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Abstract

This paper introduces a scheme for testing artificial
intelligence algorithms of autonomous systems using
Modelica and the DLR Visualization Library. The
simulation concept follows the ’Software-in-the-loop’
principle, whereas no adaptations are made to the
tested algorithms. The environment is replaced by an
artificial world and the rest of the autonomous system
is modeled in Modelica. The scheme is introduced and
explained by using the example of the ROboMObil,
which is a robotic electric vehicle developed by the
DLR’s Robotics and Mechatronics Center.
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1 Introduction

The variety of autonomous systems, or also known
as artificial intelligence agents (AIA), can range from
small toys like Lego mindstorms to full-sized robotic
cars like the ROboMObil (ROMO)[1]. In all cases
an agent consists of three essential parts: sensors, the
core artificial intelligence for the agent’s functionality,
and actuators [2]. The agent perceives its current en-
vironment through its sensors, interprets it and plans
the next actions to reach its goal before acting upon
the environment through its actuators. For a sufficient
simulation of an autonomous system the bidirectional
connection of an agent to its environment must be con-
sidered.

In the past decade several open source simulation envi-
ronments for autonomous systems, mostly for robots,
have been launched due to increasing computational
power and decreasing hardware costs, which have
made the use of autonomous (mobile) robots feasible
for education.

Published in 2001, the socket-based device server
Player in combination with the multi-robot systems

simulator Stage [3] was widely used in academia and
industry. Player provides simple TCP sockets to exter-
nal devices like sensors and actuators. Player is lan-
guage neutral and uses the UNIX abstraction of de-
vices being considered as files. Stage is a simulation
environment for multiple robots with computationally
cheap, but in terms of fidelity only sufficient models.
The linear scaling with the population of the simulated
world was very important. It is a 2D simulator for in-
door scenarios. The simulated sensors are rather sim-
ple laser range finders or sonar than complex sensors
like cameras.

In 2003 Gazebo [4] was released to satisfy the need
for a 3D simulation environment for Player. It enables
the simulation of cameras, uses rigid body models, and
still works, despite the increased complexity, with sim-
ulating several autonomous systems concurrently.
Nowadays the Robot Operating System ROS [5] is the
most popular environment for connecting algorithms,
sensors, and actuators of robot systems. Many func-
tions and drivers were adopted from Player. Moreover,
it also uses interfaces to Stage for 2D and to Gazebo
for 3D simulations.

Microsoft’s Robotics Developer Studio [6] is a free,
but not open source, development suite using user
friendly techniques for visual programming, easy par-
allelization, and debugging via web-interfaces. It is
equipped with a DirectX based Visualization, its own
rigid-body physics engine, and provides interfaces to
commercial products from FischerTechnik, iRobot,
Lego etc.

Furthermore, there are also several commercial robot
simulators like the Virtual Robot Experimentation
Platform V-Rep [7] or Webots [8].

Proprietary simulation environments were developed
for larger projects like Junior - Stanford’s robotic car
for the DARPA Urban Challenge [9]. That proprietary
software can be adapted to special demands, which are
not completely fulfilled by generalized tools like the
ones named before.



All of the mentioned simulation environments use
physics engines like Bullet Physics Engine [10] or
Open Dynamics Engine [11], which have a strong
gaming or computer animation background and pro-
vide rigid body modeling and collision detection.
They try to reach a fast computation while providing a
sufficient accuracy of the physics. Modelica provides
several advantages being able to model complex phys-
ical systems containing e.g. flexible-bodies, electrical
and hydraulic components. To be used for the sim-
ulation of artificial intelligence agents Modelica has
to be extended by an advanced visualization like the
DLR Visualization Library [12]. The combination of
Modelica with the DLR Visualization Library creates
a powerful tool for an efficient development of com-
plex physical agent and environment models.

Our motivation for the presented scheme is a bidirec-
tional autonomous systems simulation, which com-
bines complex Modelica models of the ROMO with
the artificial intelligence system used in the real vehi-
cle.

