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Abstract—The urban landscape is a highly complex and small-
structured, heterogeneous area as a result of permanent 
human settlement. Urban structure is scale-dependant and can 
be expressed on various levels of detail by satellite imagery. 
Very high resolution satellite (VHR) sensors are capable of 
mapping and monitoring cities - on house/block level - with 
their high degree of landcover diversity. However, detection of 
morphological features such as shape and elevation of single 
objects is performed much better when a digital surface model  
(DSM) – e.g. derived by airborne laserscanning - is 
incorporated. An object-oriented methodology for the joint 
analysis of optical satellite data and a digital surface model is 
presented for the classification of the urban morphology in 
terms of urban structural types. These are spatial units – 
mostly on block level – with aggregated information on the 
classified single features like landcover/landuse and urban 
fabric. Hence, a hierarchical, modular segmentation and 
classification workflow is implemented to extract the required 
information. The methodology is applied on two study areas in 
the cities of Cologne and Dresden, Germany, and a validation 
of the capability of the potential for transferability of the 
rulebase is shown. 

I. INTRODUCTION  
The shape of a city is the most visible result of the 

driving forces of urban development (economy, 
society/culture, and environment). Therefore, the urban 
spatial structure is a physical reflection of various processes 
during the evolution of a city and its characterisation is 
valuable source of information [1]. Over the past decades, 
urbanisation processes have caused rapid developments and 
today more than half of the world’s population live in cities 
[2]. Against this background, area-wide and up-to-date 
spatial information of urban areas is in demand.  

Remote sensing data meet these requirements and are 
capable of providing crucial information for city planners 
[3]. The technical development of the latest generation of 
VHR optical satellite-based sensors - such as Ikonos, 
Quickbird, GeoEye-1, WorldView-1 and SPOT 5 - has led to 
highly detailed data on house or block level [4]. However, 
high resolution data goes together with challenges in image 
analysis [5] and traditional statistical analysis of single pixels 

have been exceeded by state-of-the-art object-oriented 
concepts [6]. Many ideas concerning image segmentation 
approaches/tools [7] [8] [9] and object-oriented classification 
in urban areas [10] [11] [12] [13] have since been presented. 

Although [14] presented a worthwhile approach for urban 
structure detection with building height estimation by high 
resolution satellite data, a higher level of detail and accuracy 
can be reached utilizing LiDAR data. Various approaches of 
building extraction solely from LiDAR data [15] [16] or joint 
analysis with multispectral image data [17] [18] have been 
made.  

The structuring of a city by means of remote sensing data 
is very much dependent on the data used [19] and the 
purpose of the structuring. For urban ecological purposes it 
has been shown a straight-forward concept of structuring the 
city into urban biotopes [20] [21]. A similar concept was 
adapted to the needs of the built-up landscape in terms of 
urban structural types (UST) [22]. These are spatial units – 
mostly on block level – that are characterized by their 
landcover, landuse and the type of urban fabric. In terms of 
the urban fabric, areas of homogeneous urban morphology 
are grouped together based on their physical appearance and 
usage. The parameters on which the buildings are classified 
are: size, shape, height (floors), density and proportion of 
impervious surface / vegetation. 

Area-wide mapping of UST by means of remote sensing 
techniques is often done by visual interpretation of Color 
Infrared (CIR) aerial images or terrestrial investigations [23] 
– which can be a quite laborious task in large cities. 
Although this method leads to a high grade of quality, it goes 
together with the disadvantage of infrequent updating. 
Modern concepts by image segmentation techniques of CIR 
aerial photographs [24] or even automatic classification 
approaches of topographic maps [25] show the potentials and 
limitations to area-wide mapping. 

This paper focuses on the derivation of UST on the basis 
of a stable and transferable classification approach utilizing 
both VHR satellite imagery and airborne LiDAR data.  
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II. STUDY AREAS AND DATA SETS 
Even though every city has evolved its own characteristic 

shape through individual urban development over time, basic 
similarities of urban fabric can be found within the same 
cultural area. For this study, we apply our model to two 
German cities – Cologne and Dresden (Fig. 1). 

