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Alternative approach procedures are currently under investigation to evaluate their ground noise reduction
potential. One such procedure involves approaching the airport at a considerably higher altitude compared with
standard landing trajectories, followed by a spiraling descent (helix flight path) shortly before the runway threshold.
In this way, high ground noise levels by approaching aircraft are dislocated away from the common approach path
and concentrated in the area near the helix path, that is, in direct vicinity of the airport. Ground noise levels along the
entire flight path before the helix are significantly reduced. The effectiveness of this procedure, referred to as ‘‘helical
noise abatement procedure,” has been quantified by means of computational simulation analyses. These analyses
also focused on aspects such as increased fuel burn and the occurrence of multiple noise events below the helix. In
June 2009, a new autopilot by the DLR, German Aerospace Center, especially capable of tracking curved flight-path
trajectories, was flight tested. Three helical noise abatement procedures were included in the flight plan, as well as
standard and steep landing approaches. In addition, dedicated flyover noise measurements were organized. Twelve
ground microphones were placed along the common approach path and the helical flight segment. The measured
data confirm the predicted noise dislocation effects. High noise levels were found to be limited to observer locations
around the helix. Results from computational noise prediction have been compared with the experimental data.
Predicted trends and noise dislocation effects are in good agreement with the measurements, whereas the absolute
numerical values show discrepancies. The flight test was closely accompanied by a research and development
member of the German air navigation service provider DFS Deutsche Flugsicherung GmbH to study the impact of
spiraling procedures on air traffic management integration aspects and air traffic controller workload, for example,
increased interaction with the pilots. Obviously, a spiraling approach procedure would not be implemented into the
existing air traffic scenario with its common approach paths and more frequented airports. The operational and
economic environment still need more detailed investigation. Helical approaches become more feasible for
implementation at small, less-frequented regional airports or during night hours to avoid possible noise related

curfews.
Nomenclature
D = diameter
h = altitude
mic x = ground microphone at location x
Num = number of full turns
= Global Positioning System position
r = radius
SPL(A) = A-weighted sound pressure level, dBA
T = integration time for sound exposure level, s
tref = reference time for sound exposure level, s
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Veas = calibrated airspeed

y = inertial flight-path angle
o = ground resistivity to air, (kN - s)/m*
X = inertial track angle
Subscripts

A = A-weighted level

center = helix center

end = end of flight segment
final = final straight segment
helix = helical flight segment
init = initial straight segment

I. Introduction

HE vast increase in commercial air traffic on the one hand and

the growing pressure to reduce its environmental impact on the
other hand require radical solutions to achieve considerably lower
emission levels of noise and engine emissions. The solutions are
sought both at the aircraft level, e.g., by development of more
efficient and silent engines, as well as at the operational level, e.g., by
developing more environmentally friendly takeoff and approach
procedures.
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To decrease aircraft noise levels in noise sensitive areas, a radical
approach procedure is under investigation, the so-called helical noise
abatement procedure [1] (HENAP). This procedure is based on
concepts for simultaneous noninterfering operation by Hange and
Eckenrod [2] and Young and Hall [3]. It involves the aircraft
approaching the airport at a considerably higher altitude compared
with standard instrument landing system (ILS) approaches and then
performing a spiraling descent shortly before the runway threshold.
The investigation was performed by means of computer analysis,
using a new tool set by the DLR, German Aerospace Center
(hereinafter referred to as DLR), for the environmental analysis of
aircraft flight trajectories. The process comprises tools for aero-
dynamics, flight mechanics, engine cycle modeling, and the
prediction of aircraft noise and engine emission [1].

The main conclusions from this computational study are the
following: depending on the initial approach altitude and the geom-
etry of the helix (number of full turns, turn radius, rate of descent,
etc.), the high ground noise levels of approaching aircraft are
dislocated away from the common ILS approach path into the area
around the spiraling descend. This will significantly reduce ground
noise impact along the entire flight path before the helix. Yet, at the
same time, each approaching aircraft causes multiple flyover events
in the vicinity of the helix, hence increasing ground noise pollution in
this area. Furthermore, fuel use and flight time increase along the
helical approach procedure compared with ideal and short direct ILS
approaches.

In parallel to the computer analysis a flight test was prepared to
evaluate a newly developed autopilot with improved weather
capabilities [4]. To this end, the autopilot was implemented on DLR’s
advanced technologies testing aircraft system (ATTAS, see Fig. 1).
The intention was to test this autopilot in the form of a helical inertial
flight trajectory at a constant airspeed, since this causes lateral and
horizontal wind shears, even in the presence of a little steady wind.
The idea arose to perform this test trajectory in the form of a landing
approach, resulting in the aforementioned HENAP trajectory. After it
turned out that this was possible from an operational and safety point
of view, it was decided to combine the flight test with a ground noise
measurement campaign. This would allow for validation of the
HENAP results from the computational analysis, in particular to
confirm the predicted noise reduction potential. The HENAP
obviously raises operational question marks, such as air traffic
control aspects, which had not been considered so far. For this reason,
a representative of the German air navigation service provider DFS
Deutsche Flugsicherung GmbH observed the approaches from the
airport tower.

