
A

Don’t Sit on the Fence: A Static Analysis Approach to Automatic
Fence Insertion

JADE ALGLAVE, Microsoft Research, University College London
DANIEL KROENING, University of Oxford
VINCENT NIMAL, Microsoft Research
DANIEL POETZL, University of Oxford

Modern architectures rely on memory fences to prevent undesired weakenings of memory consistency. As the
fences’ semantics may be subtle, the automation of their placement is highly desirable. But precise methods
for restoring consistency do not scale to deployed systems code. We choose to trade some precision for genuine
scalability: our technique is suitable for large code bases. We implement it in our new musketeer tool, and
report experiments on more than 700 executables from packages found in Debian GNU/Linux 7.1, including
memcached with about 10,000 LoC.

1. INTRODUCTION
Concurrent programs are hard to design and implement, especially when running on
multiprocessor architectures. Multiprocessors implement weak memory models, which
feature, e.g., instruction reordering and store buffering (both appearing on x86), or
store atomicity relaxation (a particularity of Power and ARM). Hence, multiprocessors
allow more behaviours than Lamport’s Sequential Consistency (SC) [Lamport 1979],
a theoretical model where the execution of a program corresponds to an interleaving
of the operations executed by the different threads. This has a dramatic effect on
programmers, most of whom learned to program with SC.

Fortunately, architectures provide special fence (or barrier) instructions to prevent
certain behaviours. Yet both the questions of where and how to insert fences are
contentious, as fences are architecture-specific and expensive in terms of runtime.

Attempts at automatically placing fences include Visual Studio 2013, which offers an
option to guarantee acquire/release semantics (we study the performance impact of this
policy in Section 2). The C++11 standard provides an elaborate API for inter-thread
communication, giving the programmer some control over which fences are used, and
where. But the use of such APIs might be a hard task, even for expert programmers.
For example, Norris and Demsky [2013] reported a bug found in a published C11
implementation of a work-stealing queue.

We address here the question of how to synthesise fences, i.e., how to automatically
place them in a program to enforce robustness/stability [Bouajjani et al. 2011; Alglave
and Maranget 2011], which implies SC. This should lighten the programmer’s bur-
den. The fence synthesis tool needs to be based on a precise model of weak memory.
In verification, models commonly adopt an operational style, where an execution is
an interleaving of transitions accessing the memory (as in SC). To address weaker
architectures, the models are augmented with buffers and queues that implement the

This work is supported by SRC 2269.002, EPSRC H017585/1 and ERC 280053.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© YYYY ACM 0164-0925/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/111028557?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A:2 J. Alglave et al.

features of the hardware. Similarly, a good fraction of the fence synthesis methods,
e.g., Linden and Wolper [2013], Kuperstein et al. [2010], Kuperstein et al. [2011], Liu
et al. [2012], Abdulla et al. [2013], and Bouajjani et al. [2013] rely on operational models
to describe executions of programs.

Challenges. Methods using operational models inherit the limitations of methods
based on interleavings, e.g., the “severely limited scalability”, as Liu et al. [2012] put it.
Indeed, none of them scale to programs with more than a few hundred lines of code,
due to the very large number of executions a program can have. Another impediment to
scalability is that these methods establish if there is a need for fences by exploring the
executions of a program one by one.

Finally, considering models like Power or ARM makes the problem significantly
more difficult. Intel x86 offers only one fence (mfence), but Power offers a variety of
synchronisation mechanisms: fences (e.g., sync and lwsync) and dependencies (address,
data, or control). This diversity makes the optimisation more subtle: one cannot simply
minimise the number of fences, but rather has to consider the costs of the different
synchronisation mechanisms; for instance, it might be cheaper to use one full fence
than four dependencies.

Our approach. We tackle these challenges with a static approach. Our choice of model
almost mandates this approach: we rely on the axiomatic semantics of Alglave et al.
[2010]. We feel that an axiomatic semantics is an invitation to build abstract objects
that embrace all the executions of a program.

Previous works, e.g., [Shasha and Snir 1988; Alglave and Maranget 2011; Bouajjani
et al. 2011; Bouajjani et al. 2013], show that weak memory behaviours boil down to
the presence of certain cycles, called critical cycles, in the executions of the program.
A critical cycle essentially represents a minimal violation of SC, and thus indicates
where to place fences to restore SC. We detect these cycles statically, by exploring an
over-approximation of the executions of the program.

Contributions. We describe below the contributions of our paper:

— A self-contained introduction to axiomatic memory models, including a detailed ac-
count of the special shapes of critical cycles (Section 4).

— A fence inference approach, based on finding critical cycles in the abstract event
graph (aeg) of a program (Section 5), and then computing via a novel integer linear
programming formulation a minimal set of fences to guarantee sequential consistency
(Section 6). The approach takes into account the different costs of fences, and is sound
for a wide range of architectures, including x86-TSO, Power, and ARM.

— The first formal description of the construction of aegs (Section 5.4), and a correctness
proof showing that the aeg does capture all potential executions of the analysed pro-
gram (Section 5.5). This includes a description of how to correctly use overapproximate
points-to information during the construction of the aeg. The aeg abstraction is not
specific to fence insertion and can also be used for other program analysis tasks.

— A formalisation of the generation of the event structures and candidate executions of
a program in the framework of Alglave et al. [2010] (Section 5.5). This has in previous
work only been treated informally.

— An implementation of our approach in the new tool musketeer and an evaluation and
comparison of our tool to others (Sections 2 and 7). Our evaluation on both classic
examples (such as Dekker’s algorithm) and large real-world programs from the Debian
GNU/Linux distribution (such as memcached which has about 10,000 LoC) shows
that our method achieves good precision and scales well.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:3

— A study of the performance impact of fences inserted by different fence insertion
methods (Sections 2 and 7.3). For this study we implemented several of the competing
approaches (such as pensieve).

— A description of how to insert fences into a C program using inline assembly and
taking into account data, address, and control dependencies (Section 7.1).

Outline. We discuss the performance impact of fences in Section 2, and survey related
work in Section 3. We give an introduction to axiomatic memory models in Section 4.
We detail how we detect critical cycles in Section 5, and how we place fences in Section 6.
In Section 7, we report on an experimental comparison between the existing methods
and our new tool musketeer. We provide full sources, benchmarks and experimental
reports online at http://www.cprover.org/wmm/musketeer.

2. MOTIVATION
Before considering elaborate methods for the placement of fences, we investigated
whether naive approaches to fence insertion indeed have a negative performance
impact.

There is surprisingly little related work; we found [Sura et al. 2005; Marino et al.
2011; Spear et al. 2009; Fang et al. 2003]. Nevertheless, fences are considered to be
amongst the most expensive instructions: Herlihy and Shavit [2008] write that “memory
barriers are expensive (100s of cycles, maybe more), and should be used only when
necessary.” Bouajjani et al. [2011] benchmarked x86’s mfence (see http://concurrency.
informatik.uni-kl.de/trencher.html), and observe that it has a significant cost when
used in isolation. Similar observations were made by Alglave and Maranget [2011] (also
see http://offence.inria.fr/exp/speed.html).

We measured the overhead of different fencing methods on a stack and a queue from
the liblfds lock-free data structure package (http://liblfds.org). For each data structure,
we create a harness (consisting of 4 threads) that concurrently invokes its operations.

We built several versions of the above two programs:

— (M) with fences inserted by our tool musketeer;
— (P) with fences following the delay set analysis of the pensieve compiler [Sura et al.

2005], i.e., a static over-approximation of Shasha and Snir’s eponymous (dynamic)
analysis [Shasha and Snir 1988];

— (V) with fences following the Visual Studio policy, i.e., guaranteeing acquire/release
semantics (in the C11 sense [C11 2011]) for reads and writes of volatile variables
(see http://msdn.microsoft.com/en-us/library/vstudio/jj635841.aspx, accessed 04-11-
2013). We emphasise that this method does not guarantee SC, and we include it only
as a comparison point here. On x86, no fences are necessary to enforce acquire/release
semantics, as the model is sufficiently strong already. Hence, we only provide data for
ARM.

— (E) with fences after each access to a shared variable;
— (H) with an mfence (x86) or a dmb (ARM) after every assembly instruction that writes

(x86) or reads or writes (ARM) any global or heap-allocated data.

These experiments required us to implement (P), (E), and (V) ourselves, so that they
would handle the architectures that we considered. This means in particular that our
tool provides the pensieve policy (P) for TSO, Power, and ARM, whereas the original
pensieve targeted Java only.

We compiled all the program versions, i.e., both the original program and the program
with fences inserted according to the different fencing strategies, with gcc -O0. We ran
all versions 100 times on an x86-64 Intel Core i5-3570 with 4 cores at 3.40 GHz and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 J. Alglave et al.

N/A

(a) stack, x86

M P V E H
0

10

20

30

0.5
3.6

9.7

27.8

O
v
er
h
ea

d
(i
n
%
) (b) stack, ARM

M P V E H
0

10

20

0.7

6.3
3.6

11.5

22.8

O
v
er
h
ea

d
(i
n
%
)

N/A

(c) queue, x86

M P V E H
0

10

20

30

0.7

8.2 9.4

28.4

O
v
er
h
ea

d
(i
n
%
) (d) queue, ARM

M P V E H
0

5

10

15

20

0.9
2.8

4.7 4.1

17.7

O
v
er
h
ea

d
(i
n
%
)

Fig. 1. Overheads for the different fencing strategies.

stack on x86 stack on ARM queue on x86 queue on ARM
(M) [10.059; 10.089] [11.950; 11.973] [12.296; 12.328] [21.419; 21.452]
(P) [10.371; 10.400] [12.608; 12.638] [13.206; 13.241] [21.818; 21.850]
(V) N/A [12.294; 12.318] N/A [22.219; 22.255]
(E) [10.989; 11.010] [13.214; 13.259] [13.357; 13.390] [22.099; 22.128]
(H) [12.788; 12.838] [14.574; 14.587] [15.686; 15.723] [24.983; 25.013]

Fig. 2. Confidence intervals for the mean execution times (in sec) for the data structure experiments.

4 GB of RAM, and on an ARMv7 (32-bit) Samsung Exynos 4412 with 4 cores at 1.6 GHz
and 2 GB of RAM.

For each program version, Figure 1 gives the mean overhead w.r.t. the unfenced
program. We give the overhead (in %) in user time (as given by Linux time), i.e., the
time spent by the program in user mode on the CPU. Amongst the approaches that
guarantee SC (i.e., all but V), the best results were achieved with our tool musketeer.

We checked the statistical significance of the execution time improvement of our
method over the existing methods by computing and comparing the confidence intervals
for the mean execution times. The sample size is N = 100 and the confidence level is
1− α = 95%. The confidence intervals are given in Figure 2. If the confidence intervals
for two methods are non-overlapping, we can conclude that the difference between the
means is statistically significant.

As discussed later in Section 5.1, the fence insertion approaches compared in this
section analyse C programs while assuming a straightforward compilation scheme to
assembly in which accesses are not reordered or otherwise optimised by the compiler.
Thus, sound results are only achieved when using compilation settings that guarantee
these properties (e.g., gcc -O0).

Nevertheless, we also compared the approaches when compiling with -O1 to get an
estimate about how the different approaches would fare when allowing more compiler
optimisations. We observed that on x86 the runtime decreased between 1% and 9%.
On ARM the runtime decreased between 3% and 31%. The relative performance of
the different approaches remained the same as with -O0, i.e., the best runtime was
achieved with musketeer (M) while the approach H (fence after every access to static
or heap memory) was slowest. We give the corresponding data online at http://www.
cprover.org/wmm/musketeer.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:5

authors tool model style objective
Abdulla et al. [2013] memorax operational reachability
Alglave et al. [2010] offence axiomatic SC
Bouajjani et al. [2013] trencher operational SC
Fang et al. [2003] pensieve axiomatic SC
Kuperstein et al. [2010] fender operational reachability
Kuperstein et al. [2011] blender operational reachability
Linden and Wolper [2013] remmex operational reachability
Liu et al. [2012] dfence operational specification
Sura et al. [2005] pensieve axiomatic SC
Abdulla et al. [2015] persist operational persistence

Fig. 3. Overview of existing fence synthesis tools.

3. RELATED WORK
The work of Shasha and Snir [1988] is a foundation for much of the field of fence
synthesis. Most of the work cited below inherits their notions of delay and critical cycle.
A delay is a pair of instructions in a thread that can be reordered by the underlying
architecture. A critical cycle essentially represents a minimal violation of sequential
consistency.

Figure 3 classifies the methods that we compare to w.r.t. their style of model (oper-
ational or axiomatic). The table further indicates the objective of the fence insertion
procedure: enforcing SC, preventing reachability of error states (i.e., ensuring safety
properties), or other specifications (such as enforcing given orderings of memory ac-
cesses).

We report on our experimental comparison to these tools in Section 7. We now
summarise the fence synthesis methods per style. We write TSO for Total Store Order,
implemented in Sparc TSO [SPARC 1994] and Intel x86 [Owens et al. 2009]. We write
PSO for Partial Store Order and RMO for Relaxed Memory Order, two other Sparc
architectures. We write Power for IBM Power [Power 2009].

3.1. Operational models
Linden and Wolper [2013] explore all executions (using what they call automata accel-
eration) to simulate the reorderings occuring under TSO and PSO. Abdulla et al. [2013]
couple predicate abstraction for TSO with a counterexample-guided strategy. They
check if an error state is reachable; if so, they calculate what they call the maximal
permissive sets of fences that forbid this error state. Their method guarantees that the
fences they find are necessary, i.e., removing a fence from the set would make the error
state reachable again. A precise method for PSO is presented by Abdulla et al. [2015].

Kuperstein et al. [2010] explore all executions for TSO, PSO and a subset of RMO,
and along the way build constraints encoding reorderings leading to error states.
The fences can be derived from the set of constraints at the error states. The same
authors [Kuperstein et al. 2011] improve this exploration under TSO and PSO using
an abstract interpretation they call partial coherence abstraction, relaxing the order
in the write buffers after a certain bound, thus reducing the state space to explore.
Meshman et al. [2014] synthesise fences for infinite-state algorithms to satisfy safety
specifications under TSO and PSO. The approach works by refinement propagation:
They successively refine the set of inferred fences by combining abstraction refinements
of the analysed program. Liu et al. [2012] offer a dynamic synthesis approach for
TSO and PSO, enumerating the possible sets of fences to prevent an execution picked
dynamically from reaching an error state.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 J. Alglave et al.

