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Abstract 

CAR-T cell therapy has achieved highly promising results in clinical trials, particulary 

in B-cell malignancies. However, reports of Serious adverse events (SAE) including 

a number of patient deaths has raised concerns about safety of this treatment. 

Presently available pre-clinical models are not designed for predicting toxicities seen 

in human patients. Besides choosing the right animal model, careful considerations 

must be taken in CAR T-cell design and the amount of T-cells infused. The 

development of more sophisticated in vitro models and humanized mouse models for 

preclinical modeling and toxicity tests will help us to improve the design of clinical 

trials in cancer immunotherapy. 

  



 

Introduction 

The conventional treatment of cancer relies mostly on radiation, chemotherapy and 

surgery, which is successful in some patients but not all. Therefore, there is an 

unmet need to develop new approaches to treat cancer, such as immunotherapy. 

One exciting immunotherapeutic strategy entails the use of chimeric antigen receptor 

(CAR)-engineered T-cells. In this approach, T-cells isolated from patients are 

engineered to express an activating fusion receptor that binds directly to a cell 

surface target that is found on tumour cells alone, or also on healthy cell types that 

are dispensable or whose function can be replaced [1, 2]. 

Chimeric antigen receptors are classified based upon their signalling capabilities. 

First generation CARs contain a source of signal 1, most commonly TCR. While 

these have achieved some success pre-clinically [3], they have had limited impact in 

the clinical arena. Second generation CARs contain a single co-stimulatory module, 

most commonly derived from CD28 [4, 5] or 4-1BB [6] and which is placed upstream 

of TCR. Provision of co-stimulation enhances the target-dependent proliferation of 

CAR T-cells, potentiating their anti-tumour effect and prolonging their persistence in 

vivo [5, 7]. Second generation CARs directed against CD19 have achieved striking 

efficacy in the treatment of B-cell malignancy - most notably acute lymphoblastic 

leukaemia in which complete remission rates of 80-90% have been reported by 

independent centres using distinct CAR configurations [8-13]. Since CD19 antigen is 

also expressed on normal B-cells, it was predicted and subsequently confirmed that 

CD19-targeted CAR T-cells would commonly induce B-cell aplasia and 

hypogammaglobulinaemia – an on-target toxicity that can be managed effectively 

with the use of immunoglobulin replacement therapy. However, severe and 



sometimes unanticipated toxicities have also been reported, most notably in the form 

of Cytokine release syndrome (CRS) and neurotoxicity. 

 

The first detailed case report of CAR T-cell induced CRS involved a patient with 

metastatic ErbB2-expressing colon cancer. She received an intravenous infusion of 

10 billion 3rd generation CAR-T cells targeted against this naturally occurring 

receptor [14]. Within 15 minutes, the patient developed respiratory distress and 

progressed to cytokine release syndrome, multi-organ failure, repeated cardiac 

arrests and death 4 days later. Post mortem examination revealed that the toxicity 

may have resulted from binding to low levels of ErbB2 expressed on healthy lung 

parenchyma or endothelium [15]. 

A similar SAE was reported at the same time in a patient with chronic lymphocytic 

leukaemia (CLL) who received 3x107 2nd generation CAR-T cells targeting CD19 

[16]. In this case, it is possible that occult infection was a cofactor in the development 

of this event. In both of these patients, CAR T-cells were infused after 

lymphodepleting chemotherapy. 

 

 

 

 

 

 

Clinical experience of toxicity induced by CD19-targeted CAR T-cells 

 



More recently, as clinical experience with CD19-targeted CAR T-cells has grown, 

significant issues have been observed with toxicity due to CRS and neurotoxicities. 

CRS is a result of an overshooting and highly activated immune system [17]. The 

severity of CRS and the symptoms displayed can vary greatly [18]. The symptoms 

can include fever, vomiting, tachypnoea and tachycardia. Neurotoxicities can include 

headache, delirium, hallucinations and seizures. In general CRS and neurotoxicities 

are broadly defined as mild (grade 1), moderate (grade 2), severe (grade 3), life-

threatening (grade 4) and grade 5 which corresponds to the death of the patient [18]. 

Most clinical trials of CD19-targeting CAR T-cells running currently reported CRS 

and neurotoxicities (Table 1). Juno Therapeutics developed their anti-CD19 CAR T-

cell product to treat B-ALL and decided to halt their clinical trial due to the 

development of cerebral edema which led to the death of patients (Clinicaltrials.gov 

identifier: NCT02535364) (Crow, David. Juno shares tumble as cancer drug trial 

halted. The Financial Times Limited, 2017. Web. 23.11.2016). 