A. Cologne 
With about 1 million inhabitants, Cologne is today the 

fourth largest German city (after Berlin, Hamburg and 
Munich). Its location at the Rhine - in the federal state of 
North-Rhine-Westphalia - made it an important center for 
trade and commerce which brought wealth and power to the 
city. Through various city expansions – especially since the 
late 19th century – the city has grown and shaped its today’s 
typical concentric footprint. Although large areas of the city 
were destroyed during World War II, the structures of the 
city were mostly restored. 

B. Dresden 
Located at the River Elbe in the east of Germany, 

Dresden – the capital of the federal state of Saxony - is home 
to about 500,000 inhabitants today. While the city has played 
a negligible role throughout most part of its history, it has 
experienced a tremendous growth during the 
Industrialization in the 19th century. Its growing economical 
power and incorporations of surrounding villages has led to a 
tenfold increase of population to its today’s size. As well as 
Cologne, Dresden suffered severe damages through bombing 
raids in 1945 which have destroyed large areas – especially 
around the city center. The establishment of the German 
Democratic Republic has influenced the reconstruction after 
the war and the today’s shape of the city. Narrow alleys and 
streets were replaced by large representational avenues 
meeting the ideas of a socialistic city. The problem of 
housing shortage in the mid 1970’s was faced with large 
areas of Plattenbauten. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.  Location of the study sites Cologne and Dresden. 

C. Data sets 
For the derivation of the UST we utilized a set of VHR 

optical satellite imagery and a digital surface model derived 
by airborne laserscanning covering the entire area of both 
cities (Table I). Since 1999 a new generation of VHR 
satellites provides Earth Observation (EO) data on a high 
level of detail. The sensor Ikonos maps the earth’s surface 
with a geometrical resolution of 1m panchromatic and 4m 
multispectral which meets the needs of interpretations of the 
highly small-structured urban landscape. Airborne 
laserscanning (ALS) or LiDAR (Light detection and ranging) 
is – in contrary to optical satellite sensors – an active remote 
sensing system. It measures the running time of a laser beam 
between the sensor, the reflecting surface and back. By 
means of GPS (Global Positioning System) and INS (Inertial 
Navigation System) the absolute position of the reflecting 
object - in x, y and z-direction - can be distinguished [26]. 
Depending on the density of the laser beams, the geometrical 
resolution may vary between a few centimeters and a few 
meters. A very common utilization of the point cloud is the 
generation of a high resolution DSM (Digital Surface 
Model). 

TABLE I.   CHARACTERISTICS OF UTILIZED DATA SETS. 

Characteristics of utilized data sets 
Cologne Dresden 

 

Date Resolution Date Resolution 

ALS 2007 1m 2001 1m 

IKONOS 
(no. of 
scenes) 

08/2007 
(5) 

1m (pan.) 
4m (ms.) 

05/2007 
07/2007 

(3) 

1m (pan.) 
4m (ms.) 

Figure 2.  Representation of the same area (Cologne) in different data sets 
(top: Ikonos false-color composite 4/3/2, middle: DSM, bottom: shaded 

relief). 

Cologne 
Dresden 

Germany 
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III. METHODOLOGY 
One of the major objectives of this study was to develop 

