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a b s t r a c t

In this paper we present several constrained regularization methods for ozone profile

retrieval from UV/VIS nadir sounding instruments such as GOME, SCIAMACHY, OMI and

GOME-2. These methods extend the Tikhonov regularization and the iteratively

regularized Gauss–Newton method with equality and inequality constraints imposed

on the vertical column. It will be shown that this type of information, which is delivered

by an independent algorithm like DOAS or GODFIT, significantly improves the accuracy

and stability of the profile retrieval.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Modern space-born UltraViolet and VISible (UV/VIS)
nadir atmospheric chemistry instruments like GOME/ERS-
2, SCIAMACHY/ENVISAT, OMI/AURA and GOME-2/MetOp
measure the backscattered radiation from the Earth-
atmosphere system with a relatively high spectral
resolution. These measurements are used for the routine
retrieval of atmospheric composition quantities such as
total column amounts of ozone, NO2; SO2, BrO, H2O, HCHO
and OClO. Additionally, it is also possible to derive height-
resolved information about the atmospheric ozone con-
centration. The strongly decreasing ozone absorption
cross section in the 270–340 nm wavelength range
provides information on the vertical distribution of ozone.
Shorter wavelengths in this range contain only informa-
tion on the ozone distribution for the top layers of the
atmosphere, whereas the larger wavelengths also carry
ozone information from the lower layers of the atmo-
sphere up to the ground surface. A number of ozone
profile retrieval algorithms from GOME measurements
have been developed during the last years. The inversion
ll rights reserved.
in the current algorithms is typically performed using the
Bayesian approach implemented via optimal estimation
[1–4] or Tikhonov regularization [5].

The inverse problems under examination is nonlinear
and can be expressed by the data model:

yd ¼ FðxÞþd; ð1Þ

where F : Rn-Rm is the forward model, x 2 Rn is the
state vector, yd 2 Rm is the noisy data vector, and d 2 Rm

is the measurement error. In the framework of
the Bayesian approach, a regularized solution of (1)
is computed as the minimizer of the a posteriori potential
[6]

VðxjydÞ ¼ ½yd�FðxÞ�T C�1
d ½y

d�FðxÞ�þðx�xaÞ
T C�1

x ðx�xaÞ;

where Cd and Cx are the measurement noise and the a
priori covariance matrices, respectively, and xa is the a
priori state vector. Often, due to a lack of a priori
information, we use an ad hoc covariance matrix of the
form Cx ¼ s2

xCnx, where Cnx is chosen as a Gaussian
correlation matrix and the profile variance s2

x is con-
sidered to be a free parameter of the retrieval. If our a
priori knowledge is encapsulated in the form of an
ellipsoid of constant probability of the a priori, then the
shape and orientation of this ellipsoid are determined by
Cnx, while its size is determined by s2

x. In statistical
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inversion theory, the Bayesian approach is analog to the
method of Tikhonov from classical regularization theory
[7–10]. To put in evidence this similarity we assume that
the noise is white with the covariance matrix Cd ¼ s2Im

and compute the Cholesky factor of the inverse of the
normalized covariance matrix C�1

nx ¼ LT L, where s2 is the
noise variance and L is the regularization matrix. In this
context, the Bayesian solution minimizes simultaneously
the a posteriori potential and the Tikhonov function

F ðxÞ ¼ s2VðxjydÞ ¼ Jyd�FðxÞJ2
þaJLðx�xaÞJ

2;

and the regularization parameter a¼ s2=s2
x can be

interpreted as the noise-to-signal ratio. In view of the
above equivalence, the Bayesian approach is often
referred to as a stochastic version of Tikhonov regulariza-
tion.

As the regularization matrix reproduces the shape of
the Gaussian correlation function, L controls the smooth-
ness of the profile as the discrete approximations to the
first-order (L1) and the second-order ðL2Þ derivative
operators do. Note that if we intend to control the
magnitude of the solution, then L should be chosen as
either the identity matrix (L0 ¼ In) or a diagonal matrix.

