Self-organizing Sensor Networks: State of the art, new solutions and applications

Gabriele Monti
DEIS – Università di Bologna
Area Progetti Integrati Cesena (APICe)
Via Venezia 52, I-47023 Cesena (FC)
gabriele.monti4@unibo.it
www-db.deis.unibo.it/~gmonti

Research activities carried out during the Ph. D. Course (2004-2007)
Scientific tutor: prof. Gianluca Moro (gianluca.moro@unibo.it)
Main international collaboration: University of Illinois at Chicago
Introduction

- Small and powerful devices equipped with CPU, RAM and communication interfaces (i.e. Bluetooth and Wi-Fi)
- Realization of Ad-hoc networks has become possible:
 - Deployment on the fly
 - No fixed and pre-configured infrastructure
 - Connectivity achieved by multi-hop transmissions
 - Devices act as peers, consumers and signal repeaters at the same time
Introduction to ad-hoc and sensor networks (i)

- Composed of small and powerful devices equipped with CPU, RAM and communication interfaces (i.e. Bluetooth and Wi-Fi)
- Deployed without needing any fixed and pre-configured infrastructure
 - Emergency communications in case of a natural disaster
 - On the fly network of portable devices (i.e. University campus, Industrial logistic and manufacturing process)
 - Environmental monitoring
- Communication relies on multi-hop transmissions
- Require cooperation, devices act both as users and as signal repeaters at the same time (peers)
Introduction to ad-hoc and sensor networks (ii)

- New generation of sensornets forming distributed systems and distributed databases
- Devices have scarce resources
 - Battery power, low range connectivity
 - Memory and computational capability
- Protocols must be designed with those constraints in mind
 - Simple, lightweight, robust to frequent failures
- In sensor networks data management should be integrated in the protocols
Example: Environmental monitoring

- La mancanza di stazioni di rilevamento meteorologiche su grandi aree del pianeta causa elevate imprecisioni nelle previsioni (es: deserti, oceani, vaste catene montuose)

- Reti di sensori distribuiti nelle zone remote del pianeta che assolvono a questo compito con comunicazioni via satellite, due tipi di soluzioni:
 - rete di sensori tradizionale (senza intelligenza, trasmette tutti i dati elementari)
 - rete di sensori avanzata che pre-elabora localmente i dati e trasmette solo informazioni di alto livello
Related works

- Main tasks in ad-hoc and sensor networks:
 - Routing protocol
 - Data management

- Classification of existing routing protocols according to:
 - Routing strategy
 - Structure of the network
 - Geographic routing protocols

- Data management protocols for sensor networks
 - DHT on top of routing protocols
 - Space partitioning protocols
Routing approach

- Table-driven (a.k.a. proactive) routing
 - Constantly updated routing-information to all nodes
 - Routes are calculated before they are needed, and even if not needed
 - Scalability problems, need lots of storage

- On-Demand (a.k.a. reactive) routing
 - Does not aim to keep global and up-to-date view at nodes
 - Requires message flooding causing latency and network overhead
Network structure

- Hierarchical networks
 - Nodes/sensors are clustered and some of them act as super-nodes
 - Intra-cluster communication are managed by normal nodes
 - Super nodes manage inter-cluster communication (gateway function)

- Flat networks
 - All nodes/sensors perform the same tasks
 - No clustering
 - No gateways
Geographic routing protocols

- Nodes/sensors must be aware of their physical location [2]
- Requires GPS or position estimation techniques
- Packets are forwarded trying to reduce as much as possible the physical distance to the destination
 - Good scalability (no flooding)
- Dead-ends may occur under low density environment or in case of obstacles
- Positioning can be expensive, inaccurate or unavailable
Data management protocols

- DHT on top of routing protocols [5,6]
 - Build a distributed index on top of a structured network (routing protocol)
 - Scarce integration between the protocols causes overhead (time and resources)

- Space partitioning protocols [3,4]
 - Require sensors localization
 - Data load unbalanced in case of low density zones
Most popular algorithms

