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Abstract— In this paper we discuss the use of Particle Filter-
ing to estimate the values of several state variables describing
a user’s context. Since Particle Filtering algorithms are compu-
tationally efficient realizations of Bayesian Filters they perform
exceptionally well to optimally combine the a priori knowledge
stemming from behavioral models, such as movement models,
and the noisy measurements from sensors. The estimate at
each time step is obtained in the form of a probability density
function that represents the entire information and quantifies
the inherent uncertainty about the context.
The concept has been realized in simulations and experiments.
In this paper, the applied movement model is presented with
simulated measurements from GPS and compass sensors to
illustrate the concept.

I. INTRODUCTION

Navigation in outdoor areas with satellite navigation sys-
tems (GPS) is widespread and well established. Many appli-
cations for location based services rely on this infrastructure
and with the European Navigation System GALILEO, an
additional system will be available in the future. All these
mostly mobile services obtain the users location by using
one out of several positioning technologies. With location
and other additional information, personalized applications
and services such as restaurant finder can be provided.

One limitation of the technology used by GPS is the need
for line of sight from the receiver to at least four satellites.
In urban canyons, a user can receive misleading positioning
data due to multipath propagation of the signal, which makes
it difficult for the device to accurately calculate it’s position
from only the satellite range measurements.

Finally in indoor locations, the receiver sees a weak and
multipath afflicted signal. A position measurement that only
relies on GPS will then lead to a less accurate position
estimation.

Research projects [1] and many commercial applications
use systems with inertial measurement units (IMU) to pro-
vide location information during unavailability of satellites.
In such applications, the fusion of the sensor outputs is
commonly calculated using (Extended) Kalman Filtering
which is a form of Bayesian Filtering.

Particle Filtering is a more general Bayesian Filter algo-
rithm which has the advantage of not being subject to any
linearity or Gaussianity constraints in the models (see section
III). Particle filtering is therefore an appropriate method for
tracking a pedestrian.
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Using these algorithms and other previous work, namely
the SoftLocation concept [2], we developed a system to
simulate and measure a pedestrians position and his context.
This system and its performance will be presented and
analyzed in the following sections.

A description of the overall system is given in section II
and detailed information about the sensors is presented in
section IV.

A suitable movement model for pedestrians in various
situations is needed to enable the system to estimate a more
accurate position from the noisy measurements. Our devel-
oped movement model is described in section V. Thereafter,
simulation results with our framework are presented (section
VI).

A final outlook to the potentials of such a system, that can
estimate not only the position but also the context of a user
is given at the end of this paper in section VII.

II. SYSTEM OVERVIEW

We developed a distributed demonstration and simulation
environment for mobility, location and context applications.
This system aims at comparing different algorithms for
position estimation and shows the tracking of a pedestrian
equipped with various sensors. Its components and the over-
all structure (fig. 1) are presented in this section.

The main parts are:

• Hardware Sensor Platform (blue, I): It is used to
physically connect sensors - often via serial interfaces
- and to convert the data output to a common format.

• Location Server (red, II): It handles all location objects
and their parameters.

• Fusion Engine (green, III): It implements the data fusion
algorithms and filtering methods.

• Visualization Server (yellow, IV): It analyzes and vi-
sualizes all the objects (data, maps and particles) that
need to be displayed to the user. It also provides a
control panel for the manipulation of parameters and
the selection of visualized items.

The data can be fused locally on the sensor platform.
Alternatively it can be sent to a server in real time - using any
available network - for further processing. In addition, all the
sensors can be replaced by simulated objects for statistical
analysis of certain parameters.

A. Software details

Our implementation of the core system and the sensor
platform consists of a simulation system and a live system.
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Fig. 1. Information flow between the different system components

It is entirely implemented in Java (J2SE v1.4) to achieve a
platform independent tool.

In the current experimental setup, the pedestrian carries a
notebook mounted on a backpack. The location sensors can
be attached to this computer. A mobile data link transfers
the sensor data over an IP network to a server side, where
the measurements are processed and visualized.

Using the live system, all available sensors (see sub-
section IV) provide the software with real measured data
(e.g. NMEA data from GPS receivers). This data is converted
into an internal coordinate system and passed to the location
server for further processing.

