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Abstract 4 

Purpose – In this paper, the authors investigated a proposed RFID (radio frequency 5 

identification)-based meat supply chain to monitor quality and safety of meat products they 6 

purchase from supermarkets. The supply chain consists of farms, abattoirs and retailers. 7 

The purpose of this work presented in this paper was to determine a cost-effective trade-8 

off decision obtained from a developed multi-criteria optimization model based on three 9 

objectives. These objectives include customer satisfaction in percentage of product 10 

quantity as requested by customers, product quality in numbers of meat products and the 11 

total implementation cost. Furthermore, this work was aimed at determining the number 12 

and locations of farms and abattoirs that should be established and quantities of products 13 

that need to be transported between entities of the proposed supply chain. 14 

Design/methodology/approach – To this aim, a tri-criteria optimization model was 15 

developed. The considered criteria were used for minimizing the total implementation cost 16 

and maximizing customer satisfaction and product quality. In order to obtain Pareto 17 

solutions based on the developed model, four solution approaches were employed. 18 

Subsequently, a new decision-making algorithm was developed to select the superior 19 

solution approach in terms of values of the three criteria. 20 

Findings – A case study was applied to examine the applicability of the developed model 21 

and the performance of the proposed solution approaches. The computational results 22 

proved the applicability of the developed model in obtaining a trade-off among the 23 

considered criteria and solving the RFID-based meat supply chain design problem. 24 

Practical implications – The developed tri-criteria optimization model can be used by 25 

decision makers as an aid to design and optimize food supply chains. 26 

Originality/value – This article presents a development of (i) a cost-effective optimization 27 

approach for a proposed RFID-based meat supply chain seeking a trade-off among three 28 

conflicting criteria; and (ii) a new decision making algorithm which can be used for any 29 

multi-criteria problem to select the best Pareto solution. 30 

 31 

Keywords: Meat supply chain; Multi-criteria optimization; Customer satisfaction; 32 

Decision making algorithm. 33 

 34 

1. Introduction 35 

Meat supply chains generally constitute four different echelons which forms a network 36 

including farms, abattoirs, retailers and customers. In recent years, safety and quality of 37 

food products, which are supplied through a food supply chain network, has been one of 38 

major issues on which consumers demand more transparent information relating to food 39 

they purchase at supermarkets (Ahmed, 2008; Lever & Miele, 2012). A study by Peattie, 40 

Peattie & Jamal (2006) suggested that consumers often spend a considerable amount of 41 

time and effort seeking out fresh food by reading information such as expiry dates shown 42 
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on product labels to ensure that they purchase a good quality of food products. One way to 43 

provide the prompt information on food status is to implement the RFID technology. In the 44 

past decade, implementation of RFID technology has been gaining an ever-increasing 45 

popularity as it enhances traceability of safety and quality of food products (Chrysochou 46 

et al., 2009; Manos & Manikas, 2010; Zailani et al., 2010).  47 

Through a literature review, little research works were found for investigating the RFID-48 

enabled supply chains seeking a compromised solution between the benefits of the RFID 49 

implementation in supply chains and its need for additional costs in relevance to the supply 50 

chain network design. In this paper, the authors examined a proposed RFID-based three-51 

echelon meat supply chain seeking a compromised solution based on objective functions 52 

relating to the total implementation cost, customer satisfaction in percentage of satisfying 53 

customers’ demand in product quantity, and product quality in numbers of meat products. 54 

To this aim, a tri-criteria mixed integer linear programming model was developed. The 55 

work also includes the determination of (i) number and locations of farms and abattoirs 56 

that should be established and (ii) quantities of livestock transported from farms to abattoirs 57 

and meat products transported from abattoirs to retailers. By solving the tri-criteria 58 

optimization problem, four solution approaches were investigated. These are compromise 59 

programming, goal programming, weighted Tchebycheff and utility function. A developed 60 

decision making algorithm was employed to select the superior solution approach based on 61 

computational results values. This approach can be used as a reference for decision makers 62 

to obtain a cost-effective design of food supply chains. 63 

2. Prior studies 64 

Multi-objective optimization refers to an optimization of multiple decision making 65 

objectives concurrently. These objectives are possibly conflicting and competing. 66 

