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Abstract: The efficient solution of a class of controller approximation problems by using
frequency-weighted balancing related model reduction approaches is considered. It is shown
that for certain standard performance and stability enforcing frequency-weights, the compu-
tation of the frequency-weighted controllability and observability grammians can be done
by solving reduced order Lyapunov equations regardless the controller itself is stable or
unstable. The new approach can be used in conjunction with accuracy enhancing square-root
and balancing-free techniques recently developed by the authors for the frequency-weighted
balancing related model reduction.
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1. INTRODUCTION

Let G := (A,B,C, D) be a given n-th order state-
space model with the transfer-function matrix (TFM)
G(λ) = C(λI − A)−1B + D, where λ = s is
the complex Laplace-transform variable in the case
of a continuous-time system or λ = z is the com-
plex Z-transform variable in the case of a discrete-
time system. Let K := (Ac, Bc, Cc, Dc) be an nc-
th order stabilizing controller, resulted from controller
synthesis methods as the LQG-, H2- or H∞-design
methodologies. Since these methodologies lead typi-
cally to controllers whose orders are often too large for
a practical implementation, it is frequently necessary
to perform controller reduction by determining a lower
order approximation Kr of the original controller K.

Notation. Throughout the paper, the following no-
tational convention is used. The bold-notation G is
used to denote a state-space system having the TFM

G(λ) or G. This notation is used consistently to denote
systems corresponding to particular TFMs: G1G2 de-
notes the series coupling of two systems having the
TFM G1(λ)G2(λ), G1 +G2 represents the (additive)
parallel coupling of two systems with TFM G1(λ) +
G2(λ), G−1 denotes the inverse system correspond-
ing to the inverse TFM G−1(λ).

The controller reduction problem is frequently for-
mulated as a frequency-weighted model reduction
(FWMR) problem (Anderson and Liu, 1989) to find
Kr, an rc-th order approximation of K having the
same number of unstable poles as K, such that a
weighted error of the form

‖Wo(K −Kr)Wi‖∞, (1)

is minimized, where Wo and Wi are suitably cho-
sen weighting TFMs. To enforce closed-loop stability,
one-sided weights of the form
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Wi = I, Wo = (I + GK)−1G (2)

or

Wi = G(I + KG)−1, Wo = I (3)

can be used, while performance-preserving considera-
tions lead to two-sided weights

Wo = (I + GK)−1G, Wi = (I + GK)−1 (4)

Balancing related FWMR techniques which attempt to
minimize (1) can be also used to determine reduced
order controllers. The following frequency-weighted
controller reduction (FWCR) procedure is based on
the FWMR approach proposed by Enns (1984):

FWCR Procedure.

1. Compute the additive stable-unstable spectral de-
composition K = Ks +Ku, where Ks, of order
ncs, contains the stable poles of K and Ku, of
order nc−ncs, contains the unstable poles of K.

2. Compute the controllability grammian of KsWi

and the observability grammian of WoKs and
define according to (Enns, 1984), appropriate ncs

order frequency-weighted controllability and ob-
servability grammians PE and QE , respectively.

3. Using PE and QE in place of standard grammi-
ans of Ks, determine a reduced order approxima-
tion Ksr by applying, for example, the balanced
truncation (BT) method (Moore, 1981; Tombs
and Postlethwaite, 1987).

4. Form Kr = Ksr + Ku.

Note that this procedure ensures that the resulting re-
duced order controller has exactly the same number
of unstable poles as the original one. Several enhance-
ments of this procedure have been recently proposed
by the authors in the context of a general FWMR
approach (Varga and Anderson, 2001).

In this paper the efficient and numerically accurate
computation of low order controllers is considered by
applying the FWCR Procedure to the case of the
three particular stability and performance enforcing
weights defined in (2), (3) and (4). The main compu-
tational burden in this procedure is the computation
of the two grammians at Step 2. Typically, controller
synthesis methods based on the LQG- or H∞-design
methodologies lead to a controller order nc = n. Thus
apparently, for these controllers the computation of
grammians involves the solutions of one or two 3n
order Lyapunov equations. By exploiting the problem
structure, Liu et al. (1990) have shown that for a
stable state-feedback and full-order estimator based
controller, it is possible to solve Lyapunov equations
of order only 2n. In this paper the results of Liu et al.
(1990) are extended to the case of a general, possibly
unstable controller and it is shown that the grammians
can be determined by solving Lyapunov equations of

order at most n + nc. Further, a generalization of
the results in (Liu et al., 1990) to the case of ar-
bitrary stabilizing state-feedback and observer-based
controllers follows as a corollary of our general result.
In a separate section, the direct computation of the
Cholesky factors of the frequency-weighted grammi-
ans is discussed. This is a prerequisite for the applica-
bility of the square-root and balancing-free accuracy-
enhancing techniques to controller reduction.