The server can also be provided with simulated position
and direction measurements, where measurement errors due
to noisy sensor data can be easily adjusted for performance
analysis.

III. BACKGROUND PARTICLE FILTERING

Particle Filters represent probability densities of the states
xk by a set of random samples (Monte Carlo Sampling).
The samples (=particles) are distributed according to these
PDFs. Each of these particles has an associated weight. The
samples with higher values of the continuous PDF will have
more particles and these particles will have higher weights
[3].

The posterior is:

p(xk|z1:k) ≈
Np∑
i=1

wi
kδ(xk − xi

k) (1)

where: Np is the number of particles (samples),
{xi

k, i = 0, . . . , Ns} is the set of sampled states, and
{wi

k, i = 0, . . . , Ns} is the weight of the sampled state.

For large numbers of samples the random (Monte Carlo)
sampling approximation converges to the usual functional
description of the posterior PDF, and the particle filter
approaches the optimal Bayesian estimate.

Particle Filtering for state estimation also relies on the
general dynamic system model with

• a movement model which describes the transitions be-
tween the different states of the particles

• and a measurement model, where all the characteristics
of the sensors are described.

These two models are applied sequentially in a prediction
step and in an update step. They form a first order Hidden
Markov Model for the estimation of the states. The general
Bayesian description for this prediction and update step is
shown by equations (2) and (3). We start with:

p(xk|z1:k−1) =
∫

p(xk|xk−1)p(xk−1|z1:k−1)dxk−1 (2)

where: p(xk|xk−1) is the conditional PDF of any state xk at
time k given the previous state xk−1, and p(xk−1|z1:k−1)
is the PDF of the previous state xk−1 given the history
of the measurements z1:k−1 up to time k − 1. The PDF
p(xk−1|z1:k−1) is assumed to be available at time k − 1.
The posterior becomes:

p(xk|z1:k) = αkp(zk|xk)p(xk|z1:k−1) (3)

where: p(zk|xk) is the conditional PDF of any measurement
zk at time k given the state xk at the same time. It is also
called the likelihood, and p(xk|z1:k−1) is the prior PDF of
the state xk at time k given the history of measurements
z1:k−1 up to time k−1, and αk is the normalization constant

1
p(zk|z1:k−1)

.
Monte Carlo (MC) methods have the advantage of not

being subject to any linearity or Gaussianity constraints in the
model, and they also have appealing convergence properties.

In our work, we use SIR Particle Filter (sampling impor-
tance resampling) as presented in [4].

IV. SENSORS AND ALGORITHMS

As mentioned earlier in section II, our software framework
can be easily extended by new sensors. These sensors are
connected to a specific hardware interface from which a
Sensor class extracts and provides the measurement data.
A Measurement class collects the measurements from the
Sensor class and prepares them for the Likelihood
Function class where the likelihood functions p(zk|xk)
are generated. They are needed according to equation (3) in
the update stage of particle filtering.

To describe the possible errors of the sensors, Gaussian
noise is added to the states in the measurement model of
each sensor. These parameters mean (μ) and sigma (σ) have
to be analyzed and determined individually for each sensor.

Currently, our system incorporates an electronic compass
and a GPS receiver as sources for location and direction.
Other sensors like range measurement equipment, proximity



sensors, street maps and floor plans can easily be integrated
due to a software structure with a common interface (API).

A. GPS

The GPS receiver (RoyalTek Bluetooth receiver RBT
1000) provides coordinates in the WGS84 Format (World
Geodetic System 1984) to the host computer via the NMEA-
Protocol.

As GPS devices provide information about the geometric
strength of the satellite configuration (DOP - Dilution of Pre-
cision), these values are extracted for further processing. We
use the DOP values to model the Gaussian GPS positioning
error in the measurement model.

B. Compass

A Palm Navigator electronic compass from Precision
Navigation, Inc. was used. If aligned and calibrated correctly
it gives the heading of the user which is seen as an extremely
important measurement for location based services in indoor
scenarios.

