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Abstract. Microscopic simulation models are becoming increasingly important tools in modeling transport 
systems. There is a large number of models used in many countries. The most difficult stage in the development 
and use of such models is the calibration and validation of the microscopic sub-models such as the car following 
and gap acceptance models. This difficulty is due to the lack of suitable methods for adapting models to 
empirical data. The aim of this paper is to present recent progress in calibrating a number of microscopic traffic 
flow models. Ten very different models have been tested using data collected via DGPS-equipped cars 
(Differential Global Positioning System) on a test track in Japan. To calibrate the models, the data of the leading 
car are fed into the model under consideration and the model is used to compute the headway time series of the 
following car. The deviations between the measured and the simulated headways are then used to calibrate and 
validate the models. The calibration results agree with earlier studies as there are errors of 12 % to 17% for all 
models and no model can be denoted to be the best. The differences between individual drivers are larger than 
the differences between different models. The validation process gives acceptable errors from 17 % to 22%. But 
for special data sets with validation errors up to 60% the calibration process has reached what is known as 
“overfitting”: because of the adaptation to a particular situation, the models are not capable of generalizing to 
other situations. 

INTRODUCTION 

For the simulation of traffic flow various macroscopic and microscopic models exist (see (1) and (2) for an 
overview) and there is a large number of available models used in many countries. Nowadays, in the time of 
computer processors increasing rapidly in speed, especially microscopic models become very important tools in 
modeling transport systems. In the development of these models it is important to check the models against 
reality, namely to calibrate and validate them. Usually the developers of the models do this on their own using 
some data sets they have access to and publish the results obtained (see (3) for an overview on model 
calibration). This way every model is calibrated and sometimes validated with other data sets, but if a user has to 
decide which model to take for some special application, he is not really able to compare them and to choose the 
best one. So there seems to be a lack in the field of benchmarking these models.  
 
Previous studies in testing models have been performed using single car data recorded on a rural road in the USA 
(4, 5, 6) analyzing the travel times of vehicles between observers/detectors. The aim of this paper is to test some 
models from a more microscopic point of view by analyzing the car following behavior of the models in detail. 
The analyses are done using data from experiments conducted in Japan (7). By calibrating and validating all 
models using the same data sets, the models are directly comparable to each other which is a first step of 
developing a transparent benchmark for these models. 
 

THE DATA SET AND THE SIMULATION SET-UP 

The data set 

The data used for the calibration and validation of the models have been recorded on a test track in Japan in 
October 2001 (7). Eight experiments have been conducted, where nine cars drove on a 3 km test track (2 x 1.2 
km straight segments and 2 x 0.3 km curves) for about 15-30 minutes in each experiment following a lead car, 
which performed some driving patterns. These are for example driving with constant speeds of 20, 40, 60 and 80 
km/h for some time, varying speeds (regularly increasing/decreasing speed) and emulating many 
accelerations/decelerations as they are typical at intersections. The regularly increasing/decreasing of speed is 
done performing half, single, double and triple waves on the two straight segments of length 1.2 km on the test 
track. That means for example a half wave is starting with 40 km/h, accelerating to 60 km/h on the middle of a 
segment and decelerating to 40 km/h at the end of it. A single wave is accelerating from 40 to 60 at the first 
quarter of the segment, decreasing to 40 km/h in the second quarter and 20 km/h in the third quarter, and 
accelerating to 40 km/h in the fourth quarter. 
 
To minimize driver-dependent correlations between the data sets, the drivers were exchanged between the cars 
after each experiment. Having all cars equipped with the differential global positioning system DGPS, the 
position of each car is stored in 0.1 second intervals throughout each experiment. From these data other 
important variables like the speed, the acceleration and the headway between the cars were extracted for 
simulation purposes. The accuracy of the DGPS is about 1 cm and the appointment of the speeds has got an error 
of less than 0.2 km/h as described in (7). Thus, the data sets have got such a high resolution that they are 
adequate for the analysis of car-following behavior and calibration of car-following models. 
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Simulation setup 