Bouajjani et al. [2013] build on an operational model of TSO. They look for minimum
violations (viz. critical cycles) by enumerating attackers (viz. delays). Like us, they use
integer linear programming (ILP). However, they first enumerate all the solutions, then
encode them as an ILP, and finally ask the solver to pick the least expensive one. Our
method directly encodes the whole decision problem as an ILP. The solver thus both
constructs the solution (avoiding the exponential-size ILP problem) and ensures its
optimality.

Abdulla et al. [2015] investigate a new property called persistence as a comprise
between optimality and efficiency. A TSO program is persistent if, for any trace t, there
exists an SC trace t′ in which the program order and store order between events are
identical to those in t. If a program is not persistent, the tool persist uses patterns to
find fragility – the cause of non-persistence – and infers a set of fences.

All the approaches above focus on TSO and its siblings PSO and RMO, whereas
we also handle the significantly weaker Power model, including subtle barriers (e.g.,
lwsync), compared to the simpler mfence of x86.

3.2. Axiomatic models
Krishnamurthy and Yelick [1996] apply Shasha and Snir’s method to single program
multiple data systems. Their abstraction is similar to ours, except that they do not
handle pointers. Moreover, since their programs are symmetrical, their abstraction can
be much smaller than in the general case.

Lee and Padua [2001] propose an algorithm based on Shasha and Snir’s work. They
use dominators in graphs to determine which fences are redundant. This approach was
later implemented by Fang et al. [2003] in pensieve, a compiler for Java. Sura et al.
later implemented a more precise approach in pensieve [Sura et al. 2005] (see (P) in
Section 2). They pair the cycle detection with an analysis to detect synchronisation that
could prevent cycles.

Alglave et al. [2010] revisit Shasha and Snir for contemporary memory models and
insert fences following a refinement of [Lee and Padua 2001]. Their offence tool handles
snippets of assembly code only, where the memory locations need to be explicitly given.

3.3. Others
The work of Vafeiadis and Zappa Nardelli [2011] presents an optimisation of the certified
CompCert-TSO compiler to remove redundant fences on TSO.

Marino et al. [2011] experiment with an SC-preserving compiler, showing overheads
of no more than 34 %. Nevertheless, they state that “the overheads, however small, might
be unacceptable for certain applications”.

Bender et al. [2015] provide a fence insertion approach to enforce a set of declared
orderings between memory accesses. They model the fence synthesis problem as a
minimum multi-cut problem on the control flow graph, and determine the set of fences
necessary to additionally enforce the orders that are not already enforced by the
architecture (in the absence of fences).

Joshi and Kroening [2015] provide a fence synthesis approach based on bounded
model checking that aims at deducing a set of fences sufficient to guarantee the asser-
tions in the program. They iteratively consider counterexamples of increasing length,
and reduce the problem of finding a set of fences to computing the minimum hitting set
over a set of reorderings.

Lustig et al. [2015] describe a dynamic fence insertion approach. Based on a descrip-
tion of the memory model of the source and target architecture, they generate a finite
state machine that dynamically translates code compiled for the source memory model
to correctly execute on hardware implementing the target memory model.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:7

4. AXIOMATIC MEMORY MODELS
Weak memory effects can occur as follows: a thread sends a write to a store buffer, then
to a cache, and finally to memory. While the write transits through buffers and caches,
reads can occur before the written value is available in memory to all threads.

To describe such situations, we use the framework of Alglave et al. [2010], embracing
in particular SC, Sun TSO (i.e., the x86 model [Owens et al. 2009]), Power, and ARM.
In this framework, a memory model is specified as a predicate on candidate executions.
The predicate indicates whether a candidate execution is allowed (i.e., may occur) or
disallowed (i.e., cannot occur) on the respective architecture. A candidate execution is
represented as a directed graph. The nodes are memory events (reads or writes), and
the edges indicate certain relations between the events. For example, a read-from (rf)
edge from a write to a read indicates that the read takes its value from that write.

We illustrate this framework in the next section using a litmus test (Figure 4).
A litmus test is a short concurrent program together with a condition on its final state.
The given litmus test consists of two threads, which access shared variables x and y.
The shared variables are assumed to be initialized to zero at the beginning. The given
condition holds for an execution in which load (c) reads value 1 from y, and load (d)
reads value 0 from x. Whether the given litmus test has an execution that can end up
in this final state depends on the memory model. For example, the given outcome can
occur on Power but not on TSO. Thus, for a given architecture, a set of litmus tests
together with the information of whether the given outcome can occur on any execution
characterises the architecture.

4.1. Basics
We next describe how the set of candidate executions of a program is defined. A candi-
date execution is obtained by first generating an event structure. An event structure
E , (E,po) is a set of memory events E together with the program order relation po.1
An event is a read from memory or a write to memory, consisting of an identifier, a
direction (R for read or W for write), a memory address (represented by a variable name)
and a value. The program order po is a per-thread total order over E. An event structure
represents an execution of the program, assuming the shared reads can return arbitrary
values.

For example, Figure 5a gives an event structure associated with the litmus test in
Figure 4. A store instruction (e.g., x← 1 on T0) gives rise to a write event (e.g., (a)Wx1),
and a load instruction (e.g., r1← y on T1) gives rise to a read event (e.g., (c)Ry1). In this
particular event structure, we have assumed that the load (c) on T1 read value 1, and
the load (d) on T1 read value 0, but any value for the loads (c) and (d) would give rise to
a valid event structure.

An event structure can be completed to a candidate execution by adding an execution
witness X , (co, rf, fr). An execution witness represents the communication between the
threads and consists of the three relations co, rf, and fr. The coherence relation co is a per-
address total order on write events, and models the memory coherence widely assumed
by modern architectures. It links a write w to any write w′ to the same address that hits
the memory after w. The read-from relation rf links a write w to a read r such that r
reads the value written by w. The fr relation is defined in terms of rf and co (hence we say
it is a derived relation). A read r is in fr with a write w if the write w′ from which r reads
hits the memory before w. Formally, we have: (r, w) ∈ fr , ∃w′.(w′, r) ∈ rf ∧ (w′, w) ∈ co.

1Our notion of event structures differs from the one previously introduced by Winskel [1986]. Winskel’s event
structures also contain a conflict relation in addition to a set of events and a partial order over them.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 J. Alglave et al.

mp
T0 T1

(a) x← 1 (c) r1← y
(b) y← 1 (d) r2← x

Final state? r1=1 ∧ r2=0

Fig. 4. Message Passing (mp).

(a) Wx1

(b) Wy1

(c) Ry1

(d) Rx0

po po

(a) Wx1

(b) Wy1

(c) Ry1

(d) Rx0

po
rf

po
fr

(a) event structure (b) candidate execution

Fig. 5. Event structure and candidate execution

Figure 5b shows the event structure of Figure 5a completed to a candidate execution.
A candidate execution is uniquely identified by the event structure E and execution
witness X. Inserting fences into a program does not change the set of its candidate exe-
cutions. For example, if we would place a fence between the two stores of T0 in Figure 4,
the litmus test would still have the same set of candidate executions. However, the
fences do affect which of those candidate executions are possible on a given architecture.

Not all event structures can be completed to a candidate execution. For example,
had we assumed that the first read in Figure 4 reads value 2, then there would be no
execution witness such that the read can be matched up via rf with a corresponding
write writing the same value (as there is no instruction writing value 2).

As we have mentioned earlier, a memory model is specified as a predicate on can-
didate executions. Such a predicate is typically formulated as an acyclicity condition
on candidate executions. For example, a candidate execution (E,X) is allowed (i.e.,
possible) on SC if and only if acyclic(po ∪ co ∪ rf ∪ fr). This means that a candidate
execution is not possible on SC if it contains at least one cycle formed of edges from po,
co, rf, and fr. Consider for example the candidate execution in Figure 5b. This execution
is not possible on SC as it has a cycle.

4.2. Minimal cycles
Any execution that has a cycle (i.e., a cycle formed of edges in po∪ rf∪ co∪ fr) also has a
minimal cycle. Given a candidate execution (E,X), a minimal cycle is a cycle such that

(MC1) per thread, there are at most two accesses, and the accesses are
adjacent in the cycle; and

(MC2) for a memory location `, there are at most three accesses to ` along
the cycle, and the accesses are adjacent in the cycle.

The reason for (MC1) is that the po relation is transitive. That is, given a cycle with
more than two accesses for a thread, the po edge from the first to the last access
(according to po) forms a chord in the cycle. This chord can be used to bypass the other
accesses from the thread and thus form a smaller cycle containing only two accesses of
the thread.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:9

(a) Wx1 (b) Rx1

. . .

(c) Wx2(d) Rx2

. . .

rf

rf

(a) Wx1 (b) Rx1

. . .

(c) Wx2(d) Rx2

. . .

rf

rf

co

(a) Wx1 (b) Rx1

. . .

(c) Wx2(d) Rx2

. . .

rf

rf

co

(a) cycle (b) shortcut in cycle (c) shortcut in cycle

Fig. 6. A cycle in a candidate execution, and two possible shortcuts one can take to form a smaller cycle

The property (MC2) can be seen by careful inspection of the different shapes candidate
executions can have, and the shortcuts one can consequently take in cycles. Consider for
example Figure 6. Figure 6a shows a cycle involving four accesses to variable x. We know
that any two writes to a given variable are connected by a co edge (by the definition of
co). Therefore, there either is a co edge from event (a) to event (c) (Figure 6b) or there
is a co edge from event (c) to event (a) (Figure 6c). In both cases, we obtain a smaller
cycle bypassing one of the accesses to variable x.

We will later extend the notion of minimal cycles to critical cycles, which embody
minimal violations of SC (while not violating memory coherence).

4.3. Models weaker than SC
In the axiomatic framework of Alglave et al. [2010], a memory model is specified as a
predicate on candidate executions. The predicate is phrased as an acyclicity check on
a subrelation of po ∪ co ∪ rf ∪ fr. This means that only those executions for which this
acyclicity predicate holds are possible on the respective memory model.

The SC model is defined by requiring all relations to be acyclic, i.e., acyclic(po ∪ co ∪
rf∪ fr). In models weaker than SC, only a proper subrelation of po∪co∪ rf∪ fr is required
to be acyclic. For a given candidate execution and memory model, we say that those
edges which are in po ∪ co ∪ rf ∪ fr but not in the subrelation are relaxed. In the Power
model, for example, the program order edges po between events not separated by a
fence are not part of the subrelation of po ∪ co ∪ rf ∪ fr required to be acyclic. Hence, the
candidate execution depicted in Figure 5b is possible on Power. We thus say that on
Power the program order edges are relaxed.

We define in the following a few further relations over memory events that allow us
to specify the edges that are relaxed in a model. All these relations are subrelations of
the relations already defined. We write dp (with dp ⊆ po) for the relation that models
dependencies between instructions. For instance, there is a data dependency between
a load and a store in an execution when the value written by the store was computed
from the value obtained by the load. We further write rfe (resp. coe, fre) for the external
read-from (resp. external coherence, external from-read), i.e., when the source and
target belong to different threads. We write rfi for the internal read-from, i.e., when the
source and target belong to the same thread. The fence relations (such as mfence ⊆ po)
model architecture-specific fences. They connect all events that occur before the fence
to all events that occur after the fence.

Relaxed or safe. When a thread can read from its own store buffer [Adve and Ghara-
chorloo 1995] (the typical TSO/x86 scenario), we relax the internal read-from rfi, that
is, rf where source and target belong to the same thread. When two threads T0 and T1
can communicate privately via a cache (a case of write atomicity relaxation [Adve and
Gharachorloo 1995]), we relax the external read-from rfe, and call the corresponding
write non-atomic. This is the main particularity of Power and ARM, and cannot happen

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 J. Alglave et al.

SC x86 Power
poWR always mfence sync
poWW always always sync or lwsync
poRW always always sync or lwsync or dp
poRR always always sync or lwsync or dp or branch;isync

Fig. 7. ppo and fences per architecture.

on TSO/x86. Some program order pairs may be relaxed as well (e.g., write-read pairs
on x86), i.e., only a subset of po is guaranteed to occur in order. We call this subset the
preserved program order, ppo. When a relation is not relaxed on a given architecture,
we call it safe.

Figure 7 summarises ppo per architecture. The columns are architectures, e.g., x86,
and the lines are relations, e.g., poWR. We write, e.g., poWR for the program order
between a write and a read. We write “always” when the relation is in the ppo of the
architecture: e.g., poWR is in the ppo of SC. When we write something else, typically
the name of a fence, e.g., mfence, the relation is not in the ppo of the architecture (e.g.,
poWR is not in the ppo of x86), and the fence can restore the ordering: e.g., mfence
maintains write-read pairs in program order.

Following Alglave et al. [2010], the relation fence (with fence ⊆ po; for some concrete
architecture-specific fence) induced by a fence is non-cumulative when it only orders
certain pairs of events surrounding the fence. The relation fence is cumulative when it
additionally makes writes atomic, e.g., by flushing caches. In our model, this amounts
to making sequences of external read-from and fences (rfe; fence or fence; rfe) safe, but
rfe alone would not be safe. In Figure 4, placing a cumulative fence between the two
writes on T0 will not only prevent their reordering, but also enforce an ordering between
the write (a) on T0 and the read (c) on T1, which reads from T0 (in Figure 5b).

Architectures. An architecture A determines the relations safe (i.e., not relaxed) on A.
We always consider the coherence co, the from-read relation fr and the fence relations
to be safe. SC relaxes nothing, i.e., also rf and po are safe. For example, TSO authorises
the reordering of write-read pairs (relaxing po edges from a write event to a read event,
i.e., poWR) and store buffering (relaxing rfi edges). Thus, the TSO memory model can be
phrased as acyclic((po \ poWR)∪mfence∪ co∪ rfe∪ fr). We refer to Alglave et al. [2014]
for a description of the Power memory model.