According to a thesis work of Almaraz, 2014, in a multi-objective problem, it is impossible 67 

to obtain a single ideal solution but a trade-off among a number of objectives, since there 68 

is a contradictory among the objectives. Pareto optimal solutions are obtained based on 69 

multiple conflicting criteria. Multi-criteria optimization models were applied into supply 70 

chain network designs for solving production-distribution planning problems (Gen & 71 

Heng, 1997; Deb, 2001; Shen & Daskin, 2005; Shen & Daskin, 2005; Sabri & Beamon, 72 

2009; Pandu, 2009; Hu & Li, 2009;). These problems can be strategic in such as the facility 73 

location-allocation problem or tactical in such as the flow of product quantities. Costs or 74 

profits are among one of other issues that may need to be considered (Jayaraman and Pirkul 75 

2001, Syam 2002 and Syarif, Yun, and Gen 2002, Jayaraman and Ross 2003, Yan, Yu, and 76 

Cheng 2003).  Altiparmak, Gen, Lin, and Paksoy (2006) proposed a genetic algorithm 77 

focusing on minimization of inbound and outbound distribution costs and maximization of 78 

customer services in terms of delivery time and capacity of distribution centers. Selim, 79 

Araz & Ozkarahan (2008) presented a multi-criteria optimization model to cope with a 80 

production-distribution planning problem in a supply chain. Fuzzy goal programming was 81 



used to incorporate decision maker's imprecise goal levels for each objective. Ferrio and 82 

Wassick (2008) formulated a mixed integer linear programming model for configuring and 83 

optimizing the design of a multi-product chemical supply chain network which consists of 84 

production sites, arbitrary numbers of distribution centers, and customers. Schütz, 85 

Tomasgard and Ahmed (2008) formulated a decision support system using a two-stage 86 

stochastic program with respect to minimizing costs of investment and operations of a 87 

supply chain. Tuzkaya and Onut (2009) studied a three-level supply chain including 88 

supplier, warehouses, and manufacturers seeking the best distribution plan of products. Li 89 

et al. (2009) developed a multi-objective optimization model to configure distribution 90 

center locations; the considered objectives were minimization of the transportation cost, 91 

transportation and production carbon emissions. Chang (2010) presented a single-objective 92 

mathematical model to optimize a multiple level supply chain network design 93 

encompassing suppliers, factories, distribution centers and retailers. The considered 94 

objective was to minimize the total cost including purchasing and transportation cost of 95 

raw materials and products, manufacturing cost of products in factories, and storage cost 96 

of products in distribution centers. Alumur et al. (2012) proposed a profit maximization 97 

modeling framework for a reverse logistics network design problem. The same method was 98 

also used by Sadjady and Davoudpour (2012) to tackle a two-level supply chain network 99 

design problem. The problem was formulated as a mono-criteria optimization model to 100 

minimize total cost, which include costs in transportation, lead-times and inventory for 101 

products and opening and operating costs for facilities. Pourrousta et al. (2012) developed 102 

a multi-objective model to minimize total cost and delivery time of products in a multi-103 

echelon supply chain network. Liu and Papageorgiou (2014) proposed a multi-criteria 104 

optimization model for tackling a production–distribution and capacity planning problem 105 

in a supply chain using the ε-constraints and Lexicographic min–max methods. 106 

3. Mathematical formulation 107 

In this study, a meat supply chain comprises three echelons: farms, abattoirs and retailers, 108 

was studied. In this chain, farms supply livestock to abattoirs where slaughtered livestock 109 

as packed meat products are transported to retailers. The RFID technology was proposed 110 

for tracing safety and quality of meat products during the transportation process from farms 111 

to abattoirs and from abattoirs to retailers (Mohammed & Wang, 2015). Fig. 1 depicts the 112 

structure illustration of the investigated meat supply chain. 113 

 114 
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 129 

Fig. 1. The structure of the meat supply chain network. 130 

To formulate the tri-criteria model, the following indices, parameters and decision 131 

