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Abstract

We consider the efficient solution of a class of coprime
factorization based controller approximation problems
by using frequency-weighted balancing related model
reduction approaches. It is shown that for some special
stability enforcing frequency-weights, the computation
of the frequency-weighted controllability and observ-
ability grammians can be done by solving reduced order
Lyapunov equations. The new approach can be used in
conjunction with accuracy enhancing square-root and
balancing-free techniques developed for the balancing
related coprime factors based model reduction.

1 Introduction

Controller synthesis methodologies like the LQG-, H2-
or H∞-design approaches (see for example [13]) lead
often to controllers whose orders are too large for
practical use. Therefore, in such cases it is neces-
sary to perform controller reduction by determining a
lower order approximation of the original controller.
Controller reduction problems are often formulated as
special frequency-weighted model reduction (FWMR)
problems, where the frequency-weights are chosen to
enforce closed-loop stability and an acceptable perfor-
mance degradation when the low order controller is
used instead the original high order one [1]. Inter-
estingly, many stability/performance preserving con-
troller reduction problems have very special structures
which can be exploited when developing efficient nu-
merical algorithms for controller reduction. For exam-
ple, it has been shown in [11] that for the frequency-
weighted balancing related approaches applied to sev-
eral controller reduction problems with the special sta-
bility/performance enforcing weights proposed in [1],
the computation of grammians can be done by solving
reduced order Lyapunov equations.

The idea to apply frequency-weighted balancing tech-
niques to reduce the stable coprime factors of the con-
troller has been discussed in several papers [1, 5, 12].
While the frequency-weights in [1, 5] have been pri-
marily chosen to guarantee closed-loop stability, it was
shown in [12] that under mild conditions, performance
bounds can be derived for coprime factors controller
reduction in the case of a state-feedback and observer-
based controller.

In this paper, we address the efficient solution of
frequency-weighted balancing-related coprime factor
controller reduction problems for the special stability
preserving frequency-weights proposed in [5]. We show
that for both general controllers as well as for state-
feedback and observer-based controllers, the computa-
tion of frequency-weighted grammians for the coprime
factor controller reduction can be done efficiently by
solving lower order Lyapunov equations. Further, we
show that these factors can be directly obtained in
Cholesky factored forms allowing the application of the
balancing-free square-root accuracy enhancing method
for coprime factor reduction [10].

Notation. Throughout the paper, the following nota-
tional convention is used. The bold-notation G is used
to denote a state-space system G := (A, B,C, D) with
the transfer-function matrix (TFM)

G(λ) = C(λI −A)−1B + D :=
[

A B
C D

]
.

According to the system type, λ is either the complex
variable s appearing in the Laplace transform in the
case of a continuous-time system or the variable z ap-
pearing in the Z-transform in the case of a discrete-time
system. Throughout the paper we denote G(λ) simply
as G, when the system type is not indicated. The bold-
notation is used consistently to denote systems corre-
sponding to particular TFMs: G1G2 denotes the series
coupling of two systems having the TFM G1(λ)G2(λ),
G1 + G2 represents the (additive) parallel coupling of
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two systems with TFM G1(λ) + G2(λ), G−1 repre-
sents the inverse systems with TFM G−1, [G1 G2 ]
represents the realization of the compound TFM with
[ G1 G2 ], etc.

2 Coprime factor controller reduction

Consider G := (A,B, C,D), an n-th order state-space
model and let K be a stabilizing controller with a sta-
bilizable and detectable nc-th order state space real-
ization K := (Ac, Bc, Cc, Dc). The solutions of the
frequency-weighted coprime factor controller reduction
problems formulated in [1, 5] consist in computing ap-
proximations of the coprime factors of the controller.
Specifically, the Frequency-Weighted Left Coprime Fac-
tor Reduction (FWLCFR) Problem is: given a left
coprime factorization (LCF) K = Ṽ −1Ũ of the con-
troller, find Kr, an rc-th order approximation of K,
in a LCF form Kr = Ṽ −1

r Ũr, such that the weighted
approximation error

‖W̃o[ Ũ − Ũr Ṽ − Ṽr ]W̃i‖∞, (1)

is minimized. Similarly, the Frequency-Weighted Right
Coprime Factor Reduction (FWRCFR) Problem is:
given a right coprime factorization (RCF) K = UV −1

of the controller, find Kr, an rc-th order approxima-
tion of K, in the RCF form Kr = UrV

−1
r , such that

the weighted approximation error

‖Wo

[
U − Ur

V − Vr

]
Wi‖∞, (2)

is minimized. In (1) and (2),Wo and Wi are stable
weighting TFMs, which are specially chosen to enforce
closed-loop stability.