All models we handle satisfy the SC per location property. That is, the edges that
are part of cycles that consist of events that access only a single memory location are
never relaxed. Formally, we have acyclic(po-loc∪co∪ rf∪ fr), with po-loc restricted to the
po edges between events that access the same memory location. This property models
the memory coherence provided by modern architectures. We illustrate it with a litmus
test in Figure 8. The two threads access the memory location x, which is assumed to
be 0 at the beginning. The condition models whether it is possible for T0 to first read
the new value 1, and then read the old value 0. The corresponding candidate execution
is depicted on the right. The execution has a cycle that consists of only one memory
location. Therefore, this execution is not possible as the edges in such cycles are never
relaxed.

4.4. Critical cycles
Following [Shasha and Snir 1988; Alglave and Maranget 2011], for an architecture A, a
delay is a po or rf edge that is not safe (i.e., is relaxed) on A. A candidate execution
(E,X) is valid on A yet not on SC iff

(DC1) it contains at least one cycle that contains a delay, and

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:11

corr
T0 T1

(a) r1← x (c) x← 1
(b) r2← x

Final state? r1=1 ∧ r2=0

(a) Rx1

(b) Rx0

(c) Wx1

po

rf

fr

Fig. 8. Read-read coherence.

(DC2) all cycles in it contain a delay.

If there would be a cycle that does not contain a delay, then the execution would be
invalid both on SC and A. If there would be no cycles at all in the execution, then the
execution would be valid on both SC and A.

To enforce SC on a weaker architecture A, we need to insert memory fences into the
program such as to disallow the candidate executions that satisfy properties DC1 and
DC2. That is, we need to insert fences such that for each such candidate execution at
least one cycle is not relaxed. It is not necessary to disallow all cycles in a candidate
execution, as ensuring that one cycle is not relaxed is sufficient to disallow an execution.

Critical cycles. Any candidate execution that satisfies properties DC1 and DC2 has a
cycle, and thus also has a minimal cycle (see Section 4.2). By DC2, the minimal cycle
also contains a delay. We refer to such cycles as critical cycles. Formally, a critical cycle
for architecture A is a cycle which has the following characteristics:

(CS1) the cycle contains at least one delay for A;
(CS2) per thread, there are at most two accesses, the accesses are adjacent
in the cycle, and the accesses are to different memory locations; and
(CS3) for a memory location `, there are at most three accesses to ` along
the cycle, the accesses are adjacent in the cycle, and the accesses are from
different threads.

Thus, a critical cycle is a minimal cycle for which it additionally holds that (a) it has
at least one delay, (b) the accesses of a single thread are to different memory locations,
and (c) the accesses to a given location ` are from different threads. In fact, together
with the properties MC1 and MC2 of minimal cycles, property (a) implies properties (b)
and (c), as we show in the next two paragraphs.

To see that (b) holds, assume we have a minimal cycle for which (a) holds but not (b).
Thus, there is a thread in the cycle for which its two accesses are to the same location.
Then either (i) there is no additional access in the cycle, or (ii) there is an additional
access in the cycle. (i) We have a cycle of length 2. This cycle must involve the two
accesses (which are to the same memory location). Such cycles are never relaxed due to
memory coherence. The cycle thus does not contain a delay. But this contradicts the
initial assumption that the cycle has a delay. Therefore, (b) must hold. (ii) By MC2,
this location can occur at most three times in the cycle. The third access must be by
a different thread. Since communication edges are always between events operating
on the same memory location, it follows that we have a cycle of length 3 that mentions
only one memory location (cf. Figure 8). Since these cycles are never relaxed, it follows
that the cycle does not have a delay. But this contradicts the initial assumption that
the cycle has a delay. Therefore, (b) must hold.

We see that property (c) holds since (b) states that a thread accesses different memory
locations. Hence, all accesses to a given location must come from different threads.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 J. Alglave et al.

void thread 1(int input)
{

int r1;
x = input ;
if (rand()%2)

y = 1;
else

r1 = z;
x = 1;
}

void thread 2()
{

int r2, r3, r4;
r2 = y;
r3 = z;
r4 = x;
}

thread 1
int r1;
x = input ;
Bool tmp;

tmp = rand();
[! tmp%2] goto 1;
y = 1;
goto 2;

1: r1 = z;
2: x = 1;

end function

thread 2
int r2, r3, r4;
r2 = y;
r3 = z;
r4 = x;
end function

Fig. 9. A C program (left) and its goto-program (right).

As an example, the execution in Figure 5b contains a critical cycle w.r.t. Power, formed
by the sequence of edges po, rf, po, fr. The po edge on T0, the po edge on T1, and the rf
edge between T0 and T1 are all relaxed on Power. On the other hand, the cycle does not
contain an edge that is relaxed on TSO, and it is thus not a critical cycle on TSO.

To forbid executions containing critical cycles, and consequently to enforce SC, one
can insert fences into the program to prevent the delays that are part of the cycles.
To prevent a po delay, a fence can be inserted between the two accesses forming the
delay, following Figure 7. To prevent an rf delay, a cumulative fence must be used
(see Section 6 for details). For the example in Figure 4, for Power, we need to place a
cumulative fence between the two writes on T0, preventing both the po and the adjacent
rf edge from being relaxed, and use a dependency or fence to prevent the po edge on T1
from being relaxed.

5. STATIC DETECTION OF CRITICAL CYCLES
We want to synthesise fences to prevent weak behaviours and thus restore SC. As we
explained in Section 4, this can be achieved by placing fences such as to prevent the
delays along critical cycles of the candidate executions. However, enumerating all
candidate executions and looking for critical cycles in each of them separately would
not scale beyond small, simple programs.

Therefore, we look for cycles in an over-approximation of all the candidate executions
of the program. We hence avoid enumeration of all candidate executions, which would
hinder scalability, and get all the critical cycles of all program executions at once. Thus,
for example, we can find all fences preventing the critical cycles occuring in two different
executions in one step, instead of having to examine the two executions separately.

5.1. Abstract event graphs
We analyse concurrent C programs and assign to them the semantics of the underlying
hardware memory model. We thus assume a compilation scheme to assembly in which
memory accesses are not reordered, introduced, or removed. Our approach is sound
when using compilation settings that guarantee these properties, such as -O0 with gcc.
To analyse a C program, e.g., as given on the left-hand side of Figure 9, we convert it to
a goto-program (right-hand side of Figure 9), the internal representation of the CProver
framework. A goto-program is a sequence of goto-instructions, and closely mirrors the
C program from which it was generated. We refer to http://www.cprover.org/goto-cc for
further details.

The C program in Figure 9 features two threads which can interfere. The first thread
writes the argument “input” to x, then randomly writes 1 to y or reads z, and then
writes 1 to x. The second thread successively reads y, z and x. In the corresponding goto-
program, the if-else structure has been transformed into a guard with the condition

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:13

of the if followed by a goto construct. From the goto-program, we then compute an
abstract event graph (aeg), given in Figure 10(a). The events a, b1, b2 and c (resp. d, e
and f) correspond to thread1 (resp. thread2) in Figure 9. We only consider accesses to
shared variables, and ignore the local variables. We finally explore the aeg to find the
potential critical cycles.

An aeg represents all the candidate executions of a program (in the sense of Section 4).
Figure 10(b) and (c) give two executions associated with the aeg given in Figure 10(a).
For readability, the transitive po edges have been omitted (e.g., between the two events
d′ and f ′). The concrete events that occur in an execution are shown in bold. In an aeg,
the events do not have concrete values, whereas in an execution they do. Also, an aeg
merely indicates that two accesses to the same variable could form a data race (see the
competing pairs (cmp) relation in Figure 10(a), which is a symmetric relation), whereas
an execution has oriented relations (e.g., indicating the write that a read takes its value
from, see e.g., the rf arrow in Figure 10(b) and (c)). The execution in Figure 10(b) has
a critical cycle (with respect to, e.g., Power) between the events a′, b′2, d′, and f ′. The
execution in Figure 10(c) does not have a critical cycle.

We build an aeg essentially as in [Alglave et al. 2013]. However, our goal and theirs
differ: they instrument an input program to reuse SC verification tools to perform
weak memory verification, whereas we are interested in automatic fence placement.
Moreover, the work of [Alglave et al. 2013] did not present a semantics of goto-programs
in terms of aegs, or a proof that the aeg does encompass all potential executions of the
program, both of which we do in this section.

5.2. Points-to information
In the previous section, we have denoted abstract events as, e.g., (a)Wx, with x being an
address specifier denoting a shared variable in the program. However, shared memory
accesses are often performed via pointer expressions. We thus use a pointer analysis
to compute which memory locations an expression in the program (such as a[i+1]
or *p) might access. The pointer analysis we use is a standard concurrent points-to
analysis that we have shown to be sound for our weak memory models in earlier
work [Alglave et al. 2011].2 The analysis computes for each memory access expression
in the goto-program an abstraction of the set of memory locations potentially accessed.

The result of the pointer analysis is for each memory access expression either a set
of address specifiers {s1, . . . , sn} (denoting that the expression might access any of the
memory locations associated with the specifiers, with si 6= ∗), or the singleton set {∗}
containing the special address specifier ∗ (denoting that the expression might access any
memory location). An address specifier si 6= ∗ might refer to a single memory location
or a region of memory locations. A specifier that refers to a region of memory is for
example returned for accesses to arrays. That is, expressions a[i] and a[j] accessing a
global array a, with i 6= j, would both be mapped to the same specifier a, denoting the
region of memory associated with the array a.

We say that a concrete memory location m and an address specifier s are compatible,
written comp(m, s), if m is in the set of memory locations abstracted over by s. For
example, comp(m, ∗) holds for any memory location m. As another example, if m refers
to a location in array a, and specifier s represents that array, then comp(m, s).

Given two address specifiers s1, s2, we similarly write comp(s1, s2) when the inter-
section between the set of memory locations abstracted by s1 and the set of memory

2As pointed out by a reviewer, for our fence insertion approach it may be sufficient to use a pointer analysis
that is sound for SC but not for weaker models. While this is not the case for all memory models that could
be expressed in the framework of Alglave et al. [2010], it may hold for the models we consider in this paper.
A proof of this conjecture remains as future work.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 J. Alglave et al.

(a)Wx

(b1)Wy

(c)Wx

(d)Ry

(e)Rz

(f)Rx

(b2)Rz

pospos

pospos

pos

pos
cmp

cmp

cmp

(a′)Wx1

(b′1)Wy1

(c′)Wx1

(d′)Ry1

(e′)Rz0

(f ′)Rx0

(b′2)Rz

po

po

po

pofr

rf

fr

co

(a′′)Wx2

(b′′1)Wy

(c′′)Wx1

(d′′)Ry0

(e′′)Rz0

(f ′′)Rx1

(b′′2)Rz0

po

po

po

po

rf

co

(a) aeg of Figure 9 (b) ex. with critical cycle (c) ex. without critical cycle

Fig. 10. The aeg corresponding to the program in Figure 9 and two executions corresponding to it.

locations abstracted by s2 is non-empty. For example, comp(s1, ∗) holds for any address
specifier s1.

Consequently, instead of being associated with a concrete memory location, abstract
events have a single address specifier si (which can also be ∗). Thus, if the pointer
analysis yields a set of address specifiers {s1, . . . , sn} for an expression, the aeg will
contain a static event for each. We provide more details in the following sections.

5.3. Formal Definition of Abstract Event Graphs
Given a goto-program (such as the one on the right of Figure 9), we build an aeg
, (Es,pos, cmp), where Es is the set of abstract events, pos is the static program order,
and cmp are the competing pairs. Given an aeg G, we write respectively G.Es, G.pos

and G. cmp for the abstract events, the static program order and the competing pairs
of G. The aeg for the program on the right of Figure 9 is given in Figure 10(a).

Abstract events. An abstract event represents all events with same program point,
direction (write or read), and compatible memory location. An abstract event consists
of first a unique identifier, then the direction specifier (W or R), and then the address
specifier. In Figure 10(a), (a)Wx abstracts the events (a′)Wx1 and (a′′)Wx2 in the
executions of Figure 10(b) and (c). Moreover, for example, a static event (a)W∗ would
also abstract the two events, as ∗ is compatible with any memory location. We write
addr(e) for the address specifier of an abstract event e.

Static program order. The static program order relation pos abstracts all the (dy-
namic) po edges that connect two events in program order and that cannot be decom-
posed as a succession of po edges in this execution. We write po+

s (resp. po∗s) for the
transitive (resp. reflexive-transitive) closure of this relation.

We also write begin(pos) and end(pos) to denote respectively the sets of the first and
last abstract events of pos. That is, if we imagine the pos relation as a directed graph,
then begin(pos) contains the abstract events in pos that do not have incoming edges,
and end(pos) contains the abstract events that do not have outgoing edges.

Competing pairs. The external communications coe ∪ rfe ∪ fre are over-approximated
by the competing pairs relation cmp. In Figure 10(a), the cmp edges (a, f), (b1, d), and
(c, f) abstract in particular the fre edges (f ′, c′) and (f ′, a′), and the rfe edge (b′1, d

′) in
Figure 10(b). We do not need to represent internal communications as they are already
covered by po+

s .
The cmp construction is similar to the first steps of static data race detection (see,

e.g., [Kahlon et al. 2009, Sec. 5]), where statements involved in write-read or write-write
communications are collected. As further work, we could reduce the set of competing

3We denote the function composition operator by ◦.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:15

(1) assignment: lhs = rhs; i

τ [lhs = rhs; i](aeg) =

let E′s = aeg.Es ∪ evts(lhs) ∪ evts(rhs)∪
trg(lhs) in

let pos
′ = aeg.pos∪

end(aeg.pos)× (evts(rhs) ∪ evts(lhs))∪
(evts(rhs) ∪ evts(lhs))× trg(lhs)

in
τ [i](E′s,pos

′, aeg. cmp)

R W τ [i]
evts(lhs) ∪ evts(rhs) trg(lhs)

pos pospos

(2) function call3: fun(); i

τ [fun(); i] = τ [i] ◦ τ [body(fun)] τ [body(f)] τ [i]
pos pos

(3) guard: [guard] i1; i2

τ [[guard] i1; i2](aeg) =

let guarded = τ [i1](aeg) in
let E′s = aeg.Es ∪ guarded.Es in
let pos

′ = aeg.pos ∪ guarded.pos in

τ [i2](E′s,pos
′, aeg. cmp)

τ [i1] τ [i2]
pos pos

pos

(4) unconditional forward jump: goto l; i

τ [goto l; i] = τ [follow(l)] τ [follow(l)]
pos

(5) conditional backward jump: l: i1; [cond] goto l; i2

τ [l : i1; [cond] goto l; i2](aeg) =

let local = τ [i1](aeg) in
let E′s = aeg.Es ∪ local.Es in
let pos

′ = aeg.pos ∪ local.pos ∪ end(local.pos)

× begin(local.pos) in

τ [i2](E′s,pos
′, aeg. cmp)

τ [i1] τ [i2]
pos pos

pos

Fig. 11. Operations to create the aeg of a goto-program.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 J. Alglave et al.