variables are presented: 132 

Indices 133 

I    index used for a potential location of farm i , 1 i I   134 

J   index used for a potential location of abattoir j ,  1 j J   135 

K  index for a fixed location of retailer k , 1 k K   136 

 137 

Cost parameters: 138 
α

iC
     

cost (£) of RFID equipment and implementation required for farm i  139 

β

jC
     

cost (£) of RFID equipment and implementation required for abattoir j  140 

t

iC      RFID tag cost (£) for each item at farm i  141 

t

jC      RFID tag cost (£) for each item at abattoir j  142 

ijTC
  
unit transportation cost (£) per mile from farm i to abattoir j   143 

jkTC
 
unit transportation cost (£) per mile from abattoir j to retailer k   144 

iLC
 unit labor cost (£) per hour at farm i  145 

jLC  unit labor cost (£) per hour at abattoir j  146 
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 147 

Parameters of capacity, demand and transportation distance: 148 
α

iS
   

maximum supply capacity (units) of farm i  149 

β

jS
   

maximum supply capacity (units) of abattoir j  150 

vW
  
transportation capacity (units) per vehicle (v) 151 

β

jD    minimum demand (in units) of abattoir j  152 

kD    minimum demand (in units) of retailer k  153 

ijd
  

travel distance (mile) from farm i to abattoir j  154 

n

jkd  travel distance (mile) from abattoir j to retailer k  155 
 156 

Labor parameters: 157 
l

iR    working rate (items) per laborer ( l ) at farm i  158 

l

jR 
  working rate (items) per laborer ( l ) at abattoir j  159 

h

iN 
minimum required number of working hours ( h ) for laborer l at farm i  160 

h

jN 
minimum required number of working hours ( h ) for laborer l at abattoir j  161 

 162 

Other parameters 163 

ijQ
  

healthiness percentage of livestock transported from farm i to abattoir j  164 

jkF    freshness percentage of meat products pieces transported from abattoir j to retailer k  165 

 166 

Decision variables: 167 

ijq      quantity of units transported from farm i to abattoir j  168 

jkq      quantity of units transported from abattoir j to retailer k  169 

ix     number of required laborers at farm i  170 

jx     number of required laborers at abattoir j  171 

 172 

Non-negative and binary decision variables: 173 
α

iy       1: if farm i is open 174 

                      0: otherwise   175 
β

jy      1: if abattoir j is open 176 

               0: otherwise 177 

 178 

The criteria functions are formulated as follows: 179 



The minimum total cost F1 = costs of RFID equipment and implementation + RFID tag 180 

cost for each item + transportations costs – labor costs saved after the RFID 181 

implementation, i.e., 182 

1   
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(1) 

The maximum customer satisfaction F2 = the fulfilment of demand in percentage of product 183 

quantity as requested by customers, i.e., 184 
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(2) 

Maximum product quality F3 = healthiness of livestock transported from farms to abattoirs 185 

+ freshness of meat pieces transported from abattoirs to retailers, i.e.,  186 

3

1 1

 i

I J

ij jk j

i j
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 
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(3) 

Several constraints are grouped in different categories as follows: 187 

Capacity constraints: show the capacity constraints of farms and abattoirs. 188 

α α yij i

i I

iq S


        j J         (4) 

β β

jk j jy          k
j J

q S K


     (5) 

Demand constraints: ensure that the demands in quantity of products of all abattoirs and 189 

retailers are satisfied. 190 

β

ij j

i I

Dq


              j J          (6) 

jk k

j J

Dq 



             k K    (7) 

β

j jk

k K

D q


             j J    (8) 

 191 

Working rate constraints: determine the required number of laborers at farms and abattoirs. 192 



α lα Rij i

j

i

J

q x
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β lβ

jk j j         jR
k K

q x J

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 193 

Restriction constraints: restrict the decision variables to binary and non-negative. 194 

, 0, , , ;ij jkq q i j k    (11) 

 0,1, , , ;i jy i jy      (12) 