a transferable rulebase for the application on various study 
areas on the basis of VHR optical satellite imagery and 
LiDAR data. Such a kind of joint analysis of two very 
different data sets brings both advantages and problems with 
it. On the one hand, the depth of information increases 
significantly but problems related to different viewing 
geometry and acquisition dates/times have to be 
encountered. The different representation of objects in the 
two data sets is visualized in fig.2. The presented 
methodology is a fixed modular-based framework which 
can be interactively adjusted by the user to the data used and 
the investigated urban environment. In general, the 
framework is grouped into two major modules, each tailored 
to the specifications of the characteristics of the two data 
sets. They may be processed independently from each other, 
so the user can decide in which order he wants to process 
the data sets, but if both data is utilized, best results are 
achieved following the presented workflow. Both modules 
follow the same workflow: (a) image segmentation and (b) 
object-oriented classification. With the emergence of the 
latest generation of satellite images, traditional pixel-wise 
classification methods have been mostly replaced by object-
based methods. Spectral heterogeneity of the images – 
especially in highly structured urban areas – make it a 
difficult task to a meaningful classification of the image 
since single pixels do not represent the important semantic 
information [28]. Image segmentation algorithms aim at 
grouping and merging neighboring objects based on their 
spectral homogeneity or splitting based on heterogeneity 
respectively [29]. A graphical overview of the presented 
workflow is shown in fig.3. 

A. Module I – DSM 
Core piece of the urban structure analysis is the detailed 

discrimination of building footprints. Even though 
delineation of buildings based on optical satellite imagery 
achieves high classification results, improvements towards 
the derivation of a distinct boundary and the building 
elevation may be accomplished. In many cases, off-nadir 
direction angles of the satellite sensor cause a ‘tilting’ of 
elevated objects in the scene and impede a proper 
discrimination of the building footprints. Furthermore, 
overlap of vegetation (e.g. high trees) may as well reduce the 
quality of the delineation and result in fuzzy outlines which 
may complicate the proper description of the shape of a 
building (fig.4). Both issues play only a minor role in the 
DSM through the acquisition geometry of the ALS and 
acquisition time over urban areas; to minimize vegetation 
effects, acquisition takes place beyond the growth period.  

a) Segmentation 
Similar to Module II – VHR-opt, the segmentation for the 

DSM is implemented in a fixed, hierarchical workflow and 
the parameters may be adjusted by the user.  

 

Figure 3.  Flowchart of UST-classification. 

Before the actual image segmentation is started, the DSM 
is filtered by a 5x5 median filter to remove artifacts and 
smooth the boundaries. Then, a basic segmentation level 
(L1) is created, which represents image objects at the size of 
one or several building blocks.  

This can be done either by multiresolution segmentation 
with a very high scale factor, or by importing an additional 
external data layer. An appropriate layer has turned out to be 
block boundaries provided by ATKIS (Official Topographic 
Cartographic Information System) which are nationwide 
available. This data proved to be advantageous as it can be 
used as initial segmentation level and as classification 
boundaries in the final step. Based on these spatial units, the 
algorithm calculates statistical parameters for each image 
object in L1 like minimum and maximum pixel value, 
quantiles and mean value of the blocks. Quantiles have 
proven to be more stable against outliers - which couldn’t be 
removed by the median filtering - so Q10 and Q99 serve as 
minimum and maximum pixel value, respectively. These 
parameters are applied with a contrast split segmentation 
algorithm on every object in L1 to separate bright (elevated) 
image objects from dark (non-elevated) image objects which 
are then created in a separate level below (L0). The contrast 
split is carried out separately for each super-object to gain 
best fitting, local splitting thresholds. To keep processing 
time low, only blocks which are classified as ‘built-up’ or 
blocks which exceed a threshold between the minimum and 
the maximum pixel value are selected for further processing. 
For very large objects in L1, a second contrast split 
segmentation with updated statistics can be performed to 
extract additional objects. The application of this method on 
the two data sets of Cologne and Dresden has shown the 
significant advantage - in terms of processing time and 
accuracy - of the hierarchical workflow to a scene-wide 
approach.  
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Figure 4.  Representation of building outlines derived by Ikonos (left) and 
DSM (right) (overlaid on Ikonos false-color composites 4/3/2). 

b) Object-oriented classification 
The first step in classification of the created image 

objects is to identify which objects actually represent 
building outlines. A fuzzy-logic classification approach is 
applied to separate building-objects from non-building 
objects. Several image object features are then evaluated 
regarding their relationship with their object-neighbors, the 
area of the object, and the relationship of its feature values 
and size to its super-object. The output of this first 
classification process is a ‘building mask’ showing the 
boundaries of the building polygons (fig.4). 