(6) assume / assert / skip: {assume, assert}(φ); i / skip; i

τ [assume(φ); i] = τ [i]
τ [assert(φ); i] = τ [i] τ [i]

pos

τ [skip; i] = τ [i]

(7) atomic section: atomic begin; i1; atomic end; i2

τ [atomic start; i1; atomic end; i2](aeg) =

let section = τ [i1]((aeg.Es ∪ {f},
aeg.pos ∪ end(aeg.pos)× {f},
aeg. cmp)) in

let pos
′ = section.pos ∪ end(section.pos)× {f} in

τ [i2]((section.Es,pos
′, section. cmp))

f τ [i1] f τ [i2]
pos pos pospos

(8) new thread: start thread th; i

τ [start thread th; i](aeg) =

let local = τ [body(th)](∅̄) in
let main = τ [i](aeg) in
let inter = τ [i](∅̄) in

τ [body(f)]τ [i]
pos cmp

(local.Es ∪main.Es, local.pos ∪main.pos, local.Es ⊗ inter.Es)

(9) end of thread: end thread;

τ [end thread](aeg) = aeg ∅

Fig. 12. Operations to create the aeg of a goto-program (continued).

pairs using a synchronisation analysis, as in, e.g., [Sura et al. 2005]. If we assume the
correctness of locks for example, some threads might never interfere.

Fences. In the aeg, we encode memory fences as special abstract events – i.e., as
nodes in the graph. We write f for a full fence (e.g., mfence in x86, sync in Power, dmb in
ARM), lwf for a lightweight fence (e.g., lwsync in Power), cf for a control fence (e.g., isync
in Power, isb in ARM).

In [Alglave et al. 2010], fences are modelled as a relation fenced between concrete
events. We did not use this approach, since a fence can then correspond to several edges
and we would need an additional relation over our abstract event relations to keep

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:17

int local1=x;
local1=local1ˆlocal1;
int local2=∗(&y + local1);

mov r, #x
ldr r1,[r, #0]
exors r1, r1, r1
mov r2, #y
mov r3 [r2, r1]

Fig. 13. A fragment of C program (left) with two shared variables x and y, and a possible straightforward
translation in ARM assembly (right).

track of the placement of fences. The effect of fences is interpreted during the cycle
search in the aeg.

Dependencies form a relation between abstract events that is maintained outside
of the aeg. They are calculated in musketeer from the input program on the C level.4
Dependencies relate two accesses to shared memory at the assembly level via registers.
As we analyse C programs and we make no assumption regarding the machine or
the compiler used, neither the assembly translation nor the use of registers between
shared memory accesses is unique or provided to us. For example, there is a depen-
dency between x and y in the program fragment presented in Figure 13 (left), since
a straightforward translation to assembly could generate a dependency. For example,
in ARM assembly, we can translate this C program to the assembly code in Figure 13
(right), where a dependency by address between x and y was intentionally placed via
the register r1. The register r1 always holds 0 after the interpretation of the exclu-
sive disjunction on the value of x, and this 0 is added to the pointer to y before being
dereferenced in register r3. Processors ignore that the value is always 0 and enforce a
dependency.

Compiler optimisations can, however, remove these dependencies. In the tool muske-
teer, we provide the option –no-dependencies which safely ignores all these calculated
dependencies in the aeg. Under this option, dependencies or fences might be spuriously
inserted in places where an actual dependency already exists.

The same consideration applies to dependency generation, as we will treat in detail
in Subsection 7.1.

5.4. Constructing Abstract Event Graphs from C Programs
We define a semantics of goto-programs in terms of abstract events, static program
order and competing pairs. We give this semantics below by means of a case split on
the type of the goto-instructions. Each of these cases is accompanied in Figures 11 and
12 by a graphical representation summarising the aeg construction on the right-hand
side, and a formal definition of the semantics on the left-hand side. We assume that
forward jumps are unconditional and that backward jumps are conditional. Conditional
forward jumps can be “simulated” by those two instructions.

The construction of the aeg from a goto-program is implemented by means of a case
split over the type of goto-instruction. The algorithm is outlined in Figure 15 (left side).
We give further details about the algorithmin Section 5.7.

In Figures 11 and 12, we write τ [i] and τ [i1; . . . ; in] to represent the semantics of a goto-
instruction i and a sequence of goto-instructions i1; . . . ; in, respectively. Other notations,
e.g., follow(f) or body(f), are explained below. We do not compute the values of the
variables, and thus do not interpret the expressions. In Figure 10(a), (a)Wx represents
the assignment “x = input” in thread 1 in Figure 9 (since “input” is a local variable).
This abstracts the values that “input” could hold, e.g., 1 (see (a′)Wx1 in Figure 10(b))

4We keep track of the relations between local and shared variables per thread to calculate a dependency
relation.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 J. Alglave et al.

or 2 (see (a′′)Wx2 in Figure 10(c)). Prior to building the aeg, we copy expressions of
conditions or function arguments into local variables. Thus, communication via shared
variables can occur in the assignment case only.

We now present the construction of the aeg starting with the intra-thread instructions
(e.g., assignments, function calls), creating static events and pos edges, and then the
thread constructor, creating cmp edges. We write G = aeg(P) = τ [P](∅̄) for the aeg G
corresponding to program P . The program P is a sequence of goto-instructions, and ∅̄
denotes the empty aeg.

Assignments lhs=rhs. We decompose this statement into sets of abstract events: the
reads from potential shared variables in rhs and lhs, denoted by evts(rhs) and evts(lhs),
and the writes to the potential target objects trg(lhs). We do not assume any order in
the evaluation of the variables in an expression. Hence, we connect to the incoming pos

all the reads of rhs and all the reads of lhs except trg(lhs). We then connect each of
them to the potential target writes trg(lhs). The functions evts() and trg() return sets of
abstract events with address specifiers according to the pointer analysis (cf. Section 5.2).

We also record the data and address dependencies between abstract events. For
instance, if we have int r1=x; int r2=r1; *(&y+r2)=1 we know that the abstract
event Rx from the rhs of the first instruction is in dependency with the write to r2
(via the use of r1). Moreover, the Wa issued by the last statement (with the address
specifier a corresponding to the expression *(&y+r2)) depends on r2, and thus there is
a dependency between Rx and Wa.

Function calls fun(). We build the pos corresponding to the function’s body (written
body(fun)). We then replace the call to a function fun() by its body. This ensures a better
precision, in the sense that a function can be fenced in a given context and unfenced
in another. In our tool musketeer, recursive functions must be inlined up to a bound.
musketeer issues warnings when encountering recursive functions.

Guarded statement. We do not keep track of the values of the variables at each
program point. Thus we cannot evaluate the guard of a statement. Hence, we abstract
the guard and make this statement non-deterministically reachable, by adding a second
pos edge, bypassing the statement.

Unconditional forward jump to a label L. We connect the previous abstract events to
the next abstract events that we generate from the program point L. In Figure 11, we
write follow(L) for the sequence of statements following the label L.

Conditional backward jump. A conditional backward jump is a jump to a label already
visited. It arises from loops in the program. We copy and append the pos subgraph
between the label and the goto twice, and connect the last abstract event of the copy
to the first abstract event of the original body with a pos edge. In Figure 11, begin(S)
and end(S) are respectively the sets of the first and last abstract events of the pos

sub-graph S. We assume that the statement denoted by i1 (i.e., the body of the loop)
does not contain a jump statement that jumps outside of the body.

Assumption, assertion, skip. Similarly to the guarded statement, as we cannot evalu-
ate the condition, we abstract the assumptions and assertions by bypassing them. They
are thus handled the same as the skip statement.

Atomic sections. The atomic sections in a goto-program model idealised atomic sec-
tions without having to rely on the correctness of their implementation. In the CProver
framework, we use the constructs CPROVER atomic begin and CPROVER atomic end.
Atomic sections are used in many theoretical concurrency and verification works. For
example, we use them (see Section 7) for copying data to atomic structures, as in,

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:19

C program

goto-program

set of candidate
executions

aeg

goto-cc

Section 4 αaeg

γexec

Section 5

syntax semantics

soundness to prove

Fig. 14. From C programs to aegs and candidate executions

e.g., our implementation of the Chase-Lev queue [Chase and Lev 2005] or for imple-
menting compare-and-swaps, as in, e.g., our implementation of Michael and Scott’s
queue [Michael and Scott 1996].

In this work we overapproximate atomic sections by only considering the effect
on memory ordering of entering and leaving a critical section. We do not model the
atomicity aspect of atomic sections. Also handling this aspect could improve performance
and precision as less (spurious) interferences have to be considered.

We model atomic sections by placing two full fences, written f in Figure 12, right after
the beginning of the section and just before the end of the section.

Construction of cmp. We also compute the competing pairs that abstract external
communications between threads. For each abstract event with address specifier s, we
augment the cmp relation with pairs made of this abstract event and abstract events
from an interfering thread with a compatible address specifier s′ (i.e., the sets of memory
locations represented by s and s′ overlap). One of the two accesses needs to be a write.
These cmp edges abstract the relations coe, fre, and rfe.

In Figure 12, we use ⊗ to construct the cmp edges when a new interfering thread
is spawned. That is, when the goto-instruction start thread is met. We define ⊗ as
A⊗B = {(a, b) ∈ A×B | comp(addr(a),addr(b))∧ (write(a)∨write(b))}. We write ∅̄ for
the triple (∅, ∅, ∅) representing the empty aeg.

5.5. Correctness of the aeg construction
In this section, we explain why the aeg constructed with the transformers of Figures
11 and 12 captures all the candidate executions of a program. As a consequence, if we
search for cycles in the aeg we can find all corresponding cycles that might occur in a
concrete execution.

Given a goto-program, we want to show that for any event structure that could be
derived from it and for any candidate execution valid for this event structure, the sets

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 J. Alglave et al.

of events (E) and all the relations (po, rf, fr, co) are contained (in a sense defined in the
following paragraph) in their static counterparts Es, po+

s , and cmp . We need here the
transitive closure of pos as the po relation of a concrete execution is transitive, but the
static program order relation pos of an aeg is not transitive.

We refer in the following to Es as the set of static events, and to E as the set of dynamic
events. Similarly, we refer to pos as the static program order, and to po as the dynamic
program order. The reason why we choose the terms static and dynamic is that Es, pos,
and cmp are computed by our static analysis, whereas E, po, rf, fr, and co refer to the
events and relations that represent a concrete candidate execution. We further use the
symbols se and srel to refer to a set of static events and a static relation, respectively.

To map the static events to dynamic events, and relations over static events to
relations over dynamic events, we define γ : ℘(Es × Es)→ ℘(E× E) which concretises a
static relation as the union of all the dynamic relations that it could correspond to, and
γe : ℘(Es)→ ℘(E) which concretises a set of static events as the union of all the sets of
dynamic events that they could correspond to.5 These two functions are a formalisation
of how we interpret aegs.

More formally, we define γe(se) , {e′ | ∃e ∈ se s.t. comp(addr(e),addr(e′)) ∧ dir(e) =
dir(e′) ∧ origin(e) = origin(e′)}, where origin(a) returns the syntactical object in
the source code from which either a concrete or abstract event was extracted.6
In this definition e′ is a concrete event whereas e is a static event. The function
comp(addr(e),addr(e′)) indicates whether the memory address accessed by e′ and
the address specifier of e are compatible (i.e., whether the result addr(e) computed
by the pointer analysis includes the memory address addr(e′); see Section 5.2 for de-
tails). The function dir() (for direction) indicates whether the static event or event
given is a read or write. Thus, dir(e) = dir(e′) requires that the static event and
the concrete event are either both reads or both writes. We use γe to define γ:
γ(srel) , {(c1, c2) | ∃(s1, s2) ∈ srel s.t. (c1, c2) ∈ γe({s1}) × γe({s2})}. In this defini-
tion c1, c2 are concrete events and s1, s2 are static events. We next show a lemma about
γe and γ that we will use later on.

LEMMA 5.1. Let E1 ⊆ γe(Es,1) and E2 ⊆ γe(Es,2). Then E1 × E2 ⊆ γ(Es,1 × Es,2).

PROOF. Let (c1, c2) ∈ E1 × E2. Then c1 ∈ γe(Es,1) and c2 ∈ γe(Es,2). Using the
definition of γe, there are s1, s2 such that c1 ∈ γe({s1}) and c2 ∈ γe({s2}). Then, since
(s1, s2) ∈ Es,1 × Es,2, it follows by the definition of γ that (c1, c2) ∈ γ(Es,1 × Es,2).

Figure 14 shows the relationship between goto-programs, candidate executions, and
aegs. In our proof, we show that for a given program, any execution of that program
has its events and relations contained in the γe, γ of the corresponding aeg.

To go from goto-programs to a set of event structures (and then a set of candidate
executions), we describe formally how the event structures can be generated. This is a
formalisation of the informal description of how event structures are generated from a
program as described in Section 4.

For the definition of the assignment case we make use of the function dyn evts(lhs
= rhs). It takes an assignment statement, and returns all possible events it might
correspond to in a concrete execution. For example, for x=*p+z, we have

dyn evts(x=*p+z) =
⋃

i=1,...,n

{(Wxv1, {Ryiv2, Rzv3}) | v1 = v2 + v3}

5We usually use γe with a singleton set (containing one static event) as an argument.
6The function origin is dual to evts, which returns events given an expression or instruction.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:21

That is, dyn evts() yields a set of pairs with the first component being the write event,
and the second component being the set of read events. Moreover, y1, . . . , yn are the
concrete memory locations the pointer p might point to according to the pointer analysis.
We thus presuppose a correct pointer analysis (cf. Section 5.2).

We next formalise the generation of event structures from a given program P (cf. Sec-
tion 4) by means of the function σ (which is analogous to τ for the aeg construction).
We write S(P) = σ(P)(∅) for the set of event structures of a program P , with ∅ denoting
the empty set of event structures.