 

 

 

 

 

 

 

Affinity of CAR T-cells 

The CD19-targeting CAR T-cells used to treat the patient with CLL were designed 

with the scFv derived from the SJ25C1 hybridoma [3]. The anti-CD19 scFv from 

SJ25C1 does recognise the CD19-antigen, as assessed in a FACS competition 



assay [19]. In order to evaluate the affinity of the scFv from SJ25C1 the protein was 

iodinated and Scatchard analysis performed to evaluate binding parameters with its 

receptor. However, the specific affinity of scFv from SJ25C1 was too low to be 

determined, thus indicating that we are dealing with a low-affinity CAR-T cell 

construct.  

 

The role of affinity in CAR-mediated T-cell activation in response to their cognate 

antigen remains controversial. When the antigen was immobilised on a solid surface 

CAR-mediated T-cell activation was reported to be dependent on the strength of the 

interaction, because of the correlation between the affinity of different CAR T-cell-

constructs and IFN-release by the CAR T-cells [20] . 

In contrast, the co-culture of those different affinity CAR T-cell-constructs with 

tumour cell lines expressing the cognate antigen in different quantities revealed that 

effective lysis of the target cell was dependent on the amount of antigen expressed 

on the surface rather than the binding affinity of the scFv domain [20]. Furthermore, 

high affinity CAR T-cell constructs were less able to discriminate between tumour 

cells that express either high or low levels of antigen (Ag) on their surface [20]. The 

loss of selectivity can have fatal consequences when infused into patients, as 

healthy cells with a basal level of Ag-expression will be also eliminated along the 

cancerous cells with a high Ag-expression profile. However, not only the affinity of 

the scFv domain is important, the position of the targeted epitope within the antigen 

plays an important role in the activation of the CAR T-cell. This was shown with 

engineered immunoreceptors targeting the carcinoembryonic antigen (CEA) 

expressed on cancerous gastrointestinal cells which either targeted a domain distal 

or proximal from the cell membrane [21]. The proximally located scFv receptor 



elicited increased cytolysis and IFN- release in comparison to the distal location 

upon binding to its epitope, although the distal epitope binds with higher affinity. This 

suggests that there is for CAR T- cells an optimal distance for their interaction with 

their target, irrespective of their affinity. 

The structure of the CD19 antigen is currently unclear and, consequently, the binding 

of the CD19 scFv derived from the SJ25C1 hybridoma to its target is unknown and 

its interaction can merely be modeled [22]. 

 

CART-cell dose 

 

Another important aspect of CAR T-cell therapy is the quantity of T-cells infused into 

the patient. Some researchers are of the opinion that the infused dose does not 

correlate with SAEs or severe neurotoxicity although it has been reported that 

toxicities develop more often after the infusion of a high CAR T-cell dose [12, 23]. 

These neurotoxicities may be caused by CAR T-cells migrating into the brain 

because a higher CAR T-cell number was found in the Cerebrospinal fluid (CSF) of 

patients with severe signs of neurotoxicity [12]. This migration of CAR T-cells into the 

brain is not a surprise as the CSF of healthy individuals can contain up to 3000 

leukocytes per ml and drains into cervical lymphatics allowing the CAR T-cells to 

enter the brain and cause potential neurotoxicities [24]. In both reports of SAEs the 

patients received a high dose of CAR T-cells with 1010 and 3x107/kg respectively. 

Coming from the field of peptide immunotherapy the administered dose plays a huge 

role and as Paracelsus stated correctly: “The dose makes the poison”. A dose 

escalation is always recommended to identify the maximum tolerated dose and a 

successful dose escalation is able to prevent the development of adverse side 



effects in peptide immunotherapy [25]. The same principle was seen as the company 

Kite performed a dose escalation trial with their KTE-C19 product targeting 

haematological malignancies and observed dose-limiting toxicity with grade 3-4 CRS 

predominantly at a dose of 3x106/kg anti-CD19 CAR T-cells but not at the lower dose 

of 1x106/kg CAR T-cells [12]. 

However, even in a clinical trial conducted by Kite which is considered successful, 

evident by high overall response rates and high complete remission rates, patients 

developed serious side effects [26]. 