2. EFFICIENT SOLUTION OF SOME
CONTROLLER REDUCTION PROBLEMS

This section addresses the specific aspects of com-
puting the frequency-weighted controllability and ob-
servability grammians to be employed in the FWCR
Procedure. To simplify the discussions it is as-
sumed for the beginning that the controller K =
(Ac, Bc, Cc, Dc) is stable and the two weights Wo and
Wi are also stable TFMs. In the case of an unstable
controller, the discussion applies for the stable part Ks

of the controller.

Consider the minimal realizations of the frequency
weights

Wo = (Ao, Bo, Co, Do), Wi = (Ai, Bi, Ci, Di)

and construct the realizations of KWi and WoK:

KWi =
[

Ai Bi

Ci Di

]
=:




Ac BcCi BcDi

0 Ai Bi

Cc DcCi DcDi


 (5)

WoK =
[

Ao Bo

Co Do

]
=:




Ao BoCc BoDc

0 Ac Bc

Co DoCc DoDc


 (6)

Let P i and Qo the controllability grammian of KWi

and the observability grammian of WoK, respec-
tively. According to the system type, continuous-time
(c) or discrete-time (d), P i and Qo satisfy the corre-
sponding Lyapunov equations

{
AiP i + P iA

T

i + BiB
T

i = 0
A

T

o Qo + QoAo + C
T

o Co = 0
(c)

{
AiP iA

T

i + BiB
T

i = P i

A
T

o QoAo + C
T

o Co = Qo

(d)

(7)

Partition P i and Qo in accordance with the structure
of matrices Ai and Ao, respectively, i.e.

P i =
[

P11 P12

PT
12 P22

]
, Qo =

[
Q11 Q12

QT
12 Q22

]
, (8)

where P11 and Q22 are nc×nc matrices. The approach
proposed by Enns (1984) defines

PE = P11, QE = Q22 (9)



as the frequency-weighted controllability and observ-
ability grammians, respectively. Although success-
fully employed in many application, the stability of the
reduced controller is not guaranteed in the case of two-
sided weighting, unless either Wo = I or Wi = I .
Occasionally, quite poor approximations result even
for one-sided weighting. Alternative choices of gram-
mians guaranteeing stability have been proposed by
Wang et al. (1999) for continuous-time systems. These
choices have been recently improved by Varga and
Anderson (2001) by reducing the gap to Enns’ choice
and also extended to discrete-time systems.

For all these choices of the frequency-weighted gram-
mians, the solution of the controller reduction prob-
lems for the special weights defined in (2), (3), or
(4) involves the solution of Lyapunov equations of
order n + 2nc, where n is the order of the open-loop
system G = (A, B,C, D) and nc is the order of the
controller K. Controller synthesis methods based on
the LQG- or H∞-design methodologies lead typically
to a controller order nc = n, so that apparently, for
these controllers the solutions of 3n order Lyapunov
equations are necessary. It is shown in what follows
that it is always possible to solve Lyapunov equations
of order at most n + nc to compute the frequency-
weighted controllability and observability grammians
for the special weights (2), (3), or (4). The following
theorem extends the result of Liu et al. (1990) for an
estimator-based controller to the case of an arbitrary
stabilizing controller:

Theorem 1. For a given n-th order system G =
(A,B,C, D) assume that K = (Ac, Bc, Cc, Dc) is
an nc-th order stabilizing controller with I + DDc

nonsingular. Then the frequency-weighted controlla-
bility and observability grammians for Enns’ method
(Enns, 1984) applied to frequency-weighting con-
troller reduction problems with weights defined in (2),
(3), or (4) can be computed by solving Lyapunov
equations of order at most n + nc.