The computation of an appropriate estimate of a, or
equivalently, the derivation of a reliable estimator of s2

x, is
a crucial issue of Tikhonov regularization (see, e.g.
[11,12]). With too little regularization, reconstructions
deviate significantly from the a priori and the solution is
said to be underegularized. With too much regularization,
the reconstructions are too close to the a priori and the
solution is said to be overregularized. Unfortunately, at
the present time, there is no fail-safe regularization
parameter choice method which guarantees small solu-
tion errors in any circumstance, that is, for any noisy data
vector. An amelioration of the problems associated with
the regularization parameter selection is achieved in the
framework of the so-called iterative regularization meth-
ods, of which the iteratively regularized Gauss–Newton
method is a relevant example [13–15]. These approaches
are less sensitive to overestimations of the regularization
parameter, but for underestimations of the regularization
parameter, the reconstruction errors of iterative methods
and Tikhonov regularization are comparably large and no
substantial solution improvement can be achieved.

The goal of this paper is to design a class of
regularization methods for ozone profile retrieval which
are less susceptible to the selection of the regularization
parameter over a large range of values. The idea is
to incorporate additional constraints into the classical
regularization method which should come into play
especially when the regularization parameter is too small
and large deviations from the a priori profile are expected.
The additional constraints are imposed on the integrated
ozone profile, i.e., the vertical column, which can be
computed with sufficiently accuracy by an independent
algorithm like DOAS [16,17] or GODFIT [18]. Essentially, in
this class of regularization methods, we control the
smoothness of the profile through the regularization
matrix and the magnitude of the profile through the
vertical column.
2. Constrained regularization methods

In this section we review the algorithmic implementa-
tions of Tikhonov regularization and of the iteratively
regularized Gauss–Newton method and describe the
modifications required to design the constrained versions
of these methods. In order to simplify our presentation we
assume that we are dealing with the retrieval of one gas
component, i.e., ozone, and that the entry xi of x is the
partial column on the layer i. The number of layers is n

and the vertical column is then given by
Pn

i ¼ 1 xi. The
layer i¼ 1 is situated at the top of the atmosphere, while
the layer i¼ n is situated at the Earth’s surface.

2.1. Constrained Tikhonov regularization

The solution of a nonlinear ill-posed problem by means
of Tikhonov regularization is equivalent to the solution
of a sequence of ill-posed linearizations of the forward
model about the current iterate. At the iteration step k, we
consider the linearized equation

Kkaðx�xaÞ ¼ yd
k ; ð2Þ

where Kka is the Jacobian matrix at the actual iterate xd
ka

and yd
k is the ‘‘linearized’’ noisy data vector,

yd
k ¼ yd�Fðxd

kaÞþKkaðx
d
ka�xaÞ:

As the nonlinear problem is ill-posed, its linearization is
also ill-posed, and we solve the linearized Eq. (2) by means
of Tikhonov regularization with the penalty term OðxÞ ¼
JLðx�xaÞJ and the regularization parameter a. In terms of the
profile deviation Dx¼ x�xa, the computational step involves
the minimization of the quadratic function

QðDxÞ ¼ gTDxþ1
2DxT GDx; ð3Þ

with G¼KT
kaKkaþaLT L and g¼�KT

kayd
k . The new iterate is

then computed from Dxd
kþ1a ¼ xd

kþ1a�xa, where the mini-

mizer Dxd
kþ1a is given by Dxd

kþ1a ¼�G�1g. A practical

realization of the method of Tikhonov regularization is
outlined in the Appendix.
2.1.1. Tikhonov regularization with equality constraints