Definition 5.2 (event structure semantics S for goto-programs). We write ses for a
set of event structures. We define the semantics as follows:

(1) assignment:
σ[lhs = rhs; i](ses) =

let de = dyn evts(lhs = rhs) in
let ses′ =

⋃
es∈ses(

⋃
(t,r)∈de{(es.E ∪ {t} ∪ r, es.po ∪ end(es.po)× r ∪ r × {t})) in

σ[i](ses′)

(2) function call:
σ[fun(); i] = σ[i] ◦ σ[body(fun)]

(3) guarded statement:
σ[[guard]i1; i2](ses) =

let ses′ = σ[i1](ses) ∪ ses in
σ[i2](ses′)

(4) unconditional forward jump:
σ[goto l; i] = σ[follow(l)]

(5) conditional backward jump7 :
σ[l : i1; [cond]goto l; i2](ses) =⋃

n∈N σ[i2](σ[i1]n(ses))

(6) assume/assert/skip:
σ[assume(φ); i] = σ[i]

(7) atomic section:
σ[atomic start; i1; atomic end; i2](ses) =

let section = σ[i1](
⋃

es∈ses{(es.E ∪ {f}, es.po ∪ end(es.po)× {f})}) in
σ[i2](

⋃
es∈section{(es.E, es.po ∪ end(es.po)× {f})})

(8) new thread:
σ[start thread th; i](ses) =

let local = σ[body(th)](∅) in
let main = σ[i](ses) in

7We use fn(x) to denote f(. . . f︸ ︷︷ ︸
n times

(x)).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 J. Alglave et al.⋃
es1∈local,es2∈main{(es1.E ∪ es2.E, es1.po ∪ es2.po)}

(9) end of thread:
σ[end thread](ses) =⋃

es∈ses{(es.E, es.po+)}

Similarly as for aegs, begin(po) and end(po), respectively, denote the sets of events
that have no incoming po edges or no outgoing po edges.

The guards are not interpreted by this semantics, meaning that there may be event
structures that do not correspond to an actual execution of the program, regardless of
the architecture. For example, even if an if-condition could never be satisfied, an event
structure passing through the body of this if-statement would be constructed. These
kinds of event structures are thus spurious. However, since this is an overapproximation
we still arrive at a correct soundness argument if we can show that all those event
structures are contained in the aeg.

Using this formalisation, we can establish that, for each event structure of a goto-
program, we can find po edges and events, abstracted by po+

s edges and abstract
events in the aeg (Lemma 5.3). This can be proven by structural induction over the
event structure transformers of Definition 5.2 and the corresponding aeg transformers
of Figures 11 and 12. We then need to show that for each candidate execution that
corresponds to an event structure of the goto-program, all the communication relations
(rf, co, and fr) are captured by the cmp relation in the aeg (Lemma 5.4). More precisely,
we want to establish the three properties below:

PROPERTY 1 (SOUNDNESS). Let P be a program, let E ∈ S(P) and let X = (rf, co, fr)
be an execution witness. Let further G = aeg(P). Then the aeg G soundly captures (E,X)
if the following properties hold:

γ(G.po+
s) ⊇ E.po ∪X.coi ∪X.rfi ∪X.fri, (1)

γ(G. cmp) ⊇ X.coe ∪X.rfe ∪X.fre, (2)
γe(G.Es) ⊇ E.E, (3)

The property above corresponds to γexec from Figure 14. That is, γexec works by con-
cretising the static relations G.po+

s and G. cmp via γ, and the set of static events G.Es

via γe.

LEMMA 5.3 (EVENTS AND PO). For any event structure E ∈ S(P), and aeg G =
aeg(P) we have E.E ⊆ γe(G.Es) and E.po ⊆ γ(G.po+

s).

PROOF. The proof works by structural induction over the input program P , and
thus by considering each event structure transformer in Definition 5.2, and the cor-
responding aeg transformer in Figures 11 and 12. We use the notation ses � G ,
∀E ∈ ses : E.E ⊆ γe(G.Es) ∧ E.po ⊆ γ(G.po+

s) in the following. We further define
Prop(P) , ∀ ses, G : ses � G ⇒ σ[P](ses) � τ [P](G). We thus prove in the following
that for all input programs P the predicate Prop(P) holds.

The base case of the induction is the “end of thread” case. Assume ses� G. The only
change the concrete transformer for the end thread case makes to ses is making the po
relation of the contained event structures transitive. The aeg transformer for end thread
does not change the aeg G. Since in the definition of � the transitive closure of the
static program order relation of the aeg is taken it follows that σ[end thread](ses) �
τ [end thread](G) holds.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:23

In the induction step for each case, we can assume the predicate Prop for the
constituents of the respective code fragment. For example, in the assignment case
lhs := rhs; i (cf. Figure 11 and Definition 5.2) we can assume Prop(i).

Exemplary for all the cases, we show below the proof steps for the assignment case
and the conditional backward jump case (which is used to implement loops).

Assignment transformer. We show Prop(lhs := rhs; i). Let Prop(i) hold. Let ses be a
set of event structures and let G be an aeg such that ses � G. Let es ∈ ses, let st =
“lhs = rhs”, and let (t, r) ∈ dyn evts(st).

We first show the set inclusion for the set of events and the set of concretised static
events. We use the abbreviation evts = evts(lhs) ∪ evts(rhs) in the following. We have
to show that es ′.E = es.E ∪ {t} ∪ r ⊆ γe(G.Es ∪ evts ∪ trg(lhs)) = γe(G

′.E). By the
definition of γe we get γe(G′.E) = γe(G.Es) ∪ γe(evts) ∪ γe(trg(lhs)). By the assumption
of ses � G we have es.E ⊆ γe(G.Es). By the correctness of the pointer analysis, we
further have r ⊆ γe(evts) and {t} ⊆ γe(trg(lhs)). We thus have es ′.E ⊆ γe(G′.E).

We next show the set inclusion for the program order relation and the concretised
static program order relation. We have to show that es ′.po = es.po ∪ end(es.po)× r ∪
r × {t} ⊆ γ(G.pos ∪ end(G.pos)× evts ∪ evts× trg(lhs)) = γ(G′.pos). By the definition
of γ we have γ(G′.pos) = γ(G.pos) ∪ γ(end(G.pos) × evts) ∪ γ(evts × trg(lhs)). By the
assumption of ses � G we have es.po ⊆ γ(G.pos). Thus, we also have end(es.po) ⊆
γe(end(G.pos)). By Lemma 5.1 we thus get end(es.po)× r ⊆ γ(end(G.pos)× evts) and
r × {t} ⊆ γ(evts× trg(lhs)). We thus have es ′.po ⊆ γ(G′.pos).

Let ses′ denote the set of event structures resulting from applying the assignment
transformer to all event structures in ses. Since we have above chosen es ∈ ses
arbitrarily we have ses′ � G′. Then by assumption of Prop(i) we get σ[i](ses′) �
τ [i](G′).

Conditional backward jump transformer. The concrete transformer for the conditional
backward jump case (Definition 5.2) involves an infinite union over the number of times
the loop body is executed. We show that for any number of iterations n, the resulting
event structures are contained in the concretisation of the corresponding aeg.

Let Prop(i1) and Prop(i2) hold. Let further ses be a set of event structures and let
G be an aeg such that ses � G. Now let n be an arbitrary positive integer. Then
since Prop(i1) and Prop(i2) hold we get get σ[i2](σ[i1]n(ses)) � τ [i2](σ[i1]n(G))). The
term τ [i2](τ [i1]n(G)) is similar to the aeg interpretation of P ′ = i2; i1, . . . , in. The
concretisation of P ′ is contained in the concretisation of P ′′ = l : i1[cond]goto l; i2
due to the back-edge introduced in the aeg construction. Therefore, we also have
σ[i2](σ[i1]n(ses)) � τ [P ′′](G)). Since we have chosen n arbitrarily it follows that⋃

n∈N σ[i2](σ[i1]n(ses))� τ [P ′′](G).

LEMMA 5.4 (RF, CO AND FR). For any event structure E ∈ S(P) with candidate
execution (E,X) (with X = (rf, co, fr)) and G = aeg(P) we have rfe, coe, fre ⊆ γ(G. cmp).

PROOF. We first show that X.rfe (the external read-from edges, cf. Section 4) is
contained in γ(G. cmp). For any pair (a, b) ∈ X.rfe, there is a pair of abstract events c, d
in the aeg that abstracts these events (by Lemma 5.3). Since a, b are in the rfe relation,
they access the same memory location. Then, by the correctness of the pointer analysis,
and the construction of ⊗ in Figure 12, the events c, d have compatible address specifiers
(i.e., comp(addr(c), addr(d))), and occur on different threads. The two events are thus
connected by a cmp edge. Thus, (a, b) ∈ γ({(c, d), (d, c)}). Therefore, rfe ⊆ γ(G. cmp), as
γ is monotonic. With the same argument we can also show coe, fre ⊆ γ(G. cmp).

We can now conclude that any execution is contained in the aeg.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 J. Alglave et al.

THEOREM 5.5 (ANY EXECUTION IS CONTAINED IN THE AEG). Let P be a program,
let (E,X) be a candidate execution of P , and let G = aeg(P). Then Property 1 holds for
(E,X) and G.

PROOF. We combine Lemma 5.3 and Lemma 5.4.

We next show that any critical cycle in the framework of Alglave et al. [2010] is also
present as a cycle in the aeg.

THEOREM 5.6 (STATIC CRITICAL CYCLES). Let P be a program. Let (E,X) be a
candidate execution of P containing a critical cycle c = c0, . . . , cn−1 (with the ci denoting
events connected by po, rf, co, or fr edges) with respect to some architecture A. Then
there is a corresponding cycle d = d0, . . . , dn−1 in G = aeg(P) such that (1) c0, . . . , cn−1 ∈
γe({d0, . . . , dn−1}) and (2) {(ci, ci+1modn) | 0 ≤ i < n} ⊆ γ({(di, di+1modn) | 0 ≤ i < n}).

PROOF. By Lemma 5.3, and the definition of γe, for each ci there is a uniquely defined
abstract event di such that ci ∈ γe({di}). This implies (1). Since ci and ci+1modn are
connected by an edge, by Lemma 5.4, and the definition of γ, there must be an edge
between the corresponding abstract events di and di+1modn. Hence, the sequence of
abstract events d0, . . . , dn−1 forms a cycle in the aeg. Then, by the definition of γ, we
get (2).

By the above theorem, we can find all the critical cycles of all candidate executions by
collecting the corresponding critical cycles in the aeg. We next explain a special case in
the aeg cycle search that appears due to the presence of loops in the analysed program.

5.6. Loops, arrays, and pointers
In the previous section we have shown that the aeg encompasses all candidate execu-
tions of a program. Thus, via a cycle search in the aeg we can find all the corresponding
critical cycles in all the candidate executions. However, this might require visiting some
of the aeg nodes twice. Specifically, this may be necessary for cycles that contain two
memory accesses from the same thread that originate from the same instruction which
occurs in a loop. To be able to still use a common graph cycle search algorithm that only
finds simple cycles, we duplicate the loop body (for certain loops) in the aeg before doing
the cycle search. Below we give an account of our approach examining all the possible
cases that might occur.

In goto-programs, loops from the original C program appear as goto statements that
jump back to earlier instructions. If we build our aeg directly following the goto-program,
with a pos back-edge connecting the end of the loop body to its entry, we already can
find most of the critical cycles. Recall from Section 4 that in a critical cycle there are at
most two events per thread, and the events target different locations. Let us analyse
the cases. The first case is an iteration i of this loop on which a critical cycle connects
two events (ai) and (bi) that both originate from different instructions in the loop body.
The critical cycle will be captured by its static counterpart that abstracts in particular
these two events with some abstract events (a) and (b).

Now, for a given execution, if a critical cycle connects the event (ai) of an iteration i to
the event (bj) (originating from a different instruction) of a later iteration j (i.e., i < j),
then these events are abstracted respectively by some abstract events (a) and (b) in the
aeg. As we do not evaluate the expressions, we abstracted the loop guard and any local
variable that would vary across the iterations. Thus, all the iterations can be statically
captured by one abstract representation of the body of the loop. Then, thanks to the
pos back-edge, any critical cycle involving (ai) and (bj) is abstracted by a static critical
cycle relating (a) and (b), even though (b) might be before (a) in the body of the loop.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:25

The only case that is not handled by this approach is when (ai) and (bj) originate from
the same instruction and are abstracted by the same abstract event (c). As the variables
addressed by the events on the same thread of a critical cycle need to be different, this
case can only occur when (ai) and (bj) are accessing an array or a pointer whose index
or offset depends on the iteration. We do not evaluate these offsets or indices, which
implies that two accesses to two distinct array positions might be abstracted by the
same abstract event (c).

In order to detect such critical cycles with a simple cycle search, we copy the body
of the loop (not including the pos back-edge for the copy). Hence, a static critical cycle
will connect (c) in the first instance of the body and (c′) in the second instance of the
body to abstract the critical cycle involving (ai) and (bj). We detail the loop duplication
algorithm in the next section.

5.7. Loop duplication algorithm
The aeg construction algorithm is given in pseudo-code in Figure 15. The loop du-
plication is handled in the “backward jump” case of the aeg construction. The aeg
construction is invoked by calling construct aeg(ins, ∅), with the first argument being
the first instruction in the goto-program (i.e., the entry point), and the second argument
being an empty set of aeg nodes. The function builds the aeg by adding nodes (i.e.,
abstract events) and edges (static program order pos or competing pairs cmp) to a global,
initially empty aeg.

The function construct aeg() performs a case distinction over the type of instruction.
After the current instruction has been handled, it calls construct aeg() again to handle
the next instruction (see, e.g., line 9). We assume that next(ins) returns the instruction
that immediately follows ins , that tgt(ins) returns the jump target of the instruction ins
(for jump instructions, see Figure 11), that function(ins) returns the function called by
the instructions ins and that body(fun) returns the first instruction of the function fun.

We make use of three functions that return and may add a set of abstract events to
the global aeg. The function get abs evts(ins) returns the abstract events corresponding
to an instruction. These abstract events can be both memory reads and writes. If the
abstract events have not been previously constructed, the function may query the result
of the pointer analysis to find the potential memory locations the instruction might
access. Then the abstract events are added to the aeg. The function get abs rds(expr)
returns and constructs the abstract read events corresponding to the given expres-
sion. The function get abs wrs(expr) returns and constructs the abstract write events
corresponding to the given expression.