Kite target with their KTE-C19 product in the ZUMA-1 trial refractory aggressive non-

Hodgkin lymphoma (NHL) (trial number: NCT02348216). Recently published results 

reported safety, in vivo effects and efficacy of the ZUMA-1 trial [26]. Kite reported the 

development of adverse events after a CAR T-cell dose of 1-2x106 anti-CD19 CAR+ 

T-cells/kg. The majority of the patients experienced CRS and neurological toxicities 

of grade 3 or less but all treatment-related AEs were successfully managed within 30 

days. 

This trial used the monovalent scFv derived from the mouse hybridoma cell line 

FMC63 which binds the CD19+-target cell with an affinity constant of 2.3 x 10-9 M, 

which corresponds to a high-affinity interaction [27]. One could speculate that 

although a scFv domain with a high affinity was used, the lower dose of infused T-

cells prevented the death of patients in contrast to the trial initiated by the Memorial 

Sloan Kettering Cancer Center where 3x107 CAR-T cells were infused targeting 

CD19 using a scFv domain with low affinity. Differences in toxicities could be 

potentially induced by the usage of different co-stimulatory domains, although both 

studies used the signalling domain of the CD28 receptor, or the different retroviral 

vectors used for delivery. The safety of CD19 targeting CAR T-cells can also be 



influenced by a number of factors other than CAR T-cell design including the 

heterogeneity of the targeted disease and the age differences of the patient 

population. 

The balance between a successful anticancer response and the danger of eliciting 

serious toxicities seems precarious. Both studies tested their CAR T-cell constructs 

in mouse models beforehand, but these were xenograft models established in 

immunocompromised mice [28, 29]. 

 

 

 

 

 

 

 

 

 

 

 

Preclinical modeling 

 

Would it be possible to prevent the death of patients resulting from adverse effects of 

CAR T-cell therapy by using more sophisticated in vitro models and humanized 

mouse models for preclinical modeling and toxicity tests? 

 



Rather than requesting unreliable xenograft mouse model experiments, effort should 

be made to to develop animal models that reflect a human immune system more 

accurately. Mouse models can also help us to develop treatments for very rare 

diseases where the number of patients would otherwise be too low to initiate a 

clinical trial. 

 

The specificity of CAR T-cells and the different functional response is generally 

tested in vitro in cultures of monolayers of cells expressing the target antigen in 

comparison to cells that do not express the antigen. The development of organoids 

provides an important bridge between the traditional in vitro monolayer cell culture 

and the in vivo mouse/human models. Organoids are 3D organotypic cultures and 

represent ‘mini-organs’ in a dish [30]. Organoids can be derived from stem cells and 

exploit their intrinsic biological capability of self-organisation [31]. The cells are able 

to organise themselves between each other and also within the tissue which allows 

the development of a mini-organ reflecting the structure and functional properties of 

organs such as brain, lung or intestine [32]. In addition, organoids can also be 

generated from human cancer specimens like glioblastomas, colorectal tumours and 

pancreatic cancer and can recreate the histopathology seen in the primary tumour 

[33-36]. Of course, there are still limitations to the use of cancer organoids, such as 

the absence of cell interactions between the epithelia or stroma and the lack of an 

intact human immune system, which greatly affect disease progression. One study 

successfully grew cancer cells together with endothelial and stromal cells in a 2D 

culture [37]. It would be possible to overcome the potential limitations, such as the 

lack of stroma and the missing immune system, by culturing cancer organoids 

together with endothelial and stromal cells as a 3D model and then infuse those 



mini-organs into mice engrafted with a human immune system. This humanisied, 

patient-derived organoid model system would allow the investigation of the efficiacy 

of CAR T-cell therapy and also determine the immune responses elicited. 

 

Using mice as a model organism in research has helped us to develop treatments of 

severe diseases. The successful treatment of acute promyelocytic leukemia (APL) 

using a combination of retinoic acid and arsenic, which was mainly untreatable 

previously, was a direct result from pioneering work in mice [38]. This cancer, 

caused by gene fusions that affect the bone marrow, can now be treated after 

extensive research using genetically engineered mice (GEMMs) resembling different 

types of APL. In a similar vein, GEMMs bearing the human breast cancer gene 

BRCA1 mimicked features of the human breast cancer better than xenograft models 

and helped in defining a treatment using chemical inhibitors of poly-(ADP-ribose)-

polymerase-1, which delays the onset of resistense to the treatment [39]. 