Balancing related FWMR techniques which attempt to
minimize (1) or (2) can be used to determine reduced
order controllers. The following procedure to solve the
FWLCFR Problem is based on the FWMR approach
proposed by Enns in [2]:

FWLCFR Procedure.

1. Compute the controllability grammian of [ Ũ Ṽ ]W̃i

and the observability grammian of W̃o[ Ũ Ṽ ]
and define according to [2], appropriate nc order
frequency-weighted controllability and observability
grammians PE and QE , respectively.

2. Using PE and QE in place of standard grammians
of [ Ũ Ṽ ], determine a reduced order approxima-
tion [ Ũr Ṽr ] by applying, for example, the balanced
truncation (BT) method [6] or the singular pertur-
bation approximation (SPA) [4].

3. Form Kr = Ṽ−1
r Ũr.

A completely similar procedure can be used to solve
the FWRCFR Problem:

FWRCFR Procedure.

1. Compute the controllability and observability gram-

mians of
[

U
V

]
Wi and Wo

[
U
V

]
, respectively,

and define according to [2], appropriate nc order
frequency-weighted controllability and observability
grammians PE and QE , respectively.

2. Using PE and QE in place of standard grammians

of
[

U
V

]
, determine

[
Ur

Vr

]
, a reduced order ap-

proximation, by applying either the BT method [6]
or the SPA [4].

3. Form Kr = UrVr
−1.

In this paper we focus on the efficient and numerically
accurate computation of low order controllers by us-
ing these procedures to solve the frequency-weighted
coprime factorization based controller reduction prob-
lems formulated in [5]. Here, the following stability en-
forcing one-sided weights are used: for the left coprime
factor reduction the weights are

W̃o = I, W̃i =
[ −G

I

]
(I −KG)−1Ṽ −1, (3)

while for the right coprime factor reduction problem
the weights are

Wo = V −1(I −GK)−1[−G I ], Wi = I. (4)

The weights are stable TFMs with realizations of order
n + nc. It can be shown (see for example [13]) that
with the above weights, the stability of the closed-loop
system is guaranteed if ‖[ Ũ − Ũr Ṽ − Ṽr ]W̃i‖∞ < 1

or
∥∥∥∥Wo

[
U − Ur

V − Vr

]∥∥∥∥
∞

< 1. These results justify the

frequency-weihted coprime factor controller reduction
methods introduced in [5] for the reduction of state-
feedback and observer-based controllers. The case of
arbitrary stabilizing controllers has been considered in
[13]. Both cases are addressed in this paper.

The main computational burden in applying either the
FWLCFR or FWRCFR procedure to these prob-
lems is the computation of the grammians at Step 1.
Apparently, the computation of grammians involves
the solutions of at least one Lyapunov equation of or-
der n + 2nc. By cleverly exploiting the problem struc-
ture, it was shown in [5], that for a strictly proper
continuous-time system (i.e., D = 0) and a state-
feedback and full-order estimator based controller, it
is possible to compute the grammians needed for the
frequency-weighted coprime factor reduction by solv-
ing only Lyapunov equations of order nc = n. In this
paper we show that for the general formulation of [13],
the frequency-weighted grammians can be computed
by solving Lyapunov equations of order n + nc. We
also extend the results of [5] to the case of nonzero D



for both continuous- and discrete-time systems. Com-
plete formulas are given for both LCF and RCF based
approaches.

In a separate section, we discuss the direct computa-
tion of the Cholesky factors of the frequency-weighted
grammians. This is a prerequisite for the applicability
of the balancing-free square-root accuracy-enhancing
techniques to coprime factor controller reduction of
[10], along the lines of the model reduction methods
developed for the BT in [9] and SPA in [8].

3 Efficient solution of frequency-weighted
controller reduction problems

3.1 LCF controller reduction
We consider the efficient computation of the frequency-
weighted controllability grammian at Step 1 of the
FWLCFR Procedure for the weights defined in (3).
Let Lc be any matrix such that Ac+LcCc is stable (i.e.,
the eigenvalues of Ac + LcCc lie in the open left half
plane for a continuous-time system or in the interior
of the unit circle for a discrete-time system). Then, a
LCF of K = Ṽ −1Ũ is given by

[ Ũ Ṽ ] =
[

Ac + LcCc Bc + LcDc Lc

Cc Dc I

]

The input weighting W̃i is a stable TFM having a state
space realization W̃i := (Ai, Bi, Ci, Di) of order n+nc

[13, see p.503], where

Ai =

[
A + BR̃−1DcC −BR̃−1Cc

−BcR
−1C Ac + BcDR̃−1Cc

]
(5)

Bi =

[
−BR̃−1

BcDR̃−1 − Lc

]
, Di =

[
−DR̃−1

R̃−1

]

Ci =

[
R−1C −DR̃−1Cc

−R̃−1DcC R̃−1Cc

]

with R := I −DDc and R̃ = I −DcD.