In this paper we present analyses concerning four of the eight experiments, namely the patterns with intervals of 
constant speeds and driving patterns with wave-performing. The data which have been used for the simulations 
had time series of about 26 minutes in the first experiment, 25 minutes in the second, 18 in the third and 14 in the 
fourth experiment. For each of the four experiments one gets the ten trajectories of the cars in form of the DGPS-
positions and speeds. From these the accelerations and distances/gaps between the cars have been calculated, 
which are used for the simulation runs. While the distances could be directly calculated from the GPS positions, 
the calculation of the acceleration was done deriving it from the speeds by a Savitzky-Golay smoothing filter (8), 
which smoothes the values in intervals of one second with a second-order polynomial. This procedure was 
necessary because some models need the acceleration of the car driving ahead and of course, these values should 
not fluctuate too much. 
The study was done by analyzing the time-development of the gaps between the cars. For the simulation setup 
only two cars are considered at a time. The leading car is updated as the speeds in the recorded data sets tell and 
the following car is updated as defined by the equations and rules of the used model, respectively. Typically, an 
equation like the following was used: 
v f (g, v, V,{p})
g V v
=
= −

  (1) 

where and V is the speed of the following and the leading car, respectively, and is the headway between the 
cars. The symbol  denotes a set of parameters of the model under consideration.  

v g
}{p

 

ERROR MEASUREMENT AND OPTIMAL PARAMETER FINDING 

The absolute error a model produces with a particular parameter set for a special vehicle pair is calculated via the 
simple distance between the recorded gaps and the simulated gaps between each vehicle-pair. To get a 
percentage error it is additionally related to the average gap in each data set: 
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where and are the simulated and the observed gaps between the cars. The error is calculated for one 
particular vehicle pair in one particular experiment, thus T is the total time of each experiment (26, 25, 18 and 14 
minutes). 
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Altogether 4*9=36 vehicle pairs (four experiments, each with nine vehicle pairs) were used as data sets for the 
analyses of the car following behavior. Each model has been calibrated with each of the 36 different 
constellations separately gaining optimal parameter sets for each “model-data set” combination. To find the 
optimal parameter constellations in the calibration procedure a gradient-free optimization method known as the  
“downhill simplex method” (8) was used and started many times with different initialization values for each 
“model-data set” pair. The variation in initialization is done to avoid sticking with a local minimum, which of 
course can occur because getting a global minimum can not be guaranteed by those optimization algorithms. 
Subsequently, the validation was performed in two ways. First, a mainly driver-independent procedure: the 
errors are determined simulating the second, third and fourth experiment with the calibrated parameter values 
resulting from calibration of the data sets of the first experiment. Second, a driver-dependent validation was done 
focusing on a special pair of drivers, which drove one after another in each of the experiments. 
 

THE MODELS 

By now, ten microscopic models of very different kind with 4 to 15 parameters have been tested (see tab1e 1 for 
some details about the parameters): 

• CA0.1 (cellular automaton model by K. Nagel, M. Schreckenberg) (9), 
• SK_STAR (model based on the SK-model by S. Krauss) (10), 
• OVM (“Optimal Velocity Model”, Bando, Hasebe) (11), 
• IDM (“Intelligent Driver Model”, Helbing) (12), 
• IDMM (“Intelligent Driver Model with Memory”, Helbing, Treiber) (13), 
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• Newell (model by G. Newell (14, 15), can be understood as the continuous CA with more variable 
acceleration and deceleration), 

• GIPPSLIKE (basic model by P.G. Gipps) (16), 
• Aerde (model used in the simulation package INTEGRATION) (17), 
• FRITZSCHE (model used in the british software PARAMICS; it is similar, but not identical to what is 

used in the german software VISSIM by PTV) (18), 
• MitSim (model by Yang and Koutsopulus, used in the software MitSim) (19). 

 
As the time step for the models should be 0.1 seconds according to the recorded data, some models with a 
traditional time step of 1 second – as for example used for simple cellular automatons - have been modified to 
adopt for an arbitrarily small time-step. Thus, every model is simulated with a time step of 0.1 seconds. 
 
The most basic parameters used by the models are the car length, the maximum speed, an acceleration rate 
(except for the CA0.1-model) and a deceleration rate (for most models). The acceleration and deceleration rates 
are specified in more detail in some models depending on the current speed or the current headway to the leading 
vehicle. Furthermore, some models (CA0.1, SK_STAR and MitSim) use a parameter for random braking or 
another kind of stochastic parameter describing individual driver behavior. Most models use something like a 
reaction time of the drivers to the behavior of the leading car. 
 