In the equality-constrained version of Tikhonov reg-
ularization we focus on the minimization step of the
quadratic function (3) and formulate an optimization
problem with a linear equality constraint: At the iteration
step k, we compute the profile deviation Dxd

kþ1a by
solving the quadratic programming problem

min
Dx

QðDxÞ ¼ gTDxþ1
2DxT GDx; ð4Þ

subject to
Xn

i ¼ 1

Dxi ¼ c: ð5Þ

Here, c is the difference between the vertical columns
corresponding to the ‘‘exact’’ state vector and the a priori.
By convention, c will be called the relative vertical column
(with respect to the a priori), and for the time being, c is
assumed to be known.
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For solving the quadratic programming problem (4)–(5)
the null-space or the range-space methods can be
employed [19,20]. In the framework of the null-space
method, the matrix Z 2 Rn�ðn�1Þ, whose columns are a basis
for the null space of the constraint matrix A¼ ½1;1; . . . ;1�
(cf. (5)), plays a significant role. In general, the matrix Z can
be derived by using the QR factorization of AT , or it can be
computed by using the variable-reduction technique [19].
In the present analysis we adopt the variable-reduction
technique, in which case, the algorithm involves the
following steps:
(1)
 compute a feasible point satisfying the linear con-
straint, e.g.,

Dx ¼ cDxn with Dxn ¼
1

n

1

1

^

1

2
6664

3
7775;

compute the gradient of Q at Dx,
(2)
g ¼ cgnþg with gn ¼GDxn;

and construct the matrix Z 2 Rn�ðn�1Þ as

Z¼

1 0 � � � 0

0 1 � � � 0

^ ^ � � � ^

0 0 � � � 1

�1 �1 � � � �1

2
6666664

3
7777775

;

determine the feasible step
(3)
p¼�Hg ¼�cHgn�Hg;

where

H¼ ZðZT GZÞ�1ZT

is the reduced inverse Hessian of Q subject to the
constraint;
(4)
 compute the solution of the minimization problem as

Dxd
kþ1aðcÞ ¼Dxþp¼ cðDxn�HgnÞ�Hg: ð6Þ
The above solution representation explicitly indicates the
dependency on the relative vertical column, and this
representation is of beneficial use in practice. The reason
is that c is considered as a free parameter of the retrieval
ranging in a chosen interval ½cmin; cmax�. The problem to
be solved is the computation of the strengths of the
constraints, or more precisely, of the regularization
parameter, which controls the smoothness of the solution,
and of the relative vertical column, which controls the
magnitude of the solution. Essentially, we must solve a
multi-parameter regularization problem. In this case
we adopt a simple strategy: we use an a priori chosen
regularization parameter but compute the relative ver-
tical column by using an approach which is similar to the
L-curve method [21]. Note that the L-curve is the plot of
the constraint norm against the residual norm for a range
of values of the regularization parameter, and the corner
of the L-curve reflects a trade-off between solution
smoothness and residual. Two regularization methods
with a dynamical selection criterion for the vertical
column can be designed:
(1)
 Equality-constrained Tikhonov regularization with an

outer loop. The numerical realization of this method
requires to solve the nonlinear constrained minimiza-
tion problem several times for different values of the
vertical column. Each minimization is solved with a
relative vertical column c and a solution xd

aðcÞ is
obtained. Then, the nonlinear residual

RdðcÞ ¼ JFðxd
aðcÞÞ�ydJ

and the constraint norm

CdðcÞ ¼ JL½xd
aðcÞ�xa�J

are computed at the solution. The optimal value of the
relative total column is defined as the minimizer of
the distance function [22]

dðcÞ2 ¼
RdðcÞ

Rdmax

� �2

þ
CdðcÞ

Cdmax

� �2

ð7Þ

where Rdmax ¼maxcRdðcÞ, Cdmax ¼maxcCdðcÞ and
c 2 ½cmin; cmax�.
(2)
 Equality-constrained Tikhonov regularization with an inner

loop. At each iteration step k, we compute Dxd
kþ1aðcÞ for a

fixed value of c, and evaluate the residual and the
constraint norms of the linearized equation

RdðcÞ ¼ Jyd
k�KkaDxd

kþ1aðcÞJ

and

CdðcÞ ¼ JLDxd
kþ1aðcÞJ;

respectively. As before, the optimal value of the total
column is the minimizer of the distance function (7) over
the interval ½cmin; cmax�.
Noting that the minimization of the distance function is
usually performed by using a discrete search algorithm it
is readily seen that the first solution method is more time
consuming than the second one. By virtue of (6), the
computation of Dxd

kþ1a involves only a scalar-vector
multiplication and the summation of two vectors, and as
a result, the computational effort of the equality-con-
strained Tikhonov regularization with an inner loop is not
much higher than that of the ordinary method.

