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Abstract

Herein, a framework for deterministic global optimization of process flowsheets is adapted to the design of an organic Rankine
cycle for geothermal power generation. A case study using isobutane as working fluid is considered for the optimal sizing of com-
ponents and selection of operating conditions at different ambient temperatures. The framework can provide the global optimum in
reasonable calculation times within tight tolerances. In contrast, most local solvers applied are found to be inadequate. The CPU
times are substantially smaller compared to a state-of-the-art global solver. For the case considered, recuperation can increase net
power output but not necessarily economics.
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1. Introduction

The need for more efficient use of energy resources and at the same time growing computational power has made
numerical optimization a widely employed tool in process design [1] that has already been applied to the design of
organic Rankine cycles (ORC) [2]. However, previous studies have mostly relied on local solvers that only return
locally optimal solutions [3]. Since most complex real-world problems are nonconvex [4], they can have multiple
local solutions and thus the application of deterministic global optimizers is desirable to guarantee the best attainable
solution of the problem. Recently, a new framework has been introduced [5] that makes use of McCormick relax-
ations [6] and more specifically their extension to the relaxation of algorithms [7] to create convex relaxations of the
optimization problem. In contrast to other global solvers [8], it enables the use of the sequential-modular mode which
drastically reduces the number of optimization variables seen by the optimizer.
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In this contribution, we adapt this solution procedure to globally optimize an ORC for power generation from geother-
mal brine [9]. While in [9] the off-design behavior of an existing plant was analyzed for varying ambient temperatures,
we herein generate optimal design and working conditions for different design scenarios, i.e., attainable cooling water
temperatures. These temperatures have an impact on the inlet temperature of the cooling water, that is used to con-
dense the working fluid (WF), and therefore the lower pressure of the ORC. The working fluid, isobutane (R-600a),
is also taken from [9], as a promising choice for low evaporating temperatures (Theassourcein < 450 K) [10,11]. Of
high importance is the shape of the two-phase region in the temperature-entropy-diagram, as the isentropic expansion
in the expander can lead to droplet formation, thus damaging turbine blades. As isobutane is a dry-working fluid
(O-type, [9]), this is not the case and superheating is therefore not obligatory. However, as shown in [9], superheating
can be of advantage under certain circumstances. Therefore, a superheater in included in the flowsheet, with its sizing
considered in this study. The problem is set up as nonlinear program (NLP) with a relatively simple calculation of the
physical properties for the WF and a fixed cycle structure and optimized for either maximum net power or minimum
levelized cost of electricity. As the purpose of this manuscript is the proof of concept for the optimization framework
being applied to the case study, resulting inaccuracies have to be accepted here.

In the following, we first briefly summarize the optimization formulation and solution procedure. Next, the boundary
conditions of the case study as well as the models employed are described. Finally, the results for the optimal plant
design are discussed along with the required solution times.

2. Global Optimization

Steady-state models for thermal organic Rankine cycles consist of nonlinear equations, resulting from physical rela-
tions such as mass and energy balances [3]. Due to these equations, the optimization problems arising when optimiz-
ing an ORC typically have nonconvex feasible regions, possibly resulting in multiple local optimal solutions that give
substantially suboptimal performance compared to global optima.

Methods for global optimization broadly fall into two categories [12]: Stochastic global optimizers such as, e.g.,
genetic algorithms, which have been applied in some previous studies on ORC design [13], are only guaranteed to
yield a global solution at infinite runtime, and there is no easy way of verifying a given solution is globally optimal.
Deterministic global optimizers, on the other hand, terminate in finite time while guaranteeing global optimality to
within a specified tolerance. As a range of deterministic global optimizers is available [14,15], the details of the algo-
rithms are not further explained here.

A major characteristic of most available deterministic solvers is that they require the flowsheet optimization prob-
lem to be formulated in the so-called equation-oriented mode, in which the optimizer has access to all equations and
variables. This can lead to high computational times, at least in standard methods, and tight bounds on all variables
have to be provided, which can be challenging for bigger problems.

However, as the number of degrees of freedom in process design problems is by far smaller than the total number
of model variables of the process, the use of formulations that operate in a reduced space, similar to the so-called
sequential modular mode, can be of advantage, as shown in [5,7,16]. In this case, the majority of the relations de-
scribing the different components of the flowsheet, are rearranged (possibly grouped in modules [17]) so they can be
evaluated sequentially, and moved to an external function that the optimizer has no direct access to. These modules
act as grey boxes to the optimizer, as it has access only to the given optimization variables.

