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Abstract—Synthetic aperture radar (SAR) tomography is a
3-D imaging modality that is commonly tackled by spectral es-
timation techniques. Thus, the backscattered power along the
cross-range direction can be readily obtained by computing the
Fourier spectrum of a stack of multibaseline measurements. In
addition, recent work has addressed the tomographic inversion
under the framework of compressed sensing, thereby recovering
sparse cross-range profiles from a reduced set of measurements.
This paper differs from previous publications, in that it focuses on
sparse expansions in the wavelet domain while working with the
second-order statistics of the corresponding multibaseline mea-
surements. In this regard, we elaborate on the conditions under
which this perspective is applicable to forested areas and discuss
the possibility of optimizing the acquisition geometry. Finally, we
compare this approach with traditional nonparametric ones and
validate it by using fully polarimetric L-band data acquired by
the Experimental SAR (E-SAR) sensor of the German Aerospace
Center (DLR).

Index Terms—Compressed sensing (CS), forest structure, syn-
thetic aperture radar (SAR) tomography, wavelets.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) tomography allows for
effective retrieval of cross-range scattering profiles from

measurements obtained through repeat-pass acquisitions. Due
to the high-penetration capabilities of radiation at long wave-
lengths, such as those within the L- or P-band, the complete
spatial distribution of volumetric scatterers can be satisfactorily
resolved. A case in point is the 3-D imaging of vegetated areas,
which has proven to be of great value for the estimation of forest
structure along with its underlying ground topography [1]–[7].

A common approach is to employ parallel tracks, thus ren-
dering the tomographic inversion a direction-of-arrival prob-
lem. As a result, the estimation of the cross-range power
distribution can be effectively tackled by spectral estimation
techniques. However, the achievable resolution of conventional
spectral estimators is highly dependent on the extension of
the tomographic aperture (see Fig. 1). Moreover, the sampling
rate dictated by the Nyquist frequency imposes an additional
requirement, namely, dense regular sampling.
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Fig. 1. Tomographic sensing operation using parallel passes (not to scale).
Every pixel of each SAR image is a projection of the reflectivity along s (cross-
range). The range resolution is indicated by ρr , whereas the extension of the
tomographic aperture is indicated by Δb.

Subsequent to the first demonstration of SAR tomography
[1], [8], [9], several extensions and alternatives have been put
forward in order to attain low sidelobe and ambiguity levels
with a reduced number of irregular passes. The use of adap-
tive spectral estimators was introduced in [10] and [11] and
further developed in [12] and [13] (see also [6]). In addition,
subspace-based spectral estimators, such as the multiple sig-
nal classification algorithm, have been recently employed [6],
[13]–[16]. In [17], the authors formulated the tomographic
inversion under the framework of linear inverse problems, thus
exploiting the truncated singular-value decomposition. Also, a
maximum a posteriori estimator was developed in [18]. Other
publications have addressed irregular geometries by means of
interpolation techniques (see, for example, [7] and [19]). Alter-
natively, an extension of SAR interferometry from a parametric
perspective was proposed in [20]. In a nutshell, this last work
employs covariance matching estimation techniques in order to
estimate the effective scattering center of different scattering
mechanisms, along with their backscattered power. Moreover,
the author in [21] introduced the concept of polarization coher-
ence tomography. Basically, the method exploits the variation
of the interferometric coherence with polarization to estimate
the ground topography and height of the vegetation layer. Then,
it uses these parameters to represent a cross-range profile as
a Fourier–Legendre series. Finally, sparsity-driven inversion
techniques were introduced in [22]–[25]. In essence, the authors
applied the relatively new compressed sensing (CS) theory to
achieve superresolution imaging. Nevertheless, the signals of
interest were sparse in the space domain, a situation that is
rarely true when it comes to vegetated areas.

In this paper, we formulate the retrieval of the cross-range
power distribution of forested areas under the framework of CS.
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In light of previous work in the context of SAR [26]–[29] and
other fields (see, for example, [30] and [31]), we exploit sparse
representations in the wavelet domain. Furthermore, we work
with second-order statistics, since, under certain assumptions
on the covariance matrix of the unknown tomographic signal,
we can interpret the entries of the multibaseline covariance
matrix as measurements of the cross-range power distribution.
As a consequence, this approach also allows us to use a small
number of irregular baselines to optimize the tomographic
acquisition.

