On the Stability of Contention Resolution Diversity Slotted ALOHA (CRDSA)

Christian Kissling
German Aerospace Center (DLR)
Overview

• Introduction

• Framework for Stability Analysis

• Stability Results

• Stability Comparison with SA

• Conclusions
Overview

• Introduction

• Framework for Stability Analysis

• Stability Results

• Stability Comparison with SA

• Conclusions
Introduction

• Random Access techniques
 • Interesting for bursty, unpredictable and small size traffic and delay critical messages
 • Initial Logon-signalling

• Demand Assigned Multiple Access
 Efficient for predictable and large volume traffic sources

• Packet loss due to collisions

• Throughput is load dependent
Retransmission Mechanisms

• **Retransmission** (ReTx) mechanism ensure a **reliable** packet **delivery**

• **Attempt** packet retransmission with **probability** p_r in every transmission opportunity (geometric distribution)

• **Total load** determined by two components:
 - **New** offered traffic (*fresh* traffic) fluctuates statistically
 - **Retransmissions** add on top of fresh transmissions (*backlogged* traffic)
Retransmission Mechanisms (2)

- Problem:
 - Overall load determines the collision probability and throughput
 - Total load depends on user population M, traffic generation probability p_0 and retransmission probability p_r
Instability

• Offered traffic fluctuates statistically
• Operation at the maximum throughput desirable
• Problem:
 • Traffic fluctuations move the operating point
 • Higher load reduces throughput asymptotically to zero
• Without retransmissions:
 • Packets lost, but channel can always return to low load → Stable
Instability (2)

• With retransmissions
 • Retransmission feedback loop keeps load high
• Avalanche effect of more and more retransmissions
• Drives the channel into total saturation
 • Low throughput, high delay
• Low chance to get out of this situation again
• Way out:
 • Reset: Drop all pending retransmissions
 • Often not acceptable (QoS)
How can we know whether there is a risk to get stuck in the low throughput region?

How do we have to set our system parameters to be sure that we never get stuck in the low throughput region?
Overview

• Introduction

• Framework for Stability Analysis

• Stability Results

• Stability Comparison with SA

• Conclusions
Stability Framework for SIC RA channels (1)

- **Stability** well investigated for **classical Slotted ALOHA** (SA)
- Recent **new evolutions** of Slotted ALOHA using Successive Interference Cancellation (SIC) techniques: CRDSA, IRSA (Irregular Repetition Diversity Slotted Aloha [Liva10])
- **Frame based** techniques
 - Throughput can be drastically increased
 - More than one user can get un-backlogged at a time
- **Methods** known from Slotted ALOHA cannot be **applied** anymore
- **Impact on stability** on CRDSA and other SIC based RA techniques unknown as of today

![Diagram showing user interactions and frame vs slot time/frequency]
Stability framework for SIC RA channels (2)

- Definition of stability
 - **Local Stability**
 - An equilibrium point is locally stable if the system, for a small (local) distortion flows back towards it
 - **Global Stability**
 - An equilibrium point is globally stable if the system is always flowing towards it

- Markov Chain model developed to describe the dynamics of the CRDSA RA channel

- Users can be in one of two states: Fresh x_F or Backlogged x_B
Stability framework for SIC RA channels (3)

- System can then be represented by a differential equation of first order expressing the drift d_B
 \[\frac{dx_B}{dt} = E\{X_{B}^{l+1} - X_B^l | X_B^l\} = \ldots = (M - x_B) \cdot p_0 - N_S \cdot \overline{S}(x_B) \]

- The average throughput is dependent on the backlog state x_B
 \[\overline{S}(x_B) = \left[(M - x_B) p_0 + x_B p_r \right] \cdot \overline{P}_s((M - x_B) p_0 + x_B p_r) \]

- Fresh traffic is generated with probability p_0
- Packets collide with probability p_r
- Frame consists of N_s slots
- Collided packets are retransmitted with probability p_r

- User population M
Stability Framework for SIC RA channels (4)

- **0 ≤ \(p_0 \) ≤ 0.01**
 Stable: 1 Equilibrium Point
 - Channel always tends to move back to equilibrium

- **0.01 < \(p_0 \) ≤ 0.11**
 Instable: 3 Equilibrium Points
 - The channel will remain for some time in the locally stable equilibrium in the high throughput region
 - Once positive drift, amplifying self-excitation to locally stable saturation point