With these kinds of parameters seven of the ten models are covered completely, except for the IDMM, MitSim 
and FRITZSCHE. The IDMM has as a special feature a memory effect. Depending on the density ahead, the cars 
try to hold their speeds according to a rolling horizon. The MitSim model defines two thresholds concerning the 
headway, which cause a switching between three different driving modes. Especially if a driver is very close to 
the leader the calculations become very sophisticated, depending on the headway, own speed, speed-difference 
and the current density. In addition to the basic simulation update equation (1) the model needs the speed of the 
leader one time step before as a special feature. The FRITZSCHE model provides switching to various driving 
modes, too. For this model the switching depends not only on the headway (g), but also on the speed-difference 
(dV) between the follower and the leader. Thus, a (dV,g)-car following plane is divided into different regions of 
free driving, approaching, emergency brake and two other driving behaviors. As a specific, differing to equation 
(1), the model needs the acceleration of the follower and the leader one time step before and uses some kind of 
“brake light” of the leader by reacting on its deceleration.  
 

SIMULATION RESULTS 

Calibration Results 

The ten models have been calibrated independently for each of the four experiments (denoted as “11”, “12”, 
“13”, “21”) with all nine vehicle pairs separately ( data sets named “11_1 D1-D2”, “11_2 D2-D3”,…, “21_1 D9-
D10”, where D1, … ,D10 are the drivers). Thus, for each model 36 optimal parameter sets and calibration errors 
were obtained. 
 
The detailed explanation of the best parameter sets neglecting, an overview on all errors for all models and data 
sets is shown in figure 1. The most important thing to remark is that the differences between the models are very 
small. For some data set one model is the best, for another data set another, thus no model seems to outperform 
the others regularly. As can be seen in table 2, the differences between the models (indicated by the amplitude, 
which is the difference between the best and the worst models error for a particular driver pair in an experiment) 
are less than 3 percentage points for the most data sets. Only some data sets – as for example 12_2 with 5.028 
percentage points and 13_1 with 4.769 percentage points - seem to be very special, so that some models perform 
well but others have big problems to calibrate them. The average amplitude of 2.567 % can be understood as a 
measurement for the diversity of the models. 
 
Focusing on the level of the errors for the various data sets it can be seen in figure 1 that for most data sets errors 
of 12-17 % occur frequently. In special cases – as for example data set 11_8 or 13_2 – the errors are reduced 
approximately to 10 %, which is surprisingly good. On the other hand there are some data sets letting the models 
produce errors of about 20 % up to 23 % (data sets 12_2 and 21_1). By calculating the amplitude of the errors 
each model produces with all 36 data sets, it can be seen in table 3, that they are very big with values of 10.11 % 
(SK_STAR) up to 12.78 (GIPPS_LIKE). Interpreting these values as a measurement for the diversity of the data 
sets – and thus of the drivers, too - it can be stated that the diversity in the behavior of the drivers is much bigger 
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than the diversity of the models under investigation. Of course, the amplitudes of the models results are hardly 
influenced by extreme values, which are rare in these results. But taking only the obviously interval of 12-17%, 
where most of the errors are (see figure 1), the diversity of the drivers would be 5 percentage points which is still 
much higher than the diversity of the models. 
 
Looking further at the mean error values of 15.14 % (GIPPS_LIKE) to 16.20 % (IDM) the different models 
produce (see table 3), again no model can be denoted to be the best. Especially the two models with a big 
number of parameters (FRITZSCHE and MitSim) do not provide better results in general than the simpler 
models. 
 

Validation Results 1 (driver-independent) 

For the validation purpose for each model the nine optimal parameter sets obtained by the calibration of the data 
sets of the first experiment “11” were taken to simulate each model with the other three data sets “12”, “13” and 
“21”. In more detail, for each model the optimal parameters obtained by calibrating 11_1 were taken to simulate 
the data sets 12_1, 13_1 and 21_1. Then for each model the parameters of 11_2 were taken for 12_2, 13_2 and 
21_2 and so on. Thus, for each of the calibration results of experiment “11” three validations were conducted as 
shown in figure 2. 
 
Most of the errors are between 17 and 22 %, which means an additional error of about 5 percentage points in 
comparison to the error of 12-17 % after the calibration. Except for some special cases, again, there seem to be 
no general differences between the models. As a very special case the results of the fourth driver pair (data set 
11_4) seem to be very abnormal because of very high errors of about 32% for 12_4, 40-55% for 13_4 and 40 % 
for 21_4 for most models. This is a case known as “overfitting”. Obviously the reason is that all models (except 
for the OVM) adopted very special parameter sets for data set 11_4 during the calibration and thus the other data 
sets 12_4, 13_4 and 21_4 could not be simulated appropriately with these “overfitted” parameter sets. Likewise 
abnormal appears data set 21_9 with errors of 35 % to 41 %. In relation to this the data sets 12_9 and 13_9 with 
errors of 18-20% and 16-18% are well reproduced by the parameters obtained during the calibration of 11_9, 
thus the parameter set of 11_9 seems to be realistic. But this parameter sets is not able to describe the behavior of 
the driver pair in data set 21_9. 
 