The interval of variation of the relative vertical column
should be chosen so that the distance function has a
minimum for the assumed values of the signal-to-noise
ratio. To get some idea of where this interval lies, we may
use as guide the value of the total column delivered by an
independent retrieval. Evidently, this additional informa-
tion is for reference only.

2.1.2. Tikhonov regularization with inequality constraints

An inequality-constrained version of Tikhonov regu-
larization can be derived if the total column is known
with sufficiently accuracy. The information on the total
column should be the result of an independent retrieval,
which can be performed in a distinct spectral interval by
using appropriate algorithms like DOAS or GODFIT. As
opposed to the equality-constrained method, the vertical
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column is not a free parameter of the retrieval which
is optimized by using an internal selection criterion. The
proposed inequality-constrained Tikhonov regularization
is of the form of the following model algorithm: At the
iteration step k, we compute the profile deviation Dxd

kþ1a
by solving the quadratic programming problem

min
Dx

QðDxÞ ¼ gTDxþ1
2DxT GDx; ð8Þ

subject to
Xnt
i ¼ 1

Dxircmax; ð9Þ

Xn

i ¼ 1

DxiZcmin: ð10Þ

Here, the layer nton, delimitates the tropospheric from
the stratospheric region, while the quantities cmin and cmax

represent a lower and an upper bound imposed on the
vertical column (for a practical selection of cmin and cmax

we refer to Section 3). The reasons for the choice (9)–(10)
are the following:
(1)
 In general, the constraints should be linearly inde-
pendent since otherwise one of the constraints can be
omitted without altering the solution.
(2)
 As the nadir radiance is less sensitive to profile variations
in the troposphere, the condition (9) does not allow large
profile deviations in the stratospheric region.
(3)
 The condition (10) guarantees a sufficiently large
deviation of the profile (with respect to the a priori)
over the entire altitude range.
The quadratic programming problem (8)–(10) can be solved
by using primal and dual active set methods. The dual active
set method of Goldfarb and Idnani [23] generates dual-
feasible iterates by keeping track of an active set of
constraints. The method does not have the possibility of
cycling and benefits from always having an easily calculated
feasible starting point. An implementation of the method
of Goldfarb and Idnani is the routine ‘‘solve.qp’’ from the
optimization package ‘‘quadprog’’ [24]. Since this routine is
free available through internet we use it as a black box and
refer to [23] for an algorithm description.

2.2. Constrained iteratively regularized Gauss–Newton

method

The iteratively regularized Gauss–Newton method can
be regarded as modified version of Tikhonov regulariza-
tion with a variable regularization parameter. The
regularization parameters can be chosen in advanced as
the terms of a decreasing sequence, i.e.,

0oakþ1rak; lim
k-1

ak ¼ 0: ð11Þ

Another important difference is that the iterative process
is stopped accordingly to the discrepancy principle, that
is, the iterative process terminates after k% steps such that

Jyd�Fðxd
k% ÞJ

2rtD2oJyd�Fðxd
kÞJ

2; 0rkok%; ð12Þ
where D is the noise level and t41 is chosen sufficiently
large. In a semi-stochastic setting and for white noise with
variance s2, an appropriate estimate of D2 is the expected
value of the noise EfJdJ2

g ¼ms2.
Although several strategies for selecting the sequence of

parameters fakg can be considered, the simplest and the
most robust parameter choice rule assumes that the ak are
the terms of a geometric sequence, i.e., ak ¼ qak�1 with
0oqo1 [25]. The reduction of the regularization parameter
leads to acceptable reconstruction errors especially when a
strong regularization is applied at the beginning of the
iterative process. In this case, the limiting values of the
sequences of the regularization parameters are comparable
whatever the initial values of the regularization parameters
are. Furthermore, the method of Tikhonov regularization
using these limiting values as a priori regularization
parameters yields small solution errors. The only drawback
of the iteratively regularized Gauss–Newton method is that
an increase of the initial regularization strength is accom-
panied by an increase of the number of iterations.