The remainder of this paper is organized as follows.
Section II formulates the tomographic sensing problem from
a covariance matrix perspective. Section III provides a short
introduction to CS theory and wavelets. In addition, in
Section IV, we regard the tomographic problem as an instance
of CS and propose a sparsifying basis which thrives on the
simplicity of the cross-range power distribution. In Section V,
we draw a comparison with traditional nonparametric spectral
estimators and present results obtained using fully polarimetric
L-band data acquired by one of the airborne sensors of the
German Aerospace Center (DLR), namely, Experimental SAR
(E-SAR). Lastly, Section VI concludes this paper.

II. PROBLEM FORMULATION

We are interested in reconstructing the 3-D power distri-
bution p(x, r, s) of a complex reflectivity function g(x, r, s),
where x, r, and s are the azimuth, range, and cross-range
coordinates, respectively (see Fig. 1). At a specific azimuth-
range position, the corresponding discretized signals along s,
with 1 ≤ s ≤ n, will be denoted with the column vectors p ∈
R

n
≥0 and g ∈ C

n.
For the sake of simplicity, we will, for now, neglect any

source of decorrelation [32], although it will be incorporated in
the tomographic reconstruction (see Section IV-A). Under this
hypothesis, the tomographic acquisition using m parallel tracks
can be modeled as

b = Φg (1)

where b ∈ C
m is a stack of pixels taken from m focused and

coregistered SAR images. The matrix Φ ∈ C
m×n is the so-

called steering matrix which accounts for the phase rotations
due to the distance traveled by the microwave pulses from
the sensor to the targets distributed along s and back to the
sensor [15]. In addition, the covariance matrix C ∈ C

m×m, cor-
responding to partial scatterers, can be written out as follows:

C = E{bb∗} = Φ diag(p)Φ∗ (2)

where E{·} is the expectation operator, (·)∗ denotes the conju-
gate transpose, and diag(p) ∈ R

n×n
≥0 is a matrix whose main di-

agonal equals p and contains zeros in its off-diagonal elements
[2], [20]. Thus, we can attempt to recover p based on the entries
of C.

Alternatively, we can form Chh, Cvv , and Chv , where hh,
vv, and hv indicate polarization diversity, and add them to form
Cspan. In effect, since

Chh + Cvv + Chv = Φ diag(phh + pvv + phv)Φ
∗ (3)

TABLE I
LIST OF SYMBOLS—SECTION II

and therefore

Cspan = Φ diag(pspan)Φ
∗ (4)

it follows that the estimation of pspan from Cspan will simply
represent the polarimetric span. See Table I for a quick refer-
ence to this section.

III. CS AND WAVELETS

A. CS

CS is a sampling paradigm that allows us to capture a signal
of interest at a rate significantly below the Nyquist one. It
enables us to go beyond the Shannon limit by exploiting sparse
representations [33]–[36]. In particular, a signal f ∈ C

N is
said to be K-sparse in an orthonormal basis Ψ ∈ C

N×N if its
projection α = Ψf ∈ C

N has, at most, K nonzero elements.
In turn, we have f = Ψ∗α. Thus, CS proposes measuring such
a signal f by collecting M linear measurements of the form
b = Af + y or b = AΨ∗α+ y ∈ C

M , where A ∈ C
M×N is a

sensing matrix with M much smaller than N and y ∈ C
M is

a perturbation term. Also, we define Θ = AΨ∗ ∈ C
M×N , so

that b = Θα+ y. In addition, the matrix Θ obeys the restricted
isometry property (RIP) of order K if there exists a constant
δK ∈ (0, 1) such that

(1− δK)‖α‖22 ≤ ‖Θα‖22 ≤ (1 + δK)‖α‖22 (5)

holds for all K-sparse signals α. This property essentially
requires that every set of, at most, K columns approximately
behaves like an orthonormal system [37], [38]. As developed
in [39] and [40], if Θ satisfies the RIP of order 2K with
δ2K <

√
2− 1, then we can recover α from the measurements

b by L1 norm minimization

min
α̃

‖α̃‖1 subject to ‖Θα̃− b‖2 ≤ ε (6)

and the solution α̃ obeys

‖α̃− α‖2 ≤ C0‖α− αK‖1/
√
K + C1ε (7)

for some constant C0 and C1, where αK is the signal α with
all but the largest K components set to zero and ε is an upper
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TABLE II
LIST OF SYMBOLS—SECTION III-A

bound on the perturbation level. In other words, this means that
the largest K nonzero elements are recovered in their correct
location and that the error is proportional to the rest of the
nonzero elements and the perturbation level. Finally, we recover
f̃ by computing f̃ = Ψ∗α̃.