The remaining chapters are organized as followed:
The second chapter provides an overview of our simu-
lation concept. Chapter three gives a detailed explana-
tion of the used tools and interfaces. Afterwards, the
results of a simple example will demonstrate the func-
tionality of the AIA simulation scheme. Finally, we
will conclude with a brief summary and outlook.

2  Concept of the AIA Simulation

The main target for the proposed scheme is a
’Software-in-the-Loop’ simulation, which means that
no changes are made to the algorithm that should be
tested. In order to test the artificial intelligence of
an autonomous system the perception, planning, and
control algorithms are kept and its hardware and the
environment are simulated. The system’s hardware
is substituted by a Modelica model, where the detail
of the model varies depending on the purpose of the
simulation. It can range from a rigid body model to
an overall system model containing electrical, flexible,
hydraulic, thermal, and tire (sub-)models.

The second step is the replacement of the environ-
ment by using the DLR Visualization Library, which
extends Modelica by an advanced visualization and
interactive simulation. Standard sensors for velocity,
torque etc. are part of the basic Modelica library, but
complex perception sensors like cameras require this
advanced visualization for a sufficient simulation. The
algorithms tested with this scheme and also their inter-

faces to the rest of the autonomous system do not have
to be changed. Hence, the algorithms have to run out-
side the Modelica environment during the simulation,
which is made possible by the interactive interfaces
provided by the DLR Visualization Library.

The proposed simulation scheme using the example of
the ROMO is depicted in Figure 1. The main distinc-
tion is made between the autonomy hardware and the
simulation hardware. Both can run on the same PC,
but the hardware of the autonomous system usually
consists of several connected processing units. The in-
tention is to follow the *Hardware-in-the-Loop’ prin-
ciple and to connect the AIA system to a simulation
PC.

The primary perception sensors of the ROMO are
cameras, which are widely used in modern au-
tonomous systems, as they provide a great variety of
information [13]. A typical cycle of the scheme starts
with the virtual cameras taking images of the simu-
lated environment. The images and other sensor data is
packed according to the SensorNet format and passed
into the shared memory of the autonomy hardware.
The interface from the Visualization library to Sensor-
Net is described later in detail. Different algorithms
that process and interpret those data can access the
shared memory concurrently. The processed data is
passed to the planning module both directly and via
a module that updates the environment representation.
The planned trajectory and other control data is passed
via an interactive interface to the Modelica model.
Sensors are triggered and the controller gets its refer-
ence input. In this example the vehicle dynamics con-
troller is nested in the simulation module, since it does
not run on the same hardware as the autonomous driv-
ing components in the real vehicle. With the controller
commanding the actuators the ROMO model moves in
the virtual world and the loop is closed.

Such a ’Software-in-the-loop’ scheme for autonomous
systems has several advantages. It is possible to test an
algorithm under reproducible settings, which is usu-
ally not the case in reality. The camera-based percep-
tion is very sensitive to changing light conditions. Ad-
ditionally, it is difficult to keep relative positions and
velocities of objects the same in every test. The re-
producibility is also desirable for comparing different
algorithms and an essential requirement for reverse en-
gineering.

Moreover, algorithms can be tested with optimal con-
ditions. At the very beginning of an algorithm de-
velopment it is helpful to see if the general concept
is working while neglecting sensor and actuator noise
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Figure 1: ROMO AlI-Simulation Concept

and other disturbing influences. After the basic func-
tionality has been proven the noise can be increased
step by step to test different levels of robustness.
Another advantage is the adjustable level of abstrac-
tion. Autonomous driving software can be evaluated
firstly with a simple model of the system’s dynamics.
Limitations of actuators can be neglected, sensors can
be considered as all knowing and physical constraints
can be softened. During the development process the
model complexity can be raised to achieve a more re-
alistic behavior of the simulated system. Furthermore,
the developer can build a virtual world according to
his needs. New types of sensors and systems can be
modeled that do not exist yet. The preparation and
execution of tests done by the simulation scheme is
much faster than tests in reality. The simulation can
be run faster than real time causing less costs and pos-
ing no harm for people and equipment. Nevertheless,
there is still the need for tests with the real system, but
their frequency can be considerably decreased. Hence,
the ’Software-in-the-Loop’ principle is very helpful
for rapid prototyping.