The function add pos edges(evts1, evts2) adds static program order edges to the aeg
from all the abstract events in set evts1 to all the abstract events in set evts2. The
function add pos edge(e1, e2) adds a static program order edge to the aeg between the
abstract events e1 and e2.

We next detail the actual loop duplication which is handled in the “backward
jump” case of the aeg construction. Our implementation duplicates the loop bod-
ies only for loops that contain accesses to arrays or accesses via pointers for which
the target location might depend on the loop iteration (line 18). The function con-
tains pointer access(ins1, ins2) returns true when the section of the goto-program be-
tween instructions ins1 and ins2 contains accesses to arrays or pointers for which the
target location might depend on the loop iteration.

The subroutine duplicate body(start, end) duplicates the loop body corresponding to a
back-edge (corresponding to a backwards goto statement in the goto-program). It makes
use of the function evts between(start , end) which returns the set of abstract events in
the current, partially constructed aeg which are on a path from an abstract event in
start to an abstract event in end . It also uses the function get pos successors(e) which

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 J. Alglave et al.

1 function construct aeg(ins, prev evts)
2 switch type(ins) do

/* Cases for all the transformers of
Figures 11 and 12 */

3 case assignment
4 evts1 = get abs rds(lhs(ins))
5 evts2 = get abs rds(rhs(ins))
6 evts3 = get abs wrs(lhs(ins))
7 add pos edges(prev evts, evts1 ∪ evts2)
8 add pos edges(evts1 ∪ evts2, evts3)
9 construct aeg(next(ins), evts3)

10 endsw
11 case function call
12 construct aeg(body(function(ins)),

prev evts)
13 endsw
14 . . .
15 case backward jump
16 evts tgt = get abs evts(tgt(ins))
17 add pos edges(prev evts, nodes tgt)
18 if contains pointer access(tgt(ins), ins)

then
19 new prev =

duplicate body(evts tgt, prev evts)
construct aeg(next(ins), new prev)

20 else
21 construct aeg(next(ins), prev evts)
22 end
23 endsw
24 endsw

1 function duplicate body(start, end)
2 old to new = {}
3 loop = evts between(start, end)
4 for e ∈ loop do
5 new e = copy(e)
6 old to new[e] = new e
7 end
8 for e ∈ loop do
9 new e = old to new[e]

10 succs = get pos successors(e)
11 for s ∈ succs do
12 new s = old to new[s]
13 add pos edge(new e, new s)
14 end
15 end
16 new start = {old to new[e] | e ∈ start}
17 add pos edges(end, new start)
18 new end = {old to new[e] | e ∈ end}
19 return new end

Fig. 15. aeg construction algorithm (including loop duplication algorithm)

returns the set of abstract events to which there is a static program order edge in the
current, partially constructed aeg from the abstract event e.

The function duplicate body(start , end) first copies all the abstract events in the loop
body (lines 4–7). Then, it connects the new abstract events via static program order
edges (lines 8–15). Finally, it attaches the new loop body to the old loop body (lines
16–17), and returns the abstract events at the end (line 19).

The loop duplication algorithm also works correctly for nested loops. Nested loops in
the original C program appear in the goto-program as backward jumps from a location i
to a location j < i, such that there is another backward jump from location k > i to
a location l < j (representing the outer loop). The number of aeg nodes introduced
by the loop duplication for a given loop grows quadratically with the nesting depth
(i.e., the number of other loops it contains). A formal argument showing this can be
found in [Nimal 2015].

5.8. Cycle detection
Once we have the aeg, we enumerate (using Tarjan’s algorithm [Tarjan 1973]) its
potential critical cycles by searching for cycles that contain at least one edge that
corresponds to a delay, as defined in Section 4.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:27

pos pos

pos

pos

pos

pos pos

dpcycle 1

lwf

cycle 3

dp

cycle 2

f

cycle 4

(c)Rz

(d)Wx

(e)Rx

(f)Ry (i)Rz

(j)Wy(a)Wt

(b)Wy (h)Rt

(g)Wz

(l)Rz

(k)Wt

min dp(e,g) + dp(f,h) + dp(f,g) + 3 · (f(e,f) + f(f,g) + f(g,h))
+2 · (lwf(e,f) + lwf(f,g) + lwf(g,h))

s.t. cycle 1, delay (e, g): dp(e,g) + f(e,f) + f(f,g) + lwf(e,f) + lwf(f,g) ≥ 1
cycle 2, delay (f, g): dp(f,g) + f(f,g) + lwf(f,g) ≥ 1
cycle 3, delay (f, h): dp(f,h) + f(f,g) + f(g,h) + lwf(f,g) + lwf(g,h) ≥ 1
cycle 4, delay (g, h): f(g,h) ≥ 1

Fig. 16. Example of resolution with between.

6. SYNTHESISING FENCES
In this section, we describe how to compute which types of fences to place at which
locations in the program, in order to forbid the weak behaviours embodied by the
potential critical cycles contained in the aeg.

6.1. Options for placing fences
In Figure 16, we give an aeg with five threads: {a, b}, {c, d}, {e, f, g, h}, {i, j} and {k, l}.
Each node is an abstract event computed as described in the previous section. The
dashed edges represent the pos between abstract events in the same thread. The full
lines represent the edges involved in a cycle. The aeg of Figure 16 has four potential
critical cycles. We derive the set of constraints in a process we define later in this section.
We now have a set of cycles to forbid by placing fences. Moreover, we want to optimise
the placement of the fences.

Challenges. If there is only one type of fence (as in TSO, which only features mfence),
optimising only consists of placing a minimal number of fences to forbid as many cycles
as possible. For example, placing a full fence sync between f and g in Figure 16 might
forbid cycles 1, 2 and 3 under Power, whereas placing it somewhere else might forbid at
best two amongst them.

Since we handle several types of fences for a given architecture (e.g., dependencies,
lwsync and sync on Power), we can also assign some cost to each of them. For example,
following the folklore, a dependency is less costly than an lwsync, which is itself less
costly than a sync. Given these costs, one might want to minimise their sum along
different executions: to forbid cycles 1, 2 and 3 in Figure 16, a single lwsync between f
and g can be cheaper at runtime than three dependencies respectively between e and g,
f and g, and f and h. However, if we had only cycles 1 and 2, the dependencies would
be cheaper. We see that we have to optimise both the placement and the type of fences
at the same time.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 J. Alglave et al.

Input: aeg (Es,pos,cmp) and potential critical cycles C = {C1, . . . , Cn}
Problem: minimise

∑
(l,t)∈potential-places(C) tl × cost(t)

Constraints: for all d ∈ delays(C)
(* for TSO, PSO, RMO, Power *)
if d ∈ poWR then

∑
e∈between(d) fe ≥ 1

if d ∈ poWW then
∑

e∈between(d) fe + lwfe ≥ 1
if d ∈ poRW then dpd +

∑
e∈between(d) fe + lwfe ≥ 1

if d ∈ poRR then dpd +
∑

e∈between(d) fe + lwfe +
∑

e∈ctrl(d) cfe ≥ 1
(* for Power *)
if d ∈ cmp then

∑
e∈cumul(d) fe +

∑
e∈cumul(d)∩¬poWR∩¬poRW lwfe ≥ 1

Output: the set actual-places(C) of pairs (l, t) s.t. tl is set to 1 in the ILP solution

Fig. 17. ILP for inferring fence placements.

We model our problem as an integer linear program (ILP) (see Figure 17; Figure 16
gives an instantiation of the ILP for the aeg shown in the same figure). Solving our ILP
gives us a set of fences to insert to forbid the cycles. This set of fences is optimal in that
it minimises the cost function. More precisely, the constraints are the cycles to forbid,
each variable represents a fence to insert, and the cost function sums the cost of all
fences. We now explain how to construct this ILP.

6.2. Cost function of the ILP
We handle several types of fences: full (f), lightweight (lwf), control fences (cf), and
dependencies (dp). On Power, the full fence is sync, the lightweight one lwsync. We write
T for the set {dp, f, cf, lwf}. We assume that each type of fence has an a priori cost (e.g., a
dependency is cheaper than a full fence), regardless of its location in the code.8 We write
cost(t) for t ∈ T for this cost.

We take as input the aeg of our program and the potential critical cycles to fence.
We define two sets of pairs (l, t) where l is a pos edge of the aeg and t is a type of
fence. The first set potential-places is the set of such pairs that can be inserted into the
program to forbid the cycles. The second set actual-places is the set of such pairs that
have been set to 1 by our ILP. For each pair (l, t) we have an ILP variable tl (in {0, 1}).
We output the set actual-places, as it represents the locations in the code in need of a
fence and the type of fence to insert for each of them. We also output the total cost of all
these insertions, i.e., ∑

(l,t)∈potential-places(C)

tl × cost(t) .

The solver minimises this sum while satisfying the constraints.

6.3. Constraints in the ILP
We want to forbid all the cycles in the set that we are given after filtering, as explained
in the preamble of this section. This requires placing an appropriate fence on each delay
for each cycle in this set. Different delay pairs might need different fences, depending,
e.g., on the directions (write or read) of their extremities. Essentially, we follow the
table in Figure 7. For example, a write-read pair needs a full fence (e.g., mfence on x86,
or sync on Power). A read-read pair can use anything amongst dependencies and fences.
Our constraints ensure that we use the right type of fence for each delay pair.

8It is straight-forward to make the cost dependent on the location, and to obtain the information on how often
a location is executed using standard profiling techniques.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:29

pos

pos

pos

pos posdp

cycle 3

dp

cycle 2

dp

cycle 4

(f)Wy (i)Rz

(j)Ry(a)Rt

(b)Ry (h)Wt

(g)Wz

(l)Rz

(k)Rt

min 3 · (f(f,g) + f(g,h)) + 2 · (lwf(f,g) + lwf(g,h))
s.t. cycle 2, delay (f, g): f(f,g) + lwf(f,g) ≥ 1

cycle 3, delay (f, h): f(f,g) + lwf(f,g) + f(g,h) + lwf(g,h) ≥ 1
cycle 4, delay (g, h): f(g,h) + lwf(g,h) ≥ 1

Fig. 18. Variation of the example in Figure 16. We restrict to 3 cycles, (f) and (h) become writes, (a), (b), (j)
and (k) become reads.

Inequalities as constraints. We first assume that all the program order delays are in
pos and we ignore Power and ARM special features (dependencies, control fences and
communication delays). This case deals with relatively strong models, ranging from
TSO to RMO. We relax these assumptions below.

In this setting, potential-places(C) is the set of all the pos delays of the cycles in C.
We ensure that every delay pair for every execution is fenced, by placing a fence on the
static pos edge for this pair, and this for each cycle given as input. Thus, we need at
least one constraint per static delay pair d in each cycle.

If d is of the form poWR, as (g, h) in Figure 16 (cycle 4), only a full fence can fix it
(cf. Figure 7), thus we impose fd ≥ 1. If d is of the form poRR, as (f, h) in Figure 16
(cycle 3), we can choose any type of fence, i.e., dpd + cfd + lwfd + fd ≥ 1.

Our constraints cannot be equalities because it is not certain that the resulting
system would be satisfiable. To see this, suppose our constraints were equalities, and
consider Figure 18, which is the same aeg as in Figure 16 but we limit ourselves to
cycles 2, 3 and 4; (f) and (h) become writes while (a), (b), (j) and (k) become reads. For
these cycles, we generate the following constraints:

(i) lwf(f,g) + f(f,g) = 1 for the delay (f, g) in cycle 2,
(ii) lwf(f,g) + f(f,g) + lwf(g,h) + f(g,h) = 1 for the delay (f, h) in cycle 3, and

(iii) lwf(g,h) + f(g,h) = 1 for the delay (g, h) in cycle 4.

By adding up (i) and (iii), we obtain lwf(f,g) + f(f,g) + lwf(g,h) + f(g,h) = 2, which
contradicts (ii). By using inequalities, we allow several fences to on the same edge.
In fact, the constraints only ensure the soundness; the optimality is achieved using the
cost function.

Delays. The delays are in po+
s (and not always in pos): in Figure 16, the delay

(e, g) in cycle 1 does not belong to pos but to po+
s . Thus given a po+

s delay (x, y),
we consider all the pos pairs which appear between x and y, i.e.: between(x, y) ,
{(e1, e2) ∈ pos | (x, e1) ∈ po∗s ∧ (e2, y) ∈ po∗s}. For example in Figure 16, we have
between(e, g) = {(e, f), (f, g)}. Thus, ignoring the use of dependencies and control
fences for now, for the delay (e, g) in Figure 16, we will not impose f(e,g) + lwf(e,g) ≥ 1 but

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 J. Alglave et al.

(a)Wx

(b)Ry

(c)Wy

(e)(d) (f)

(g)Rx

f

pos

pos

cmp

cmp

Fig. 19. Cycles sharing the edge (a, b).

rather f(e,f) + lwf(e,f) + f(f,g) + lwf(f,g) ≥ 1. Indeed, a full fence or a lightweight fence in
(e, f) or (f, g) will prevent the delay in (e, g).

Dependencies. Unlike for fences, it is not sufficient to place a dependency anywhere
between two abstract events. Consider e and g in Figure 16: dp(e,f) or dp(f,g) would
not fix the delay (e, g), but simply maintain the pairs (e, f) or (f, g), leaving the pair
(e, g) free to be reordered. Thus if we choose to synchronise (e, g) using dependencies,
we actually need a dependency from e to g: dp(e,g). Dependencies only apply to pairs
that start with a read; thus for each such pair (see the poRW and poRR cases in
Figure 17), we add a variable for the dependency: (e, g) will be fixed with the constraint
dp(e,g) + f(e,f) + lwf(e,f) + f(f,g) + lwf(f,g) ≥ 1.

Control fences. Placing control fences after a conditional branch (e.g., bne on Power)
prevents reads after this branch (see Figure 7) to be speculated. Thus, when building
the aeg, we built a set poC for each branch, which gathers all the pairs of abstract
events such that the first one is the last event before a branch, and the second is the
first event after that branch. We can place a control fence before the second component
of each such pair, if the second component is a read. Thus, we add cfe as a possible
variable to the constraint for read-read pairs (see the poRR case in Figure 17, where
ctrl(d) = between(d) ∩ poC).