 

Some researchers see mouse models just as a passport to be allowed to perform a 

clinical trial or are wary of possible adverse effects they might see in a mouse model, 

which could delay initiation of a clinical trial, even though these adverse effects may 

not necessarily represent the human situation. However, even though animal models 

are by no means perfect, sometimes seeing adverse side effects of the treatment in 

a mouse model can help in improving the design of a future human clinical trial. 

Work by our group showed that the treatment of SCID/Beige mouse with T4+ T cells 

a T1E28z second-generation CAR targeting ErbB-1 homodimers and ErbB2/3 

heterodimers resulted in severe toxicities dependent on the route of administration 

[40]. Tumour-bearing animals who received T4+ T cells either intravenously (i.v.) or 



intratumoural (i.t.) showed tumour regression with no sign of severe toxicities. T4+ T 

cells, which have been administered intraperitoneal (i.p.) have led to the rapid death 

of the animals caused by the induction of a CRS indicated by the upregulation of 

human IFN-, human IL-2 and mouse IL-6 in the serum of the animals. The severe 

on-target off-tumour toxicity seen may have been caused by ErbB1 expression by 

healthy mesodermal cells in the peritoneal cavity. This study demonstrated the 

importance of the route of administration and led to the initiation of a clinical trial 

treating patients with head and neck cancer by the infusion of T1E28z CAR T-cells 

i.t. [41]. 

 

Certainly, current mouse models have not always proven reliable as preclinical 

models in particular in CAR T-cell therapy of cancer. But this is mainly because the 

current available mouse models are imperfect and the improvement of mouse 

models would help us to generate knowledge that translates more directly to the 

human situation. The most common model used in studying cancer therapy is the 

xenograft model, established by either transferring cancer cell lines or patient-

derived tumours (PDX) into immune-deficient mice. It is clear that the assessment of 

CAR T-cell therapy using xenograft models without immune sytem components does 

not help us in gaining any further knowledge about how this T-cell construct might 

act in a human being.  

 

The efficacy of CAR T-cell treatment can also be better examined by the addition of 

other cell types into xenograft models, which are known to diminish the effect of CAR 

T-cells, such as regulatory T-cells (Tregs) or myeloid-derived suppressor cells 

(MDSC). In one study, carcinoembryonic antigen+ (CEA) C15A3 tumor cells were 



transferred into immunodeficient mice together with human Tregs, to investigate the 

efficiacy of tumour cell lysis by CEA-specific CAR T-cells [42]. CEA-specific 

CD3CAR T-cells were able to prevent tumour formation even in the presence of 

Tregs. However, the infusion of CD28-CD3 CAR T-cells led to a progressive tumour 

development in the presence of Tregs, even though the cytolytic efficiency assessed 

in vitro was the same for both T-cell constructs. Further analysis clarified that in this 

case the production of IL-2 by the CD28-TCRCAR T-cells after target engagement 

improved the survival of Treg cells. The subsequent introduction of a mutation in the 

lck binding domain of the CAR CD28 moiety to prevent IL-2 secretion led to a 

reduction of tumour-infiltrating Tregs and improved the anti-tumour response. The 

normally considered improved design of addition of the CD28-domain supported 

Treg development and abolished CAR T-cell efficiency in the model of CAR T/Treg-

cell co-transfer. 

In another immunocompetent murine model of CEA+ liver metastases (LM) anti-CEA 

CAR T-cell therapy was investigated under the influence of MDSCs [43]. Hepatic 

MDSC expanded more than 3-fold in response to LM. Mice with established LM 

received CEA CAR T-cells in combination with a MDSC depletion strategy, which led 

to a prolonged survival of the mice compared to CEA CAR T-cell treatment only. 

MDSC suppressed CAR T-cells via the expression of PD-L1 on their surface. When 

tumour-bearing animals received CEA CAR T-cell in combination with a PD-L1 

blocking antibody and a reduction in tumour burden could be detected compared to 

the treatment with the CAR T-cells only. 