Any iterative method using the discrepancy principle as
stopping rule requires the knowledge of the noise level.
Because in many practical problems arising in atmospheric
remote sensing, the noise level is an unknown quantity
(due to the systematic errors), we use the following
stopping rule: We store all iterates xd

k and require the
convergence of the nonlinear residuals rdk within a
prescribed tolerance. If rd is the residual at the last iterate,
we choose that solution xd

k� for which it holds that

Jrdk%J
2rtJrdJ2oJrdkJ

2; 0rkok%:

The above heuristic stopping rule does not have a
mathematical justification, but works sufficiently well in
practice. To our knowledge there is no mathematical
literature dealing with this topic, and for the time being,
we do not see another viable alternative for practical
implementations. An algorithmic implementation of the
iteratively regularized Gauss–Newton method is illu-
strated in the Appendix.

As in the case of Tikhonov regularization, the constrained
versions of the iteratively regularized Gauss–Newton method
assume the replacement of the unconstrained minimization
step by a quadratic programming problem involving the
equality constraint (5) or the inequality constraints (9) and
(10). Since in general, iterative methods requires more
Newton steps than Tikhonov regularization, only the equal-
ity-constrained iteratively regularized Gauss–Newton meth-
od with an inner loop is appropriate for practical applications.
It should be pointed out that for the equality-constrained
method, both strengths of the constraints are computed
internally: the regularization parameter, which controls the
smoothness of the solution, is decreased during the Newton
iteration by a constant factor, and the vertical column, which
controls the magnitude of the solution, is determined by
using the minimum distance function approach.
3. Numerical simulations

To analyze the performances of the constrained regular-
ization methods we consider an ozone retrieval test problem.
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The ozone profile is retrieved from nadir simulated data by
considering 375 equidistant points in the spectral interval
ranging from 290 to 335 nm. In this spectral interval, O3 and
NO2 are considered as active gases. The atmosphere is
discretized with a step of 3.5 km between 0 and 70 km, and a
step of 10 km between 70 and 100 km. The total numbers of
levels is then 24, while the number of layers is 23. The exact
state vector is chosen as a translated and a scaled version of a
climatological profile with a translation distance in the
vertical direction of 3 km and a scaling factor of 1.3. The
exact relative vertical column for ozone is c ¼ 120 DU, and
the bounds cmin and cmax are chosen as follows:
(1)
Fig.
com

stan
For equality constraints, we set cmin ¼ 80 DU and
cmax ¼ 125 DU, and 80 values of the relative vertical
column are considered in the interval ½cmin; cmax�. The
reason for choosing this large interval of variation is
that we have to guarantee that the distance function
has a minimum for any value of the regularization
parameter and for low values of the SNR.
(2)
 For inequality constraints, we choose
cmax ¼ c ¼ 120 DU and cmin ¼ 105 DU. The choice of
the upper bound is reasonable since cmax controls only
the vertical column above the troposphere. Note that
the lower bound corresponds to a relative error of
ec ¼ 12:5%, where cmin ¼ cð1�ecÞ.
The solar zenith angle is 403, while the zenith and
azimuthal angles of the line of sight are 203 and 903,
0
p
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R
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 [%
]
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1. Relative solution errors for Tikhonov regularization (TR) and the Tikh

puted for the following values of the SNR: 50 (left), 100 (middle) and 150 (ri

dard deviation.
respectively. The regularization matrix is the Cholesky
factor of the normalized covariance matrix

½Cnx�ij ¼ ½xa�i½xa�jexp �
jzi�zjj

l

� �
; i; j¼ 1; . . . ;n;

with an altitude-independent correlation length
l¼ 3:5 km.

