

Progress in Metal-Supported Solid Oxide Fuel Cells

G. Schiller

German Aerospace Center (DLR) Institute of Technical Thermodynamics

International Symposium on Energy Materials: Opportunities and Challenges (ISEM-2011), March 1-2, 2011, Kolkata, India

Outline

- ✓ Introduction
- Development of metal-supported SOFC by applying sintering techniques

Ceres Power

Lawrence Berkeley National Lab

Risoe / Topsoe Fuel Cells

Development of metal-supported cells by applying plasma deposition techniques

German Aerospace Center (DLR)

→ Conclusions

Development of Metal-Supported Cells

Advantages of MSC:

- High robustness with resistance against shock and transient conditions
- High resistance against thermal and redox cycling
- Good integration into interconnects (bipolar plates)
- Low cost of metal support, cell materials (thin layers) and sealing

R für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Early Metal-Supported SOFC Work – 1960s-1970s

ars of World-Clas

Science

- Flame-sprayed ZrO2 electrolyte
- Sintered austenitic stainless steel support

Temperature: 700-800°C Fuel: hydrogen, methanol, and kerosene

115 mW/cm² at 750°C

- 1970 Tannenberger et al US 3,525,646
 - Plasma-sprayed cell layers
 - Sintered metal support

Developments in MSC Technology

1990s:

Fuji Electric, Japan DLR, Germany

Plasma sprayed ZrO₂ electrolyte, MCrAIY support Plasma sprayed cells on porous metal support

2000s:

Ceres Power, GBWet processing of CGO electrolyte, stainless steel support,
dense CGO after 1000 °C firing, operation at 500-600 °CLNBL, USAColloidal spray electrolyte deposition (10-20 μm), co-sintered
YSZ,infiltrated electrodes, porous stainless steelRisoe/Topsoe, DenmarkCo-fired half-cell, infiltrated nanostructured electrodes,
tape cast powder metal porous supportIkerlan, SpainTubular, co-sintered YSZElringKlinger, GermanyPlasma sprayed layers on porous metal substrate (DLR)
Wet powder processing and sintering (FZJ)

Requirements for Metal Substrate Supports

- → High electrical conductivity
- → Adapted thermal expansion coefficient (10-12 \cdot 10⁻⁶ K⁻¹)
- High corrosion stability in oxidising und reducing, moist atmosphere
- ✓ Sufficient mechanical stability
- ✓ High gas permeability (porosity > 40 Vol. %)
- ✓ Flat surface area for plasma sprayed functional layers

Ferritic Alloys Studied for Porous Metallic Substrates

Alloy	Supplier	Composition
Ferrochrom (1.4742)	ThyssenKrupp	18% Cr, 0.9% Al, 0.9% Si, 0.69% Mn, 0.06% C
CrAl20 5 (1.4767)	ThyssenKrupp	19% Cr, 5.5% Al, 0.5% Si, 0.5% Mn, 0.05% C
FeCrAlY	Technetics	22% Cr, 5% Al, 0.1% Y
ZMG 232	Hitachi Metals	21% Cr, 0.08% Al, 0.43% Si, 0.47% Mn, 0.02% C
SUS 430 HA	Nippon Steel	16% Cr, 0.13% Al, 0.29% Si, 0.13% Mn, 0.05% C
SUS 430 Na	Nippon Steel	16% Cr, 0.01% Al, 0.29% Si, 0.56% Mn, 0.05% C
CroFer22 APU	ThyssenKrupp	22% Cr, 0.12% Al, 0.1% Si, 0.41% Mn, 0.16% Ni, 0.05% Ti, 0.08% La
IT 14	Plansee	26% Cr, < 0.03% Al, < 0.03% Si, Mo, Ti, Mn, Y ₂ O ₃

Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR in der Helmholtz-Gemeinschaft

Cross Section of a Metal-Supported Cell of Ceres Power

Lit.: Ceres Power, Electrochemical Society Proceedings, Vol. 2005-07, 113-122 (2005)

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Development of Power Densities of Cells of Ceres Power (16 cm²) at 570 °C in Operation with $H_2 + 3 \% H_2O/Air$

Lit.: Ceres Power, Proceedings 2005 Fuel Cell Seminar, 49-52 (2005)

Electrochemical Performance Data of Metal-Supported Cells of Ceres Power

Operation with reformate gas (73,8 % H_2 , 7,1 % CO, 12,1 % CO₂, 7 % H_2 O) 600 °C: max. 500 mW/cm² 570 °C: Operation over 2500 hours without degradation