In the second step, the buildings are further classified 
based on their shape criteria. The building size can be 
described by its area and its elevation. Whereas the area for 
each image object is simply calculated by the number of 
pixels multiplied by the pixel size, the elevation of each 
building object has to be retrieved by calculating the 
difference of its mean absolute height to the mean absolute 
height of its next surrounding ground. For generalization 
reasons due to easier interpretation, the elevation of each 
building is expressed in floors. The number of floors for each 
object is estimated by dividing the elevation of the building 
by a constant – a mean value for a sample of visually 
inspected objects with reference data (field surveys and 
visual inspection of aerial imagery). A further criterion for 
the building classification (BC) is the shape of the buildings. 
For this purpose, a fuzzy logic classification – utilizing more 
than 20 features - is applied and classifies the buildings in – 
so far – five different building classes: ‘non-
residential/industrial’, ‘detached/semi-detached’, ‘terraced’, 
‘building blocks’ and ‘high-rise buildings’ (fig.5). On the 
basis of these built-up areas the building density is calculated 
on block level for further differentiation of the UST. 

B. Module II – VHR-opt 
The methodology of the workflow for VHR-opt (optical) 

satellite imagery on various sensors (Ikonos and Quickbird) 
was presented by [10] [13] [27] and proved to be a stable and 
transferable methodology for the derivation of various 
landcover classes in various urban areas. 

a)  Segmentation 
The hierarchical image segmentation optimization 

procedure aims at extracting real world segments in one 
single level. At first, a basic segmentation level (L-1) is 
created with a very low scale parameter which splits the 
image into rather small objects. This step is iteratively 
followed by optimization steps where image objects with a 
spectral similarity are merged together on the next 
segmentation level (L0) with an increased scale parameter. 
The same procedure is repeated until objects in the final 
segmentation level (L1) represent both small objects in 
highly structured areas (e.g. roofs, cars) and large combined 
objects with a high homogeneity (e.g. meadows). If this step 
is processed after Module I - DSM, the objects representing 
the building outlines are imported and kept throughout the 
segmentation and classification process. 

b) Object-oriented classification 
The final step of the first module is a multi-level fuzzy 

logic [30] based classification approach. The image objects 
are assigned to a class based on its individual membership 
value to the corresponding class. The classification process is 
a hierarchical process where objects in the optimized 
segmentation level (L1) are classified first until the final 
classification is reached on the basic segmentation level. To 
ensure a stable transferability, the membership functions of 
each class are based on the shape characteristics of the image 
objects, assuming that e.g. streets are represented similarly in 
various urban areas.  

Figure 5.  Perspective-view of classified buildings in Cologne overlaid on 
the building blocks with building elevation in proportion to their number of 

floors. 
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Figure 6.  Results of landcover classification for the study areas in Cologne (left) and Dresden (right) (overlaid on Ikonos false-color composites 4/3/2). 

The NDVI (normalized differenced vegetation index) is 
the only spectral information utilized for the classification 
process. The results of the landcover classifications of 
Module II – VHR-opt are shown in fig.6. 

C. Classification of UST 
The added-value of this joint analysis is fully utilized 

when the information of both data sets – high-resolution 
landcover classification and morphological information on 
buildings – contributes to the classification of urban 
structural types. As well as mere optical data lack detailed 
parameters for in-depth characterization of buildings, UST 
cannot be classified properly solely on the basis of buildings 
due to missing landcover information. In the last step of the 
classification process, all information derived from the data 
sets by Module I and Module II is utilized to classify the 
distinct UST. As mentioned above, UST are marked-off 
spatial units characterized by mostly homogeneous landcover 
and landuse. For the final classification of the urban 
structural types, three hierarchically arranged object-levels 
are utilized: the basic level is represented by the landcover 
classification, the second level holds the information for the 
buildings and the highest level is represented by the same 
block boundaries which served as basic segmentation level. 
In a first step, large water surfaces and large vegetated areas 
are extracted from the landcover classification into the 
highest level. Furthermore, blocks with a high percentage of 
vegetation cover and a very low building density are 
assigned to the distinct UST-class. Blocks holding 
information about classified buildings and building density in 