<table>
<thead>
<tr>
<th>Routing</th>
<th>Network Structure</th>
<th>Geographical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactive</td>
<td>Proactive</td>
<td>Flat</td>
</tr>
<tr>
<td>DSDV</td>
<td>AODV</td>
<td>FSR</td>
</tr>
<tr>
<td>STAR</td>
<td>DSR</td>
<td>GSR</td>
</tr>
<tr>
<td>WRP</td>
<td>TORA</td>
<td>HARP</td>
</tr>
<tr>
<td>HSLS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ZRP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
W-Grid: a new solution

- A cross-layer infrastructure which self-organizes routing and data management in wireless Ad-Hoc networks
 - Mobile devices (laptops, PDAs, etc.), communication and data sharing
 - Last generation Sensornets
- Cross Layer: The network structure is used for addressing both routing and data management
 - Different from usual underlying-overlay approach in Ad-Hoc networks
- Self-organization: no sensor has global information
- Currently working mainly on static networks
W-Grid Main Characteristics (I)

- Network organization
- Does not rely on nodes localization (expensive)
- Uses virtual coordinates
 - Does not try to approximate nodes physical position
 - VCs are binary string
- Devices are logically mapped on a binary tree structure but there are no super-nodes
 - No hierarchy, all the nodes perform the same tasks
 - Nodes are assigned several coordinates
W-Grid: Coordinates generation

Node n_1 creates a new coordinate (split) $*\overline{1}$ by concatenating a bit to it. Coordinate $*0$ cannot be split anymore. Node n_1 keeps the coordinate $*0$.

Node n_2 joins the network, a new coordinate is needed.

Node n_4 joins the network, a new coordinate is needed.

Node n_5 joins the network, a new coordinate is needed.

Each joining node gets a coordinate as previously described.

Node n_1 turns on and elects itself as root of a new W-Grid network.

Node n_3 is given coordinate $*01$.

Node n_1 keeps the coordinate $*00$.

Node n_4 contacts n_2 and n_3, it takes one coordinate from both of them.

Node n_5 contacts n_4.

Node n_5 is given coordinate $*101$.

Node n_5 is given coordinate $*110$ from n_4.

Node n_3 is given coordinate $*101$ from n_2.

Node n_4 is given coordinate $*010$ from n_3.

Node n_4 is given coordinate $*111$ from n_3.

Node n_5 is given coordinate $*110$ from n_3.
Example of W-Grid Network
W-Grid Main Characteristics (II)

- Routing
 - Nodes routing table contains information about one-hop neighbours (no global knowledge)
 - No broadcasting is required
- Based on the concept of distance between coordinates, example:
 \[d(*0011,*011) = 5 \]
- Given a destination coordinate, messages travel the network hop-to-hop by choosing the neighbour which mostly reduces the distance
W-Grid: Routing example
GPSR - Greedy Forwarding

- Nodes learn immediate neighbors’ positions from beaconing/piggybacking on data packets
- Locally optimal, greedy next hop choice:
 - Neighbor geographically nearest destination
Greedy Forwarding Failure

Greedy forwarding not always possible! Consider:

Self-organizing Sensor Networks: State of the art, new solutions and applications
Void Traversal: The Right-hand Rule

Well-known graph traversal: right-hand rule
Requires only neighbors’ positions
Perimeter Mode Forwarding

- Traverse face closer to D along xD by right-hand rule, until crossing xD
- Repeat with next-closer face, &c.
W-Grid Data management

- Virtual coordinates implicitly generate a distributed database

- Regions that have been split. They do not manage any data but they may be used for routing

- Regions that can manage data and also used for routing
Example of an environment monitoring application in which sensors survey temperature (T) and pressure (P), we will refer to T and P as d_1 and d_2

- We define a domain for d_1 and d_2

$$\text{Dom}(d_1) = [-40, 60]; \text{Dom}(d_2) = [700, 1100]$$

- Return the times at which sensors surveyed a temperature ranging of 26 Celsius degrees and pressure of 1013 mbar

- We must calculate the binary string corresponding to $(26, 1013)$

$$c = *11011000$$

- Now all we have to do is querying the sensor whose coordinate is $*11011000$

Self-organizing Sensor Networks: State of the art, new solutions and applications
Application Scenario
Range query

Considering the same sensor network, return the times at which sensors surveyed a temperature ranging from 26 to 30 Celsius degrees and pressure ranging from 1013 to 1025 mbar.