In Fig. 1 we plot the solution errors for Tikhonov
regularization and its equality-constrained versions. The
regularization parameter is chosen as a¼ sp, where s is
the noise standard deviation and p is a positive exponent.
The results show that for large values of p (small values of
the regularization parameter), the solution errors for the
constrained methods are smaller than the solution errors
for the unconstrained method, while for small values of p,
the solution errors are comparable. Thus, the equality
constraint comes into effect for underestimations of the
regularization parameter.

The normalized constraint norm, residual norm and
distance function are illustrated in Fig. 2. The dependency
of these quantities on the relative vertical column is
similar to their dependency on the regularization
parameter: For small values of the relative vertical
column, the profiles may have oscillatory artifacts
around the a priori, so that the mean profiles are
essentially close to the a priori. Consequently, the
constraint norm is large, while the residual norm is
small. However,in contrast to the regularization
parameter dependency, the constraint norm is not a
p
2 3 0

p
1 2 3

onov regularization with equality constraints (TR-EQC). The results are

ght). The regularization parameter is given by a¼sp , where s is the noise
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monotonically decreasing function of the vertical column
and possesses a minimum. Since the residual is a
monotonically increasing function of the vertical
column, the minimizer of the distance function is shifted
to the left of the minimizer of the constraint norm.

The minimizers of the distance function are shown in
Fig. 3. The results evidence that the minimizers predicted
by the two regularization methods are very close.

The retrieval results illustrated in Fig. 4 correspond to a
small value of the regularization parameter. The profiles
computed by using Tikhonov regularization deviates
significantly from the a priori, while the retrieved
profiles computed by using the constrained Tikhonov
regularizations are smoother and approximate sufficiently
well the exact profile (especially in the troposphere).

In Fig. 5 we plot the relative errors in the solutions
computed by using Tikhonov regularization and the
constrained and unconstrained versions of the iteratively
regularized Gauss–Newton method. The plots show that
the unconstrained iteratively regularized Gauss–Newton
method still yields reliable results for small values of the
exponent p, or equivalently, for large initial values of the
regularization parameter. Thus, the iteratively regularized
Gauss–Newton method is more stable than Tikhonov
regularization with respect to overestimations of the
regularization parameter, while for underestimations
of the regularization parameter, both methods are of
comparable accuracies. By contrast, the constrained
versions of the iteratively regularized Gauss–Newton
methods yield acceptable reconstruction errors over the
0
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A
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TR
exact
a priori
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Fig. 4. Retrieved profiles computed by using Tikhonov regularization (TR) and t

EQC) in the case p¼ 2:4. The plots correspond to SNR¼ 100 (left) and SNR¼ 1
entire domain of variation of the regularization
parameter. At this stage of our presentation we would
like to pointed out that as opposed to the equality-
constrained method, the inequality-constrained method is
sensitive to the selection of the bounds cmin and cmax.
Especially, the selection of the bound cmin is critical.
Referring to Fig. 3 and taking into account that p is
increased during the iterative process, we observe that
cmin should not be too far from the minimizer of the
distance function corresponding to the final value of p. In
this regard, a good choice for cmin is the plateau at 105 DU;
smaller values below this level leads to larger solution
errors.

The retrieved profiles computed by using the equality-
constrained iteratively regularized Gauss–Newton meth-
od and Tikhonov regularization are shown in Fig. 6. For
p¼ 2:4, the Tikhonov solution is underegularized, while
for p¼ 0:2, the solution is overregularized in the sense
that mainly the scaling and less the translation of the a
priori profile is reproduced. In both situations, the profiles
computed by using the equality-constrained iteratively
regularized Gauss–Newton method are better
approximations of the exact profile.