As a result of the previous discussion, we would like to
design a matrix A for a given Ψ such that Θ = AΨ∗ satisfies
the RIP with δ2K <

√
2− 1. To that end, let Υ ∈ C

N×N be an
orthonormal matrix and F = ΥΨ∗ ∈ C

N×N . Also, let us define
the coherence of F as

μ(F) =
√
N max

i,j
|Fi,j | ∈

[
1,
√
N

]
(8)

which basically measures the largest correlation between the
rows of Υ and Ψ [41]. Then, it can be shown [37], [42] that, if
we construct A by taking

M = O
(
μ2(F)K log4 N

)
(9)

sensing waveforms (rows) of Υ uniformly at random and
renormalize the columns so that they are unit normed, then
δ2K <

√
2− 1 holds with large probability. Table II provides

a quick reference to this section.

B. Wavelet Systems

An orthogonal wavelet system is generally regarded as a
set of functions used for uniquely representing a signal. When
formulated from a multiresolution perspective, these functions
can be divided into two classes, namely, scaling and wavelet
functions, that represent coarse and fine information, respec-
tively. Thus, the discrete wavelet transform (DWT) of a signal
f(t) for a given scale j0 computes the coefficients cj0 and
dj—at k different shifts—as follows:

cj0(k) =

∫
f(t)ϕj0,k(t) dt (10)

dj(k) =

∫
f(t)ψj,k(t) dt (11)

where j ∈ [j0,+∞), k ∈ (−∞,+∞), and ϕj0,k(t) and ψj,k(t)
are the scaling and wavelet functions, respectively. Then, f(t)

TABLE III
LIST OF SYMBOLS—SECTION III-B

TABLE IV
LIST OF SYMBOLS—SECTION IV-A

can be recovered from

f(t) =
∑
k

cj0(k)ϕj0,k(t) +
∑
k

+∞∑
j=j0

dj(k)ψj,k(t) (12)

[43]. In addition, we will say that a wavelet with v vanishing
moments is orthogonal to polynomials of degree v − 1 [44].
Hence, if f(t) exhibits such a polynomial behavior, all its
wavelet coefficients dj(k) will be zero, which, in turn, implies
that f(t) will be fully captured by the scaling coefficients
cj0(k). As a result, if f(t) has few isolated singularities and is
very regular, we should choose a wavelet with many vanishing
moments in order to achieve a sparse expansion. On the con-
trary, if the number of singularities increases and we do not
want the chosen wavelets to overlap these singularities (and
thus create high-amplitude coefficients), we need to decrease
the size of their support. Unfortunately, this is achieved at
the expense of reducing the number of vanishing moments.
That being said, we encounter a tradeoff between the number
of vanishing moments and the support size [44]. Table III
summarizes the concepts of this section.

IV. WAVELET-BASED CS FOR SAR TOMOGRAPHY

A. SAR Tomography as an Instance of CS

By considering (2) and (6) together, we can readily recast
the power distribution estimation as an instance of CS. Once an
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Fig. 2. Sparsity in the wavelet domain. (Left column) Power distribution (as a function of height with n = 128) of typical cross-range profiles encountered over
forested terrain. (Middle column) Sorted magnitudes of the transform coefficients using a Daubechies Symmlet wavelet with four vanishing moments and three
levels of decomposition. (Right column) Magnitude of the inverse DWT after zeroing out all but the five largest coefficients. All plots have been normalized.

appropriate sparsifying basis Ψ ∈ R
n×n has been chosen, we

can formulate the reconstruction of p as follows:

min
p̃

‖Ψp̃‖1 subject to
∥∥∥Φ diag(p̃)Φ∗ − Ĉ

∥∥∥
F
≤ ε (13)

where Ĉ is the sample covariance matrix, ‖ · ‖F denotes the
Frobenius norm, and ε can be used to control the tradeoff
between sparsity in Ψ and model mismatch. In accordance with
the definition of p, the optimization has to be carried out over
the set of nonnegative real numbers.