- We must calculate the correspondent binary string for the four corner of the range query, namely (26,1013) (26,1025) (30,1013) (30,1025):

 \[c_1 = *11011000 \quad c_2 = *11011001 \]
 \[c_3 = *11011010 \quad c_4 = *11011011 \]

- Now all we have to do is querying the sensors whose coordinate have 110110 as prefix
Data management: example of location service

In an Ad-Hoc Network we can build a location service by indexing information about nodes (i.e. nickname, Peer ID) and storing their virtual coordinates.

Nodes act as proxies for devices whose IDs fall in their managing region.

- **proxy Node** (locator)
- **sender Node**
- **recipient Node**
W-Grid Experimental results

Routing performances of W-Grid have been compared to GPSR routing algorithm, obtaining absolutely good results.

<table>
<thead>
<tr>
<th>Area (nodes number)</th>
<th>APL (in hops)</th>
<th>RMSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>W-Grid</td>
<td>GPSR</td>
</tr>
<tr>
<td>800×800 (120)</td>
<td>6.13</td>
<td>7.49</td>
</tr>
<tr>
<td>1000×1000 (200)</td>
<td>8.05</td>
<td>9.02</td>
</tr>
<tr>
<td>1200×1200 (290)</td>
<td>9.75</td>
<td>9.64</td>
</tr>
<tr>
<td>1400×1400 (400)</td>
<td>11.54</td>
<td>10.87</td>
</tr>
<tr>
<td>1600×1600 (520)</td>
<td>13.96</td>
<td>13.71</td>
</tr>
<tr>
<td>1800×1800 (660)</td>
<td>14.81</td>
<td>14.14</td>
</tr>
<tr>
<td>2000×2000 (820)</td>
<td>17.43</td>
<td>16.57</td>
</tr>
</tbody>
</table>
W*-Grid enhancing robustness

- The infrastructure may deal with nodes disconnections and failures
- Robustness to failures represent a step toward nodes mobility
 - Nodes movements can be seen as couple of disconnection/reconnection
 - We assume single disconnections

Both \(n_5\) coordinates have prefix *1, we say that \(n_5\) depends on \(n_2\). This could be a problem in case of \(n_2\) disconnection (failure)
W*-Grid Coordinates generation

- The goal is to avoid dependencies

- Independent coordinates introduce more heterogeneity (Multiple paths)
W*-Grid Failure recovery (I)

- Performed whenever a node n_l loses connection with the father n_f of one of its coordinates c_l, obtained by c_f
- The goal is contact the closest relative of the failed node (usually the father of the father of n_l)
 - If n_l is not fully dependent from n_f it starts recovery sending a message and searching for the father of n_f
 - The destination coordinate is c_l
 - The message must avoid to use every coordinate having prefix c_f
 - The found node n_g and the nodes $n_l..n_i$ crossed by the message generate new coordinates until n_l is reached
 - $n_l, n_g, and n_l..n_i$ set aliases of the form $c_{old} = c_{new}$ in order to adjust routing
Failure Recovery: An example

- Node n_6 lost its father n_5
- It is not fully dependent from n_5, recovery starts
- n_6 uses its other coordinates to find its closest relative (* in this case)
- n_1 and the other nodes crossed by the message generates new coordinates to reach n_6
- Both n_6 and its relative n_1 set aliases to adjust routing
W*-Grid Failure recovery (II)

- Nodes independence allows to recovery from nodes failure without using broadcast
- Recovery is performed by the node(s) that received coordinates from the failed node (descendant)
- Recovery is guaranteed (100% success in simulations) whenever:
 - The failure do not partition the network
 - The node which performs the recovery or at least one of its neighbors is not fully dependent from the failed node
W*-Grid Simulation results