their sub-object-level are assigned to a class represented by 
the most frequent building type. When two building types are 
represented equally, the class is a mixed class of both. This 
extends the five basic building types to 16 built-up UST 
including a ‘mixed-type’ which is assigned when a block 
holds more than two different building types or when the 
buildings could not be classified to one of the basic building 
types. Together with four non-built-up classes 
(‘lawn/meadow’, ‘trees/woodland’, ‘water’ and ‘open 
space’) a total number of 20 different urban structural types 
is classified. 

IV. RESULTS AND DISCUSSION 
As mentioned above, the classification of UST in 

Germany is mostly based on visual interpretation of remotely 
sensed imagery and therefore prone to subjective 
interpretation by the operator. Additionally, a Germany-wide 
classification key – not to mention an entire classification – 
is missing. Therefore, the validation of the results has been 
carried out in three steps: accuracy assessment of buildings, 
the landcover classification and the UST. 

Table II lists the overall accuracy of detected buildings 
for the study areas: in Cologne, 88.5% of the buildings 
greater than or equal one floor from the reference data set 
(official digital building model Cologne, 2007) have been 
detected, and 98% for buildings greater than or equal two 
floors, respectively. The accuracies for the study area in 
Dresden show 81.2% detected buildings greater than or equal 
one floor and 102.6% greater than or equal two floors.  
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TABLE II.  ACCURACY ASSESSMENT OF BUILDING DETECTION (DATE 
OF DATA ACQUISITION IN BRACKETS). 

 

TABLE III.  ACCURACY ASSESSMENT OF FLOOR ESTIMATION. 

 

Reasons for this may be found in the temporal difference 
of the reference data set (official digital building model, 
Dresden, 2008) and the acquisition of the ALS-data. The 
elevation of the buildings is very crucial information for the 
determination of UST. Floors are derived by the mean 
elevation of each building divided by a mean floor-height, 
which was estimated as 3.35m. The overall accuracy of floor 
estimation show that 83.43% (Cologne) and 91.40% 
(Dresden) respectively, of the buildings have been estimated 
with a maximum deviation of one floor (Table III).  

 

TABLE IV.  ACCURACY ASSESSMENT OF LANDCOVER CLASSIFICATION. 

 

While for the majority of buildings lower than or equal 
four floors, the number of floors is classified correctly, a 
clear underestimation of floors for buildings higher than or 
equal five floors is observed. Visual inspection of 
underestimated buildings at four and five floors, show a high 
percentage of old buildings with higher average floor heights 
than recent developments. However, higher accuracies may 
be achieved with adjusted mean-floor heights for various 
kinds of buildings. 

Accuracy assessment of the landcover classifications was 
carried out by visual validation on the basis of 100 
randomized reference points for each class. The results are 
shown in Table IV. Generally, the classification accuracy 
strongly benefits by the joint analysis of the DSM and VHR-
satellite imagery and shows the potential of the integration of 
elevation and optical data. 