The solution of this reduced-space formulation is enabled by the automatic propagation of McCormick relaxations
[7] through the external functions containing the model equations using the MC++ library [18]. The solver itself is
described in detail in [5]. It employs a Branch-and-Bound (B&B) algorithm [19], i.e. it subdivides the search space to
derive lower (LBD) and upper (UBD) bounds on the optimal objective value, and the algorithm converges once these
become equal to within a given tolerance. For lower bounding, convex relaxations of the external factorable functions
provided by MC++ [18] are linearized and the resulting linear program (LP) is solved with the linear programming
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Fig. 1. Overview of the geothermal organic Rankine cycle, including brine and cooling water flows (dashed lines) and the optional recuperator
(dotted lines). The states of the fluids are labeled in cycles, while the optimization variables are labeled within rectangles.

solver CPLEX [20]. The upper bounds are found by the local NLP solver SLSQP [21], which is included in the NLopt
library v2.4.2 [22]. Note that this setup is a very simple implementation which does not use the latest advances of
global optimization as this contribution serves a proof of concept for the optimization framework.

3. Organic Rankine Cycle Model
3.1. Case Study

For the case study of the optimization framework, a geothermal organic Rankine cycle based on the problem of [9]
is chosen. As the purpose of this work is the design of the cycle (in contrast to [9]), the structure is simplified to the
structure shown in Fig. 1.

Starting at point 1, the WF is pumped to a higher pressure level and afterwards heated to its saturation temperature in
the economizer, evaporated and superheated. In our formulation, these three components are modeled separately in
order to provide accessibility to the temperatures at each point and the appearing pinch points between the WF and
heat source. The conditions of the heat source (geothermal brine) are taken from [9]: starting with an inlet temper-
ature Ty, = 408 K, cooled down to a fixed outlet temperature 7},,,, = 357 K and a constant heat capacity flow of
My, - cppr = 3,627 kKW/K. The WF is then expanded in a turbine with a fixed isentropic efficiency. Finally, the WF is
cooled to saturation temperature of the low pressure, condensed, and reintroduced to the pump. For the condensation,
a cooling water (CW) flow is used with a constant specific heat capacity. After the condenser and desuperheater, the
CW is cooled back to its inlet temperature, which is assumed to be a direct function of ambient conditions, in the
cooling tower. A total of three different design scenarios are to be analyzed in this work: the CW inlet temperature
T in 18 varied to -5, 0, and 15 °C, representing three different locations of the geothermal field with differing ambient
conditions.

The recuperator in Fig. 1, which is often used for dry working fluids [9,23] to make use of the superheated state
at the low pressure, is an optional component in this configuration. Using the otherwise nonused heat of the WF after
the turbine, a recuperator allows higher WF mass flows for fixed thermodynamic states. As the sizing and therefore the
investment costs influences the economic objective function, it does not necessarily improve the system economics.
This influence can be seen as a result of the following optimizations. The different scenarios are each optimized once
without (basic) and with the use of a recuperator (recup).
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All in all the basic model contains 3 degrees of freedom for the working fluid that uniquely define the rest of the
process: the high pressure pj;qp, the low pressure pj,, and the mass flow 7y r. In case the recuperator is used, one
additional optimization variable for one exiting stream temperature has to be provided.

All cases are first optimized with regard to the net power P, of the cycle, defined in Eq. (1), which is calculated
with the turbine power Py, the pump power P, and the power of the cooling tower fan Py,,, which is a function
of 71, [24].

Pret = Py — Ppump - Pfan (D

Furthermore, all cases are also optimized with regard to the levelized cost of electricity (LCOE), which relates the net
power to the total capital investment 7C1, the equivalent utilization time at rated power T, an annuity factor ¥, a
fixed operation cost factor ¢ and a variable cost factor u,,,, that is assumed constant, according to Eq. (2) [25].

LCOE = 57 + thyar )

3.2. Thermodynamic Formulation

In the MC++ framework external third-party thermodynamic libraries or software packages like REFPROP [26] could
only be used after adapting the implementation to allow the propagation of relaxations [5]. Therefore, ideal gas and
incompressible liquid behavior is assumed with a simple model for heat capacity and enthalpy of vaporization, being
sufficiently accurate for this proof of concept. The thermodynamic reference state is chosen to be the saturated liquid
state at a reference pressure. Each state of the working fluid is then calculated based on its temperature and pressure.
For the calculation of saturation temperatures, the Antoine equation (3) is chosen with parameters from [27] as it is
explicit and sufficiently accurate.

_ __ B
Tsati = 3og 5 — € 3)

The heat capacity for liquid/vapor states is fitted to data from [26] with a linear dependency of the temperature
according to Eq. (4). Liquid enthalpies and entropies can be directly calculated with Eq. (5) + (6), while those in the
superheated region are calculated with Eq. (7) + (8). For states in the superheated region, the evaporation enthalpy
for the chosen reference state Ahgyqp p, is provided [27]. With this formulation, certain inaccuracies are introduced
compared to detailed equations of state, but the formulation allows the direct calculation of the temperature for a
given enthalpy, as it is for example needed for the calculation of the superheated turbine outlet temperature 7s. In
contrast, the fictitious isentropic temperature after the expander 7 ; is added, together with the equation s5 = s¢ 4, as
an additional optimization variable, as Eq. (8) can not be explicitly solved for the temperature.