One more thing to mention is that especially the Aerde model (high errors in data set 13_3 and 21_1 for 
example) and the OVM model (high errors in data set 13_6 and 21_6 for example) sometimes differ to the “level 
of errors” produced by the other models. The mean errors of the models after the validation (see table 3) are very 
similar with most models having errors between 19.25 % (SK_STAR) and 20.72 % (IDM). Only the Aerde 
model and the OVM model show slightly more problems during the validation with mean errors of 23.13 % and 
22.82 %. (Note, that for the representative calculation of the mean values the errors of the “overfitted” data sets  
x_4 and x_9 are excluded!) 
 
Comparing the validation results with the calibration results (“validation mean” subtracted from “calibration 
mean” in table 3), the validation produces about 3.2 % to 5.5 % additional error for most of the models, which is 
quite good. According to the problems mentioned above, the Aerde model and the OVM model have a bit worse 
values of 7.63 and 6.63 %. It seems to be interesting, that the MitSim model has one of the best values with 
3.75% although the number of parameters is very big. This is remarkable because of course the calibration of the 
many parameters is quite sophisticated, but in this case the results and parameter sets obtained seem to be valid. 
 

Validation Results 2 (driver-special) 

The idea of the driver-special validation is to analyze the results obtained from a special driver pair which drove 
subsequently in each of the experiments. The basic question is, whether the models are able to describe this 
driver pair better than in the driver-independent validation. Because the order of the nine drivers following the 
leading car has been changed during the experiments, there is only one driver pair driving subsequently in any 
experiment. This is the case for the drivers D9 and D10 with the data sets 11_9, 12_9, 13_9 and 21_9. For these 
four data sets the parameter sets obtained by the calibration are taken and validated with each of the three other 
data sets. So every data set 11_9, 12_9, 13_9 and 21_9 is validated three times. 
 
As can be seen in figure 3, the data set 21_9 is a very special one, confirming the results for it during the 
calibration. Simulating it with the parameters obtained by the calibration of the other data sets, the errors for it 
are always much bigger than the other results (bars at the right side of the first three diagrams). Simulating the 
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other data sets with the calibration parameters of data set 21_9 (bottom diagram of figure 3), the errors are much 
higher, too. 
 
The other results obtained look quite good as the errors are only slightly higher than in the calibration cases. This 
can be seen, too, in table 3, comparing the mean calibration error of each model to the mean errors of this 
validation 2 (the difference between “validation2 mean” and “calibration mean” is shown in the last row). 
Interestingly, the OVM model is the best in this case with an additional error of only 0.41 percentage points. But 
also the other models produce only 1.41 percentage points (MitSim) up to 2.43 percentage points (Aerde) 
additional error. Apart from the fact that the used data for this analysis of driver-dependent validation is not so 
comprehensive, it can be stated that the validation using data sets from the same drivers is much better than 
using those of different drivers. Of course, this result is of special interest, because the obtained calibration 
results will not help to get parameter sets which can easier be generalized. But it gives an insight, how good data 
sets of special drivers can be validated. This probably sets a lower limit for the errors well generalized parameter 
sets are able to produce. 
 

CONCLUSIONS 

The error rates of the models in comparison to the data sets during the calibration for each model reach from 9 % 
to 24 %. Surprisingly, no model appears to be significantly better than any other model and the average error 
rates of the models are very close to each other between 15.1% and 16.2%. All models share the same problems 
with certain data sets while other data sets can be reproduced quite well with each model. Interestingly, it can be 
stated that models with more parameters do not necessarily reproduce the real data better. The results of the 
validation process give a similar picture. The additional errors in comparison to the calibration are – apart from 
singular cases of “overfitting” - mainly in the area of 3 to 5 percentage points. Using different data sets from the 
same drivers for calibration and validation, the additional validation errors mainly reduce to 1.5 to 2.5 percentage 
points. 
 