Thermal Cycling

 $\text{RT} \rightarrow 600~^\circ\text{C} \rightarrow \text{RT}$: 500 cycles without degradation

Stack Operation

10 Layers (40 Cells)

585 °C: 100 W at operation with reformate (55 % H₂)

1000 hours of operation without degradation

8 Layers (32 Cells):

Thermal Cycling (RT/600 °C): 26 Cycles without degradation

Long-term Operation: 2000 hours without degradation (1000 h with reformate)

I-V Characteristics and Power Density of a 40-Cells-Stack (10 Layers) in Operation with $H_2+3\%$ H_2O/Air at 570 °C and 600 °C

Lit.: Ceres Power, Proceedings 2005 Fuel Cell Seminar, 49-52 (2005)

LBNL Design: Co-Sintered YSZ Electrolyte

Colloidal spray electrolyte deposition - inexpensive

- thin 10-20µm electrolyte

- high performance at low temp

Porous stainless steel current collector on anode AND cathode side

- rugged
- no expensive wire or mesh
- no contact paste or compliant interconnect

Lit.: M. Tucker et al., ECS Transactions, 25(2) 673-680 (2009)

Cosintering Fabrication Issues

1. 1300°C Reducing atmosphere

Interdiffusion of Ni and FeCr Poor CTE match, lifetime of support \rightarrow add barrier layer, but still:

- Coarsening of Ni Poor performance of anode 2. Add cathode 600-900 °C air

Low processing temperature limits choice of cathode

- LSCF or SSC
- worst choices for Cr tolerance
 - need coated current collector and BOP steel parts

\rightarrow move to Ceria-based anode

\rightarrow move to infiltrated electrode architecture

Lit.: M. Tucker et al., ECS Transactions, 25(2) 673-680 (2009)

Fuel Cell Fabrication Progress

Catalyst Infiltration

Fire to produce nanoparticles

of catalyst on surface of YSZ

Fill structure with

catalyst precursor solution

Prepare porous YSZ structure with catalyst

electrolyte electrolyte electrolyte 1200-1400°C 120°C 600-800°C 0.85 La-nitrate 0.15 Sr-nitrate LSM (La_{0.85}Sr_{0.15}MnO₃) 1.0 Mn-nitrate ears of World-Class or or Science Ni-nitrate Ni Deutsches Zentrum für Luft- und Raumfahrt e.V. DLR Lit.: M. Tucker, Fuel Cell Seminar 2008 in der Helmholtz-Gemeinschaft

Infiltrated Catalysts Alleviate Processing Issues

2. Infiltrate catalysts at <300°C air

No FeCr/Ni interdiffusion Wide choice of catalyst composition

mm

BERKELEY LA

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft 1. Sinter stainless steel and YSZ at 1300°C Reducing atmosphere

Easy to infiltrate LSM, LNF, LSCF, CGO, Cu, Ni, Co, many others

Infiltrated Electrodes Support High Power Density

Air oxidant

Pure O_2 oxidant

Performance and Stability Infiltrated Oxide Anode and LSM Cathode

> 500mW/cm² at 700°C 600 h operation demonstrated

Lit.: M. Tucker, Int. Conf. on Advanced Ceramics and Composites, Daytona Beach 2010

Redox Cycling Tolerance

700°C, switching between H_2/H_2O and air

• Complete Ni $\leftarrow \rightarrow$ NiO conversion each cycle

Anode supported cell fails after redox cycling - Electrolyte cracks

- Metal-supported cell does not fail
 - Ni is not a structural element

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Lit.: M. Tucker, Fuel Cell Seminar 2008

Thermal and Redox Cycling Tolerance

Thermal Shock: 150-735°C, ~500°C/min

Full Redox: Switch between air and fuel at 700°C

Metal-supported cell tolerates

- redox cycling
- rapid thermal cycling

Lit.: M. Tucker et al., ECS Transactions, 25(2) 673-680 (2009)

The Risø/TOFC Metal-supported Cell

New design and components developed (to avoid interdiffusion of Ni, Fe, Cr):

TOPSOE FUEL CELL

Cell design

- Tape cast powder metal porous support
- Co-fired half cell
- Infiltrated nano-structured electrodes

Performance of "METSOFC" Metal-Supported Cells

TOPSOE FUEL CELL

Button cel and 5x5 cm² tested at 650 °C (fuel: 96% H2 with 4% H2O, oxidant: air).