Proof: Assume at the beginning that the controller K
is stable and consider first the performance preserving
input weighting Wi = (I + GK)−1. The computa-
tion of the controllability grammian for the system
KWi = K(I + GK)−1 involves the solution of the
appropriate continuous-time (c) or discrete-time (d)
Lyapunov equation

AwiPwi + PwiA
T
wi + BwiB

T
wi = 0 (c)

AwiPwiA
T
wi + BwiB

T
wi = Pwi (d)

(10)

where Awi and Bwi are the state and input matrices of
a state-space realization of K(I + GK)−1. Awi and
Bwi can be constructed in the form

Awi =




Ac −BcR
−1C −BcR

−1DCc

0 A−BDcR
−1C BR̃−1Cc

0 −BcR
−1C Ac −BcR

−1DCc


 ,

Bwi =




BcR
−1

BDcR
−1

BcR
−1




with R = I + DDc and R̃ = I + DcD. Consider the
transformation matrix T

T =




Inc
0 Inc

0 In 0
0 0 Inc




It is easy to see that the controllability grammian P̃wi

for the transformed pair

(Ãwi, B̃wi) := (T−1AwiT, T−1Bwi)

has the form

P̃wi =
[

0 0
0 Pi

]

where Pi satisfies the appropriate Lyapunov equation

AiPi + PiA
T
i + BiB

T
i = 0 (c)

AiPiA
T
i + BiB

T
i = Pi (d)

(11)

with

Ai =
[

A−BDcR
−1C BR̃−1Cc

−BcR
−1C Ac −BcR

−1DCc

]
,

Bi =
[

BDcR
−1

BcR
−1

]

With Pi partitioned in accordance with the structure of
Ai

Pi =
[

P22 P23

PT
23 P33

]
, (12)

the grammian in the original coordinate basis results
as

Pwi = T P̃wiT
T =




P33 PT
23 P33

P23 P22 P23

P33 PT
23 P33




Thus the frequency-weighted grammian according to
Enns method is PE = P33, the trailing nc × nc block
of Pi in (12).

For the stability preserving input weighting Wi =
G(I + KG)−1, the computation of the controllability
grammian for the system KWi = KG(I + KG)−1

is very similar to the approach given above. The gram-
mian Pi is computed using the same Ai but with a
different Bi, namely

Bi =

[
−BR̃−1

BcDR̃−1

]

Thus for both choices of the input frequency weight,
the frequency-weighted controllability grammian PE



is the trailing nc × nc block of Pi, the controllability
grammian of the frequency weight Wi (assuming a
particular realization with the same Ai is used) and it
can be computed by solving the n+nc order Lyapunov
equation (11).

For the stability preserving output weighting Wo =
(I + GK)−1G, the computation of the observability
grammian of the system WoK = (I + GK)−1GK
involves the solution of the appropriate Lyapunov
equation

AT
woQwo + QwoAwo + CT

woCwo = 0 (c)
AT

woQwoAwo + CT
woCwo = Qwo (d)

(13)

where Awo and Cwo are the state and output matrices
of a state-space realization of (I + GK)−1GK. The
matrices Awo and Cwo can be constructed in the form

Awo =

[
A−BDcR−1C BR̃−1Cc −BR̃−1Cc

−BcR−1C Ac −BcR−1DCc BcR−1DCc

0 0 Ac

]

Cwo =
[
−R−1C −R−1DCc DR̃−1Cc

]

By employing the transformation matrix T

T =




In 0 0
0 Inc Inc

0 0 Inc




the observability grammian Q̃wo of the transformed
pair

(Ãwo, C̃wo) := (T−1AwoT, CwoT )

has the form

Q̃wo =
[

Qo 0
0 0

]

where Qo satisfies the appropriate Lyapunov equation

AT
o Qo + QoAo + CT

o Co = 0 (c)
AT

o QoAo + CT
o Co = Qo (d)

(14)

with

Ao =
[

A−BDcR
−1C BR̃−1Cc

−BcR
−1C Ac −BcR

−1DCc

]
,

Co =
[−R−1C −R−1DCc

]

With Qo partitioned in accordance with the structure
of Ao

Qo =
[

Q11 Q12

QT
12 Q22

]
, (15)

the grammian in original coordinates results as

Qwo = T−T Q̃woT
−1 =




Q11 Q12 −Q12

QT
12 Q22 −Q22

−QT
12 −Q22 Q22




Thus the frequency-weighted grammian according to
Enns’ method is QE = Q22, the trailing nc×nc block
of Qo.

In the case of an unstable controller, only the stable
part of the controller is reduced and a copy of the un-
stable part is kept in the reduced controller. Consider
a state-space representation of the controller with Ac

already reduced to a block-diagonal form

K =




Ac1 0 Bc1

0 Ac2 Bc2

Cc1 Cc2 Dc


 , (16)

where Λ(Ac1) ⊂ C+ and Λ(Ac2) ⊂ C−. Here
C− denotes the open left complex plane of C in a
continuous-time setting or the interior of the unit
circle in a discrete-time setting, while C+ denotes the
complement of C− in C. The above form corresponds
to an additive decomposition of the controller K =
Ku + Ks, where Ku = (Ac1, Bc1, Cc1) contains the
unstable poles of K and Ks = (Ac2, Bc2, Cc2, Dc)
contains the stable poles of K. Assume the order of
Ks is n−.