 195 

Finally, 0.75 1 and 0.75 1ij jkQ F    constraints, which limit the healthiness percentage (Q) 196 

and the freshness percentage (F) to be between 0.75 and 1 (based on decision makers’ 197 

preferences). 198 

 199 

4. Multi-criteria optimization methodology 200 

Multi-criteria optimization involves the simultaneous optimization of a number of decision 201 

making criteria which are conflicting and often competing. In order to solve this type of 202 

optimization problem, researchers deal with a set of solutions known as Pareto optimal 203 

solutions. Nevertheless, it can be a case that none of these Pareto solutions is better than 204 

the others considering all the criteria. Different approaches can be aided in solving such a 205 

problem. In this study, four different solution approaches were investigated aimed to obtain 206 

four sets of Pareto solutions to be selected as the best one in terms of solution quality 207 

4.1. Compromise programming approach 208 

The compromise programming approach is its ability to achieve efficient points in a non-209 

convex Pareto curve (Chankong & Haimes, 1983). This method based on optimizing one 210 

criterion function and shifting the other to the constraint set to be restricted to an assigned 211 

value (ε). The equivalent solution formula F is presented as follows. 212 
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(13) 

 213 

Additional constraints: 214 

 215 
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 216 

In this paper, criterion function one is selected to be optimized based on Eq.13 and shifting 217 

criterion function two and three to be constraints (Eq. 14 and 16 respectively); An increase 218 

to the ε value (Eq.15 and 17) yields Pareto solutions. 219 

4.2. Goal programming approach 220 

The purpose of the goal programming approach is to find a solution that minimizes 221 

undesirable deviations between the objective functions and their corresponding goals 222 

(Charnes, Cooper & Ferguson, 1955; Colapinto, Jayaraman & Marsiglio, 2015). The 223 

solution functions are expressed as follows: 224 

 Min F  (18) 
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 225 

The equivalent criteria functions are expressed as follows. 226 
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Where 227 

1G   goal of the criterion 1  

2G   goal of the criterion 2 

3G   goal of the criterion 3 

1   negative deviation variable of the criterion 1  

2   negative deviation variable of the criterion 2  

3   negative deviation variable of the criterion 3  

1   positive deviation variable of the criterion 1 

2   positive deviation variable of the criterion 2 

3   positive deviation variable of the criterion 3 

Subject to an additional non-negativity restriction: 228 

,  0,v    (25) 

 229 

4.3. Weighted Tchebycheff approach 230 

With this approach, the multi-objective possibilistic model can be transformed into a 231 

single-objective model F. The purpose of the single-objective model is to minimize the 232 

distance between the ideal objective vector F* and the feasible objective surface 233 

(Miettinen, 1998). The solution approach function F can be formulated as follows:  234 

 235 
1

3
*

1
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n n

n

Min F l F F
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 236 



Subject to constraints 4-12. Noticeably, the values of objective functions vary depending 237 

on the value of p. Usually, p is set as 1 or 2. But, other values of p can also be used. In this 238 

case study, p is set as 1. 239 

 240 

4.4. Utility function approach 241 

 242 

In the utility function approach, the effectiveness utility of each Pareto solution is 243 

determined by summing the scaled criteria functions. The scalar value λ for each criterion 244 

is determined by decision maker according to the importance for each criterion (Stoll, 245 

1999). In this work, the criterion function (or utility function) U is expressed as follows: 246 

 247 
2 2

1 2

1 1

( , ) <1, =1  n n n n

n n

U F F F  
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(27) 

 248 

4.5. Decision making algorithm 249 

In this paper, the selection algorithm is based onto two stages; in the first stage the best 250 

trade-off solution is selected for each set of solutions. Selecting the superior approach is 251 

determined in the subsequent stage. The next two sub-sections present the two stages 252 

respectively. 253 

4.5.1. Global criterion approach 254 

There are several methods for selecting the most suitable solution in a multi-objective 255 

problem. In this case, the global criterion method was used for determining the best 256 

solution by minimizing the distance to the ideal objective value 
*

nF (Pandu, 2009). The 257 

decision making formula is expressed as follows: 258 

1
3

*

1

 ;   1n n

n

Min F F F





 
     