Durability of Risø/TOFC Metal-Supported Cell

TOPSOE FUEL CELL

5x5 cm² cell footprint

SOFC Metal Supported Cell – DLR Concept

Plasma Deposition Technology

Thin-Film Cells

Ferritic Substrates and Interconnects

Compact Design with Thin Metal Sheet Substrates

Brazing, Welding and Glass Seal as Joining and Sealing Technology

Vacuum Plasma Spraying of SOFC Cells

Plasma Spray Laboratory at DLR Stuttgart

Porous Metallic Substrates Used for the Plasma Spray SOFC Concept

Substrate	Felt	Foam	Knit fabric	Sintered plate
Material	Ni	Fe-22Cr-5Al-0,1	′ Fe-22Cr-0,5Mn	Fe-26Cr (Y ₂ O ₃)
Thickness	~ 1,0	~ 1,8	~ 1,0	~ 1,0
Porosity	~ 85	~ 80	~ 90	~ 50
Supplier	Bekaert	Technetics	Rhodiuş	Plansee AG,
	Belgium	USA	Germany	Austria

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Morphology of Porous Metal Substrate PM Fe-26Cr-(Mo,Ti,Mn,Y₂O₃) of Plansee SE

Powders Used for the Spraying of the Cells

Powder	NiO	ZrO ₂ - 7 mol %Y ₂ O ₃	ZrO ₂ - 10 mol%Sc ₂ O ₃	(La _{0.8} Sr _{0.2}) _{0.98} MnO ₃
Short name	NiO	YSZ	ScSZ	LSM
Morphology	sintered, crushed	sintered, crushed	sintered, crushed	sintered, spherical
Size distribution	10-25 µm	5-25 µm	2-35 µm	20-40 µm
Supplier	Cerac, USA	Medicoat, Switzerland	Kerafol, Germany	EMPA, Switzerland

Interdiffusion of Fe, Cr and Ni Between Substrate and Anode

• Triple phase boundary (TPB)

Experimental Approach For a Diffusion Barrier Layer at the Anode Side

Requirements

- Porous structure
- Adapted thermal expansion coefficient ($\alpha_{tech.}$ = 10-11 x 10⁻⁶ K⁻¹)
- High electronic conductivity in reducing anode atmosphere [σ = 1-3 S/cm, p(O₂) = 10⁻¹⁶ bar]

•Chemical stability in reducing humid anode gas atmosphere

- Barrier effect for Fe, Cr und Ni species
- Elektrochemical compatibility at cell operation (chemical inert behavioer)

Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Metallographic Cross Section of MSC Cell

Electrochemical Performance of VPS Cells With and Without Diffusion Barrier Layer in Operation with Simulated Reformate H₂/N₂ and Air

Stack Assembly Based on Metal Supported Cell

Current MS-SOFC Repeat Unit

90x120 mm² footprint – ca 100 cm² cell area

Counter flow design

Stamped sheet ferritic steel bipolar plate

Welded Fe-Cr substrate

DLR Deutsches Zentrum für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

(A)

(B)

MSC Stack Integration

DLR für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

Performance of Plasma Sprayed MSC Single Cell

MSC Cell: 12.5 cm² cell at 800°C; H_2/N_2 and Air

Performance of 10-Cells Stack

10-Cell Stack: 100 cm² single cells at 800°C; H₂/N₂; Air

Thermal Cycling

- ✓ 15 thermal cycles performed, 12 down to 350 °C and 3 to ambient temperature
- ✓ Degradation after thermal cycles was 10.3 %

Redox Cycling

- \checkmark 20 forced redox cycles performed with 50 ml/min O₂ on the anode side per layer
- ➤ Increase of power density after 5 cycles

Degradation of the stack was 9.1 % after 20 redox cycles

Conclusions

- The development of metal-supported cells both sintered cells with infiltrated electrodes and plasma sprayed cells show good progress achieving high power density
- ✓ Metal-supported cells prove rugged behaviour, such as
 - fast start / thermal cycling
 - redox tolerance
 - mechanical strength
- ✓ Low-cost materials expect low-cost manufacturing at low and high volume
- The development of the metal-supported SOFC concept has a high potential for SOFC application in dynamic operation with multiple thermal and redox cycles
- Metal-supported SOFC is an opportunity to transcend barriers to SOFC commercialisation

Acknowledgment

- I'd like to thank Michael C. Tucker from Lawrence Berkeley National Lab and Niels Christiansen from Topsoe Fuel Cells for providing slides on their MSC development
- ✓ I acknowledge the development work of my colleagues at DLR:
 - Dr. Asif Ansar
 - Dr. Johannes Arnold
 - Zeynep Ilhan
 - Patric Szabo
 - and all co-workers in our Department "Electrochemical Energy Technology"