 

 



A very good example of the need for better animal models to test T cell-mediated 

cancer immunotherapy is the use of the anti-cytotoxic T lymphocyte-associated 

molecule-4 (CTLA-4) antibody Ipilimumab for the treatment of melanoma. Before a 

clinical trial was initiated, Ipilimumab was used in studies to treat tumour models of 

fibrosarcoma and ovarian carcinoma in mice [44]. Blocking CTLA-4 in tumour-

bearing mice led to the development of anti-tumour T-cell responses and 

subsequently tumour regression. There were no adverse toxic effects nor any signs 

of the development of autoimmunity reported, which led to the initiation of a clinical 

trial. Patients with metastatic melanoma were treated with anti-CTLA-4, which 

resulted not only in tumour regression but also led concurrently to the development 

of severe autoimmune toxicities including colitis and dermatitis [45]. A later study 

used a humanized mouse model reconstituted with human HSCs, and anti-CTLA-4 

treatment could mirror the side effects seen in the clinical trial [46]. Ipilimumab-

treated humanized mice developed autoimmune hepatitis. Taken together it is 

important to test therapies in an appropriate mouse model to rule out unwanted 

severe side effects before initiating a clinical trial.  

 

It is beyond doubt that the mouse models come with many challenges: 

 Animals used in experiments tend to be rather young while many human 

cancers develop later in life. 

 maintenance of the animals happens in a clean and controlled environment 

and does not take environmental factors into account. 

 Animals are mostly inbred which does not take genetic variability of diseases 

into account. 



 Animal models do not reflect the patient situation with relapsed, refractory or 

resistant disease. 

 

 

 

 

 

 

 

 

Development of humanized mouse models 

 

One approach to model human cancer or to “humanize” mouse models is to 

genetically modify mice. In this way, human oncogenes are introduced into the 

mouse genome and tumour development can be observed as already mentioned.  

Another approach is to introduce human hematopoietic stem cells (HSCs) or 

peripheral blood mononuclear cells (PBMCs) into immunocompromised mice to 

create mice with a humanized immune system. Immunodeficient mice like those with 

severe combined immunodeficiency (SCID) support the engraftment of human 

peripheral blood leukocytes (PBLs) (Hu-PBL-SCID) and HSCs (Hu-SCR-SCID) cells 

[47-49] at a low level.  SCID mice have the disadvantage that their condition is 

“leaky” and can still generate a few functional T and B cell clones in addition to 

having no impairment in myeloid cell differentiation and natural killer cell (NK) activity 

[50]. The level of human cell engraftment was efficiently increased by crossing the 



SCID mouse with the nonobese diabetic mouse (NOD-SCID mice) because this 

mouse strain showed reduced levels of innate immune cells [51].  

 

The breakthrough in the field of human cell engraftment came with the creation of 

the NOD-SCID mouse with either a deletion of the IL-2R common chain (NSG 

mouse) or a truncated mutation of the IL-2R (NOG mouse), which both allow the 

engraftment of human cells to a previously unachievable level [52]. The NSG mouse 

was found to support greater engraftment of human cells than any of the other 

available strains [53]. Engraftment of HSCs allows the development of a multilineage 

immune system while the engraftment of peripheral blood mononuclear cells 

(PBMCs) represents an already matured immune system. The approach of 

transferring PBMCs into NSG mice only allows short-term experiments because the 

animals develop graft-versus-host disease (GvHD) within 4-5 weeks [54]. 

Furthermore, this NOD-scid IL2Rγnull mice engrafted with CD34+ HSCs develop a 

diverse TCR repertoire, have a prolonged life span and develop no graft-versus-host 

(GvH) disease [55]. The downside of this model is that the developing human T-cells 

in the thymus lack the ability of recognising antigens in an HLA-restricted manner 

because the murine thymic epithelium lacks the expression of HLA molecules. This 

limitation was overcome by the development of the NSG-HLA-A2/HHD strain 

expressing HLA class I heavy and light chains which led to differentiation of 

functional CD4+ and CD8+ T-cells able to secrete cytokines in vivo [56]. A third 

method for the generation of humanized mice is the bone-liver-thymus (BLT) model. 

In this model, foetal thymus and liver tissue are implanted beneath the renal capsule 

of the kidney along with the co-transfer of autologous CD34+ cells into an 

immunodeficient murine host [57, 58].  



The co-engraftment of thymic tissue and human hematopoietic stem cells in 

immunocompromised mice allows the development of human T-cells, which interact 

with human MHC molecules, able to mount an antigen-specific immune response. 

One of the main disadvantages of the BLT model is the development of GvHD 

affecting skin, lungs and the gastrointestinal tract, which limits the experimental 

window[59]. 

 

The further engraftment of humanized mice with human tumour cell lines allowed the 

investigation of the interaction of the tumour with the immune system [60]. In the 

humanized tumour mouse model (HTM), human CD34+ HSCs were co-transfered 

with human breast cancer cells into irradiated newborn NSG mice [60]. The mice 

developed a human immune system characterized by the presence of T-, B-, NK-

cells and macrophages besides the development of solid human breast cancer 

without eliciting any rejection caused by MHC-mismatched cells.  