The final classification of the urban structural types for 
both study areas in Cologne and Dresden are presented in fig. 
7. In Cologne, 704 objects are represented as built-up after 
the final classification process. While 68.2% of the built-up 
blocks are assigned to one of the five basic building types, 
18.7% are classified as one of the 15 built-up classes which 
contain two building types. 13.1% of the blocks could not be 
assigned to a specific built-up class due to either more than 
two building types within the same block or because the 
building cannot be represented by one of the classes or by 
misclassification and is therefore classified as ‘mixed’. For 
the study area in Dresden, a total number of 739 built-up 
blocks was classified of which 41.5% have been assigned to 
one of the five basic built-up classes. While only 7.2% show 
an equal representation of two different built-up types, the 
majority (51.3%) of the built-up blocks was assigned to the 
class ‘mixed’ without further distinction of the comprised 
building types. Reasons for this are specific, but also 
frequent building types which could not be assigned to any 
of the five classes as well as a higher degree of heterogeneity 
within the blocks.  

 

Accuracy assessment of building detection 
 Cologne Dresden 

Nr. of 
buildings 

Reference 
(2007) 

Classification 
(2007) 

Reference 
(2008) 

Classification 
(2001) 

≥ 1 floors 2730 2417 4490 3648 

≥ 2 floors 2362 2316 3436 3524 

 Accuracy of  floor estimation % 
 Deviation of floors 

Cologne ≤ -2 -1 0 +1 ≥ +2 

2 floors - 1.49 78.77 18.25 1.49 

3 floors - 24.36 63.61 10.60 1.43 

4 floors 2.51 38.19 49.75 8.04 1.51 

5 floors 14.58 60.42 18.75 2.08 4.17 

≥ 6 floors 54.55 32.47 7.79 2.60 2.60 

31.38 43.79 8.31 
mean 14.33 

83.43 
2.24 

 Deviation of floors 

Dresden ≤ -2 -1 0 +1 ≥ +2 

2 floors - - 72.37 26.65 0.98 

3 floors - 16.90 71.83 10.62 0.65 

4 floors 2.21 35.29 59.56 2.70 0.25 

5 floors 12.50 77.27 9.09 1.14 - 

≥ 6 floors 26.42 66.04 7.55 - - 

39.10 44.08 8.22 
mean 8.22 

91.40 
0.38 

Accuracy assessment of landcover classification 
 Cologne Dresden 

LC class User 
accuracy % 

Producer 
accuracy % 

User 
accuracy % 

Producer 
accuracy % 

Buildings 95.00 87.16 95.00 79.83 
Impervious 

Surface 87.00 82.08 83.00 85.57 
Lawn / 

Meadow 87.00 89.69 89.00 80.91 

Shadow 96.00 100.00 94.00 98.95 
Tree / 

Woodland 80.00 82.47 71.00 89.87 
Water 

surface 95.00 100.00 100.00 100.00 

Overall 
accuracy % 90.12 88.93 



2009 Urban Remote Sensing Joint Event 
 

978-1-4244-3461-9/09/$25.00 ©2009 IEEE 

Figure 7.  Result of classification of UST for the study areas of Cologne (left) and Dresden (right) (overlaid on Ikonos false-color composites 4/3/2). 

 

V. CONCLUSION AND OUTLOOK 
In this paper we presented a straightforward, 

multisensoral approach for urban structuring in terms of 
urban structural types for two cities in Germany with 
different historical development and different urban fabric. A 
modular concept for urban structuring with both high-
resolution optical satellite imagery and a DSM derived by 
airborne laserscanning, has been implemented. Both modules 
are autonomously accessible and can be run independently 
from each other. In this way, a stepwise classification of 
UST – or solely landcover or building morphology – can be 
obtained. The developed methodology has focused on a 
stable and transferable extraction of the features for area-
wide application on two different study areas and showed an 

accurate classification of buildings, their elevation and 
landcover information. This information is utilized for the 
characterization of homogeneous blocks for the classification 
of UST and the results show the potential of this joint 
analysis. Future research will focus on the development of a 
nation-wide, further subdivided classification key for UST 
and the application on additional study areas for comparison 
of the urban morphology between various cities. 
Harmonisation of the classification of urban structural types 
in various cities also aims at future analysis of the integration 
of remote sensing and socioeconomic parameters, e.g. if 
similar urban morphology show similar socioeconomic 
parameters of the population residing there. 
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