The results after the calibration and the validation agree with results that have been obtained before with a 
completely different data set taking the travel times on road segments instead of headways for the error 
measurement (3). (In these studies about 15 to 27 % were found to be the minimum calibration error and 
additional validation-errors were found to be about 2 to 5 percentage points. It was found, too, that out of about 
ten models the differences are not as big as could be expected.) However, the results of the validation show, that 
when calibrating and validating with special data sets, the parameters of a model can be “overfitted” and thus the 
results can be very unsatisfactory with surprisingly high errors. The calibration tends to optimize the model for a 
given data-set, thereby sacrificing generality. 
 
Concerning the generalization of data recorded on test tracks to real life it is known that on test tracks the driving 
behavior is much more careful. As a typical indicator the time headway of consecutive cars is about 1.0 to 1.5 
seconds on highways (20) and about 2.5 seconds in experimental situations like on test tracks and in driving 
simulators. The same values of about 2.5 seconds are found for this data set, but - most important – the 
distribution of time headways shows a qualitative agreement to real data (21). Thus, for the analyses performed 
in this study it seems to be possible to generalize the driving behavior in the experiment to real situations. 
 
There are two conclusions that can be drawn. First, one should call for the development of better models. 
Additionally, one should think about a different calibration technique which avoids “overfitting” and could 
produce results which stay more general. The other way to interpret the results is that – from this microscopic 
point of view – errors of about 15-25 % can probably not be suppressed no matter what model is used. These are 
due to a really stochastic component in the driver’s behavior. 
 
Finally, if one would centralize these results and take them as given reality, the recommendation would be to 
take the simplest model for a particular application, because complex models likely will not produce better 
results. The only reason a complex model could be preferred would be, if the user is very familiar with the model 
and knows the consequences for its behavior whatever a parameter (or set of parameters) is changed. But the 
results obtained should be confirmed by testing microscopic models with much more different data sets than in 
this contribution to get a more precise insight what the models are able to describe and which error rates 
probably have to be accepted. 
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FIGURE 1 Errors of the models after the calibration (data sets of four experiments (11, 12, 13, 21) with 9 
driver pairs; D1…D10: drivers). 
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FIGURE 2 Errors of the models after the driver-independent validation1 using the best parameter sets of 
experiment 11 (D1…D10: drivers). 
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FIGURE 3 Errors of the models after the driver-special validation2 of the driver pair D9-D10 (“REF” 
denotes the data set from which the optimal parameter constellations after the calibration were taken). 
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TABLE 1 Short description of the parameters used for the models under investigation (the following 
parameters are used by all models: maximum speed Vmax, vehicle length l; used by all models except for 
CA0.1: acceleration a) 
 

Model 
(acronym) Main additional parameters 

Amount of parameters 
(+ for internal calculation) 

CA0.1 p random braking 
T distance keeper to leader 

4 

Newell p random braking 
tau reaction time 
T distance keeper to leader 
b deceleration 

7 

FRITZSCHE bMax, bMin limits for deceleration 
bNUll acceleration/deceleration for a “following mode” 
tD for calculating a “safe gap” 
tS, tR, kPlus, kMinus, fX thresholds and variables 
describing different driving modes 
A0 measurement how near the cars tend to be; threshold for 
hard braking 
(at acceleration one time step before) 
(an acceleration of the leader one time step before) 
(bn kind of “brake light” of the leader [0;1]) 

13 (+3) 

GIPPSLIKE B deceleration 
invTauT strength of acceleration 
tau reaction time 

6 

IDM b deceleration 
delta exponent decreasing the acceleration dependent on the 
speed 
tau reaction time 

6 

IDMM b deceleration 
tauAdapt adaptation time for holding recent speeds 
depending on the density (-> memory effect) 
T0 netto time gap between successive cars 
betaT strength of the adaptation 

7 

Aerde Cars try to reach a desired gap 
h2 for calculation of desired gap at maximum speed 
C2, C3 for calculation of desired gap dependent on the speed 

6 

MitSim h1, h2 thresholds for gap-measurement, which causes 
switching to different driving modes 
ap, vp, gp, kp parameters determining the acceleration in the 
case of undercritical gaps and a quicker leading car 
am, gm, km parameters determining the deceleration in the 
case of undercritical gaps and a slower leading car 
dvpm measurement how near the cars tend to be. 
bMax maximum deceleration 
epsA additional random accel./decel. 
(an acceleration of the leading car one time step before) 

15 (+1) 

OVM S0 for calculating a preferred gap 4 
SK_STAR bMax maximum deceleration 

invTauT strength of acceleration 
tau reaction time 
r threshold for random braking 
(gStar auxiliary variable to memorize desired gaps) 