Construct [ Ũ Ṽ ]W̃i := (Ai, Bi, Ci, Di) with

Ai =

[
Ac + LcCc BcR

−1C LcCc −BcDR̃−1Cc

0 Ai

]
(6)

Bi =
[

Lc −BcDR̃−1

Bi

]

and let P i and Q be the controllability grammian of
[ Ũ Ṽ ]W̃i and the observability grammian of [ Ũ Ṽ ],
respectively. According to the system type, continuous-
time (c) or discrete-time (d), P i and Q satisfy the cor-

responding Lyapunov equations

(c)

{
AiP i + P iA

T

i + BiB
T

i = 0
(Ac + LcCc)T Q + Q(Ac + LcCc) + CT

c Cc = 0

(d)

{
AiP iA

T

i + BiB
T

i = P i

(Ac + LcCc)T Q(Ac + LcCc) + CT
c Cc = Q

Partition P i in accordance with the structure of the
matrix Ai in (6)

P i =

[
P 11 P 12

P
T

12 Pi

]
(7)

such that P 11 is an nc × nc matrix. The approach
proposed by Enns in [2] defines

PE = P 11 (8)

as the frequency-weighted controllability grammian.

It follows that the solution of the controller reduction
problem for the special weights defined in (3) involves
the solution of a Lyapunov equation of order n+2nc to
determine the frequency-weighted controllability gram-
mian PE and a Lyapunov equation of order nc to com-
pute the observability grammian Q. The following the-
orem shows that it is always possible to solve a Lya-
punov equation of order n + nc (instead one of order
n + 2nc) to compute the frequency-weighted controlla-
bility grammian for the special weights in (3).

Lemma 3.1 For a given n-th order system G =
(A,B, C, D) assume that K = (Ac, Bc, Cc, Dc) is an
nc-th order stabilizing controller with I − DDc non-
singular. Then the frequency-weighted controllabil-
ity grammian for Enns’ method [2] applied to the
frequency-weighted left coprime factorization based con-
troller reduction problem with weights defined in (3) can
be computed by solving a Lyapunov equation of order
n + nc.

Proof: Consider the transformation matrix T

T =




Inc 0 −Inc

0 In 0
0 0 Inc




It is easy to see that the controllability grammian P̃i

for the transformed pair

(Ãi, B̃i) := (T−1AiT, T−1Bi)

has the form

P̃i =
[

0 0
0 Pi

]

where Pi satisfies the appropriate Lyapunov equation

AiPi + PiA
T
i + BiB

T
i = 0 (c)

AiPiA
T
i + BiB

T
i = Pi (d) (9)



With Pi partitioned similarly as Ai in (5)

Pi =
[

P22 P23

PT
23 P33

]
, (10)

the grammian in the original coordinate basis results
as

P i = T P̃iT
T =




P33 −PT
23 −P33

−P23 P22 P23

−P33 PT
23 P33




The frequency-weighted controllability grammian ac-
cording to Enns’ method is PE = P33, the leading
nc×nc block of P i. But this is also the trailing nc×nc

block of Pi in (10), which can be computed by solving
the Lyapunov equation (9) of order n + nc. 2

Significant simplifications arise in the case of a state-
feedback and full-order observer based controller

K =
[

A + BF + LC + LDF −L
F 0

]
(11)

where it is assumed that A+BF and A+LC are both
stable. In this case (see [13]), with Lc = −(B + LD)
we get

[ Ũ Ṽ ] =
[

A + LC −L −(B + LD)
F 0 I

]

and the input weighting Wi has the following state
space realization of order n [13, p.503]

W̃i =




A + BF B
−C −DF −D

F I




The following result is an extension of Lemma 2 of [5]
to the case of nonzero feedthrough matrix D and covers
both the continuous- as well as the discrete-time case.