As before, Pi and Qo are obtained by solving the (n+
nc)-order Lyapunov equations (11) and (14), respec-
tively, where Ai and Ao are stable (the controller being
stabilizing by assumption). The frequency-weighted
controllability grammian PE of KsWi can be identi-
fied as the trailing n− × n− part of P33 in (12) and
the frequency-weighted observability grammian QE

of WoKs can be identified as the trailing n− × n−

part of Q22 in (15). 2

Some simplifications arise in the case of a state-
feedback and full-order observer based controller

K = (A + BF + LC + LDF, F, L, 0) (17)

where it is assumed that A + BF and A + LC are
stable. The following result is an extension of Lemma
1 of (Liu et al., 1990) to the case of possibly unstable
controllers.

Corollary 2. For a given n-th order system G =
(A,B,C, D) and observer based controller K (17),
suppose F is a state feedback gain and L is a state
estimator gain, such that A + BF and A + LC are
stable. Then the frequency-weighted controllability
and observability grammians for Enns’ method (Enns,
1984) applied to the frequency-weighting controller
reduction problems with weights defined in (2), (3), or
(4) can be computed by solving Lyapunov equations
of order at most 2n.

Proof: For Wi = (I + GK)−1, the matrices Ai and
Bi appearing in (11) are

Ai =
[

A BF
−LC A + BF + LC

]
, Bi =

[
0
L

]

while for Wi = G(I + GK)−1, Ai is the same and



Bi =
[−B

LD

]

For Wo = (I + GK)−1G, the matrices Ao and Co

appearing in (14) are

Ao = Ai, Co =
[−C −DF

]

Thus in both cases, the computation of grammians in-
volves the solution of appropriate Lyapunov equations
of orders at most 2n. 2

In the case of state feedback and observer based con-
trollers important computational effort saving results
by further exploiting the structure of Ai. Consider

T =
[

I 0
I I

]

and compute

Ãi = T−1AiT =
[

A + BF BF
0 A + LC

]

and B̃i = T−1Bi. If P̃i is the solution of

ÃiP̃i + P̃iÃ
T
i + B̃iB̃

T
i = 0 (c)

ÃiP̃iÃ
T
i + B̃iB̃

T
i = P̃i (d)

and is partitioned as

P̃i =

[
P̃22 P̃23

P̃T
23 P̃33

]

then Pi = T P̃iT
T and the trailing n× n block P33 of

the partitioned Pi in (12) is obtained as

P33 = P̃22 + P̃23 + P̃T
23 + P̃33

Similarly, consider the transformed matrices Ão =
Ãi, and C̃o = CoT . The corresponding transformed
observability grammian Q̃o satisfies

ÃT
o Q̃o + Q̃oÃo + C̃T

o C̃o = 0 (c)
ÃT

o Q̃oÃo + C̃T
o C̃o = Q̃o (d)

and the grammian Qo in the original coordinates is
Qo = T−T Q̃oT

−1. With Q̃o partitioned as

Q̃o =

[
Q̃11 Q̃12

Q̃T
12 Q̃22

]
,

the frequency-weighted observability grammian Q22

in (15) results as

Q22 = Q̃22

The computational saving arises from the need to
reduce Ai to a real Schur form (RSF) when solving
the corresponding Lyapunov equations (11) and (14).

Instead of reducing the 2n × 2n matrix Ai to a RSF,
only two smaller n×n matrices A+BF and A+LC
are needed to be reduced to obtain Ãi in a RSF. This
means a 4 times speedup of computations for this step.

3. SQUARE-ROOT TECHNIQUES

The square-root technique for model reduction has
been introduced by Tombs and Postlethwaite (1987).
This accuracy enhancing technique relies exclusively
on the Cholesky factors of the frequency-weighted
grammians, computed in the form PE = SEST

E

and QE = RT
ERE . The method of Hammarling

(Hammarling, 1982) can be generally employed to
solve (11) directly for the Cholesky factor Si of Pi =
SiS

T
i . In the case of an unstable controller, a state-

space realization for K as in (16) is assumed with the
n−×n− matrix Ac2 containing the stable eigenvalues
of Ac. By partitioning Si in the form

Si =
[

S22 S23

0 S33

]

with S33 n− × n−, the Cholesky factor of the trailing
block P33 in (12) corresponding to the stable part of
K is simply SE = S33.