7 (+1) 
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TABLE 2 Statistical overview on the errors produced by all models after the calibration (in [%]) 
 

driver pair data set 
BEST 

MODEL 
WORST 
MODEL 

Amplitude 
(WORST - BEST) MEAN STDERROR 

D1-D2 11_1 16.219 18.016 1.797 17.315 0.527
D2-D3 11_2 14.491 17.888 3.397 16.237 1.207
D3-D4 11_3 15.020 17.408 2.388 15.965 0.739
D4-D5 11_4 11.911 13.001 1.090 12.209 0.332
D5-D6 11_5 16.046 18.066 2.020 17.006 0.689
D6-D7 11_6 16.943 19.624 2.681 18.672 0.889
D7-D8 11_7 15.923 16.891 0.968 16.229 0.293
D8-D9 11_8 9.423 10.814 1.391 10.046 0.499
D9-D10 11_9 13.435 14.246 0.811 13.773 0.252
D1-D8 12_1 15.476 18.049 2.573 16.826 0.917
D8-D7 12_2 17.307 22.335 5.028 20.420 1.758
D7-D6 12_3 15.518 17.482 1.964 16.698 0.667
D6-D5 12_4 13.569 15.326 1.757 14.823 0.658
D5-D4 12_5 14.609 17.362 2.752 16.142 0.873
D4-D3 12_6 13.902 17.628 3.726 15.733 1.493
D3-D2 12_7 14.276 15.793 1.517 15.131 0.542
D2-D9 12_8 11.837 14.019 2.183 12.726 0.633
D9-D10 12_9 13.871 15.374 1.503 14.921 0.533
D1-D2 13_1 13.573 18.369 4.796 16.388 1.817
D2-D3 13_2 10.805 13.192 2.387 11.801 0.913
D3-D4 13_3 12.604 15.162 2.558 13.240 0.713
D4-D5 13_4 12.594 15.127 2.533 13.216 0.780
D5-D6 13_5 14.102 16.189 2.087 14.895 0.742
D6-D7 13_6 16.065 20.715 4.650 18.410 1.900
D7-D8 13_7 13.934 15.464 1.530 14.844 0.579
D8-D9 13_8 14.261 17.056 2.796 15.671 1.100
D9-D10 13_9 13.016 14.563 1.547 13.887 0.513
D1-D8 21_1 20.524 23.082 2.558 21.818 0.785
D8-D7 21_2 17.211 20.897 3.687 19.052 1.186
D7-D6 21_3 18.303 20.884 2.581 19.409 0.673
D6-D5 21_4 13.782 17.023 3.241 15.249 0.932
D5-D4 21_5 15.178 18.202 3.023 16.948 0.776
D4-D3 21_6 10.493 14.381 3.888 12.227 1.063
D3-D2 21_7 15.481 19.432 3.950 17.752 1.100
D2-D9 21_8 13.392 15.982 2.590 14.788 0.966
D9-D10 21_9 12.771 15.249 2.477 14.014 0.869

 all   2.567 15.680 
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TABLE 3 Average errors of the models in [%] after completing the calibration and the driver-independent 
validation process (validation 1 without the “overfitted” data sets x_4 and x_9; validation 2 without the 
“overfitted” data set  21_9) 
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Calibration BEST 10.58 9.95 9.68 10.15 9.49 9.75 10.81 9.42 9.95 10.69
Calibration WORST 23.08 22.52 22.22 21.72 22.26 20.52 22.23 21.68 21.98 20.80

Calibration Amplitude 
(WORST-BEST) 12.50 12.57 12.54 11.58 12.78 10.78 11.41 12.26 12.03 10.11

Calibration MEAN 16.20 16.18 16.03 15.92 15.14 15.16 15.58 15.50 15.71 15.39

Validation 1 MEAN 22.82 19.72 19.29 20.28 19.25 20.72 20.67 23.13 19.46 19.74

Validation 1 VAL1 MEAN - 
CAL MEAN 6.63 3.54 3.26 4.36 4.12 5.56 5.09 7.63 3.75 4.35

Validation 2 MEAN 16.60 18.21 17.96 18.03 17.46 16.97 17.44 17.93 17.12 17.16

Validation 2 VAL2 MEAN - 
CAL MEAN 0.41 2.02 1.93 2.12 2.32 1.81 1.87 2.43 1.41 1.77
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