The comparison of the numerical effort of the methods
can be inferred from Tables 1 and 2. From Table 1,
we observe that the computing times of Tikhonov
regularization and of its equality-constrained version
with an inner loop are almost the same. From Table 2,
we see that for p¼ 0:2, the unconstrained Tikhonov
regularization is by a factor of 2 faster than the
0 4e+12 8e+12
Number Density [molec/cm3]

he equality-constrained Tikhonov regularization with an inner loop (TR-

50 (right).



ARTICLE IN PRESS

0
p

0

5

10

15

20

25

30

35

R
el

at
iv

e 
E

rr
or

 [%
]

TR
IRGN
IRGN−EQC
IRGN−INEQC

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

1 2 3 0
p

1 2 3 0
p

1 2 3

Fig. 5. Relative error in the solutions computed by using Tikhonov regularization (TR), the iteratively regularized Gauss–Newton method (IRGN) and the

iteratively regularized Gauss–Newton method with equality (IRGN-EQC) and inequality constraints (IRGN-INEQC). The plots correspond to the following

values of the SNR: 50 (left), 100 (middle) and 150 (right).

0
Number Density [molec/cm3]

0

10

20

30

40

50

60

A
lti

tu
de

 [k
m

]

IRGN−EQC
TR
exact
a priori

4e+12 8e+12 0
Number Density [molec/cm3]

4e+12 8e+12

Fig. 6. Retrieved profiles computed by using Tikhonov regularization (TR) and the iteratively regularized Gauss–Newton method with equality constraint

(IRGN-EQC) in the case SNR¼ 100. The plots in the left panel correspond to p¼ 2:4, while the plots in the right panel correspond to p¼ 0:2.
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Table 1
Computing time in mm:ss format for Tikhonov regularization and its

constrained versions.

p TR TR-EQC inner loop TR-EQC outer loop

2.4 0:20 (4;16.5) 0:21 (4;9.2) 12:28 (4;9.3)

0.2 0:20 (4;12.3) 0:21 (4;12.9) 12:28 (4;12.8)

The numbers in the parentheses represent the number of iterations and

the relative solution errors in percent.

Table 2
The same as in Table 1 but for the iteratively regularized Gauss–Newton

method and its constrained versions.

p TR IRGN IRGN-EQC IRGN-INEQC

2.4 0:20 (4;16.5) 0:23 (5;18.0) 0:26 (5;9.8) 0:24 (5;9.9)

0.2 0:20 (4;12.3) 0:39 (12;8.1) 0:50 (12;8.1) 0:42 (12;8.3)
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constrained iteratively regularized Gauss–Newton
methods, while for p¼ 2:4 their efficiencies are
comparable. This increase of computing time is the price
that we have to pay for obtaining stable approximations
of the solution over a large range of values of the
regularization parameter.
4. Conclusions

Novel constrained regularization methods have been
designed for ozone retrieval by nadir UV/VIS measurements.
The unconstrained minimization step is replaced by a
constrained minimization step consisting in additional
equality or inequality constraints imposed on the ozone
vertical column. The equality-constrained minimization
problem is solved in the framework of the null-space
approach by using an explicit representation of the solution
in terms of the vertical column, while the inequality-
constrained minimization problem is solved by using a dual
active set algorithm. For equality constraints, the optimal
value of the vertical column is computed by employing the
minimum distance function criterion and the two schemes
for vertical column calculation (with an inner and an outer
loop) yield similar results. The main conclusions of our
numerical analysis can be summarized as follows:
(1)
 The constrained versions of Tikhonov regularization
and the iteratively regularized Gauss–Newton method
are more stable than Tikhonov regularization with
respect to underestimations of the regularization
parameter and over a large interval of variation of
the regularization parameter, respectively.
(2)
 For equality constraints, the selection of the bounds
cmin and cmax is not critical, and the value of the
relative vertical column is only informative. By
contrast, for inequality constraints, the information
about the relative vertical column should be suffi-
ciently accurate.
(3)
 The computing time of the equality-constrained
Tikhonov regularization with an inner loop resembles
that of the ordinary method, while the computing
times of the constrained iteratively regularized
Gauss–Newton methods are by a factor of 2 larger
than that of Tikhonov regularization.
The application of the constrained regularization
methods showed significant improvements in ozone

profile retrieval and seems to be a promising tool for
ozone retrieval from UV/VIS backscatter measurements,
provided by the GOME family of instruments.