It is worth mentioning that (13) implies a nonlinear re-
construction. Therefore, we might incur radiometric accuracy
which, as denoted by (7), will be bounded by both ε and the
sparsity level. Thus, whereas the former is directly related to

any source of decorrelation as well as to the number of looks
that were used to compute the sample covariance matrix Ĉ, the
latter translates into the number of effective unknowns, i.e., the
coefficients that sparsely represent p.

In order to provide greater insight into this CS perspective,
we can use (2) to express each entry of the covariance matrixC as

Cj,k = 〈p, ξj,k〉 (14)

with

ξj,k = Φj � conj(Φk) (15)

where 1 ≤ j, k ≤ m, 〈·, ·〉 denotes the inner product, Φj ∈ C
n

represents the jth row of Φ, and � indicates element-wise
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multiplication. With this in mind, the tomographic acquisition
basically samples the unknown p by computing inner prod-
ucts with m2 sensing waveforms ξj,k ∈ C

n. Also, as argued
in [22], Φ behaves approximately like a partial Fourier ma-
trix. Hence, the waveforms ξj,k will be sinusoids as well.
Accordingly, the coherence of F = ΥΨ∗, as defined by (8),
ought to be computed by letting Υ be a Fourier matrix.
Furthermore, just as every signal Φj is directly related to
a specific baseline j, we will consider every signal ξj,k to
be related to a specific cobaseline, which we define as the
difference between the baselines j and k. Consequently, when
designing a baseline distribution, each resulting vector ξj,k, and
not Φj , should represent a row of Υ taken uniformly at random.
As will be shown in Section V, in order to avoid redundancy,
additional emphasis should be placed on the cobaselines. For
details on this concept, known in the literature as minimum
redundancy arrays, we refer the reader to [45] and [46].

Finally, we propose solving (13) in Lagrangian form, along
with an additional total-variation (TV) norm regularization
[47], which results in

min
p̃

‖Ψp̃‖1 + λ1

∥∥∥Φ diag(p̃)Φ∗ − Ĉ
∥∥∥2

F
+ λ2‖p̃‖TV (16)

where

‖p‖TV =

n∑
s=2

|p[s]− p[s− 1]| (17)

and the parameters λ1 and λ2 control the tradeoff between
sparsity in Ψ, model mismatch, and TV. Essentially, ‖ · ‖TV

enables us to introduce prior knowledge about the fact that
the nonzero elements of p tend to appear in groups (see
Section IV-B), thereby exploiting the ordering of the features
in p [48]. See Table IV for a reference to this section.

B. Choosing a Sparsifying Basis

As a consequence of (9), the choice of an orthonormal
basis Ψ requires some special consideration. First, the signal
p must have a sparse expansion Ψp. Second, we require that the
coherence between the measurement basis Υ and the sparsity
basis Ψ be as small as possible. In this section, we will propose
a sparsifying basis that is in line with these two requirements.

In the case of monostatic SAR acquisitions, cross-range
profiles of forest canopy follow, in general, a very simple two-
component structure. Specifically, one of these components
accounts for ground backscattering, double-bounce scattering
from ground–trunk interactions, and double-bounce contribu-
tions from ground–volume interactions, whereas the other ac-
counts for volume backscattering. In fact, this model has been
thoroughly discussed/validated at C-band [49], L-band [3], and
P-band [4], [20]. Interestingly, the distribution of the effective
scattering over forested terrain is quite regular, thereby giving
rise to sparse representations in the wavelet domain. By way of
illustration, the left column of the plots in Fig. 2 shows several
commonly encountered profiles. In addition, the middle column
displays the rapid decay of the sorted magnitudes of the corre-
sponding transform coefficients, which were computed using

Fig. 3. Polarimetric SAR image of the test site near Dornstetten, Germany
(red: |hh− vv|/

√
2; green:

√
2|hv|; and blue: |hh+ vv|/

√
2). The targets of

interest are located within the yellow rectangles along azimuth.

