed capsule abortion and twig dieback of *Eucalyptus camaldulensis* in South Florida induced by *Botryosphaeria ribis. Plant Disease* 67: 108–109.
- White, T., Bruns, T., Lee, S. & Taylor, J. (1990) Amplification and direct sequencing of Fungal ribosomal RNA genes for phylogenetics. In *PCR Protocols: a guide to methods and applications*. (M. Innis, D. Gelfand, J. Snisky & T. White, eds): 315–322. Academic Press, San Diego.
- Whyte, G. (2003) Relationships of insects and fungi associated with foliage of Eucalyptus camaldulensis (Myrtaceae) in the Gresswell forest reserve, Bundoora, Melbourne., Hons. thesis, La Trobe University, Melbourne.
- Yuan, Z. Q. & Wang, X. W. (1995) A taxonomic study on fungi associated with spruce bud blight in China. *Mycotaxon* 53: 371–376.
- Yuan, Z. Q., Wardlaw, T. & Mohammed, C. (2000) A new species of *Dichomera* (Mitosporic fungus) described on eucalypt leaves from Tasmania, Australia. *Nova Hedwigia* **70**: 139–142.
- Zhou, S. G. & Stanosz, G. R. (2001a) Primers for amplification of mt SSU rDNA, and a phylogenetic study of *Botryosphaeria* and associated anamorphic fungi. *Mycological Research* 105: 1033–1044.
- Zhou, S. G. & Stanosz, G. R. (2001b) Relationships among *Botryosphaeria* species and associated anamorphic fungi inferred from the analyses of ITS and 5.8S rDNA sequences. *Mycologia* 93: 516–527.

Corresponding Editor: S. Takamatsu