3 Combining Virtual Reality with
Perception

An essential part of the proposed simulation concept
is the link between 3D simulation provided by the
DLR Visualization Library and image processing al-
gorithms, which utilize SensorNet for image data dis-
patching.

3.1 The DLR Visualization Library

The DLR Visualization Library is an extension to
Modelica for 3D visualization of simulations. It is
composed of two parts: a Modelica library and a stan-
dalone program.

The library part defines Modelica multi-body elements
which do not influence the simulation’s physics but
are used for configuration of the simulation’s visual-
ization. The visualization is then displayed in a sepa-
rate application called SimVis. An example of this can
be seen in Figure 2. On the left it shows a Modelica
model using the DLR Visualization Library library and
on the right the corresponding visualization in SimVis.
The DLR Visualization Library library provides a
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Figure 2: A Modelica model of the ROMO and the corresponding visualization

wide range of 3D objects from simple elements like
boxes and gearwheels to complex 3D files to objects
defining the representation like Head-Up-Displays
showing variables or camera positions both in the 3D
environment and their images on the screen.

From a technical perspective this is achieved by uti-
lizing Modelicas C language interface to establish a
TCP/IP connection between the simulation and the
SimVis application, transmitting information about the
configuration of the 3D elements to be displayed [12].

3.2 SensorNet

Modern robotics applications often use cameras and
require the real-time analysis of images. The problem
for this application is twofold:

First the amount of data is immense. For example a
single VGA camera generates about 640 - 480 - 3Byre -
30Hz = 28MByte/s of raw data. Moreover, recent
video compression methods, e.g. mpeg4 or divx, are
computational expensive and also degenerates the im-
age quality and therefore should be avoided in image
processing tasks. Additionally, robots interact with
their environment. Therefore, real-time restrictions
apply to the image processing. The time from image
acquisition to a possible reaction has to be minimized.
This requires extremely efficient dispatching of image
data which is achieved by the communication frame-
work SensorNet. It is designed to provide sensor
data, e.g. from cameras, with low latency to multiple,
concurrent applications. Therefore, previous concepts
on local real-time communication via shared memory
[14] and on unified description of camera and range
sensor data [15] are combined and extended in the
SensorNet data streaming concept. In detail, a ring
buffer on a shared memory in conjunction with a sig-
naling mechanism is used to distribute data from a
server process to multiple client processes with low

latency (<100 ps). The interface also comprises data
type metadata that allows for type checking. Further,
predefined, unified data types are used, e.g. color im-
age or depth image, and act as a abstraction layer. As
a result, sensors of same type can easily be exchanged
by just replacing the server process. Data can be dis-
tributed across system borders by connecting shared
memories on the different systems with UDP- or TCP-
based data transfer. Additionally, a separate TCP-
based configuration channel allows for setting and get-
ting parameters, e.g. camera shutter time, without in-
fluencing real-time data streaming.

3.3 Interface

Acquiring images with real cameras under controlled
conditions is not always feasible as described above.
The intention is to reuse the existing solutions for 3D
simulation and image data dispatching.