C. RFID

The interface for this type of sensor is currently under
development. An RF-signal-strength based approach is cho-
sen and further work will be carried out in this area. So far,
a simulation class for RFID Sensors is available. The class
shows the proximity effect of this short range identification
technology. The achievable range of such systems is up to
20m with directional antennas and active transponders in the
UHF band.

D. WirelessLAN/Bluetooth

There are already some systems available that rely on the
measurement of signal strength output from WirelessLAN
access points [5], [6]. They show very promising perfor-
mances even in indoor scenarios, so that it is intended to
first interface to such a system rather than implement another
integrated solution.

E. Floor Plan

Map based positioning and floor plans are very important
in indoor scenarios, as they give valuable a-priori information
regarding areas in which a person can move. The representa-
tion of maps as reasonable likelihood functions is therefore
a key concept in our framework.

V. MOVEMENT MODEL

Having a movement model that reproduces the behavior
of the underlying dynamic system is a prerequisite for the
application of Bayesian filtering algorithms. In the case of
tracking moving objects, the prediction stage (equation (2))
relies on such a movement model to compute the probability
density p(xk|xk−1) of the system state for time step k,
given a certain configuration of the state at step k-1. In the
context of particle filtering, this density is used to sample a
particle’s new state during each step of the filter algorithm.
The development of a suitable movement model was a major
focus for the work presented here.

In our case, we model how moving speed and direction
of a person depend on his state. Several parameters affect
the movement of a human being. Speed and direction at a
certain time instant directly affect the position of a person at
the next point in time. Speed and direction are affected by
additional state variables, such as the current activity of the
person, his activeness, disorientation and emotions.

A. State Variables

Our human movement model is, therefore, parameterized
at the physical level by the parameters speed, direction and
position in space. We also introduce Ns additional movement
influencing state variables that affect these physical param-
eters, and which are categorized into three groups (see also
figure 2):

1) The first group: is directly dependent on the current
position (and direction) of the pedestrian. For examples of
this category one can name the surface steepness or the
density of physical obstacles at the pedestrian’s position. In
our implementation, a manually edited gray scale map of
the area of interest is used to model the states pertaining to
steepness and obstacles, where different gray levels represent
different state values.

2) The second group: are static values since they do not
depend on the previous time step, and they are assumed to
be known by the system. They are called “known system
parameters”; an example is the age of the person and can be
derived from external data sources or manual input data.

3) The third group: cannot be measured directly or stored
in a database because they vary according to the human
behavior. These are states where such attributes as emotions,
activeness, activity and arousal play an important role, and
they are modeled using Markov models. The idea of using
Markov chains for describing human behaviors could also
be found in [7], [8] and [9]. Transition probabilities of these
Markov models are set according to a-priori assumptions
[10]. In our implementation they are set on a one second
time interval base.

For our model, we consider Ns = 11 parameters that affect
the human movement to a certain degree (see table I). This
list can be extended for more complex scenarios or different
applications.

Type of state state weight
1: Position dependent obstacles 8

steepness 8
weather 5

2: System defined age 6
time of day 4
weekday 4
activity 11

3: Dependent on disorientation 12
individual user emotion 2

arousal 3
activeness 6

TABLE I

PARAMETERS THAT AFFECT THE HUMAN MOVEMENT
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Fig. 2. Movement model with three different types of states for the determination of μ and σ

It is important to point out that the given parameters
are chosen more or less arbitrarily in order to study the
general idea of non-movement context variables influencing
movement variables and vice versa and the possibility to
infer these variables from each other. While we tried to
make reasonable assumptions, we do not suggest that either
the specific selection, their parametrization, dependencies or
their associated weights assumed for this study model the
real world exceptionally well.

Age (walking)
Mean
speed
(m/min)

Mean
direction
(degrees)

Sigma
speed
(m/min)

Sigma
direction
(degrees)

Child (a=0) 45 old direction 15 45
Mid (a=0.5) 82 old direction 13 15
Old (a=1.0) 60 old direction 11 30

TABLE II

AGE STATISTICS

B. Calculation of new Speed and Direction

We applied some known physiological and psychological
evaluations [10] to parameterize our model assuming Gaus-
sian distributions for its main physical random variables;
speed v and direction α.