This paper describes the flight test and presents the results. It is
structured as follows: in Sec. Il the HENAP will be described in more
detail. In Sec. III the computational noise analysis of the HENAP and
some illustrative results will be presented; Sec. IV describes equip-
ment, preparation, and actual execution of the flight test; Sec. V
discusses initial results, including the validation of basic principles
of the HENAP, the computational noise analysis and the per-
formance of the autopilot, as well as operational aspects based on
crew comments and observations from the airport tower; finally,
conclusions will be discussed in Sec. VI.

II. Spiraling Approach Procedure

The HENAP trajectory and its main characteristic parameters are
depicted in Fig. 2. The trajectory consists of three segments. The first,
initial segment is a straight path, which is easily captured by the

Fig. 1 Flying test bed ATTAS of the German Aerospace Center.
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Fig. 2 HENAP: parametric definition.

lateral/vertical navigation autopilot modes and allows the aircraft to
be configured for the second, helical segment. Geometrically, the
actual helix is initiated at the point where the initial straight segment
perpendicularly passes the helix center. Practically, the procedure is
initiated slightly earlier in order to allow the aircraft to smoothly roll
into the turn. After the helical segment, the trajectory ends with
straight approach segment, allowing the aircraft to be brought in
trimmed, wings-level flight, from where the autopilot may switch to
its landing modes (flare, retard, decrab) or from where the pilot may
take over. The final segment will be identical to the standard runway
approach path; its length will be a compromise between safety and its
effectiveness for noise abatement (the shorter the better).

The parameters R epers Thelixs VCAS.helixs a0d Feq may be (slowly)
changed during the maneuver. The entry height A;,;, the final altitude
hend> and the number of turns determine the rate of descent (altitudes
are barometric, question nil height). The flight-path and track angles
of the final segment are determined by the runway heading and glide
slope angle. In Fig. 2 the flight-path angle of the initial segment (y;;)
is zero. This is not a prerequisite, as will be shown in the simulation
studies. The same holds for the initial track angle ;. In the figure it
is identical to the runway heading, but the spiraling descent may start
from any direction.

III. Computational Analysis of the HENAP

A new tool set for the environmental analysis of aircraft flight
trajectories has been applied to investigate spiraling approach
procedures [1]. Noise shielding effects and the overall ground noise
impact are predicted with the new DLR tools SHADOW [5] and
“parametric aircraft noise analysis module” (PANAM) [6], respec-
tively. Predicted noise isocontour plots illustrate the concept of
spiraling noise abatement approach procedures at standard atmo-
sphere condition with no wind for a conventional transport aircraft
with under-the-wing engine installation. The maximum SPL, noise
footprint for this aircraft along the reference approach is depicted in
Fig. 3a. Isocontour areas for the investigated helical approaches with
2, 3, and 4 helical flight segments are shown in Figs. 3b-3d
respectively. Maximum SPL, levels along each flight ground track
are depicted in Fig. 4. Flight-path angles were held constant and
limited to —3°. A constant helix radius ry,;, of 2000 m was selected
for the coordinated turns to guarantee passenger comfort by
preventing high bank angles and decelerations. According to the
selected parameters, load factor n and bank angle B during the
spiraling segments were limited to 1.15 and 30°, respectively. To
maximize ground noise reduction along the HENAP, the initial flight
segment before the helix was simulated identical to the reference
approach with a glide slope y;,;; of —3°.

A considerable increase in flight time, fuel consumption, and
gaseous emissions is predicted for all helical approaches if compared
with the reference approach, as presented in Table 1. It has to be noted
that the selected reference procedure is a direct, straight-in approach,
i.e., the path is aligned with the runway heading. Obviously, an
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Fig. 3 Predicted maximum SPL , isocontour plots for conventional, medium-range transport aircraft.

arrival from any other direction would require more rerouting hence
lead to an extended flight path. A case-specific tradeoff, i.e., con-
sideration of routing in the proximity of the airport and possible
direct shortcut by spiraling descent operation (see Fig. 5a), between
economical flight performance and low-noise operation becomes
inevitable.

Comparing the reference noise isocontour areas with the HENAP
isocontour lines demonstrates the significant noise reduction
potential before the spiraling flight segments. The highlighted lines
in each plot represent selected isocontour areas. High noise levels are
dislocated away from the common approach path and concentrated
within an area around the ground track of the helical flight segment.
Obviously, this limited area will then be subject to multiple flyover
events for each approaching aircraft hence increased noise pollution.
The isocontour plots show the maximum noise levels that have been
predicted for each flyover event.

Ideally, the helix location can be selected in such a way that high
noise levels are kept within airport borders or limited to low-
populated regions and industrial zones. To further illustrate this, an
airport with optimal geographical location was identified without
consideration of air traffic management aspects. A three-segmented
HENAP and a conventional approach, FUTSU night north arrival, on
runway 34 L of Tokyo Haneda International Airport [International
Civil Aviation Organization (ICAO) airport code RJTT], have been
simulated. The simulation of the FUTSU approach is based on
official approach charts by the Civil Aviation Bureau of Japan [7].
The procedure is designated for night operation in order to reduce
community noise annoyance mainly for the Boso Peninsula. The
resulting significant detour around the peninsula is depicted in
Fig. Sa.