The DLR Visualization Library cameras are designed
for displaying images on screen. Since Modelica is an
object-oriented language the new camera model is de-
rived from the existing solution and extended by addi-
tional parameters. The cameras are by default aligned
within the 3D environment using rigid body transfor-
mations and displayed either in the SimVis window or
full screen. In both cases the camera resolution is de-
termined as a ratio of either the window size or the
screen size for easier portability from one PC to an-
other. In contrast real cameras have a fixed resolution
in pixels. The simulation therefore requires this reso-
lution as new parameter. Likewise the image data is
always displayed on screen in RGB format, yet cam-
eras often use different formats. This implementation
currently supports two alternative formats: YUV and
grayscale. Furthermore, SensorNet needs a name for
the shared memory object to identify a specific camera
and a role for the camera in a stereo setup. If the cam-



era is part of a stereo setup, both cameras use the same
shared memory object. One camera has to be set as
master and one camera has to be the slave. Both im-
ages will then be acquired simultaneously and put in
the same shared memory object, whenever the master
camera is triggered.

With these additional parameters set up in the DLR Vi-
sualization Library, SimVis can also reuse the majority
of its existing camera implementation. The main dif-
ference lies in the render target. Normal cameras ren-
der to a frame buffer that is then displayed on screen.
For the simulated cameras the render target is redi-
rected to a frame buffer object (FBO), which is not
displayed but read back to the main memory. Thereby,
the image is rendered the same way but off-screen and
accessible by the application as a data array in RGB
format. This image data first has to be converted to the
desired image format. Conversion into YUV is carried
out using the following equation per pixel:

Y =0.299R+0.587G+0.114B

U=0.493(B—7Y)
V=0877(R-Y)

This equation is also applicable for conversion in
grayscale by only using the Y component describing
the pixels luminance [16]. The preprocessed image is
then packed into one of SensorNets default image for-
mats, a time-stamp corresponding to the current simu-
lation time is added and the image is released. Releas-
ing an image in the SensorNet context makes it avail-
able for other applications. The primary focus lies on
image interpretation algorithms that are part of an ar-
tificial intelligence agent.

4 Experimental Results

The proposed scheme is evaluated by a simple exam-
ple, in which a testing environment for a vision based
control (VBC) platooning algorithm is created.

The basic idea is that the ROMO follows a preceding
car, while using only a front stereo camera pair for per-
ception. Initially, the ROMO has only an image of the
back of the target car, which was taken from an appro-
priate distance for following.

After the platooning mode is activated the ROMO tries
to find the target car in the current camera image. Ana-
log to vision based robot control [17] the goal is to see
the target object in the same size and at the same an-
gle as in the reference image. Therefore, the ROMO
tries to reach and hold the very same relative position

in which the initial image was taken. The target posi-
tion can also be made velocity dependent for keeping
the minimum safety clearance.

A simulation model in Dymola is created. First, the
ROMO’s top front camera pair, refer to Figure 3, is
modeled by using the DLR Visualization Library’s
SensorNet camera class, which was developed for the
proposed simulation scheme, with the appropriate pa-
rameterization. They are attached at their respective
positions to a 3D geometry model of the ROMO,
which is extracted from CAD. An overall model of the
ROMO containing all actuators, sensors, the electrical
systems etc. can be used, but the example focuses on
the perception part, which is the main interest in this
paper.  Buildings, streets, and a surrounding land-

Figure 3: The DLR’s ROboMObil

scape are placed in the virtual environment. For this
the DLR Visualization Library provides an integration
block for common 3D files like the ’.3ds’ format. The
target car consists of an animated 3D model bound
to a trajectory block that moves the object within the
virtual world. Now the simulation is started and im-
ages are sent to the shared memory via SensorNet.
The AIA algorithms receive a notification that new im-
ages are available and begin to run. First, a SensorNet
implementation of the DLR’s 3D reconstruction algo-
rithm, called Semi-Global Matching (SGM)[18], cal-
culates depth information out of the two images from
the stereo camera. The result can be seen in Figure
4, whereas the left part shows the scene recorded by
the stereo cam and the right part a visualization of the
depth values. The color value of every pixel is set ac-