Relationships between the mean and the standard deviation
of the user’s speed and direction, and the specific values of
each of the Ns = 11 state variables were based on statistical
data [10], [11], as well as common-sense assumptions.

For each variable in turn, and here for the mean and stan-
dard deviation of speed and direction, a table of dependency
between the state variable (e.g. Age = Child, Mid or Old) and
the corresponding means and sigmas was set up (table II).
Then, curve fitting was used to generate simple polynomial
expressions out of these tables. These expressions can be
found in the movement model (figure 2) as “μ, σ equations”.
For example, the resultant equations that relate the age state
variable (the user’s normalized age = a; 0 ≤ a ≤ 1) to the

means and standard deviations of speed and direction are
shown in equations (4) to (7):

μage
v = −118 · a2 + 133 · a + 45 (4)

σage
v = −4 · a + 15 (5)

μage
α = α(k − 1) (6)

σage
α = 90 · a2 − 105 · a + 45 (7)

where μ
age
v , is the mean speed, σ

age
v is the standard deviation

of speed, μ
age
α is the mean direction, and σ

age
α is the standard

deviation of direction. Thus our Ns state variables of table (I)
result in Ns means and standard deviations for speed and
direction: μi

v , σi
v , μi

α, and σi
α; 1 ≤ i ≤ Ns.

So far, these Ns states assume that each parameter in-
dependently influences the next chosen means and standard
deviations of speed and direction. The next step is to combine
these to a single new mean and standard deviation for speed
and direction. This is done by applying simple linear weight-
ing of these means and standard deviations. For example,
the weighted average of the mean of the new speed, μv , is
calculated by:

μv =
∑Ns

i=1 μv,i · γi∑Ns

i=1 γi

(8)

where γi is the weight corresponding to the i-th state
variable (see table I). Finally, μv(k) is limited such that:

−� vmin ≤ μv(k) − μv(k − 1) ≤ �vmax (9)

where �vmax and �vmin specify the maximum acceleration
and deceleration, respectively (speed change over a single
interval from k−1 to k). These two limits represent the
maximum acceleration and deceleration that a normal human
being can undergo during the time interval of interest.
Calculating the final mean and standard deviation is the task
of the “μ-σ Combiner” module in figure 2.



We can now use the mean speed (μv), the mean direction
(μα), the standard deviation of speed (σv) and the standard
deviation of direction (μα) at time step k to parameterize
two assumed Gaussian distributions. New speed and new
direction values vk and αk are then sampled from their
respective Gaussian distributions [12].

C. Position Calculation

The sampled speed and direction will be used to calculate
the new position for the next time step using the equations
of motion as shown in figure 2. The distance l travelled by
the pedestrian within a time duration of �t and with a speed
v can be calculated according to:

lk = vk · �t (10)

The new position can be calculated as follows, using these
motion expressions:

x(k + 1) = x(k) + lk · cos[α(k + 1)] (11)

y(k + 1) = y(k) + lk · sin[α(k + 1)] (12)

The new position (x(k + 1), y(k + 1)) will be the input
to the movement model at the next time step k+1 to
continue the prediction. The movement model will use this
new position to calculate obstacles and steepness states for
the next time step. The old activity, orientation, arousal,
emotions, activeness conditions are used to calculate their
new conditions at the next time step according to their
appropriate Markov models.

VI. MEASUREMENTS AND SIMULATIONS

In this section we present the results of simulations
with noisy measurements which lead to position errors. We
quantify the influence by computing the average (absolute)
position error. This error is strongly dependent on the number
of particles used in the fusion algorithm. These results help
to find optimal parameters for the measurements with real
sensors and they show in a promising way, that even very
noisy measurements can be used to improve the position
estimation.

In our location server, we replaced real sensor data by a
simulation class for a GPS receiver and a compass due to
lack of a reference measurement giving ground truth data.

To simulate the error of the measurement equipment,
Gaussian noise was added to the simulated “true” values.
The errors are expressed by variance σ (standard deviation)
around the predefined values (position, angle). This standard
deviation was then varied as indicated in the figures. These
noisy simulated measurements are finally fed into the particle
filter and the result of this step is the position estimation
which is then compared to the true position of the pedestrian.