Daubechies Symmlet wavelets with four vanishing moments
and three levels of decomposition. Finally, the right column
presents the magnitude of the inverse DWT, after zeroing
out all but the five largest transform coefficients. Clearly, the
profiles are very well approximated. In this respect, we justify
the choice of Symmlets by noting that, besides yielding good
results in practice, they are optimal in the sense that they have
minimum support for a given number of vanishing moments
[43], [44].

Lastly, in order to generate the maximum number of small
wavelet coefficients, we might be tempted to use a Ψ that
computes many levels of decomposition. However, more levels
of decomposition lead to a higher coherence. For example, four
levels result in μ = 4.0, three levels result in μ = 2.8284, and
two levels result in μ = 2.0.

V. EXPERIMENTAL RESULTS

In order to demonstrate the advantages and the shortcomings
of the outlined approach, we used simulated data as well as
a stack of 21 focused and coregistered SAR images obtained
by processing real fully polarimetric L-band data. These data
were acquired by the E-SAR airborne sensor of DLR during
a campaign near Dornstetten, Germany, in 2006. All flights
were performed at approximately the same altitude with hor-
izontal baselines of about 20 m. Fig. 3 shows the amplitude
image of this area. The center frequency used was 1.3 GHz,
and the nominal altitude above ground was about 3200 m.
The resolutions were 0.66 and 2.07 m in azimuth and range,
respectively. The near, middle, and far ranges corresponded
to 3953.15, 4527.09, and 5102.52 m, respectively [15]. We
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Fig. 4. Histogram of (a) 21 horizontal baselines employed in the first constellation and (b) resulting horizontal cobaselines.

Fig. 5. Histogram of (a) ten horizontal baselines employed in the second constellation and (b) resulting horizontal cobaselines.

Fig. 6. Histogram of (a) six horizontal baselines employed in the third constellation and (b) resulting horizontal cobaselines.

considered three different constellations (which will be re-
ferred to throughout this section) employing the following:
C1) all 21 passes; C2) ten irregular passes; and C3) six ir-
regular passes. Figs. 4–6 show the histograms of horizontal
baselines and corresponding horizontal cobaselines. Note that
Fig. 4(b) uncovers a high level of redundancy, unlike Figs. 5(b)
and 6(b).

A. Experiments With Simulated Data

1) Description of the Experiments: We started by compar-
ing two traditional nonparametric estimators, namely, Fourier
beamforming and Capon’s method, with the wavelet-based
CS (WCS) technique letting λ1 = λ2 = 0.5 [see (16)], and
employing a Daubechies Symmlet wavelet with four vanishing
moments and three levels of decomposition. To this end, we
simulated a 300-look cross-range profile following a circu-
lar Gaussian distribution with zero mean and unit variance,
so that (2) holds asymptotically. In addition, we generated
multibaseline measurements considering the system parameters
mentioned previously and the constellations C1–C3 at the near,
middle, and far ranges. The decorrelation effects were intro-
duced by means of Gaussian noise using a signal-to-noise ratio
(SNR) of 10 dB.

The tomographic inversion was carried out under different
assumptions on the extent of the cross-range profile, i.e., the
observation space. Fig. 7 shows the normalized profiles as a
function of height obtained using 21 passes. First, we assumed

an observation space of 80 m with n = 256 at near, middle, and
far ranges [see Fig. 7(a)–(c)]. Then, we restricted it to 40 m
with n = 128 [see Fig. 7(d)–(f)]. Similarly, we performed the
reconstruction employing ten and six tracks (see Figs. 8 and 9).
Alternatively, Fig. 10 shows an example of the impact of choos-
ing an insufficient range of heights (i.e., 20 m with n = 128),
whereby a part of the backscatter is neglected.

2) Description of the Results: In light of these simulations,
several observations can be made.

1) When using all the available passes (Fig. 7), WCS almost
does not suffer from ambiguities. A further reduction
of the observation space does not seem to provide any
significant advantage.

2) When decreasing the number of passes to ten (Fig. 8),
despite providing similar results to those obtained using
21 tracks, a further reduction of the range of heights does
prove to be advantageous for WCS at the near range.
The reconstruction is actually unsatisfactory if this is not
taken into account [compare Fig. 8(a) and (d)].