A new shortcut from waypoint HONDA directly toward the
airport, waypoint FAF, followed by a spiraling flight segment was
established. The new flight route has been simply copied onto a map
to demonstrate the concept (see Fig. 5b). Following the new shortcut,
aircraft can remain on flight level 80 until reaching the spiraling flight
segment. Hereby, ground noise impact is dislocated away from
populated areas and concentrated over the Tokyo Bay (see Figs. 5S¢
and 5d). Initial simulation results indicate a reduction of the flight
path by more than 50% along with significant environmental benefits
due to the HENAP.
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Fig. 4 Predicted maximum SPL, along flight ground tracks for
conventional, medium-range transport aircraft.
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Table 1 Predicted environmental effects: HENAP vs reference approach

Procedure 60 dBA isocontour 65 dBA isocontour 70 dBA isocontour Fuel, kg NOx, kg Flight time, s
area, km? area, km? area, km?

Reference approach 78.05 41.66 7.01 208.56 1.71 450.5

HENAP 2 199.67 55.01 26.08 299.05 2.34 675.5

HENAP 3 102.63 39.03 12.77 329.08 2.37 833.0

HENAP 4 67.73 29.74 14.60 363.21 2.50 971.5

IV. Flight-Test and Flyover-Noise Measurements
A. Test Aircraft and Autopilot

The flight test was carried out to develop methods for the design of
feedback flight control laws to considerably improve aircraft closed-
loop behavior under adverse atmospheric conditions. The autopilot
control laws flown during the described test flight are described in
more detail in [4]. Although it contains most modes of operation of
standard autopilots (including autoland), for the test flight its modes
for helix tracking and steep landing approaches were of particular
interest.

Tracking a helical flight path is a challenging task for an autopilot
and very suitable for assessing its overall behavior and capabilities.
During a helix maneuver, one basically encounters a considerable
amount of challenges in autopilot design: coordination of longi-
tudinal and lateral modes, accurate tracking of a flight path that is
continuously “bending away,” and combined tracking of inertial (the
flight path) and air-mass-based references (the airspeed). From an
atmospheric point of view, during a helix maneuver even little
constant wind results in continuous wind shears in lateral and
longitudinal directions.

e
Google

For the flight test, the autopilot control laws were implemented on
DLRs ATTAS (see Fig. 1). The aircraft is based on a VFW 614 civil
transport aircraft equipped with two Rolls—Royce M45 H engines.
ATTAS is equipped with a unique in-flight simulation architecture
and a fly-by-wire flight control system, allowing for implementation
of new flight control laws with low effort. Before flight, the complete
flight plan was reviewed and tested in the ATTAS ground-based flight
simulator. Since the flight control laws were tested in flight for the
first time, the initial segment was chosen to be straight and level, i.e.,
Vit = 0. Three turns were selected, which is a compromise between
time for control law evaluation and available flight time.

B. Flight-Test Plan

The flight-test plan consisted of seven approaches to runway 26 of
the Forschungsflughafen Braunschweig (ICAQ airport code EDVE).
The aircraft’s configuration along all flights was held constant, in
order to reduce complexity of the procedures and ensure a sufficient
offset between ambient and flyover noise levels, with gear deployed
and flaps at 14°. The reference time (flight time) for overall data
correlation was initialized, i.e., flight time set to 0.0 s, along each test

Google )

Google |

d

Fig. 5 Tokyo Haneda International Airport, night operation scenario: HENAP vs FUTSU night north arrival [7] (Google Earth).
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flight at a ground distance of 12 km to the runway threshold. The first
test flight is a standard 3° ILS approach followed by a go-around
when reaching 500 ft above ground level (AGL). The second and
third test flights are steep approaches with glide slopes of 6-7°
starting at a barometric altitude of 3000 ft question nil height (QNH).
The common ILS path is captured from above, and go-around is
initiated when reaching 500 ft AGL. The objectives were to test the
vertical path and speed modes, and vertical path and glide slope
capture logic. Flights four to six are HENAP starting at an altitude of
7500 ft. ILS path is captured after the last turn, followed by a go-
around when reaching 500 ft AGL. The flight-path angle y;,;; along
the initial flight segment was set to zero for simplicity. This maneuver
was intended as the all-up test of the autopilot control laws. Finally,
flight seven is the second standard ILS approach, continued into the
landing and rollout (performed manually), marking the end of the test
flight.