 

The disadvantage of using cancer cell lines for engraftment is the loss of tumour 

heterogeneity and the molecular make-up that is clinically relevant. 

To further enhance the use of humanized mice in cancer immunotherapy the 

generation of humanized patient-derived xenograft tumour models (PDX) would be 

essential. This was achieved by the engraftment of irradiated NSG mice with in vitro 

expanded HSCs and the subsequently transplantation with a patient’s head and 

neck carcinoma sample, called xenochimeric mice (Xact mice) [61]. The tumour cell 

stroma of Xact mice contained human CD45+ CD151+ cells originating from the bone 

marrow of engrafted mice. Furthermore, the intra-tumoural lymphatic vasculature in 



Xact mice showed an increase in vessel density, suggesting that the Xact model is 

able to recreate the native tumour environment. 

 

Humanized mice cannot develop all characteristics of a human immune system. In 

particular, they lack innate immune cells due to the absence of human cytokine 

signaling and exhibit poor lymph node development [62]. Several strategies have 

been developed to overcome those limitations. Human cytokines were either 

delivered exogenously to humanized mice or knock-in models were developed 

where single human cytokine genes were introduced into the mouse genome, 

replacing the mouse cytokine gene [63-66]. All of those modifications improved the 

development of individual cell populations like human NK cells [63], human alveolar 

macrophages [65] or human monocytes [66] but did not result in a complete 

reconstitution of a human innate immune system. 

 

An attempt to express a range of human cytokine genes in order to enable complete 

innate immune cell development led to the generation of MITRG mice [67]. These 

mice harbor a knock-in of human M-CSF, IL-3/GM-CSF and human thrombopoietin 

(TPO) in their respective gene loci. Humanized MITRG mice develop functional 

myeloid cells, monocytes and NK cells. However, these mice allow human HSC 

engraftment to a great extent, which in turn leads to massive deficits in mouse red 

blood cells resulting in severe anemia and the death of the animals [67]. This just 

leaves a very short experimental window of approximately 2 to 3 weeks, which 

makes this model not ideal. 

 



As mentioned earlier humanized mice exhibit poor lymph node development. This 

obstacle could be overcome by a tissue engineering approach where artificial lymph 

nodes (LNs) could be generated in humanized mice. Lymph nodes as a secondary 

lymphoid organ (SLO) are important organs for T cell activation and the initiation of 

adaptive immunity [68]. Live in vivo two-photon imaging revealed that lymphocytes 

migrate into LNs and interact with antigen-presenting cells [69]. Tertiary lymphoid 

organs (TLOs), which can develop at sites of inflammation anywhere in the body, 

share the same function as SLOs [70] and are very similar in their organizational 

structure [71]. The successful engineering of artificial lymph node-like tertiary 

lymphoid organs (artTLOs) showed that these artificial structures are transplantable 

and retain their immunological function [72-74]. The newest approach from the 

Watanabe lab is a stromal cell-free model where slow-releasing gel-beads containing 

a chemokine cocktail, lymphotoxin-12 and soluble RANK ligand (sRANKL) are 

embedded in a collagen sponge [75]. This collagen sponge was then transplanted 

into the subcapsular space of the kidney of mice. After 3 weeks, immunological 

active artTLOs have been formed. This tissue engineering approach could be used 

to create human artTLOs by transplanting those collagen sponges into humanized 

mice. 

 

Another approach to test CAR T-cell therapy is by using humanized mouse models 

where human tumours are generated de novo alongside the development of a 

matched human immune system. A human mixed-lineage-leukemia (MLL) model 

was developed by transduction of CD34+ HSC with the oncogene MLL-AF10 along 

with the gene for K-ras and transfer into NOG mice which led to the development of 

acute monoblastic leukemia [76]. The strength of this approach is the ability to study 



the steps of human tumourigenesis including initiation, development and 

dissemination of cancer alongside the development of a matched human immune 

system.  

The use of a humanized mouse model of treatment refractory B-cell leukemia 

showed that tumour cells in the bone marrow were resistant to treatment with the 

anti-CD52 antibody alemtuzumab [77, 78]. Combination therapy using alemtuzumab 

and the chemotherapeutic agent cyclophosphamide led to a near complete 

elimination of the disease in the bone marrow. Furthermore, the initial dose of the 

toxic cyclophosphamide could be reduced by a third and still resulted in disease 

elimination to the same extent. Very recently, a humanized mouse model of 

spontaneous B-cell acute lymphoblastic leukemia (B-ALL) was developed [79]. 