Corollary 3.2 For a given n-th order system G =
(A,B, C, D) and the observer based controller K (11),
suppose F is a state feedback gain and L is a state es-
timator gain, such that A+BF and A+LC are stable.
Then the frequency-weighted controllability and observ-
ability grammians for Enns’ method [2] applied to the
frequency-weighted left coprime factorization based con-
troller reduction problem with weights defined in (3) can
be computed by solving Lyapunov equations of order n.
For a continuous-time system these equations are

(A + BF )P + P (A + BF )T + BBT = 0
(A + LC)T Q + Q(A + LC) + FT F = 0 (12)

while for a discrete-time system these equations are

(A + BF )P (A + BF )T + BBT = P
(A + LC)T Q(A + LC) + FT F = Q

(13)

Proof: The realization of [ Ũ Ṽ ]W̃i is

[
Ai Bi

Ci Di

]
=




A + LC LC −BF −B
0 A + BF B
F F I


 (14)

It is easy to verify that in both continuous-time case
as well as in the discrete-time case, the controllability
grammian P i of [ Ũ Ṽ ]W̃i can be expressed as

P i =
[

P −P
−P P

]

where P satisfies (12) for a continuous-time system and
(13) for a discrete-time system. 2

3.2 RCF controller reduction
Let Fc be any matrix such that Ac + BcFc is stable.
Then, a RCF of K = UV −1 is given by

[
U
V

]
=




Ac + BcFc Bc

Cc + DcFc Dc

Fc I




The output weighting Wo is a stable TFM having a
state space realization Wo = (Ao, Bo, Co, Do) of order
n + nc [13, p.503], where

Ao =
[

Ac + BcR
−1DCc −BcR

−1C

−BR̃−1Cc A + BDcR
−1C

]
(15)

Bo =
[

BcR
−1D BcR

−1

−BR̃−1 −BDcR
−1

]

Co = [ R−1DCc − Fc −R−1C ]

Do = [ R−1 −R−1D ]

Construct Wo

[
U
V

]
:= (Ao, Bo, Co, Do) with

Ao =


 Ao

BcFc −BcR
−1DCc

BR̃−1Cc

0 Ac + BcFc


 (16)

Co = [Co Fc −R−1DCc ]

Let P and Qo be the controllability and observabil-

ity grammians of
[

U
V

]
and Wo

[
U
V

]
, respectively.

According to the system type, P and Qo satisfy the
corresponding Lyapunov equations

(c)

{
(Ac + BcFc)P + P (Ac + BcFc)T + BcB

T
c = 0

A
T

o Qo + QoAo + C
T

o Co = 0

(d)

{
(Ac + BcFc)P (Ac + BcFc)T + BcB

T
c = P

A
T

o QoAo + C
T

o Co = Qo



Partition Qo in accordance with the structure of the
matrix Ao in (16)

Qo =

[
Qo Q12

Q
T

12 Q22

]
(17)

where Q22 is an nc×nc matrix. The approach proposed
by [2] defines

QE = Q22 (18)

as the frequency-weighted observability grammian.

It follows that the solution of the controller reduction
problem for the special weights defined in (4) involves
the solution of a Lyapunov equations of order nc to
compute controllability grammian P and of a Lyapunov
equation of order n + 2nc to determine the frequency-
weighted observability grammian QE . We have a simi-
lar result to Lemma 3.1 showing that QE can be deter-
mined efficiently by solving only a reduced order Lya-
punov equation.

Lemma 3.3 For a given n-th order system G =
(A,B, C, D) assume that K = (Ac, Bc, Cc, Dc) is an
nc-th order stabilizing controller with I −DDc nonsin-
gular. Then the frequency-weighted observability gram-
mian for Enns’ method [2] applied to the frequency-
weighted right coprime factorization based controller re-
duction problem with weights defined in (4) can be com-
puted by solving a Lyapunov equation of order n + nc.

Proof: Consider the transformation matrix T

T =




Inc 0 Inc

0 In 0
0 0 Inc




It is easy to see that the observability grammian Q̃o for
the transformed pair

(Ão, C̃o) := (T−1AoT, CoT )

has the form

Q̃o =
[

Qo 0
0 0

]

where Qo satisfies the appropriate Lyapunov equation

AT
o Qo + QoAo + CT

o Co = 0 (c)
AT

o QoAo + CT
o Co = Qo (d) (19)

With Qo partitioned in accordance with the structure
of Ao in (15)

Qo =
[

Q11 Q12

QT
12 Q22

]
, (20)

the grammian in original coordinates results as

Qo = T−T Q̃oT
−1 =




Q11 Q12 −Q11

QT
12 Q22 −QT

12

−Q11 −Q12 Q11




According to Enns’ method, the frequency-weighted
observability grammian is QE = Q11, the trailing
nc×nc block of Qo in (17). But this is also the leading
nc×nc block of Qo in (20), which can be computed by
solving the Lyapunov equation (19) of order n+nc. 2

In the case of a state-feedback and full-order observer
based controller (11), we obtain a significant reduction
of computational costs. In this case, with Fc = −(C +
DF ) we get (see [13])

[
U
V

]
=




A + BF −L
F 0

C + DF I




and the output weighting Wo has the following state
space realization of order n [13, p.503]

Wo =
[

A + LC −B − LD L
C −D I

]
(21)

The following is a dual result to Lemma 2 of [5] to the
case of nonzero feedthrough matrix D and covers also
the discrete-time case.

