

Investigating Ecological Impacts on selected Traffic Management Methods

Daniel Krajzewicz, Laura Bieker (DLR)

Emissions Modelling

- HBEFA-based microscopic emission model, including CO₂, CO, HC, NO_x und PM_x, as well as fuel consumption
- Integration into the traffic simulation package SUMO, both as output and for visualisation
- ➔ Investigations on ecological impacts of traffic management methods

Fig. 1: Visualisation of single vehicles' current CO2 emissions

Route Choice

Fig. 2: Visualisation of the current fuel consumption on the road network's lanes

Travel Time vs. Emissions

ECO-Routing

Attempt to reduce traffic emissions by weighting routes by produced emissions, not travel time.

The Pearson-correlation between the investigated measures shows

- high dependency
- but also some potential to reduce a certain pollutant

		\mathbf{e}	-	T	•	•	•				
PMx (g)	۲	0	0	•	•	0	۲	0	•		0.6
HC (g)		0	•	۲	۲	•	0	•	•		-0.4
CO2 [g]		0	0	•	•	0		•	0		0.2
CO [9]		0	0	•	0	0	0	•	0		0.0
route length (m) waiting			2	2	2	2	2	2	2	2	-0.2
average peed (m/s)	5	ð	6	<u>.</u>		5	5	0	0	0	-0.4
		-			-	-	-		-	_	
travel time [s]		\bigcirc			•	•	۲	•	•		-0.6
travel time [s]	e [s]	De la	e [s]		o tal	2 [a]	E tol	- Ioi	* tot		-0.6

Fig. 3: Pearson-correlation of investigated measures

Traffic Lights Controlling

- major result: a strong, mostly linear correlation between the delay time and the amount of emissions of CO₂, CO, HC, NO_x und PM_x exists
- ➔ it seems to be possible to optimize against the delay time only; there is no need to optimize against a set of measures
- noise emission is also growing with growing delay time, though not linear

Fig. 4: Deviation of NOx emission from the average of different all simulation runs

Fig. 5: Deviation of PMx emission from the average of different all simulation runs

Large-scale simulation results show that the overall

emission of a certain pollutant can be slightly (~2-3%) reduced by using this pollutant's emissions as a weight

Fig. 6: Dependency between the delay time and the evaluated measures (pollutant emission amount, fuel consumption, and noise emission)

 Deutsches Zentrum
 Institute of Transportation Systems

 für Luft- und Raumfahrt e.V. Traffic Management – Berlin
 in der Helmholtz-Gemeinschaft

Daniel Krajzewicz Telefon: 030 / 67055-273 E-Mail: Daniel.Krajzewicz@dlr.c