 
  

(28)  

 259 

In this approach, the solution with the minimum distance is selected as a best solution. 260 

Generally,  is 1; However, other values of  also can be used. 261 

4.5.2. The developed approach 262 

The idea of the developed approach for selecting the best approach is based on selecting 263 

the solution approach that is closest to the ideal solution. In this approach, S* represents the 264 

average superiority value for each approach; (i) determine the average mean value for the 265 

three criterion functions, (ii) sum the three average mean values, and (iii) select the 266 

approach with the lowest superiority value. The selection formula is presented as follows: 267 



3
*

*
1

n

n n

F
S

F

  
(29) 

Where *

iF is the ideal value for each criterion. This value is determined by optimizing the 268 

criteria functions individually. 269 

5. Application and comparison: South East London as a case study 270 

A case study is presented to demonstrate the applicability of the developed tri-criteria 271 

model and compare the performance of the proposed solution approaches in terms of the 272 

criteria values. In the case study, the South-East area of London encompasses 4 farms (I), 273 

7 retailers (K) and 4 abattoir (J) suppliers. Table 1 shows the collected data which are 274 

chosen in a defined range (based on assumptions). Data, which are related to locations of 275 

farms, abattoirs and retailers, were collected from the Meat Committee in the UK (HMC, 276 

2015). The transportation distances between supply chain facilities were estimated using 277 

Google-Maps. The demand reported in Table 1 is the total demand over a one-year period. 278 

The prices of RFID equipment and its implementation were estimated based on the 279 

marketing prices. 280 

 281 

Table 1. Parameters used for the case study 282 

I   = 4 
jC 

= 1.1K-8K (£)  kD
= 100-800 ijd = 23- 400 

J = 7 
jkTC = 20 (£) jkd = 110 – 162 iLC

= 6.5 (£) 

K = 4 α

iS = 2.5K-4.4K vW = 100 
jLC

= 6.5 (£) 

iC
= 4.4K-8.8K (£) 

β

jS = 1.2K-1.8K 
lα

iR = 50 Fjk = 0.75-1 

ijTC = 20 (£) jD
= 800-1.3K 

lβ

jR = 50 Qij = 0.75-1 

t

iC = 0.15 (£) 
t

jC = 0.15 (£)   

 283 

 284 

 285 

The tri-criteria optimization problem described in Section 3 was investigated using four 286 

different approaches. This was carried out using the LINGO11 software on a computer with 287 

corei5-CPU 2.60 GHz, RAM 4.00 GB. 288 



Table 2 elucidates the values obtained using equation 1-3, respectively. Each value was 289 

optimized based on each criterion for obtaining the ideal solution. As shown in Table 2, 290 

the total cost can be minimized to £194,180 based on the criterion function one, while in 291 

this solution the criterion function two and three worsen to 75% and 8,885 items of meat 292 

products respectively. On the antithesis, if the second criterion function F2 was only 293 

considered, customer satisfaction would increase to 100%. However, the total cost 294 

increases to £491,000. Finally, considering the third criterion F3 individually, the objective 295 

of product quality, which increases to 13,099 items of meat product leading to an increase 296 

in the total cost of £481,390 and customer satisfaction of 99%. In this situation, the 297 

contradictory is manifested between these three criteria functions. However, moving 298 

toward an enhancement in customer satisfaction and product quality in supply chains 299 

requires significantly higher cost investment. 300 

 301 

Table 2. The values of the three criteria obtained by the individual optimization.  302 

Criterion 

function 

Min F1 

(£) 

Max F2 

(%) 

Max F3 

(Items) 

F1 194180 0.75 8885 

F2 491000 1 13099 

F3 481390 0.99 13099 

 303 

As discussed above, it can be easily noticed that there is no solution which is optimal as it 304 

is impossible to obtain an optimal solution towards the three criteria at a time. To this aim, 305 

four solution approaches were employed for seeking the Pareto sets derived from co-306 

optimizing the three contradicting criteria by minimizing total cost F1, maximizing 307 

customer satisfaction F2 and maximizing product quality F3. 308 

 309 

Pareto optimal solutions can be obtained using: (i) the compromise programming approach 310 

by altering the incremental epsilon value of 526 between 8,885 to 13,099 for criterion two 311 