Cumulativity. For architectures like Power, where stores are non-atomic, we need to
look for program order pairs that are connected to an external read-from (e.g., (c, d) in
Figure 4 has an rf connected to it via event c). In such cases, we need to use a cumulative
fence (e.g., lwsync or sync).

The locations to consider in such cases are: before (in pos) the write w of the rfe, or
after (in pos) the read r of the rfe, i.e., cumul(w, r) = {(e1, e2) | (e1, e2) ∈ pos ∧ ((e2, w) ∈
po∗s ∨ (r, e1) ∈ po∗s)}. In Figure 16 (cycle 2), (g, i) over-approximates an rfe edge, and the
edges where we can insert fences are in cumul(g, i) = {(f, g), (i, j)}.

We need a cumulative fence as soon as there is a potential rfe, even if the adjacent
pos pairs do not form a delay. For example in Figure 4, suppose there is a dependency
between the reads on T1, and a fence maintaining write-write pairs on T0. In that
case we need to place a cumulative fence to fix the rfe, even if the two pos pairs are
themselves fixed. Thus, we quantify over all pos pairs when we need to place cumulative
fences. As only f and lwf are cumulative, we have

potential-places(C) , {(l, t) | (t ∈ {dp} ∧ l ∈ delays(C))
∨ (t ∈ T\{dp} ∧ l ∈

⋃
d∈delays(C) between(d))

∨ (t ∈ {f, lwf} ∧ l ∈ pos(C))} .

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:31

6.4. Comparison with trencher
We illustrate the difference between trencher [Bouajjani et al. 2013] and our approach
using Figure 19. There are three cycles that share the edge (a, b). They differ in the path
taken between nodes c and g. Suppose that the user has inserted a full fence between a
and b. To forbid the three cycles, we need to fence the thread on the right.

The trencher algorithm first calculates which pairs can be reordered: in our example,
these are (c, g) via d, (c, g) via e and (c, g) via f . It then determines at which locations a
fence could be placed. In our example, there are 6 options: (c, d), (d, g), (c, e), (e, g), (c, f),
and (f, g). The encoding thus uses 6 variables for the fence locations. The algorithm
then gathers all the irreducible sets of locations to be fenced to forbid the delay between
c and g, where “irreducible” means that removing any of the fences would prevent
this set from fully fixing the delay. As all the paths that connect c and g have to be
covered, trencher needs to collect all the combinations of one fence per path. There are
two locations per path, leading to 23 sets. Consequently, as stated in [Bouajjani et al.
2013], trencher needs to construct an exponential number of sets.

Each set is encoded in the ILP with one variable. For this example, trencher thus uses
6 + 8 variables. It also generates one constraint per delay (here, 1) to force the solver to
pick a set, and eight constraints to enforce that all the location variables are set to 1 if
the set containing these locations is picked.

By contrast, musketeer only needs six variables: the possible locations for fences.
We detect three cycles, and generate only three constraints to fix the delay. Thus,
on a parametric version of the example, trencher’s ILP grows exponentially whereas
musketeer’s is linear-sized.

7. IMPLEMENTATION, EXPERIMENTS, AND RUNTIME IMPACT
We implemented our new method, in addition to all the methods described in Section 2,
in our tool musketeer. We use glpk (http://www.gnu.org/software/glpk) as the ILP solver.
Once the locations and types of fences have been inferred by musketeer, the insertion of
the fence instructions into the program source code is performed by a script. We explain
how this is done in Section 7.1.

We compare our method and the pensieve method that we reimplemented to the
existing tools listed in Section 3 on classic examples from the literature in Section 7.2.
We also ran musketeer on executables from the Debian GNU/Linux distribution. We fi-
nally check the impact on runtime of the fences inferred and inserted in memcached,
pfscan, dnshistory, and weborf. The results are reported in Section 7.3.

7.1. Inserting synchronisation into C code
Given an aeg, we output the static program order edges and the types of fences that
should be placed there to forbid the critical cycles. This information is used by the fence
insertion component to insert the fences into the C code. A static program order edge
corresponds to two code locations (the source and the target of the edge) that access
memory. We identify such code locations by a line number and the C expression on that
line that corresponds to the access.

Our tool musketeer outputs a list of five-tuples with each tuple indicating a type of
fence and where to place it. For example, for the code portion on the left of Figure 20, to
indicate that an mfence should be placed between the read of x on line 1 and the read
of y on line 3 (corresponding to an aeg edge (Rx,Ry) ∈ pos), musketeer would output
the tuple (mfence, 1, x, 3, y). We then have some freedom of choice where to place the
fence, as shown in the middle and on the right of Figure 20. We insert fences via inline

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 J. Alglave et al.

1 r1 = x;
2 r2 = r1+2;
3 r3 = y;
4

1 r1 = x;
2 asm (”mfence”);
3 r2 = r1+2;
4 r3 = y;

1 r1 = x;
2 r2 = r1+2;
3 asm (”mfence”);
4 r3 = y;

Fig. 20. Choices for placing a fence.

1 void∗ t0(void∗ arg) {
2 int r;
3 if (x > 0)
4 r = y;
5 }
6
7
8
9

10

1 void∗ t0(void∗ arg) {
2 int r;
3 if (x > 0) {
4 asm (”dmb”);
5 r = y;
6 }
7 }
8
9

10

1 ldr r3, [r3]
2 cmp r3, #0
3 ble .L2
4 dmb
5 movw r3, #:lower16:y
6 movt r3, #:upper16:y
7 ldr r3, [r3]
8 str r3, [r7, #4]
9 .L2:

Fig. 21. Original program (left), program with fence inserted (middle), program compiled to ARM assembly
(right).

assembly statements, which we give in abbreviated form as asm ("code").9 We next
illustrate how we insert fences and dependencies in a piece of C code.

Fences. We insert fences into a program via inline assembly. In Figure 21, we insert
a fence between the read of x in line 3 and the read of y in line 4. Adding the inline
assembly statement also requires us to add curly braces to the if statement in order to
ensure that both the fence and the read of y are performed conditionally. The program
compiled to ARM assembly (with gcc -O0), and the result is given on the right.

Dependencies. To insert dependencies, we further need to rewrite the code. Consider
a read-read pair, corresponding to lines 3 and 4 on the left of Figure 22. We enforce
an address dependency from the read of x to the read of y, by using a register (r3) to
perform some computation which always returns 0 (in this case XOR-ing a register
with itself), then add this result to the address of y. This transformation ensures that
the compiled ARM assembly (gcc -O0; given on the right of Figure 22) has an address
dependency between the read of x and the read of y.

7.2. Experiments and benchmarks
Our tool analyses C programs. The dfence tool also handles C code, but requires some
high-level specification for each program, which was not available to us. The memorax
tool works on a process-based language that is specific to the tool. The offence tool works
on a subset of assembler for x86, ARM and Power. The pensieve tool originally handled
Java, but we did not have access to it and have therefore re-implemented the method.
Similarly, remmex handles Promela-like programs and trencher analyses transition
systems. Most of the tools come with some of the benchmarks in their own languages;
not all benchmarks were however available for each tool. We have re-implemented some
of the benchmarks for offence.

9We also give the volatile keyword and the "memory" clobber to ensure that the inline assembly
statements are not optimised: asm volatile("code":::"memory"). See https://gcc.gnu.org/onlinedocs/gcc/
Using-Assembly-Language-with-C.html.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:33

1 void∗ t0(void∗ arg) {
2 int r1, r2;
3 r1 = x;
4 r2 = y;
5 }
6
7
8
9

10

1 void∗ t0(void∗ arg) {
2 int r1, r2;
3 r1 = x;
4 int r3;
5 asm (
6 ”eors %0, %1, %1”
7 : ”=r”(r3)
8 : ”r”(r1));
9 r2 = ∗(&y + r3);

10 }

1 t0:
2 movw r3,#:lower16:x
3 movt r3,#:upper16:x
4 ldr r2,[r3, #0]
5 eors r2, r2,r2
6 movw r3,#:lower16:y
7 movt r3,#:upper16:y
8 ldr r3,[r3,r2, lsl #2]
9 bx lr

10

Fig. 22. Original program (left), program with dependency inserted (middle), program compiled to ARM
assembly (right).

Dek Pet Lam Szy Par

LoC 50 37 72 54 96

dfence – – – – – – – – – –
memorax 0.4 2 1.4 2 79.1 4 1.3 3 1.1 0
musketeer 0.0 5 0.0 3 0.0 8 0.0 8 0.0 3
offence 0.0 2 0.0 2 0.0 8 0.0 8 – –
pensieve 0.0 16 0.0 6 0.0 24 0.0 22 0.0 7
remmex 0.5 2 0.5 2 2.0 4 1.8 5 – –
trencher 1.6 2 1.3 2 1.7 4 1.1 8 0.5 1
persist 0.8 2 0.7 2 2.5 8 2.1 8 0.9 1

Fig. 23. All tools on the CLASSIC series for TSO.

We now report our experimental data. CLASSIC and FAST gather examples from
the literature and related work. The DEBIAN benchmarks are packages of the Debian
GNU/Linux distribution version 7.1. CLASSIC and FAST were run on a x86-64 Intel
Core2 Quad Q9550 machine with 4 cores (2.83 GHz) and 4 GB of RAM. DEBIAN was run
on a x86-64 Intel Core i5-3570 machine with 4 cores (3.40 GHz) and 4 GB of RAM.

CLASSIC. This set consists of Dekker’s mutex (Dek) [Dijkstra 1965]; Peterson’s mutex
(Pet) [Peterson 1981]; Lamport’s fast mutex (Lam) [Lamport 1987]; Szymanski’s mutex
(Szy) [Szymanski 1988]; and Parker’s bug (Par) [Dice 2009]. We ran all tools in this
series for TSO (the model common to all). For each example, Figure 23 gives the number
of fences inserted, and the time (in seconds) needed. When an example is not available
in the input language of a tool, we write “–”. We used memorax with the option -o1,
to compute one maximal permissive set and not all. For remmex on Szymanski, we
give the number of fences found by default (which may be non-optimal). Its “maximal
permissive” option lowers the number to 2, at the cost of a slow enumeration. We observe
that our tool musketeer is less precise than most tools, but outperforms them in terms
of performance.

FAST. This set consists of Cil, Cilk 5 Work Stealing Queue (WSQ) [Frigo et al. 1998];
CL, Chase-Lev WSQ [Chase and Lev 2005]; Fif, Michael et al.’s FIFO WSQ [Michael
et al. 2009]; Lif, Michael et al.’s LIFO WSQ [Michael et al. 2009]; Anc, Michael et
al.’s Anchor WSQ [Michael et al. 2009]; Har, Harris’ set [Detlefs et al. 2000]. For each
example and tool, Figure 24 gives the number of fences inserted (under TSO) and the
time needed to do so. For dfence, we used the setting of Liu et al. [2012]: the tool has
up to 20 attempts to find fences. We were unable to apply dfence on some of the FAST
examples: we thus reproduce the number of fences given in [Liu et al. 2012], and write

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:34 J. Alglave et al.

Cil CL Fif Lif Anc Har

LoC 97 111 150 152 188 179

dfence 7.8 3 6.2 3 ∼ 0 ∼ 0 ∼ 0 ∼ 0
musketeer 0.0 3 0.0 1 0.1 1 0.0 1 0.1 1 0.6 4
pensieve 0.0 14 0.0 8 0.1 33 0.0 29 0.0 44 0.1 72
trencher 0.5 1 8.6 3 – – – – – – – –
persist 1.3 2 2.3 1 1.0 1 14.6 1 0.9 1 – –

Fig. 24. Tools on the FAST series for TSO.

TSO Power
LoC nodes fences time (s) fences time (s)

memcached 9944 571 4 12.4 61 83.9
lingot 2504 110 0 0.3 0 0.3
weborf 1915 432 1 94.3 1 95.7
timemachine 977 78 0 0.1 0 0.1
see 2227 302 0 2.4 0 2.3
blktrace 1438 416 0 1.9 5 16.5
ptunnel 1119 1805 3 19.6 32 43.3
proxsmtpd 2023 1934 0 167.8 – timeout
ghostess 2275 1008 0 1.9 0 1.8
dnshistory 1358 888 1 5.9 7 25.7

Fig. 25. musketeer on selected benchmarks of the DEBIAN series for TSO and Power.

∼ for the time. We applied musketeer to this series, for all architectures. The fencing
times for TSO and Power are almost identical, except for the largest example, namely
Har (0.1 s vs. 0.6 s).

Similar experiments to our CLASSIC and FAST series have been performed by Abdulla
et al. [2015]. On some examples their tool persist could infer fences while musketeer
timed out. These were cases where a higher number of threads was used (e.g., Peterson’s
algorithm with 4 threads as opposed to 2 threads as in our experiments). They also
evaluated the scalability of persist, trencher, and musketeer on 8 examples when the
number of threads was increased. They found that persist and musketeer scaled better
than the other on 4 examples each.

DEBIAN. This set consists of in total 715 goto-programs that have been built from De-
bian GNU/Linux 7.1 (details of this process are described in [Kroening and Tautschnig
2014]). The compiled goto-programs can be found at http://theory.eecs.qmul.ac.uk/
debian+mole/pkgs/. A small excerpt of our results is given in Figure 25. The full data
set is provided at http://www.cprover.org/wmm/musketeer. For each program, we give
the lines of code and number of nodes in the aeg.

We used musketeer on these programs to demonstrate its scalability and its ability to
handle deployed code. Most programs already contain fences or operations that imply
them, such as compare-and-swaps or locks. Our tool musketeer takes these fences into
account and infers a set of additional fences sufficient to guarantee SC. The largest
program we handle is memcached (∼10,000 LoC). Our tool needs 12.4 s to place fences
for TSO, and 83.9 s for Power.

A more meaningful measure for the difficulty of an instance is the number of nodes
in the aeg. For example, proxsmtpd has 1934 nodes and 2023 LoC. The fencing takes
167.8 s for TSO, but times out for Power due to the number of cycles.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:35

N/A

(a) memcached, x86

M P V E H
0

5

10

15

20

0.6
2.4

5

17.8

O
v
er
h
ea

d
(i
n
%
) (b) memcached, ARM

M P V E H
0

5

10

2.5 2.5
1

3.7

8.2

O
v
er
h
ea

d
(i
n
%
)

Fig. 26. Runtime overheads due to fences inserted in memcached for each strategy.