Cpi = ACI“,' + BCpJ -T (4)
T 2 2

hpiig = fTOCp,Ziq dT +vip - (pi — po) = Ac,uig - (T = To) + 0.5 B, iy - (T - To) +vir - (pi — Po) )
T ¢ n,li

Spiiq = Jp B4 AT = Acig - 10 () + Be,ig - (T = To) ©6)

T

hpsap = Dhevap.py + fi Cpvap AT = Mhevappy + Acyap - (T = To) + 0.5 - Be, - (T2 = T7) (7)
Ahevap,p T cpya i Aheyap, i

Spaap = —FE + [ B AT R - In(2) = =52 + Ay g In () + Beyig - (T = To) =R - In (£) (8)

3.3. Pinch Assumptions & Heat Exchanger Design

An overview of the streams appearing in heat exchangers within the basic ORC for an exemplary design with mini-
mal superheating is given in Fig. 2. It is assumed that the heat capacity stream of the brine and cooling water does
not change with temperature and therefore the curves in the T-Q diagram are linear. The minimal temperature dif-
ference between brine and working fluid (pinch) appears at the outlet of the economizer. This is usually the case
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Fig. 2. Pinch points between working fluid and brine/cooling water of evaporator and condenser in a 7 — Q diagram.

for ORCs, as the heat capacity flow of the brine is much higher than of the working fluid in the subcooled region
(Hpy - Cppr > My - Cpligwr)- The smallest possible temperature difference at this position is a given parameter of
AT pinchevap = 15 K, which is enforced as an inequality constraint. For the condenser, this pinch appears at the con-
denser inlet, at the kink of the saturated vapor region. It is set t0 AT pjsch.cond = 10 K within the model. Through this
fixed pinch, the cooling water mass flow is a direct result of the variable lower pressure p, of the cycle.

For the design of the heat exchangers, fixed thermal transmittances k; are introduced, depending on the phase of the
contacting fluids. The heat exchanger area A; is the calculated according to Eq. (9) using Chen’s approximation [28]
for the mean logarithmic temperature difference (LMTD). Although [29] already provided tight relaxations for the
exact LMTD equation, the approximation is used because of the limitations of the other solvers used for comparison.

A; = Qi
ki'(ATa.i ATy

ATq i +ATp i )% (9)
2

3.4. Economic Model

For the economic analysis and the calculation of the LCOE, the investment costs have to be determined. These costs
are summarized by the total costs of all heat exchangers Invy,;, the pump Inv,,y,, the turbine Inv;,;, and the costs
for the cooling tower Inv;,,.,. According to [30], the cost for the power plant of geothermal energy production is only
around 42 % of the total installed cost, while the rest includes exploration, drilling etc. In order to not scale these
costs with the results of our optimization (since we consider the design of a cycle for a given geothermal source),
the fixed value of Invy,, = 22.21 Mio. US-$, calculated for the base case with an cooling water inlet temperature of
273 K, is added to the investment costs of the power plant for each optimization. The investment costs for the heat
exchangers are calculated in dependency of the base purchase cost C,; (function of A;) and the pressure factor F;
(function of the working fluid pressure p;) according to Eq. (10) [5,31]. Inv,unp, Invs,p and Invy,,,, are depended on
their respective power [24].

Invyy; =118 (1.63+ 1.66 - 2.75 - F ;) - Cp; (10)
10V Prunp 0.71

T = 3540 () (b
Wt » 0.7 » 0.95

Te = 6000+ (T2) " + 60+ (T5) (12

Invipwer 5 P yan 06 13
m:l.s.m.(»_) (13)

Pano
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4. Results

An exemplary projection of a feasible region for the basic ORC is given in Fig. 3. In order to illustrate the feasible
region in a two-dimensional plot, the mass flow of the cooling water and thus the lower pressure is fixed. It can be
seen that both objective functions improve with higher evaporating pressures. For the illustrated case, the operating
conditions for the optimal net power do not coincide with those for the minimal LCOE. For reasons of comparison,
the full model is formulated in an equation-oriented approach in the optimization framework GAMS [32] to be solved
with state-of-the-art solvers. To demonstrate the value of global optimization and the sequential-modular formulation,
we also solve the equation-oriented method with different local solvers (CONOPT, IPOPT, SNOPT, KNITRO, MI-
NOS). With the exception of CONOPT, which always finds the global minimum, these fail more often than not. More
specifically, the solvers converge to substantially suboptimal solutions (up to 20 %) or even fail to find feasible points.
The use of the state-of-the-art global NLP solver BARON [14], in contrast, can validate global optimality of the so-
lutions found by the developed framework. All results could be validated within a given accuracy, guaranteeing the
global optimum for a relative gap between LBD and UBD of 1073, being sufficient with respect to the model accuracy.