C. Procedures

The helical approach trajectory is depicted schematically in Fig. 2.
As already mentioned before, the maneuver is initiated in an altitude
hipi of 7500 ft QNH in the direction of the runway. The altitude is
held constant (y;,;; = 0) until the aircraft passes the helix center,
which is located to the right. The helix center in turn is located at a
distance Dy of 3200 m before the runway threshold. The latter
point is also the reference for computing local x, y, z coordinates.
After exactly three full turns with a radius ry;, of 2000 m the
maneuver ends with the final straight trajectory, which matches the
standard ILS approach path. Shortly before ending the final circle,
the ILS signal is checked. If the aircraft is within the cone, the
autopilot changes into its ILS tracking mode. Otherwise, flight
continues in runway direction, but at constant altitude. The airspeed
Veas.helix 18 held constant at 160 kt (82 m/s). During the final quarter
of the last turn, it is reduced to the agreed final approach speed
Veasnetix Of 140 kt (72 m/s).

The steep approaches were initiated at an altitude of 3000 ft QNH.
The transition from steep into the standard approach path was
planned at the same distance Dy,;;, from the runway threshold as the
helix center. The transition from horizontal into the steep approach
was fixed to an altitude of 6500 ft. In this way, the trajectory is fully
defined. An approach speed of 140 kt (72 m/s) calibrated airspeed
was selected. The procedure is flown automatically by the new
autopilot and switch-on and switch-off positions are labeled as A/P
on and A/P off (for autopilot on and off, respectively) in Figs. 2 and 6.

D. Test Setup
1. Noise Measurement Equipment and Data Acquisition System

The flight trajectories and corresponding operational aircraft data
were recorded on board of the ATTAS aircraft. The trajectory data
contained GPS time for synchronization with measured ground noise
data. In addition to official airport weather data, ambient tem-
perature, relative humidity, static air pressure, and wind speed/
direction have been obtained every 15 min during the flyover
campaign using a pole mounted weather sensor system installed
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Fig. 6 Observer locations along flight ground tracks.

Table 2 Location coordinates

Location X, m y, m World geodetic system?

coordinates
Mic 1 —2924.32 —21.55 N 52.3222, E 10.6067
Mic 2 —3281.34 —34.93 N 52.3226,E10.6119
Mic 3 —5210.96 —64.57 N 52.3245, E 10.6400
Mic 4 —5661.15 —164.67 N 52.3257, E 10.6465
Mic 5 —8239.39 6.07 N 52.3263, E 10.6844
Mic 6 —8283.45 —172.10 N 52.3279,E 10.6848
Mic 7 —2796.36 —4092.50 N 52.3586, E 10.5994
Mic 8 —1713.22 —3463.96 N 52.3520, E 10.5844
Mic 9 —2355.22 —3176.19 N 52.3500, E 10.5942
Mic 10 —2995.14 —3348.14 N 52.3521,E 10.6033
Mic 11 —2425.86 —4943.79 N 52.3659, E 10.5929
Mic 12 —1750.79 —4456.68 N 52.3610, E 10.5836
Helix center —3200.0 —2000.0 N 52.3399, E 10.6079
RWY 26 0.0 0.0 N 52.3196, E 10.5640
"WGS84.

close to location mic 8. The data was measured 10 m above the
ground, according to the aircraft noise certification standards [8].

Noise data were acquired using an autonomous field noise
measurement system consisting of plate mounted microphones and a
laptop-based data acquisition system conforming to DIN EN 61265.
The digitized sound pressure signal was recorded with a sampling
rate of 48 kHz and a 16 bit resolution. The measurement system
further included a GPS unit which allows the GPS time and the pulse-
per-second to be recorded along with the sound pressure signal for
data synchronization. Furthermore, the GPS position is stored in the
noise data header which allows for the precise determination of the
geometric relation between aircraft trajectory and microphone
position on the ground. A ground board microphone arrangement
was chosen originally developed for noise certification of General
Aviation aircraft ICAO Annex 16, Chapter 10). Each microphone is
mounted eccentrically in an inverted position at 7 mm above the
circular metal ground plate. This setup is used to minimize
interference effects in the frequency range from 50 Hz up to 10 kHz
typically used for aircraft noise analysis. Detailed analysis of the
interference characteristics of this microphone setup can be found in
[9,10]. Signal processing and calculation of the SPL, was performed
according to the aircraft noise certification standards [8].

No noise data correction, e.g., de-Dopplerization and correction
for atmospheric absorption, was applied because the focus of the
campaign was on the one hand to evaluate ground noise impact
instead of noise emission at the source and on the other hand to
provide uncorrected noise data to validate the prediction codes.

2. Observer Locations

A total of 12 microphone stations were installed around
Forschungsflughafen Braunschweig. Observer locations along the
flight ground track of the common approach path and of the HENAP
have been selected. Six microphones have been installed along the
common approach path and the helical flight segments, respectively.
The coordinates for the ground microphones are given in Table 2 and
the layout is depicted in Fig. 6. All flights are approaching from the
east toward EDVE runway 26. The locations mic 1 to mic 6 along the
common approach path have been selected such that the noise
reduction potential of the steep approach and the HENAP compared
with the reference path can be demonstrated. Locations along the
helical flight ground track have been selected in order to investigate
noise emission along the curved flight segments, locations mic 7 to
mic 12.