Similarly, (14) can be solved directly for the Cholesky
factor Ro of Qo = RT

o Ro. By partitioning Ro in the
form

Ro =
[

R11 R12

0 R22

]
(18)

with a n− × n− trailing block R22, it follows that
the Cholesky factor RE of the trailing block Q22 in
(15) satisfies RT

ERE = RT
22R22 + RT

12R12. Thus
the computation of RE involves an additional QR-

decomposition of

[
R22

R12

]
and can be computed using

standard updating techniques (Gill et al., 1974).

In the case of one-sided weight Wo = (I +GK)−1G,
an alternative state-space realization of Wo can be
used with the matrices Ao and Co having permuted
row/column blocks

Ao =
[

Ac −BcR
−1DCc −BcR

−1C

BR̃−1Cc A−BDcR
−1C

]
,

Co =
[−R−1DCc −R−1C

]

Further, the controller K in (16) is realized such that
the leading n− × n− diagonal block Ac1 contains the
stable eigenvalues of Ac. If the Cholesky factor Ro

of Qo = RT
o Ro is partitioned as in (18) with R11

n− × n−, then RE = R11, and the updating of the
QR-decomposition can be avoided when computing
RE . Still, in the case of two-sided weighting with
Wo = (I + GK)−1G and Wi = (I + GK)−1, the
approach used in the proof of the theorem with Wi

and Wo sharing the same state matrix (i.e., Ai = Ao)



is to be preferred, because the computation of both
grammians can be done with a single reduction of a
(n+nc)× (n+nc) matrix to the RSF. In this case the
cost to compute the two grammians is practically the
same as for one grammian.

For a state-feedback and full-order observer based
controller, let S̃i be the Cholesky factor of P̃i parti-
tioned as

S̃i =

[
S̃22 S̃23

0 S̃33

]

The n−×n− Cholesky factor SE corresponding to the
trailing n− × n− part of P33 is the trailing n− × n−

block of a matrix Ŝ33 which satisfies

Ŝ33Ŝ
T
33 = S̃11S̃

T
11 + (S̃12 + S̃22)(S̃12 + S̃22)T

Ŝ33 can be computed from the RQ-decomposition of[
S̃11 S̃12 + S̃22

]
using standard factorization updat-

ing formulas (Gill et al., 1974). Since Q̃22 = Q22 no
difference appears in the computation of the Cholesky
factor RE .

The computation of reduced order approximation at
Step 3 of the FWCR Procedure can be done for the
BT method using a projection formulation with the
help of two truncation matrices L and T . Assuming
the controller is stable, the matrices of the reduced
order controller Kr = (Acr, Bcr, Ccr, Dcr) can be
computed as

(Acr, Bcr, Ccr, Dcr) = (LAcT, LBc, CcT, Dc)

For an unstable controller the same computation is
performed on the stable part of the controller. The
computation of L and T relies on the singular value
decomposition

RESE =
[
U1 U2

]
diag(Σ1, Σ2)

[
V1 V2

]T

where

Σ1 = diag(σ1, . . . , σrc)

Σ2 = diag(σrc+1, . . . , σnc)

and σ1 ≥ . . . ≥ σrc > σrc+1 ≥ . . . ≥ σnc ≥ 0.

The square-root methods determine L and T as
(Tombs and Postlethwaite, 1987)

L = Σ−1/2
1 UT

1 RE , T = SEV1Σ
−1/2
1 .

This approach is usually numerically very accurate
for well-equilibrated systems. However if the origi-
nal system is highly unbalanced, potential accuracy
losses can be induced in the reduced model if either
of the truncation matrices L or T is ill-conditioned
(i.e., nearly rank deficient). To avoid ill-conditioned
truncation matrices, balancing-free approaches can be
used, as for example, the balancing-free square-root
algorithm for the BT introduced by Varga (1991).

4. CONCLUSIONS

An efficient and numerically reliable balancing re-
lated computational approach has been proposed for
the FWCR with special frequency weights enforc-
ing closed-loop stability and performance. By solv-
ing lower order Lyapunov equations for computing
the grammians, the new procedure is more efficient
than the standard frequency-weighted balancing based
reduction approach. The grammians can be deter-
mined directly in Cholesky factored forms to facili-
tate the application of square-root and balancing-free
accuracy enhancing techniques. For the newly devel-
oped method, robust numerical software is available in
the FORTRAN 77 library SLICOT, together with user
friendly interfaces to the computational environments
MATLAB and Scilab.
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