3) A more limited number of tracks (Fig. 9) can lead to
unsatisfactory results at the near range, regardless of our
previous knowledge about the observation space [com-
pare Fig. 9(a) and (d)].

4) An erroneous range of heights may introduce artifacts in
the WCS reconstruction (see Fig. 10).

3) Discussion: It is known that, in SAR tomography, the
order of the RIP might fall short of ideal, even when attaining
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Fig. 7. Normalized cross-range profiles as a function of height (in meters) obtained using 21 passes, 300 looks, and SNR = 10 dB. (Black) Simulated. (Blue)
WCS. (Green) Capon’s method. (Red) Fourier. (Top plots) An Observation space corresponding to a height range of 80 m has been considered at (a) near, (b)
middle, and (c) far ranges. (Bottom plots) A Limited observation space corresponding to a height range of 40 m has been considered at (d) near, (e) middle, and
(f) far ranges.

Fig. 8. Normalized cross-range profiles as a function of height (in meters) obtained using ten irregular passes, 300 looks, and SNR = 10 dB. (Black) Simulated.
(Blue) WCS. (Green) Capon’s method. (Red) Fourier. (Top plots) An Observation space corresponding to a height range of 80 m has been considered at (a) near,
(b) middle, and (c) far ranges. (Bottom plots) A Limited observation space corresponding to a height range of 40 m has been considered at (d) near, (e) middle,
and (f) far ranges.

Fig. 9. Normalized cross-range profiles as a function of height (in meters) obtained using six irregular passes, 300 looks, and SNR = 10 dB. (Black) Simulated.
(Blue) WCS. (Green) Capon’s method. (Red) Fourier. (Top plots) An Observation space corresponding to a height range of 80 m has been considered at (a) near,
(b) middle, and (c) far ranges. (Bottom plots) A Limited observation space corresponding to a height range of 40 m has been considered at (d) near, (e) middle,
and (f) far ranges.

optimal coherence between the measurement basis and the spar-
sity basis (see, for example, [24]). Nonetheless, the experiments
outlined in this section (see observations 1–3) indicate that

this inherent limitation can be transcended (to a certain extent,
depending on the number of available passes) by appropriately
defining the range of heights.
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Fig. 10. Normalized cross-range profiles as a function of height (in meters) obtained using 300 looks, and SNR = 10 dB. (Black) Simulated. (Blue) WCS.
(Green) Capon’s method. (Red) Fourier. The observation space corresponds to a height range of 20 m, thus ignoring part of the cross-range backscatter. (Top plots)
Twenty-one passes at (a) near, (b) middle, and (c) far ranges. (Middle plots) Ten irregular passes at (d) near, (e) middle, and (f) far ranges. (Bottom plots) Six
irregular passes at (g) near, (h) middle, and (i) far ranges.

Fig. 11. Span of tomogram obtained by Fourier beamforming as a function of azimuth and height (176 m by 40 m) using a nine-by-nine window with (a) 21,
(b) 10, and (c) 6 passes. Range distance: 4816.30 m.

Of equal importance is the fact that, unlike Fourier beam-
forming and Capon’s method, WCS retrieves the backscattered
power simultaneously for all heights in the defined observa-

tion space. While this is one of the reasons why ambiguities
are countered, an erroneous range of heights impacts on the
WCS reconstruction (see observation 4). Nevertheless, this is
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Fig. 12. Span of tomogram obtained by Capon’s method as a function of azimuth and height (176 m by 40 m) using a nine-by-nine window with (a) 21, (b) 10,
and (c) 6 passes. Range distance: 4816.30 m.

Fig. 13. Span of tomogram obtained by WCS as a function of azimuth and height (176 m by 40 m) using a nine-by-nine window with (a) 21, (b) 10, and
(c) 6 passes. Range distance: 4816.30 m.
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Fig. 14. Span of tomogram obtained by Fourier beamforming as a function of azimuth and height (176 m by 40 m) using a nine-by-nine window with (a) 21,
(b) 10, and (c) 6 passes. Range distance: 4501.61 m.