V. Analysis of Flight-Test Results
A. Tracking of the Flight Path
Figure 6 depicts one HENAP, one steep, and one standard
approach trajectory out of the seven approaches performed during the
flight test. The three HENAP approaches turned out to be nearly
identical. As a result, the projection all HENAP trajectories on the
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Fig. 7 Flight data visualization.
ground are nearly perfect circles and hardly distinguishable. From an The recorded thrust, speed, and altitude profiles for each test flight
autopilot design point of view, this of course is very encouraging are depicted in Fig. 8. Obviously, the operating conditions along
since the winds were quite significant. Regarding the steep ap- identical flight procedures are in close proximity hence the corre-
proaches, the second one was slightly steeper due to the somewhat sponding noise emission should be quite similar as well (note:
higher initial altitude. The path tracking accuracy is confirmed by constant aircraft configuration).
Fig. 7a (lateral path error during first helical approach) and Fig. 7b The behavior of the autopilot regarding piloting technique, e.g.,
(altitude error during first helical approach). The time along the helix throttle activity, was received well by the pilots. During the maneu-
path has been stretched along the x axis while the deviations are ver, ride quality (load factors, intercepts, etc.) was of no concern.
represented on the y axis. The larger peaks at the beginning and the
end are caused by switching to and from the spiral mode. Their quick B. Measured Noise Levels

reduction illustrates the good tracking capability of the autopilot.

More details on the behavior of the autopilot can be found in [4]. The wind conditions on the only available test day were adverse

for flyover noise measurements. Wind gusts up to 15 kt have been
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Fig. 8 Flights 1 (reference), 3 (steep), and 4 (HENAP): recorded thrust, true airspeed, and altitude history (constant configuration: gear deployed, flaps
at 15°).
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recorded on the ground. At the airport winds between 15 and 20 kt
with direction ~255° (runway heading 265°) were measured. At
higher altitudes winds up to 28 kt were encountered. Between and
below clouds (broken cumulus, base ~4000 ft, top ~7000 ft)
thermal turbulence was encountered. In the clouds, turbulence levels
were considerably higher.

ICAO weather conditions for noise certification according to
Annex 16, Appendix 2,2.2.2 [8] are the following: temperatures
between 2 and 35°C; no rain, dew, or snow; no ground-based tem-
perature inversions; humidity between 20 and 95%; wind conditions
10 m above ground, average wind < 12 kt, average crosswind
< 7 kt, maximum wind < 15 kt, maximum crosswind < 10 kt).
Therefore, the measured noise levels should be examined critically
and should not directly be compared with data from other campaigns
under certified wind conditions. The weather and wind conditions
did not change significantly during the 2 h of the test flights hence the
influence of wind on the measured data is assumed to be similar for
all recorded flight events. This approximation is confirmed by only
small variations in the measurements for identical approach
procedures, i.e., agreement between level time histories for flights 4
to 6 (HENAP), flights 1 and 7 (reference), and flights 2 and 3 (steep),
respectively. Recorded time-level histories of the A-weighted sound
pressure level (dBA) are depicted in Figs. 9 and 10. The depicted
flight time was initiated for each test flight at a ground distance of
12 km to the runway threshold. Despite the adverse weather
conditions, the recorded sound pressure level time histories reveal
very low background noise levels for all microphone locations of
55 dBA down to 50 dBA at some locations. The maximum sound
pressure levels of the aircraft flyover events are therefore more then

Location Mic 1
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20 dB above the ambient noise levels, which is the required margin
for noise certification measurements. This supports the suitability of
the measured noise data for comparing the noise impact among the
tested approach procedures. At locations mic 1 to mic 6 the noise
levels for all seven test flights have been recorded. At the remaining
locations only the HENAP noise was perceived.

Noise levels at locations mic 5 and mic 6 are compared, to evaluate
the potential noise reduction of the tested procedures along the
common approach path. Noise level differences with respect to data
of flight 1, presented in Table 3, indicate the anticipated noise
relocation effects at locations mic 5 and mic 6 due to the spiraling and
steep approaches.

All test flights pass the ILS, 4. marker, depicted in Fig. 2, with
identical altitude, speed, and thrust setting. Therefore, microphone
locations in close proximity to this marker are exposed to similar
noise peaks along each flyover event. Figure 11 shows the measured
noise levels along the spiraling segments of flight 4. The aircraft
following the HENAP is consecutively flying over mic 1, mic 8, and
mic 7. Each of these individual flyover events can be identified and
correlated (see Fig. 11a). The measured noise levels inside and
outside of the helix do not significantly deviate from each other.
Figures 11b and ] I1¢ show similar noise impact inside and outside off
the helix along flight 4. Overall, the maximum noise levels measured
below the helical flight segments are comparable to noise levels
recorded below the standard ILS approach path. Comparing the
recorded noise levels for the reference approach with measurements
of the HENAP does not indicate additional ground noise increase due
to the curved flight segments, e.g., comparing levels at location mic 1
(Fig. 9a) with levels recorded at location mic 8 (Fig. 10a).
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Fig. 9 Measured SPL, time history at the locations mic 1, mic 4, and mic 6.