Corollary 3.4 For a given n-th order system G =
(A,B, C, D) and the observer based controller K (11),
suppose F is a state feedback gain and L is a state
estimator gain, such that A + BF and A + LC are
stable. Then the frequency-weighted controllability and
observability grammians for Enns’ method [2] applied
to frequency-weighted right coprime factorization based
controller reduction problem with weights defined in (4)
can be computed by solving Lyapunov equations of or-
der n. For a continuous-time system these equations
are

(A + BF )P + P (A + BF )T + LLT = 0
(A + LC)T Q + Q(A + LC) + CT C = 0 (22)

while for a discrete-time system these equations are

(A + BF )P (A + BF )T + LLT = P
(A + LC)T Q(A + LC) + CT C = Q

(23)

Proof: The realization of Wo

[
U
V

]
is

[
Ao Bo

Co Do

]
=




A + LC LC −BF L
0 A + BF −L
C C I




It is easy to verify that in both continuous-time as well
as in the discrete-time, the observability grammian Qo

of Wo

[
U
V

]
can be expressed as

Qo =
[

Q Q
Q Q

]

where Q satisfies (22) for a continuous-time system and
(23) for a discrete-time system. 2



4 Square-root techniques

Accuracy enhancing balancing-free square-root tech-
niques for coprime factor model reduction have been
proposed in [10] along the lines of similar methods de-
veloped for the BT in [9] and SPA in [8]. In the case
of Procedure FWLCFR, the key computation is the
determination of the Cholesky factors of the grammi-
ans in the form PE = SEST

E and Q = RT R, where Q
is the standard observability grammian. Having these
factors, the reduction of coprime factors at Step 2 can
be performed by computing two truncation matrices L
and T using the singular value decomposition

RSE =
[

U1 U2

]
diag(Σ1, Σ2)

[
V1 V2

]T

with Σ1 = diag(σ1, . . . , σrc), Σ2 = diag(σrc+1, . . . , σnc)
and σ1 ≥ . . . ≥ σrc

> σrc+1 ≥ . . . ≥ σnc
≥ 0. The

square-root method determines L and T as [7]

L = Σ−1/2
1 UT

1 R, T = SEV1Σ
−1/2
1 .

If the original system is highly unbalanced, potential
accuracy losses can be induced in the reduced model
if either L or T is ill-conditioned (i.e., nearly rank de-
ficient). To avoid ill-conditioned truncation matrices,
balancing-free approaches can be used, as for example,
the balancing-free square-root algorithm for the BT in-
troduced by [9]. Similar formulas have been developed
for the SPA approach in [8].

The method of Hammarling [3] can be generally em-
ployed to solve (9) directly for the Cholesky factor Si

of Pi = SiS
T
i . By partitioning Si in the form

Si =
[

S22 S23

0 S33

]

with S33 nc × nc, the Cholesky factor of the trailing
block P33 in (10) is SE = S33.

In the case of the Procedure FWRCFR, (19) can
be solved directly for the Cholesky factor Ro of Qo =
RT

o Ro. By partitioning Ro in the form

Ro =
[

R11 R12

0 R22

]

with R11 nc×nc, the Cholesky factor RE of the leading
block Q11 in (20) is RE = R11.

5 Conclusions

Efficient and numerically reliable balancing related
computational approaches have been proposed for the
frequency-weighted coprime factors controller reduc-
tion with special frequency weights enforcing closed-
loop stability. By solving lower order Lyapunov equa-
tions for computing the grammians, the new proce-
dures are more efficient than the standard frequency-
weighted balancing based reduction approach. The fre-
quency weighted grammians can be determined directly

in Cholesky factored forms to facilitate the application
of square-root and balancing-free accuracy enhancing
techniques. For the coprime factor reduction of state-
feedback and observer-based controllers, robust numer-
ical software is available in the Fortran 77 library
SLICOT, together with user friendly interfaces to the
computational environments Matlab and Scilab.
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