(Eq.15) and of 0.025 between 0.75 to 1 for criterion three (Eq.17); (ii) the goal 312 

programming approach by assigning eight different goals for the three criteria ; (iii) the 313 

weighted Tchebycheff approach using the ideal values of the three criteria functions 314 

illustrated in Table 2 were given as ideal values • • •

1 2 3, ,F F F  for the solution function F using 315 

Eq.26; and (iv) the utility function approach using different scalar values λ. 316 

Table 3 shows four sets of Pareto optimal solutions which were obtained using the four 317 

solution approaches. These solutions also include numbers of farms and abattoirs that 318 

should be established. Shown in Table 3, the third column shows the values of the first 319 



criterion function (F1), obtained values of the second and third criterion functions (F2 and 320 

F3) in terms of percentage and items are presented in the fourth and fifth columns, 321 

respectively.  The last two columns (right-end) correspond to the number of farms and 322 

abattoirs that should be established. 323 

Table 3. Pareto solutions obtained by using four different approaches. 324 

Solution approach # Min (F2) 

(£) 

Max (F2) 

(%) 

Max (F3) 

(items) 

Open farms Open abattoirs 

Compromise programming 1 194180 0.75 8885 1 0 0 1 0 1 0 1 

 2 223257 0.776 9411 1 0 1 1 0 1 0 1 

 3 248214 0.8 9937 1 0 1 1 0 1 0 1 

 4 273171 0.826 10473 0 0 1 1 0 1 0 1 

 5 300475 0.85 10989 1 0 1 1 1 0 1 1 

 6 345228 0.91 11515 1 1 1 1 1 1 0 1 

 7 382940 0.95 12041 1 1 1 1 1 0 1 1 

 8 468475 1 13099 1 1 1 1 0 1 1 0 

       

Goal programming 1 221655 0.75 8885 1 1 1 1 1 1 1 1 

 2 228705 0.78 8913 0 1 1 1 1 1 1 0 

 3 288810 0.79 9912 1 0 0 1 0 1 0 1 

 4 237050 0.82 10311 1 1 1 1 1 1 1 1 

 5 279835 0.86 10586 1 0 0 1 1 0 1 1 

 6 336480 0.88 10642 1 1 1 1 1 1 1 1 

 7 4724750 0.9 11313 1 1 1 1 1 1 0 1 

 8 5391300 0.95 12141 0 0 1 1 0 1 1 0 

       

Weighted Tchebycheff 1 194180 0.75 8885 1 0 0 1 0 1 0 1 

 2 194180 0.75 8885 1 0 0 1 0 1 0 1 

 3 249231 0.78 8920 1 0 1 1 1 1 1 1 

 4 288557 0.8 9808 1 1 1 1 1 1 1 1 

 5 338858 0.85 10414 1 1 1 1 1 1 1 1 

 6 422451 0.91 11094 1 1 1 1 1 1 0 1 

 7 539128 0.96 12376 1 1 1 1 1 1 1 1 

 8 580471 0.99 13029 1 0 0 1 0 1 0 1 

       

Utility function 1 194180 0.75 8885 1 0 0 1 0 1 0 1 

 2 194180 0.75 8885 1 0 0 1 0 1 0 1 

 3 194180 0.77 9411 0 0 1 1 0 1 0 1 

 4 194180 0.815 10162 1 0 1 1 1 0 1 1 

 5 253475 0.85 10876 1 1 1 1 1 1 0 1 

 6 355336 0.9 11444 1 1 1 1 1 0 1 1 

 7 392720 0.94 12131 1 1 1 1 0 1 1 0 

 8 475660 0.99 13032 1 1 1 1 0 1 1 1 

        

For instance, solution number 4 was obtained using the compromise programming 325 

approach by assigning ε1 = 0.825 and ε2 = 10,470; accordingly, it gives the minimum total 326 

cost of £273,171, the maximum customer satisfaction of 82.6% and the maximum product 327 

quality of 10,473 items of meat products. This solution also includes an establishment of 328 

farms three and four (0 0 1 1) and abattoirs two and four (0 1 0 1). As observed in Table 3, 329 