BERTSCH ET AL.

Location Mic 8
Helical Noise Abatement Procedure (HeNAP)

443

Location Mic 9
Helical Noise Abatement Procedure (HeNAP)

I flight 4 I flight 5 I flight 6 I flight 4 I flight 5 I flight 6
75 o o 75 o
T i i T f i
] | | o L L
S S
- I I - I I
o o
»n I I » I I
65 o o 651 o
55 L L PR, PR S MR i L
50 250 450 50 250 450 50 250 450 250 450 50 250 450
time [s] time [s] time [s] time [s] time [s] time [s]
a) Mic 8 b) Mic 9
Location Mic 12
Helical Noise Abatement Procedure (HeNAP)
I flight 4 I flight 5 i flight 6
75 - -
< | L
m
5 L
4 L L
o
m - -
65 o
[Y] 1 L L‘_ L1 1 P
50 250 450 50 250 450 50 250 450
time [s] time [s] time [s]
¢) Mic 12

Fig. 10 Measured SPL, time history at the locations mic 8, mic 9, and mic 12.

To study the impact of multiple flyover events on community noise
annoyance the sound exposure level (SEL) is a common indicator.
Therefore, recorded SPL, time histories along the common approach
path as well as along the spiral are translated into SEL levels
according to Eq. (1):

(M

ref

SEL = 10-10g10(—

1 T
/ losPLA(t)/l() dl)
0

with 7. = 1 s and the integration time 7" equals the measurement
time.

The SEL is mainly dominated by the maxima of recorded sound
pressure levels but also influenced by multiple flyover events. The
levels according to the measurements are presented in Table 4.

Each HENAP causes multiple flyover events resulting in several
noise peaks of varying levels as depicted in Figs. 9 and 10. At the
locations along the spiral, only HENAP noise was experienced,
hence, no flyover but ambient noise is prevalent during the reference
and steep approaches. Obviously, the area along the spiral is only
exposed to aircraft noise during HENAP operation, i.e., these areas
are suddenly exposed to SEL levels over 80 dBA. The levels directly
under the spiral, e.g., mic 8, are exposed to SEL levels comparable to
measurements directly under the reference approach path.

Corresponding to the SEL, time histories at mic 1, steep, reference
and HENAP approach show similar SEL levels. With increasing
distance to the helix center, the situation becomes more advan-
tageous for the HENAP. Starting along the common approach path at
a distance of less than one spiral diameter from the helix center, the
SEL levels of steep and HENAP approach are lower than the

corresponding levels of the reference approach. Obviously, multiple
flyover events are compensated by significantly reduced SPL 4 levels.
This advantage for the HENAP will increase along the common
approach path with distance to the helix center.

C. Measured vs Predicted Noise Data

Strong winds and wind gusts are known to distort the sound field in
an uncontrolled manner hence complex noise shielding effects are
corrupted. Therefore, the current data was not considered appropriate
to validate the new DLR noise shielding code SHADOW [5] hence
the noise shielding effects were neglected in the comparison.

Recorded flight-test data are provided as input for the com-
putational noise prediction, whereas the prediction in Sec. Il is based
on simulated input data. Noise prediction with PANAM [6] is based
on semi-empirical, parametric noise source models to quickly
identify low-noise aircraft designs and noise abating flight tra-
jectories. Major aircraft noise sources are modeled but interactions

Table 3 Recorded maximum SPL, differences AdBA with
respect to flight 1 (reference) at locations mic 5 and mic 6

Flight Type Mic 5 Mic 6
Flight 2 Steep —4.0 -5.0
Flight 3 Steep —4.5 —6.0
Flight 4 HENAP -7.5 —8.5
Flight 5 HENAP =175 -7.0
Flight 6 HENAP —6.5 -9.0
Flight 7 Reference +1.5 +1.0
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Fig. 11 Flight 4 (HENAP): measured SPL , time history at observers along the helical flight segment.

have to be neglected. The software was not developed to precisely
predict absolute noise levels on the ground but to provide trends as
early as possible in the preliminary aircraft design phase. Weather
effects, e.g., wind, temperature gradients, and topographic effects,
are not accounted for. Unless otherwise indicated, the following
setting was applied for the noise prediction with PANAM: ground
microphones, no shielding effects, and ground reflection with
o = 100,000 (kN -s)/m*. Discrepancies between measurement
and prediction are expected to increase with large distances between
observer and source due to the implemented approximations for
atmospheric sound propagation effects [11]. In conclusion, only
noise level differences between the tested procedures should be
considered for the comparison of experiment and prediction.

Figure 12 depicts predicted maximum SPL, footprints for
HENAP, steep, and standard approach. The noise was predicted
based on recorded data during the flight test. Maximum SPL, was
selected to enable direct correlation of the contour plots and the
corresponding level time histories. At a ground distance of 12 km to
the runway threshold, computations were started and the reference
time was set to zero. The noise computation has been stopped right
before the approach was aborted to initiate the go-around. Observer
locations are marked on the isocontour plots. The aircraft con-
figuration was held constant during all test flights (constant flap
setting with deployed gear), hence, ground noise impact is mainly
determined by altitude, speed, and thrust setting. The shape of the
noise isocontours can be directly correlated with the recorded flight
data. Furthermore, the maximum levels can be identified for each
microphone in the corresponding level time history plot.