Fig. 15. Span of tomogram obtained by Capon’s method as a function of azimuth and height (176 m by 40 m) using a nine-by-nine window with (a) 21, (b) 10,
and (c) 6 passes. Range distance: 4501.61 m.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

AGUILERA et al.: WAVELET-BASED COMPRESSED SENSING FOR SAR TOMOGRAPHY OF FORESTED AREAS 11

Fig. 16. Span of tomogram obtained by WCS as a function of azimuth and height (176 m by 40 m) using a nine-by-nine window with (a) 21, (b) 10, and
(c) 6 passes. Range distance: 4501.61 m.

appropriately bounded, as the backscatter corresponding to the
neglected observation space can be absorbed by ε in (7).

Finally, it is worth noting that, in the authors’ experience,
although the TV norm regularization promotes the removal of
spurious spikes and aliasing-like artifacts, setting λ2 = 0 also
leads to satisfactory results.

B. Experiments With Real Data

For validation purposes, we selected 400 contiguous az-
imuth positions at two different range locations (indicated
by the yellow rectangles and the red lines in Fig. 3). As a
result, we obtained tomographic slices as a function of az-
imuth and height of dimensions 176 m by 40 m (n = 128),
respectively. In both cases, we took a nine-by-nine window.
In Fig. 11, we used Fourier beamforming for a range distance
of 4816.30 m. Fig. 11(a)–(c) displays the normalized sum of
the power distributions throughout polarimetric channels using
the constellations C1–C3, respectively. Likewise, as presented
in Fig. 12, we carried out the reconstruction with Capon’s
beamformer. Alternatively, Fig. 13 shows the results obtained
via WCS using λ1 = λ2 = 0.5 [see (16)], (3), and a Daubechies
Symmlet wavelet with four vanishing moments and three levels
of decomposition. Evidently, all methods bear comparison with
each other for C1 [see Figs. 11(a), 12(a), and 13(a)]. However,
a reduction in the number of tracks, i.e., constellations C2–C3,
enables us to reveal the robustness of the different methods. In
contrast to WCS [Fig. 13(b) and (c)], these irregular baseline

Fig. 17. Normalized histogram of the reconstruction time required for WCS
(black: 21 passes; red: 10 passes; and magenta: 6 passes). The times have been
normalized to the Fourier beamforming reconstruction time using 21 passes.

distributions cause Fourier beamforming [Fig. 11(b) and (c)]
as well as Capon’s method [Fig. 12(b) and (c)] to present
more severe artifacts, just as observed with the simulated data.
Figs. 14–16 show similar results at a nearer range (4501.61 m),
so as to see the impact of the ambiguities even for C1. Upon
comparison, we observe that the WCS reconstruction exhibits
the lowest ambiguity level.

C. Computation Time

Fig. 17 presents three histograms of the reconstruction time
required for WCS. The different constellations (C1–C3) were
employed for simulating the corresponding multibaseline mea-
surements at the far range. For every realization (2000 in total),
one of the profiles from the left column of Fig. 2 was chosen
uniformly at random. Again, the SNR = 10 dB, and the number
of looks was 300. The resulting times have been normalized to
the Fourier beamforming reconstruction time using 21 passes.
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The solver that we used was CVX, which is a package for
specifying and solving convex programs [50]. As conveyed by
the histograms, besides incurring much more computation time,
WCS is less predictable, due to the iterative nature of the algo-
rithm. For large-scale processing, we refer the reader to [51].

VI. CONCLUSION

In this paper, we have approached the 3-D reconstruction
of forested areas from a CS perspective. We analyzed the
effective cross-range power distribution in the wavelet domain
and motivated the use of its corresponding bases. As a result, we
achieved high resolution while attaining low ambiguity levels.
Furthermore, we examined the actual sampling waveforms
used for measuring the unknown power distribution. Thus,
we pointed out the possibility of optimizing the acquisition
geometry by means of a reduced set of irregular baselines.
We have shown that, in contrast to traditional nonparametric
spectral estimators, previous knowledge about the observation
space proves beneficial for WCS. Also, as WCS inherently es-
timates the cross-range backscattered power simultaneously for
all heights in the defined observation space, it is able to counter
possible ambiguities. However, an erroneous range of heights
can introduce undesired, yet well-bounded, artifacts. Lastly, we
note that, even though research is currently being conducted
in order to solve CS problems efficiently (see, for example,
[51] and the references therein), the increase in computational
complexity is significant.
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