Human foetal thymic tissue (FTHY) and liver plus CD34+ HSCs transduced with the 

oncogene MLL-AF9 were transplanted into irradiated NSG mice, which led to the 

development of human T -, B and myeloid cells as well as leukemic cells which 

makes this model system superior to other available models evaluating cancer 

immunotherapy using anti-CD19 CAR T-cells. 

 

Conclusion 

 

CAR T-cell therapy, especially in B-cell malignancies, has delivered impressive and 

promising results in the treatment of haemotological cancer. It is a balancing act to 

design improved CAR T-cells for successful tumour elimination while also limiting the 

development of serious adverse effects. In CAR T-cell design, there does not seem 

to be a consensus or rule that defines the best scFv targeting domain or signaling 

domain, resulting in diverse clinical trials targeting the same antigen. Predicting CAR 



T-cell toxicities that result from their activation, using existing preclinical models, is 

still in its infancy. Current preclinical models are mostly unable to recapitulate the 

severe toxicities seen in human clinical trials after CAR T-cell infusion. Testing CAR 

T-cells for their suitability in the clinic implies the use of immuno-compromised 

mouse models. Mostly, immuno-compromised animals are challenged with human 

tumours where the antigen targeted by the CAR T-cells is exclusively expressed on 

the tumour cell preventing the development of potential on-target, off-tumour 

toxicities. 

In reality, clinical trials have been initiated without the input from valuable preclinical 

mouse models that could have aided in improving their design. But, following reports 

of deaths in clinical trials, the scientific community tries to improve their 

understanding of mechanism leading to toxicities by developing new murine 

humanized cancer models (summarized in Table 2). 

 

Future perspective 

Several new strategies are in place and will be exploited to create better preclinical 

murine models to hopefully further reduce treatment-related toxicities in the future 

(Figure 1). Validated humanized mouse models hold great promise for improving 

safety of CAR T-cell therapy. The challenge to develop these chimeras, which are 

viable enough to provide a healthy environment for the transplanted human cells to 

thrive in while at the same time limiting the development of GvHD, is also strongly 

dependent on future developments in stem cell research and tissue engineering. 

However, recent successes in developing improved preclinical humanized tumour 

mouse models represent a step in the right direction. Further developments over the 

years to come are likely to provide new models that will allow for accurate modelling 



of CAR T cell therapy in vivo, thus accelerating clinical translation of new strategies, 

while limiting devastating adverse effects. 

Executive summary 

 

 Despite promising results in CAR-T cell therapy, reports of SAEs in 2010 

raised concerns about safety. 

 The majority of anti-CD19 CAR T-cell clinical trials reported CRS and 

neurotoxicities. 

 The choice of the scFv for the CAR-T cell defines the affinity of the CAR-T cell 

construct and can affect their efficacy. 

 Infusion of high CAR-T cell doses correlates with incidence of severe 

toxicities. 

 Current preclinical models are unable recapitulate toxicities seen in patients. 

 Cancer organoids could provide a bridge between traditional monolayer cell 

culture and in vivo models. 

 Humanized mouse models were developed by engraftment of CD34+ HSCs 

into immunodeficient mice. 

 Humanized mouse models are further advanced by co-engraftment of human 

tumour cell lines or patient-derived tumour samples. 

 Humanized mice still exhibit deficits in the development of a complete human 

immune system. 

 Expression of various human cytokines in humanized mice enables 

development of innate immune cells. 

 Poor lymph node development in humanized mice could be overcome by a 

tissue engineering approach. 
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Tables 
 
 
Table 1: Anti-CD19 CAR T-cell clinical trials and their reported toxicities. 

 
Institution 
 

 
Ref. 