- **0.11 < \(p_0 \) ≤ 1.0**
 Overload:
 - Channel moves directly into the equilibrium (saturation point)
Overview

• Introduction

• Framework for Stability Analysis

• Stability Results

• Stability Comparison with SA

• Conclusions
Validation of the model

- Simulation of different channel configurations
- User population M
- Packet generation probability p_0
- Packet retransmission probability p_r
- Comparison with analytical predictions
- Simulations show very good match of expected and observed behavior
Overview

• Introduction

• Framework for Stability Analysis

• Stability Results

• Stability Comparison with SA

• Conclusions
Stability Comparison with SA

• Channel can be stabilized with parameter p_r
 • Low $p_r \rightarrow$ Better stability but also higher delay
 • High $p_r \rightarrow$ Worse stability but also lower delay

Which is the optimum p_r that minimizes the delay D_b while guaranteeing stability?

• Expected delay in equilibrium
• With Little’s theorem

$$D_b = \frac{\bar{N}}{S_{out}}$$

Avg. number of packets present in the channel when in equilibrium
Avg. throughput in equilibrium

• 4 system parameters: M, p_0, p_r, D_b
• Optimization criteria: Find the optimum p_r to
 • Minimize D_b for fixed M and p_0
 • Maximize possible M for fixed p_0 and target D_b
 • Maximize possible p_0 for fixed M and target D_b
Minimize Delay

• User population M given, e.g. $M = 400$
• Traffic generation probability p_0 given, e.g. $p_0 = 2.63 \cdot 10^{-3}$
• Optimization problem:
 $$p_r^* = \arg\min_{p_r \in [0...1]} D_b(\Psi, p_r)$$
• Whereas
 $$\Psi = \{ M = 400, p_0 = 0.263, d = 2, N_s = 100, I = 10 \}$$

Result

$$D_{b,\text{CRDSA}}^{\min}(p_r = p_{r,\text{CRDSA}}^* : 10^{-2}) = 3.68 \text{ frames} \equiv 368 \text{ slots}$$
$$D_{b,\text{SA}}^{\min}(p_r = p_{r,\text{SA}}^* = 2.5 \cdot 10^{-3}) = 707 \text{ slots} \equiv 7.07 \text{ frames}$$

CRDSA can save 48% of delay while being guaranteed stable
Maximize User Population M

- Find max. supported population M to achieve D_b^0, if traffic is generated with p_0
- Implicit optimization problem

$$g(p_r, M, p_0) = D_b(p_r, M, p_0) - D_b^0 = 0$$

$$L(p_r, M, p_0, \lambda) = D_b(p_r, M, p_0) + \lambda[D_b(p_r, M, p_0) - D_b^0]$$

CRDSA can support 45% more users than SA (363 users vs. 250 users), while achieving an average Delay of 300 slots (3 frames) and being guaranteed stable.
Overview

• Introduction
• Framework for Stability Analysis
• Stability Results
• Stability Comparison with SA
• Contention Resolution Aloha and future work
• Conclusions
Conclusions Stability

- Random Access Channels show instability behaviour
- Existing tools from Slotted ALOHA not sufficient to describe new frame-based Random Access mechanisms based on Successive Interference Cancellation
- A Markov chain model was derived to describe the dynamics of the system
- The system stability can be characterized by the number of equilibrium points
 - 1 equilibrium point: Globally stable equilibrium
 - 3 equilibrium points: Instable channel, will earlier or later enter the saturation
- Model allows
 - Analysis of the stability behaviour of a channel
 - Parameterization of the retransmission probability of a channel with user population M and packet generation probability p_0 to be guaranteed stable
- Analytical model was verified by simulations
- CRDSA does not only show advantage in peak throughput but also in it stability
Overview

• Introduction

• Framework for Stability Analysis

• Stability Results

• Stability Comparison with SA

• Contention Resolution Aloha and future work

• Conclusions
Contestion Resolution ALOHA (CRA)

- 2nd path of research activities ongoing
- SIC was so far only applied to synchronous (=slotted) schemes (CRDSA, IRSA)
- New Idea: Apply SIC to asynchronous scheme (ALOHA like)
 - Contention Resolution ALOHA
- Investigations have shown that this scheme has high potential and offers advantages in several usage scenarios