- The variation in queries APL (Average Path Length), the number of hops necessary to resolve a query, between W*-Grid, W-Grid and GPSR
- The number of coordinates in the system in W*-Grid and W-Grid scenarios
- The ratio of succeeded failure recoveries in W*-Grid and in a scenario in which broadcast is used to discover the closest relative
Average Path Length (APL) W-Grid vs. GPSR

![Bar chart showing the comparison of Average Path Length between W-Grid and GPSR for different coordinates per node. The chart displays the number of hops required for different grid densities (D12, D8, D4) and GPSR configurations.]
Average Path Length (APL) W^*-Grid vs. W-Grid

![Average Path Length Graph]

Self-organizing Sensor Networks: State of the art, new solutions and applications
Number of coordinates in the network

Self-organizing Sensor Networks: State of the art, new solutions and applications
Collaborative Signal Processing and Data Fusion
Collaborative signal processing

- Gathering useful information about the physical world
- Sensors' sensing modality
 - seismic, acoustic, thermal, IR, etc.
- Current detection and classification algorithms are based on single-node processing
- Single processing is not always enough
 - Localization and tracking algorithms require collaboration between nodes
Here comes Data fusion

- Infer global information over a certain space-time region from local observations
- Data fusion can be used to allow each sensor to send quantized data (decision) to a fusion center
 - reduce data size
 - prevent overloading the wireless network
 - conserve energy
- Data Fusion it is not just aggregation
 - detection (boolean decision)
 - classification (multiple values)
Data Fusion

- Fusion application is challenging in general
 - requires time-correlation and synchronization of data streams coming from different sources.
 - usually requires parallelism
- Sensusnets add another level of complexity
 - power-constraints
- Fusion is sometimes confused with aggregation
 - Aggregation is typically performed on data of same type in order to minimize communication
 - Fusion is performed on data of possibly different types in order to derive a decision
Serial Fusion

- Requires computing a routing path in the network that travels through each sensor
 - network graph traversal problem
 - need to find the minimum number of hops

- Must develop practical traversal techniques in sensor networks
 - use of a geographically-based technique based on the general notion of space-filling curve

- Depth-first traversal
 - geographically based intelligence as to which unvisited neighbor should be traversed next, where more than one is available
Nodes Traversal(I)

- Space-filling curves
 - mapping of any point in the space to a corresponding point on the curve

- The traversal starts from a specific node
 - use of a message or agent
 - each node knows its neighbors (identifications and coordinates)

- At each node, let say P
 - the agent orders all unvisited neighbors of P by their curve indices
 - the unvisited neighbor which is next in this order is visited

- If the agent (or message) finds itself at a node P with no unvisited neighbor it backtracks
Nodes Traversal (II)
Papers

Papers

Alcune possibili applicazioni

- **Outdoor**
 - Ambientali Estreme
 - riconoscere/prevedere tsunami dal moto ondoso e segnalazione via satellite solo se la probabilità supera una soglia fissata
 - idem per eruzioni vulcaniche, tornado etc.
 - Agricoltura di precisione
 - monitoraggio di piantagioni per riconoscere/prevedere insorgenza malattie, deterioramento/maturazione prodotti, precipitazioni etc.

- **Indoor**
 - Controllo dei processi produttivi
 - Domotica
 - risparmio energetico tramite anche apprendimento delle abitudini delle persone, sicurezza, intrusioni, wellness
Sviluppo della ricerca

- Studio e implementazione di tecniche per l'ottimizzazione del sistema:
 - Analisi degli effetti della presenza di alias all'aumentare del tempo di vita della rete
 - Consentire il riutilizzo di coordinate appartenute a nodi usciti dalla rete

- Introdurre nel simulatore mobilità dei sensori e/o di attori che attraversano la rete statica
Sviluppo della ricerca

- Simulare reti P2P mobili costituite da sensori, palmari, computer che formano reti metropolitane
 - informazioni immesse in rete alla p2p per scopi sociali, commerciali, di emergenza e pubblica utilità
- Implementare nel simulatore diversi scenari
 - Numerosità dei partecipanti
 - Densità e distribuzione
- Aggiungere al simulatore nuovi algoritmi con cui confrontarsi
 - Es. AODV, DSR
Grazie!