Figure 4: Semi Global Matching applied to the virtual images

Figure 5: Matching features for estimating the relative position: (a) At target position (b) 4 meters deviation in

camera direction

cording to the depth value at that point. Small values
are colored red and with increasing depth they go from
orange to green to blue. Black parts of the depth image
are either too far away like the sky or cannot be recon-

structed. This is often the case in regions with homo-
geneously textured surfaces, where the reconstruction
algorithm cannot find matching points in both images.
After calculating the depths the SGM writes a struc-



ture consisting of a rectified actual image, a quality
map, and the depth image back into the shared mem-
ory. This structure is accessed by the VBC car fol-
lowing algorithm, which starts with running a feature
detection algorithm, e.g. AGAST [19], on the actual
image. A descriptor for matching is calculated for ev-
ery feature point and the 3D coordinates of every fea-
ture point are determined using the depth image from
SGM. The keypoints of the target image with their de-
scriptors and 3D values are available a priori and so
descriptors are compared to find matches in both im-
ages. The results can be seen in Figure 5, whereas the
right is the target and the left one is the current camera
image of the simulation. Matching keypoints are con-
nected with a green line. Besides the markings there
is no color in Figure 5, as the feature detection works
with grayscale images. At least four matching key-
points are randomly selected. By using their respective
3D coordinates the rotation matrix R and translation
vector T between the current keypoints and the target
keypoints are calculated. The quality of the estimated
R, T is measured by applying R, T to all keypoints of
the current image that have matches. After that they
are projected back into the 2D image space and the
distance to their matching points in the target image
is measured and summed up over all keypoints. The
whole procedure is repeated with other sets of features
until the quality of R, T is sufficient or a certain num-
ber of iterations is exceeded and the best iteration will
be kept.

The preceeding car in the simulation starts at the tar-
get relative position and moves four meters in the cam-
era’s z direction, whereas the ROMO remains station-
ary. The matches at the beginning can be seen in Fig-
ure 5a and that the end of the movement is depicted
in Figure 5b. The number of found correspondences
decreases during the movement. This is normal on the
one hand due to the changed perspective, but on the
other hand it is additionally disadvantaged here by the
simple textures, which lead to weak feature points. In-
correctly matched or too few feature points can disturb
the results of the algorithm immensely.

Nevertheless, the simulation has shown the general
functionality of the algorithm as can be seen in Fig-
ure 6. The z value of the deviation to the goal posi-
tion changes from 0 to 4000mm, while the target car
moves in z-direction. The deviaton to the real position
can be due to badly chosen feature points, depth mea-
surement errors, or imprecise calibration of the virtual
cameras. Based on the computed rotation and trans-
lation a trajectory can be calculated and fed back into

the Modelica simulation via a TCP/IP channel to con-
trol the simulated ROMO in its virtual environment.
In this early state of the algorithm’s development the
AIA simulation scheme is very helpful to identify
weaknesses and increase robustness before tests with
the real ROMO are possible.
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5 Conclusions and Future Work

This paper presents a scheme for testing artificial intel-
ligence algorithms for autonomous systems according
to ’Software-in-the-loop’ and *Hardware-in-the-loop’
principles. Existing multi-physics models are com-
bined with the actual artificial intelligence algorithm
that do not have to be adapted for the simulation. This
is achieved by extending the DLR Visualization Li-
brary by an interface to the sensor data management
tool SensorNet, which is utilized in real autonomous
systems in DLR’s Robotics and Mechatronics Center.
The capability of the concept is proven by a short ex-
ample, in which the translation and rotation to a lead-
ing vehicle are determined by a vision based car fol-
lowing algorithm.

In further developments more sensor types, which are
typically used in autonomous systems like a dGPS
aided Inertial Measurement Unit (IMU), will be mod-
eled. Camera models can be extended with more re-
alistic effects such as lens distortions. Moreover, we
plan to use virtual objects with more complex textures
to generate more realistic virtual pictures. In order to
validate the simulation results they have to be com-
pared to those using data taken from vehicle tests.
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