Increased noise levels early along flight 1 can be correlated to a
thrust peak between 50-70 s of flight time depicted in Fig. 8a. Flight
data shows continuous and widespread idle operation of the engines
along the steep approach. This results in notable necking in contours
along these engine idle phases as shown in Fig. 12b. Subsequently,
engines are temporarily run up to high thrust levels at 135 s of flight
time (see Fig. 8b). As a consequence typical engine noise dominated
isocontour shapes can be identified in the maximum SPL, plot.

Figure 13 shows the predicted vs the measured level time history at
locations mic 1, mic 4, and mic 6, located along the common
approach path. The trends and level differences are in good agree-
ment between computation and experiment, although major
discrepancies are experienced for the steep approach procedure. At
locations mic 3 to mic 6 the noise predictions are significantly lower
than the experimental data. This is the case for both steep approaches;
the second steep approach shows similar behavior. According to the
thrust setting along the steep approaches (see Fig. 8b) the engine is
running at low RPM. Engine noise seems to be significantly
underpredicted for idle operation of the specific engine type (see
Fig. 14).

Prediction and experimental data at locations mic 8, mic 9, and mic
12 are depicted in Fig. 15. The agreement of the trends and level
differences are satisfying with existing discrepancies due to the
aforementioned engine noise underprediction and adverse wind
conditions.

Overall, predicted and measured noise level differences between
individual test flights are in good agreement. For example, the level
differences between a HENAP (flight 4) and a reference approach
(flight 1) are presented. For the HENAP the following maximum
noise level reduction was confirmed by prediction and experiment:
~10 dBA at location mic 3 and ~8 dBA at locations mic 4, mic 5,
and mic 6.

Table 4 Recorded SEL (dBA) along the common
approach path and along the spiral

Location Flight 1 Flight 3 Flight 5
Mic 1 89.7 89.7 89.1
Mic 4 84.4 81.4 79.1
Mic 6 81.0 75.7 76.2
Mic 8 e e 84.6
Mic 9 e e 82.1
Mic 12 —_— —_— 81.1
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(microphone symbols: circles).

D. Air Traffic Control and Flight Operational Aspects

As already mentioned, the feasibility of integrating the HENAP
flight procedure into an existing air traffic scenario should be first
prepared and tested at regional airports with a small number of
conventional aircraft movements or at times with low air traffic
figures (e.g., nighttime where the noise aspect is of paramount
importance). The Forschungsflughafen Braunschweig with its
location, air traffic, flexibility, and experienced research personnel
offers splendid conditions for the initial evaluation of such new
operational flight profiles. After the promising results in terms of
sound pressure levels dislocation to ideally unpopulated areas for that
kind of procedure as described in the sections before, this chapter
leaves the perspective of the single event environmental assessment
and addresses first subjective comments of an operational imple-
mentation of this specific noise reduction approach procedure into a
complete air traffic system with multiple flights.

For this reason, the complete flight-test campaign has been
attended in the background by research staff from DFS directly from
the tower building and the procedures have been kindly reviewed by
the two tower controllers on duty (one tower runway and ground
controller at one communication frequency, and one tower controller
assistant for planning and coordinating issues; note that the tower
EDVE is not operated by DFS). Their subjective statements with
regard to workload and situational awareness considering the various
approaches are summarized next. A radar display based on the
system PHOENIX was available for both controllers for the
presentation of airborne aircraft positions around EDVE (range
normally until flights reach FL150); a further monitor for the specific
illustration of surface movements was not at hand. Meteorological
parameters, i.e., wind speed and direction, ambient pressure,

temperature, and humidity were logged continuously from
Forschungsflughafen Braunschweig around the airport ground
during the seven approaches and delivered afterwards to the partners
for further processing. There was visual contact between the control
tower and the flying testbed ATTAS, which flew under instrumented
flight rules, throughout all helical segments (visual meteorological
conditions). Before commencing each individual approach pro-
cedure the corresponding tower controller issued a low approach
clearance to the pilots for RWY 26 in coordination with the respon-
sible area control center located in Bremen. Only for the last flight
(flight 7, reference approach procedure) there was need for an ILS
landing clearance on RWY 26, given 10 n miles before touchdown.

With regard to separation, the vertical separation between two
aircraft has to be at least 1000 ft. As the helix initial altitude A;,; is set
at 7500 ft and h.,4 at 550 ft, the aircraft descends about 2300 ft in
every spiral (altogether three turns). The length of a completed spiral
segment is about 7 n miles. Considering the relative constant flight
speed of about 160 kt during the HENAP segments (Fig. 8c) results in
a flight time of 150 s for one spiral element.