 
Disease 

 
No.  
patients 

 
Toxicities 

 
Clinicaltrials.gov 
identifier 

 
Memorial Sloan 
Kettering 
Cancer Center 

 
[80] 

 
B-ALL 

 
46 

 
n=11 with severe CRS; 
n=13 with neurotoxicity 
grade 3-4 

 
NCT01044069 

[81] CLL 8 most patients with mild 
CRS 

NCT00466531 

[82] CLL 8 n=4 with mild CRS NCT01416974 
[83] B-NHL 8 n=4 with CRS NCT01840566 

 
University of 
Pennsylvania 

 
[84] 

 
CD19+ ALL 

 
59 

n=52 with CRS; 
n=16 with severe CRS 

NCT01626495 

[85] CD19+ ALL n=27 n=21 with CRS grade 3 or 
greater; 3 deaths due to 
CRS 

NCT02030847 

[86] CLL n=35 n=19 with CRS; 
n=7 with CRS grade 3 or 
greater 

NCT01747486 

[87] B-NHL n=29 Not reported NCT02030834 
[88] multiple 

myeloma 
n=10 n=1 with CRS grade 1 NCT02135406 

 
Fred 
Hutchinson 
Cancer 
Research 
Center 

 
[89] 

 
CD19+ ALL 

 
n=36 

 
Not reported 

 
NCT02028455 

[90] B-ALL 
B-NHL 
CLL 

n=90 n=14 with severe CRS; 
n=3 with CRS grade 4; 
n=27 with neurotoxicities 
grade 3 or greater, 4 
deaths due to CRS 

NCT01865617 

 
National 
Cancer Institute 

 
[12] 

 
B-ALL 
B-NHL 

 
n=21 

 
n=3 with CRS grade 4 

 
NCT01593696 

[91] B-NHL n=22 Not reported NCT00924326 
 
City of Hope 
Duarte 
Comprehensive 
Cancer Center 

 
[92] 

 
B-NHL 

 
n=8 

 
No toxicties of grade 2 or 
greater 

 
NCT01318317 

[92] B-NHL n=8 no tocixities of grade 2 or 
greater 

NCT01815749 

 
Kite Pharma 

 

[26] 

 
B-NHL 

 
n=7 

 
n=3 with CRS grade 3; 
n=3 with CRS grade 4 and 
neurotoxicity; n=1 with 
CRS grade 4 and 
neurotoxicity 
 

 
NCT02348216 

ALL = acute lymphoblastic leukemia; CLL = chronic lymphocytic leukemia; B-NHL = B-cell non-Hodgkin 

lymphoma; CRS = cytokine release syndrome  

 
 
 
 



Table 2: Examples of preclinical humanized tumour models. 
 

Category Model Characteristics Ref 

Humanized tumour 
mouse model 

Cotransfer of human HSC and 
human Her2 overexpressing breast 

cancer cells into NSG mice 

Presence of human T-, 
B-, NK-cells and 

macrophages and solid 
breast cancer 

60 

Humanized PDX 
tumour model 

Xact mice 
Transfer of ex vivo expanded human 
HSC and transplantation with human 
PDX from head and neck carcinoma 

Tumour stroma is 
infiltrated with human B- 
and T-cells and increase 
in intra-tumoural vessel 

density 

61 

Humanized de 
novo tumour 

mouse models 

MLL model 
Transfer of human HSC transduced 
with oncogene MLL-AF10 and K-ras 

into NOG mice 
 

MYC/BCL2 (hMB )-model  
Transfer of human HSC transduced 
with oncogene Bcl-2 and c-Myc into 

NSG mice 
 

BLT B-ALL model 
Cotransfer of foetal thymic and liver 
tissue and human HSC transduced 
with oncogene MLL-AF10 into NSG 

mice 
 

Development of acute 
monoblastic leukemia 

 
 
 

Development of 
refractory B-cell 

leukemia 
 
 
 

Presence of human T-, B 
and myeloid cells and 

leukemic cells 

76 
 
 
 
 
 

78 
 
 
 
 
 

79 
 

HSC = Hematopoetic Stem Cells; ALL = Acute Lymphoblastic Leukemia; PDX = Patient-Derived 

Xenograft; MLL = Mixed Lineage Leukemia; BLT = bone marrow-liver-thymus 

 
 

  



 

Figure 1: Future of preclinical models testing CD19-targeting CAR T-cells. A 
Humanized mouse models with components of the human immune sytem were 
developed by the transfer of human stem cells (HSCs) into immunocompromised 
mice. The further subsequent engraftment with human tumour cell lines (C), tumours 
from human patients (D) or cancer organoids (E) will improve pre-clinical modelling 
and predicting CAR T-cell toxicities. Humanized mouse models lack the 
development of lymph nodes, which could be overcome by implanting artificial lymph 
nodes (F). B The co-transfer of HSCs and tumour cell lines into immune-
compromised mice allows the simultaneously development of a human immune 
sytem and solid cancer. 
 