Pareto optimal solutions cannot be obtained according to one criterion without worsening 330 

its performance in other criteria. 331 



5.1. Selecting the superior approach 332 

To design the meat supply chain network, decision makers often need to find a solution 333 

based on a number of alternative possibilities using a decision making approach. Fig. 2 334 

illustrates Pareto fronts based on optimizing the three criteria using four solution 335 

approaches. 336 

 337 

 338 

 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 

 347 

 348 

 349 

Fig. 2. Pareto fronts obtained using four solution approaches (a) F1, (b) F2, (c) F3. 350 

Fig. 2 also shows the small difference in obtained criteria values in terms of minimum total 351 

cost, maximum customer satisfaction and maximum product quality using the four 352 

different approaches. This leads to the difficulty in selection of the best solution. Hence, a 353 

decision making algorithm (described in sub-section 4.5.) was used. At the first stage the 354 

global criterion approach was employed to select the best Pareto solution for each set of 355 

solutions.  In this case, Pareto solutions number 3, 2, 3 and 5 (shown in Table 3) were 356 

determined as the best solutions using the four different solution approaches as described 357 

in section 4, respectively. These solutions were achieved with the minimum distances to 358 

their ideal criteria values; the values of these distances are 1.69, 1.63, 1.741 and 1.749, 359 

respectively. The developed selection technique was then applied to select the superior 360 

approach using Eq.29. Accordingly, the obtained superiority values for the compromise 361 
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programming approach is 2.568, the goal programming approach is 2.637, weighted 362 

Tchebycheff approach is 2.743 and the utility function approach is 2.97. It apparently 363 

shows that the superiority of the compromise programming approach to tackles the 364 

considered tri-criteria problem as it gives the lowest value of 2.568. Its solution (number 3 365 

in Table 3) was obtained by assigning ɛ1 = 0.825 and ɛ 2 = 9,937. Fig. 3 illustrates the 366 

optimal meat supply chain network design based on the determined solution. 367 

 368 
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 386 

 387 

Fig. 3.  The optimal meat supply chain network design. 388 

 389 

Subsequently, three farms located in Warwickshire, Leicestershire, and the Yorkshire are 390 

determined to be established and two abattoirs located in Birmingham and Warrick. For 391 

the selected solution, the minimum total cost is £248,214, the maximum customer 392 

satisfaction is 80% and the maximum product quality is 9,937 items of meat products. The 393 

distribution plan of products was also determined; 900 livestock are to be transported from 394 

farm one (located in Warwickshire) to abattoir four (located in Warrick) and 800 items of 395 

meat products are to be transported from abattoir two (located in Birmingham) to retailer 396 

one. 397 

 398 

6. Conclusion 399 

In this paper, a multi-criteria mixed integer linear programming model was developed for 400 

solving an issue of a three-echelon RFID-based meat supply chain design based on three 401 

criteria: total cost of implementation, customer satisfaction (%) in a fulfillment of the 402 

demand in product quantities, and product quality in numbers of meat product. To reveal 403 

Pareto solutions based on the developed model, four solution approaches were investigated. 404 
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A numerical case study was studied for examining the applicability of the developed model 405 

using four different solution approaches. Moreover, a decision making algorithm was 406 

developed to select the best solution approach. It proved the superiority of the compromise 407 

programming approach. This study shows that the developed tri-criteria optimization 408 

model can be useful for obtaining a compromised solution between economic costs and 409 

customer satisfaction of the proposed RFID-enabled meat supply chain. 410 

An interesting research avenue derived from this work is recommended as follows: 411 

1. Developing a fuzzy tri-criteria programming model to cope with the uncertainty in 412 

costs, demands, healthiness percentage of livestock and freshness percentage of 413 

meat products. 414 

2. Solving the multi-criteria optimization problem by a meta-heuristic algorithm may 415 

be useful for handling large-sized problems. 416 
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