The results for the optimization for the three different scenarios of attainable cooling water temperature are given
in Tab. 1 for the basic ORC and in Tab. 2 for the recuperated case. For comparison, the CPU times of the MC++
framework and BARON are given. It can be seen that the computational times for the LCOE optimization are signifi-
cantly higher compared to the net power cases because of the increased complexity of the model due to the component
sizing and investment cost calculation. This effect can be especially seen for the recuperated case, as the CPU time
is increased by a factor 100 for the MC++ framework. The maximal producible net power decreases with increas-
ing ambient and therefore cooling water temperatures, as the condensing pressure increases. The same holds for the
minimization of the LCOE. But, as shown in Fig. 3, the optimal working conditions do not necessarily coincide and
lower LCOE can be attained by not producing the maximum power output. Comparing these results with the recu-
perated case, it can be seen that the recuperator can increase the optimal net power output up to 4 %, depending on
the scenario. But, in contrast, for the LCOE minimization, the heat exchanger area is always set to its lower bound,
indicating that for the given boundary conditions, a recuperator can not improve the economics of the ORC and the
results are the same as in the lower half of Tab. 1. The higher CPU times for both solvers result from the increased
number of degrees of freedom and equality constraints.

Comparing the LCOE results of approximately 40 to 60 US-$/MWh to literature data for geothermal power plants
[30,33,34], the attained LCOE values are, for binary ORCs of this size, at the lower end of existing plants. For the
CPU times of the basic case, the MC++ framework is faster than BARON for every scenario. In the recuperated case
in Tab. 2, the new framework is faster for most scenarios. The CPU times show the big potential of the formulation,
especially considering our simple implementation compared to the sophisticated technology behind BARON.

Table 1. Results of the net power optimization of the basic ORC case for different design scenarios. The upper subtable displays the results for the
maximization of net power, while the lower subtable shows those of the minimization of LCOE.

Tew,in [K] p1 [bar] p2 [bar] rmwr [kg/s] Pper IMW] LCOE [US-$/MWh] CPU time [s] BARON CPU time [s]

268 2.46 16.8 380 27.3 41.5 1 12
273 2.86 16.5 391 253 44.1 2 12
288 4.39 154 430 19.0 56.0 1 16
268 2.66 16.6 385 27.1 41.2 2 877
273 3.08 16.3 396 25.1 43.7 2 387
288 4.60 152 435 18.8 55.7 3 132

5. Conclusion

The applicability of a developed framework for global optimization with the use of propagating McCormick relax-
ations is shown using the design of a geothermal organic Rankine cycle plant as case study. The problem can be
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Fig. 3. Resulting feasible region for the basic ORC case with a fixed cooling mass flow. Grey areas display the respective infeasible regions.
Dashed lines represent lines of constant net power, dotted lines those of constant LCOE.

Table 2. Results of the net power optimization of the recuperated ORC case for different design scenarios. The upper subtable displays the results
for the maximization of net power, while the lower subtable shows those of the minimization of LCOE

Tew,in [K] p1 [bar] p2 [bar] mwr [kg/s] P,o: [IMW] LCOE [US-$/MWh] CPU time [s] BARON CPU time [s]

268 2.44 15.9 408 28.4 45.3 12 25
273 2.84 15.7 418 26.1 48.1 7 29
288 4.37 14.8 449 19.1 60.3 12 33
268 2.66 16.6 385 27.1 41.3 1436 3243
273 3.08 16.3 396 25.1 43.8 1817 4765
288 4.60 15.2 435 18.8 55.8 1044 581

solved within reasonable time without the need of bounding of each variable. In contrast, most local solvers using the
equation-oriented mode fail to find feasible points or converge to substantially worse solutions.

It is shown that for lower ambient temperatures, more net power can be produced by the cycle, resulting in lev-
elized costs of electricity between 41 and 60 US-$/MWh. While including a recuperator into the cycle leads to higher
net powers, the LCOE optimization with the use of a recuperator always leads to the minimal recuperator size and
same LCOE as without recuperator, making this additional component not economical, which is probably caused by
the low cost per heat supplied compared to the specific investment costs of an additional heat exchanger.

Ongoing work within the optimization framework includes improvements to the solver to reduce solution times and
enable the solution of larger problems. With the ability to handle structural decisions, the ORC could be extended and
superstructure optimization be applied. Furthermore, the implementation of more accurate thermodynamic functions,
like cubic equations of state, is an important step.
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