Appendix A

Algorithm 1 outlines the method of Tikhonov regulariza-
tion. An interesting feature of the algorithm is that the
regularization parameter is chosen accordingly to the a
priori rule a¼ sp, where the exponent p plays the role of a
free parameter. This choice is inspired from the Bayesian
approach, which is characterized by the selection criterion
aps2. The step-length procedure is optional, but our
experience demonstrates that this step improves the
stability of the method and reduce the number of iterations.
Algorithm 1. Tikhonov regularization. The step-length
procedure computes the scalar tk such that the descent
condition F ðxd

kaþtkpd
kÞoF ðxd

kaÞ is satisfied.

choose p, ex , er , and kmax and set a¼ sp;

xd
0a ¼ xa; compute Fðxd

0aÞ and K0a;

yd
0 ¼ yd�Fðxd

0aÞþK0aðx
d
0a�xaÞ; rd0a ¼ yd�Fðxd

0aÞ;

k¼ 0;

repeat

G¼KT
kaKkaþaLT L, g¼�KT

kayd
k;

solve minDxQðDxÞ ¼ gTDxþ 1
2DxT GDx for Dxd

kþ1a;

compute the search direction pd
k ¼ ðxaþDxd

kþ1aÞ�xd
ka;

compute the step length tk for F ðxÞ ¼ 1
2

FðxÞ�ydffiffiffi
a
p

Lðx�xaÞ

" #�����
�����

2

;

xd
kþ1a ¼ xd

kaþtkpd
k; compute Fðxd

kþ1aÞ and Kkþ1a;

yd
kþ1 ¼ yd�Fðxd

kþ1aÞþKkþ1aðx
d
kþ1a�xaÞ; rdkþ1a ¼ yd�Fðxd

kþ1aÞ;

k’kþ1;

until ðJxd
ka�xd

k�1aJrex:or:jrdkaJ�Jrdk�1ajrerJrdk�1aJ:or:k4kmaxÞ

Algorithm 2. Iteratively regularized Gauss–Newton
method

choose p, er , t, and kmax and set a¼ sp;

xd
0 ¼ xa; compute Fðxd

0Þ and K0;

yd
0 ¼ yd�Fðxd

0ÞþK0ðxd
0�xaÞ; rd0 ¼ yd�Fðxd

0Þ;

k¼ 0;

repeat

if ðk40Þ a’qa;

G¼KT
k KkþaLT L, g¼�KT

k yd
k;

solve minDxQðDxÞ ¼ gTDxþ 1
2DxT GDx for Dxd

kþ1;

compute the search direction pd
k ¼ ðxaþDxd

kþ1Þ�xd
k;

compute the step length tk for F ðxÞ ¼ 1
2

FðxÞ�ydffiffiffi
a
p

Lðx�xaÞ

" #�����
�����

2

;

xd
kþ1 ¼ xd

kþtkpd
k; compute Fðxd

kþ1Þ and Kkþ1;

yd
kþ1 ¼ yd�Fðxd

kþ1ÞþKkþ1ðx
d
kþ1�xaÞ; rdkþ1 ¼ yd�Fðxd

kþ1Þ;

store xd
kþ1 and Jrdkþ1J;

k’kþ1;

until ðjJrdkJ�Jrdk�1JjrerJrdk�1J:or:k4kmaxÞ

JrdJ¼ JrdkJ;

choose xd
k� with k� being the first index for which Jrdk� JrtJrdJ.
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Algorithm 2 illustrates the iteratively regularized
Gauss–Newton method. In this case, the exponent p

determines the initial value of the regularization para-
meter which is then decreased during the iterative
process.
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