N/A

(c) pfscan, x86

M P V E H
0

0.5

1

1.5

2

0.3 0.4 0.5

1.6

O
v
er
h
ea

d
(i
n
%
) (d) pfscan, ARM

M P V E H
0

20

40

60

80

0.2 1.7 0.5 3

80.4

O
v
er
h
ea

d
(i
n
%
)

Fig. 27. Runtime overheads due to fences inserted in pfscan for each strategy.

N/A

(a) dnshistory, x86

M P V E H
0

20

40

60

0.4 3.1
9

61.4

O
v
er
h
ea

d
(i
n
%
) (b) dnshistory, ARM

M P V E H
0

1

2

1.2 1.1
0.9

1.5 1.4

O
v
er
h
ea

d
(i
n
%
)

Fig. 28. Runtime overheads due to fences in inserted dnshistory and for each strategy.

Of the 715 binaries we ran musketeer on, for 598 binaries it could successfully
infer fences for TSO, and for 579 binaries it could successfully infer fences for Power.
Whenever musketeer could infer fences for Power (within the available time limit of
10m), it could also infer fences for TSO. On 117 binaries our tool reached a timeout for
both TSO and Power (timeout 10m). On 57 of those binaries it timed out during the
pointer analysis phase, while on the remaining 60 binaries it timed out during the cycle
search in the aeg. Our tool never timed out during the ILP solving phase on the Debian
benchmarks.

Not all fences inferred by musketeer are necessary to enforce SC, due to the impreci-
sion introduced by the aeg abstraction. We discuss the execution time overhead of the
program versions with fences inserted by musketeer next.

7.3. Impact on runtime
We finally measured the impact of fences for the programs memcached (an in-memory
caching system), pfscan (a file scanning tool), dnshistory (a DNS lookup tool), and weborf
(a lightweight web server), with experiments similar to those in Section 2. We built new
versions of the programs according to the fencing strategies described in Section 2.

The workload for the memcached daemon was generated using the memtier bench-
marking tool. We killed the memcached daemon after 60 s. The pfscan tool was used
to concurrently search for a short string (5 characters) in several large text files. The
dnshistory tool was invoked to perform a series of lookups concurrently from several

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:36 J. Alglave et al.

N/A

(c) weborf, x86

M P V E H
0

0.5

1

1.5

0.2 0.2

0.8
0.9

O
v
er
h
ea

d
(i
n
%
) (d) weborf, ARM

M P V E H
0

1

2

3

0.7
1

0.2

1.5

2

O
v
er
h
ea

d
(i
n
%
)

Fig. 29. Runtime overheads due to inserted fences in weborf for each strategy.

memcached on x86 memcached on ARM pfscan on x86 pfscan on ARM
(M) [29.781; 29.893] [11.513; 11.615] [15.074; 15.097] [19.112; 19.139]
(P) [30.317; 30.423] [11.497; 11.628] [15.083; 15.107] [19.401; 19.427]
(V) N/A [11.324; 11.462] N/A [19.176; 19.204]
(E) [31.093; 31.169] [11.633; 11.762] [15.086; 15.118] [19.659; 19.684]
(H) [34.904; 34.947] [12.059; 12.365] [15.270; 15.293] [34.422; 34.457]

Fig. 30. Confidence intervals for the mean execution times (in sec) for memcached and pfscan.

dnshistory on x86 dnshistory on ARM weborf on x86 weborf on ARM
(M) [1.631; 1.649] [1.193; 1.209] [1.102; 1.113] [2.022; 2.060]
(P) [1.676; 1.704] [1.193; 1.209] [1.099; 1.116] [2.030, 2.068]
(V) N/A [1.192; 1.205] N/A [2.012; 2.052]
(E) [1.779; 1.794] [1.196; 1.214] [1.110; 1.119] [2.042; 2.074]
(H) [2.633; 2.661] [1.197; 1.211] [1.110; 1.122] [2.050; 2.089]

Fig. 31. Confidence intervals for the mean execution times (in sec) for dnshistory and weborf.

threads. The workload for the weborf server was generated by a script that performs a
series of http requests to the server.

The results are shown in Figures 26–29. The bars indicate the mean overhead w.r.t.
the original, unmodified programs. The corresponding confidence intervals for the mean
runtimes are shown in Figures 30–31.

Overall, the overhead of fences was most noticeable for memcached on both x86 and
ARM. Adding a fence after every access to static or heap data yielded overheads of up
to 17.8%. Adding fences via an escape analysis yielded overheads to up to 5%. Amongst
the approaches that guarantee SC (i.e., all but V), the best results were achieved with
our tool musketeer.

8. CONCLUSIONS
We introduced a novel method for deriving a set of fences that restore sequential
consistency on architectures that implement TSO and the IBM Power consistency
models. We have implemented the method in a new tool called musketeer. We compared
it to existing tools and observed that it outperforms them. We demonstrated on our
DEBIAN series that musketeer can handle deployed code, with a large potential for
scalability.

REFERENCES
Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonardsson, and Ahmed Rezine. 2013.

Memorax, a Precise and Sound Tool for Automatic Fence Insertion under TSO. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS) (LNCS). Springer, 530–536.

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Don’t Sit on the Fence: A Static Analysis Approach to Automatic Fence Insertion A:37

Parosh Aziz Abdulla, Mohamed Faouzi Atig, Magnus Lang, and Tuan Phong Ngo. 2015. Precise and Sound
Automatic Fence Insertion Procedure under PSO. In NETYS.

Parosh Aziz Abdulla, Mohamed Faouzi Atig, and Tuan-Phong Ngo. 2015. The Best of Both Worlds: Trading
Efficiency and Optimality in Fence Insertion for TSO. In European Symposium on Programming on
Programming (ESOP). Springer, 308–332.

Sarita V. Adve and Kourosh Gharachorloo. 1995. Shared Memory Consistency Models: A Tutorial. IEEE
Computer 29, 12 (1995), 66–76.

Jade Alglave, Daniel Kroening, John Lugton, Vincent Nimal, and Michael Tautschnig. 2011. Soundness
of Data Flow Analyses for Weak Memory Models. In Programming Languages and Systems (APLAS)
(LNCS), Vol. 7078. Springer, 272–288.

Jade Alglave, Daniel Kroening, Vincent Nimal, and Michael Tautschnig. 2013. Software Verification for
Weak Memory via Program Transformation. In European Symposium on Programming (ESOP) (LNCS).
Springer, 512–532.

Jade Alglave and Luc Maranget. 2011. Stability in Weak Memory Models. In Computer Aided Verification
(CAV) (LNCS), Vol. 6806. Springer, 50–66.

Jade Alglave, Luc Maranget, S. Sarkar, and Peter Sewell. 2010. Fences in Weak Memory Models. In Computer
Aided Verification (CAV) (LNCS), Vol. 6174. Springer, 258–272.

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing,
and Data Mining for Weak Memory. ACM Trans. Program. Lang. Syst. 36, 2, Article 7 (July 2014), 74
pages. DOI:http://dx.doi.org/10.1145/2627752

John Bender, Mohsen Lesani, and Jens Palsberg. 2015. Declarative Fence Insertion. In Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA). ACM, 367–385.

Ahmed Bouajjani, Egor Derevenetc, and Roland Meyer. 2013. Checking and Enforcing Robustness against
TSO. In European Symposium on Programming (ESOP) (LNCS), Vol. 7792. Springer, 533–553.

Ahmed Bouajjani, R. Meyer, and E. Moehlmann. 2011. Deciding Robustness Against Total Store Ordering. In
Automata, Languages and Programming (ICALP) (LNCS), Vol. 6756. Springer, 428–440.

C11 2011. Information technology – Programming languages – C. In BS ISO/IEC 9899:2011.
David Chase and Yossi Lev. 2005. Dynamic circular work-stealing deque. In Symposium on Parallelism in

Algorithms and Architectures (SPAA). ACM, 21–28.
David Detlefs, Christine H. Flood, Alex Garthwaite, Paul A. Martin, Nir Shavit, and Guy L. Steele Jr. 2000.

Even Better DCAS-Based Concurrent Deques. In Distributed Computing (DISC) (LNCS), Vol. 1914.
Springer, 59–73.

David Dice. 2009. (November 2009). https://blogs.oracle.com/dave/entry/a race in locksupport park
Edsger W. Dijkstra. 1965. Solution of a problem in concurrent programming control. Commun. ACM 8, 9

(1965), 569.
Xing Fang, Jaejin Lee, and Samuel P. Midkiff. 2003. Automatic fence insertion for shared memory multipro-

cessing. In International Conference on Supercomputing (ICS). ACM, 285–294.
Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. 1998. The Implementation of the Cilk-5 Multi-

threaded Language. In PLDI. ACM, 212–223.
Maurice Herlihy and Nir Shavit. 2008. The Art of Multiprocessor Programming. Morgan and Kaufmann,

Burlington.
Saurabh Joshi and Daniel Kroening. 2015. Property-Driven Fence Insertion Using Reorder Bounded Model

Checking. In FM. Springer, 291–307.
Vineet Kahlon, Nishant Sinha, Erik Kruus, and Yun Zhang. 2009. Static data race detection for concurrent

programs with asynchronous calls. In FSE. ACM, 13–22.
Arvind Krishnamurthy and Katherine A. Yelick. 1996. Analyses and Optimizations for Shared Address Space

Programs. J. Par. Dist. Comp. 38, 2 (1996).
Daniel Kroening and Michael Tautschnig. 2014. Automating Software Analysis at Large Scale. In Doctoral

Workshop on Mathematical and Engineering Methods in Computer Science (MEMICS). Springer, 30–39.
Michael Kuperstein, Martin T. Vechev, and Eran Yahav. 2010. Automatic inference of memory fences. In

Formal Methods in Computer-Aided Design (FMCAD). IEEE, 111–119.
Michael Kuperstein, Martin T. Vechev, and Eran Yahav. 2011. Partial-coherence abstractions for relaxed

memory models. In PLDI. 187–198.
Leslie Lamport. 1979. How to Make a Correct Multiprocess Program Execute Correctly on a Multiprocessor.

IEEE Trans. Comput. 46, 7 (1979).
Leslie Lamport. 1987. A Fast Mutual Exclusion Algorithm. ACM Trans. Comput. Syst. 5, 1 (1987).

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

A:38 J. Alglave et al.

Jaejin Lee and David A. Padua. 2001. Hiding Relaxed Memory Consistency with a Compiler. IEEE Trans.
Comput. 50 (2001), 824–833.

Alexander Linden and Pierre Wolper. 2013. A Verification-Based Approach to Memory Fence Insertion in
PSO Memory Systems. In Tools and Algorithms for the Construction and Analysis of Systems (TACAS)
(LNCS), Vol. 7795. Springer, 339–353.

Feng Liu, Nayden Nedev, Nedyalko Prisadnikov, Martin T. Vechev, and Eran Yahav. 2012. Dynamic synthesis
for relaxed memory models. In PLDI. ACM, 429–440.

Daniel Lustig, Caroline Trippel, Michael Pellauer, and Margaret Martonosi. 2015. ArMOR: Defending Against
Memory Consistency Model Mismatches in Heterogeneous Architectures. In ISCA. ACM, 388–400.

Daniel Marino, Abhayendra Singh, Todd D. Millstein, Madanlal Musuvathi, and Satish Narayanasamy. 2011.
A case for an SC-preserving compiler. In PLDI. ACM, 199–210.

Yuri Meshman, Andrei Dan, Martin Vechev, and Eran Yahav. 2014. Synthesis of Memory Fences via Refine-
ment Propagation. In SAS. Springer, 237–252.

Maged M. Michael and Michael L. Scott. 1996. Simple, Fast, and Practical Non-Blocking and Blocking
Concurrent Queue Algorithms. In PODC. ACM, 267–275.

Maged M. Michael, Martin T. Vechev, and Vijay A. Saraswat. 2009. Idempotent work stealing. In Principles
and Practice of Parallel Programming (PPOPP). ACM, 45–54.

Vincent Nimal. 2015. Static Analyses over Weak Memory. Ph.D. Dissertation. University of Oxford.
Brian Norris and Brian Demsky. 2013. CDSchecker: checking concurrent data structures written with C/C++

atomics. In Object Oriented Programming Systems Languages & Applications (OOPSLA). 131–150.
Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A better x86 memory model: x86-TSO. In Theorem

Proving in Higher Order Logics (TPHOLs) (LNCS), Vol. 5674. Springer, 391–407.
Gary L. Peterson. 1981. Myths About the Mutual Exclusion Problem. Inf. Process. Lett. 12, 3 (1981), 115–116.
2009. Power ISA Version 2.06.
Dennis Shasha and Marc Snir. 1988. Efficient and Correct Execution of Parallel Programs that Share Memory.

TOPLAS 10, 2 (1988), 282–312.
SPARC 1994. SPARC Architecture Manual Version 9. (1994).
Michael F. Spear, Maged M. Michael, Michael L. Scott, and Peng Wu. 2009. Reducing Memory Ordering

Overheads in Software Transactional Memory. In CGO. IEEE, 13–24.
Zehra Sura, Xing Fang, Chi-Leung Wong, Samuel P. Midkiff, Jaejin Lee, and David A. Padua. 2005. Compiler

techniques for high performance sequentially consistent Java programs. In PPOPP. ACM, 2–13.
Boleslaw K. Szymanski. 1988. A simple solution to Lamport’s concurrent programming problem with linear

wait. In ICS. 621–626.
Robert Tarjan. 1973. Enumeration of the Elementary Circuits of a Directed Graph. SIAM J. Comput. 2, 3

(1973), 211–216.
Viktor Vafeiadis and Francesco Zappa Nardelli. 2011. Verifying Fence Elimination Optimisations. In Static

Analysis (SAS) (LNCS), Vol. 6887. Springer, 146–162.
Glynn Winskel. 1986. Event Structures. In Petri Nets: Central Models and Their Properties, Advances in Petri

Nets 1986, Part II, Proceedings of an Advanced Course, Bad Honnef, 8.-19. September 1986. 325–392.
DOI:http://dx.doi.org/10.1007/3-540-17906-2 31

ACM Transactions on Programming Languages and Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