A. GPS variation

This comparison gives a quantitative measure for the
performance of the particle filter. The results for average
positioning errors versus the number of used particles are
presented in figure 3. The different curves (except the upper
black one) have resulted from different standard deviations
for the GPS, whilst the compass has a fixed σ of 25◦.

It is visible that as the standard deviation decreases, the
average position error decreases also. As expected, using
a more accurate GPS receiver (or satellite constellation;
DOP) results in a more accurate location estimation. This
figure also shows that having a large number of particles
compensates for the noisy GPS receiver.

The average absolute error with particle filtering is lower
than the error of the GPS sensor. This can be shown if we
do not use particle filtering at all. The analytical approach
to this is the combination of two random variables (x- and
y-components of the position measurement), which then has
Rayleigh distribution according to [13]: z =

√
x2 + y2. A

standard deviation of the GPS of σ = 25m leads to a mean
position error of: E{z} = σ

√
π
2 = 31.33285m, which is

significantly higher than the filtered measurements with an
error of around 10m (blue line in figure 3).

Compared to a very simple movement model, our im-
proved movement model has shown a noticeable reduction
in the average position error. The performance of this simple
model (only particles implement the simple model) is shown
in the upper black curve. In this model, the standard deviation
of the GPS is assumed to be 25m and the speed can only
change between two states: 0m/s and 2m/s. Gaussian noise
is added to the speeds and the compass heading. The new
positions are calculated from the old position, the speed,
the angle and the time between the measurements. Still,
the comparison to a real walking human is missing. This
is subject of further research, when our reference system is
established.
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B. Compass variation

A very interesting effect can be shown in figure 4. Here,
the variance of the GPS error is fixed, and the variance of
the compass error is varied. The compass noise does not
only affect the direction estimation, but also the position
estimation as can be seen from the figure and also from the
equations (11) and (12).

Increasing the accuracy of the compass reduces the po-
sition error to some extent. It can also be seen that for
few particles (less than 2000) and a very accurate compass
(compass is simulated to be very precise with only 0.5◦

standard deviation) the system does not converge. This is
because all the particles vanish during the resampling step
of the filter as they obtain very low weights if they do not
move exactly in the direction of the tracked object.

Since the computation time increases linearly with the
number of particles used, it takes apparently longer until
a steady state is reached in the case of smaller standard
deviation of the simulated compass error. However, the
absolute positioning error is of course smaller as mentioned
before.
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VII. SUMMARY AND OUTLOOK

Our framework is able to collect data from various sensors
and combine them in a reasonable way. This is done by a
common interface to the location server, which uses particle
filtering with a special human movement model for the
location estimation of pedestrians. Finally all the generated
location objects can be displayed by the visualization server
(see figure 1).

The setup can be used in a real time environment with
attached sensors as well as a simulation system with various
sensors, that are probably not even yet available.

The results of the performed simulations show in a promis-
ing way, how a good movement model can be used to
improve the position estimation from noisy sensor data. In
our case, we characterized the human walk by different

human specific system states and Markov models. Each
particle in the system holds such individual states.

In our simulations with particle filtering we could demon-
strate an enhancement of the noisy position estimation com-
pared to the unfiltered values. This is an advantage especially
in indoor scenarios where satellite navigation is difficult. The
enhancement is dependent on the quality of the movement
model and on the noise of the measured data (section VI).

For numbers of particles over 2000, no further significant
error reduction could be achieved. In the case of a very
strictly defined measurement accuracy, the system sometimes
did not converge with less than 2000 particles and much more
particles were needed to reach the steady state.

We are working on an absolute reference system for the
real position of the pedestrian to give results regarding the
absolute position accuracy. This is subject to further research
in indoor scenarios, where the developed algorithms and
software will be used to track a user with measurements from
RFID-Beacons, Bluetooth Access Points and cheap Inertial
Measurement Units (IMU). Tuning of the movement model
and additional states of the particles will hopefully further
increase the accuracy of an estimation of the user’s position
and his situation.
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