Horizontal separation minima [12] according to ICAO wake
turbulence categories must be applied when both aircraft are landing
at the same runway (in our case RWY 26). Radar separation minima
between two aircraft are usually 3 n miles below FL 195 (system
PHOENIX).

However, as long as wake turbulence behavior within the helical
segments has not been further detailed, only one aircraft at a time
should be allowed to enter and follow the HENAP in its current
design (n,,,, = 3); which s a very conservative approach considering
the before mentioned separation values (ATTAS VFW 614: wake
turbulence classification medium).
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Fig. 13 Flights 1 (reference), 3 (steep), and 4 (HENAP): SPL , prediction vs experimental data for observer locations along common approach path; mic

1, mic 4, and mic 6.

In dedicated interviews, the tower controllers have been asked to
give statements after each approach procedure. Whereas they
reported no specific handling and controlling challenges for ref-
erence and steep approach procedures, the defined HENAP raised
safety and efficiency questions in terms of missed approaches and
blocking northbound departures and northern aerodrome traffic
circuit for a long time. Therefore a negative influence on the
throughput of an airport is estimated; however this task was not in the
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focus of this study and further analysis is thus necessary. In addition,
subjective work load of the involved air traffic controllers increases
as they have to watch carefully the altitude information of the ATTAS
aircraft on a primarily two-dimensional display and be aware of the
number of spiraling segments during HENAP. Summarizing the
comments, this kind of noise abatement procedure is not applicable
during daytime with current operational state of technology at bigger
airports and under adverse weather conditions.
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Fig. 14 Flights 1 (reference) and 3 (steep): predicted noise components vs experimental data (SPL,).
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These aspects have to be addressed and clarified in advance before
transferring helical noise abatement flight tests to other airports
which are confronted with more flight movements.

VI. Conclusions

HENAP is currently under investigation for overall aircraft ground
noise reduction. Initial computational studies indicate significant
noise reduction potential for this procedure. High ground noise levels
can be dislocated from the common ILS approach path and
concentrated to the area along the helical flight segments. But at the
same time, ground noise levels along the entire preceding flight path
are significantly reduced.

Fuel demand, required flight time, and engine emissions along a
helical approach are increased if compared with ideal and short direct
ILS approaches. The situation could be more advantageous for the
HENAP if compared with approaches from any other heading than
the runway heading. In this case, the aircraft will be vectored to the
vicinity of the airport followed by a complex approach pattern,
composed of downwind leg, base leg, and a final approach leg.
Ideally, the final path for the standard approach may be even longer
implying that more fuel and flight time would be required.
Obviously, a case by case evaluation of the specific scenario becomes
inevitable.

A systematic operational and economical evaluation has to be
performed in the future as this was not possible under the given
circumstances. The presented study did not investigate configura-
tional changes along the flight procedures nor evaluate modifications
to the geometry of the spiral, e.g., varying radii with steeper spiraling
segments. Therefore, it can be expected that the full potential of
spiraling approach procedures toward noise reduction with feasible
or even beneficial economical implications is yet to be explored.

In parallel to the computational activities, a DLR flight test was
prepared to test a newly developed autopilot with improved weather

capabilities. The flight-test maneuvers were conducted in the form of
landing approaches to investigate both the new autopilot and the
HENAP at the same time. For a comparative analysis of the HENAP,
a steep approach and a standard ILS approach were included in the
test program. The flight tests could be combined with a dedicated
ground noise measurement campaign. Ground noise levels have been
recorded at selected observer locations along the flight ground track.
Measurements confirmed the anticipated noise dislocation effects
along the spiraling approach. Compared with the reference approach,
maximum SPL, reduction of approximately 8 dBA was measured at
locations mic 5 and mic 6 for the HENAP. Observers located in close
vicinity of the helix but not directly along the common approach path
are subject to increased community noise pollution due to HENAP
operation (SPL, and SEL). Obviously, these observers experience
multiple direct flyover events per each HENAP approach, whereas
steep and reference approach are aligned with the common approach
path hence do not require any aircraft movement in that area. The test
flights have been simulated and noise levels were predicted
according to recorded flight data. The predicted and measured noise
level differences between individual test flights are in good agree-
ment with the experimental data. Finally, it can be concluded that the
applied noise prediction methods are capable of predicting the noise
distribution along helical flight procedures. The requirements for a
feasible comparative noise evaluation are fulfilled with the existing
methods. Technical feasibility of the radical approach procedure has
been demonstrated by computational means and by dedicated flight
tests.

The tower controllers reported no specific handling and con-
trolling challenges for reference and steep approach procedures but
the HENAP raised safety and efficiency questions. Helical
approaches increased the subjective work load of the tower
controllers. A clear distinction between these first impressions and
trends and a later evaluation phase with a detailed operational
concept has to be made when interpreting the results of the paper. It
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can be summarized that this kind of procedure is not applicable
during daytime with current state of technology or under adverse
weather conditions. Helical approaches become more feasible for
implementation at small, low-frequented regional airports or during
night hours to avoid possible noise related curfews. Significant
economical benefit due to extended operating hours could be
achieved [13].
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