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Abstract: Partial	discharge	(PD)	can	provide	a	useful	forewarning	of	asset	failure	in	electricity	substations.	A	significant	

proportion	of	assets	are	susceptible	to	PD	due	to	incipient	weakness	in	their	dielectrics.	This	paper	examines	a	low	cost	

approach	for	uninterrupted	monitoring	of	PD	using	a	network	of	inexpensive	radio	sensors	to	sample	the	spatial	patterns	of	

PD	received	signal	strength.	Machine	learning	techniques	are	proposed	for	localisation	of	PD	sources.	Specifically,	two	

models	based	on	Support	Vector	Machines	(SVMs)	are	developed:	Support	Vector	Regression	(SVR)	and	Least-Squares	

Support	Vector	Regression	(LSSVR).	These	models	construct	an	explicit	regression	surface	in	a	high	dimensional	feature	

space	for	function	estimation.	Their	performance	is	compared	to	that	of	artificial	neural	network	(ANN)	models.	The	results	

show	that	both	SVR	and	LSSVR	methods	are	superior	to	ANNs	in	accuracy.	LSSVR	approach	is	particularly	recommended	as	

practical	alternative	for	PD	source	localisation	due	to	it	low	complexity. 

 

1. Introduction 

Electrical substation assets such as transformers are known 

to be susceptible to partial discharge (PD). PD occurs when 

an electrical discharge partially bridges the dielectric 

between conductors; it tends to be highly focused where 

electric field strength is greater than the breakdown strength 

of the insulator. Example locations of local defects include 

air pockets in solid insulation, gas bubbles or particles in 

liquid insulation [1] [2] [3].  Regardless of the underlying 

cause, PD is indicative of degraded insulation. The 

discharges themselves further deteriorate the quality of the 

insulation thereby giving rise to a vicious circle of atrophy 

until failure [4].  Instituting a monitoring process permits 

PD activity to be detected at an early stage and proactive 

maintenance can be employed to avoid catastrophic failure 

of assets. Thus, unplanned outages and expensive repair 

costs can be significantly ameliorated. 

 

The occurrence of partial discharge can be determined using 

protection equipment that monitors changes in the electric 

current [5]. The discharges also produce acoustic emissions 

[6] [7]; consequently, ultrasonic detectors have been used to 

determine their location. This is particularly useful in small 

indoor installations. Another approach is to monitor the 

radio spectrum for RF pulses emitted by the discharges [8] 

[9]; the method is more suited to larger transmission 

substations.  

 

In recent past, effort towards accurate PD localization has 

been reported. Hou proposed a PD location method based on 

L-shaped array [1], which composed of four UHF 

omnidirectional antennas. In [4] and [10], remote 

radiometric technology was used to locate PD source in two-

dimension (2-D). In [11] and [12], time delay method based 

on energy accumulation was employed to estimate the 

location of a PD source in three dimension (3-D). The setup 

composed of four omnidirectional micro-strip antennas and 

four omnidirectional discrete disk-cone antennas. [13] used 

four omnidirectional antennas to capture the UHF signals 

radiated by PD and the principle of signal time delay 

estimate based on high order statistics to locate PD sources. 

In [8], omnidirectional and directional antennas were both 

used to locate PD source in air-insulated substation. The 

time-delay was computed using the cross-correlation 

algorithm based on wave-front. A vehicle, such as a van, 

furnished with the necessary equipment can be taken 

periodically to substations to monitor for the presence of 

discharge [14] [15]. In previous works, radiolocation-based 

approaches for localisation of PD sources used Time 

Difference of Arrival (TDoA)/Time Delay Estimation (TDE) 

and Direction of Arrival (DoA) [16] [17] [18] [19] of the RF 

signal as the basic principles. However, time based methods 

require accurate temporal synchronisation, making it 

expensive and complex, and hence too costly to deploy for 

continuous monitoring of PD. The DoA method is also 

complex, requiring directional antenna array. Consequently, 

alternative solution to network relatively low-cost sensors 

for continuous monitoring an entire substation are of 

practical interest and are being explored. The 

cost/complexity of other approaches prompts an 

investigation into methods based solely on the use of 

Received Signal Strength (RSS) measurements due to their 

simplicity, low-power consumption and cost effectiveness. 

Theoretical RSS-based methods require knowledge of the 

underlying radio propagation environment (e.g. path loss) 

such that a suitable propagation model that defines the 

relationship between RSS and distance to an antenna can be 

built. It is not appropriate to use a ready-made propagation 

model due to multipath problem that often characterise the 

real-life radio environments in which PD is experienced. 

Alternative methods based on radio fingerprinting present 

themselves [20] [21]. These consist of identifying radio 

signatures (finger prints) from discharges at known locations, 
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and sophisticated machine learning algorithms can be used 

to estimate the location of true discharge. Fingerprinting 

often involve a resource intensive survey stage where a new 

radio map (of signatures) is needed each time a change 

occur in the propagation environment in order to maintain 

the needed accuracy.  

 

In this work we suggest a low-cost Wireless Sensor Network 

(WSN) approach where the network itself builds the spatial 

RSS map of signatures autonomously and continually.  With 

this approach PD monitoring system can be permanently 

deployed and thus monitor the substation in real-time at low 

cost without interruption. 

The key challenge of the above described PD localisation 

procedure is how to effectively and efficiently model 

RSS/location relation and hence derive PD location from 

RSS. The complexity of this inverse problem motivates the 

use of flexible models based on machine learning. This 

approach not only obviate the need for a propagation model 

but can also improve localisation precision. 

 

The rest of this paper is organized as follows. Section 2 

presents the statement of the problem. In section 3, a 

description of the PD localisation learning algorithms is 

presented. The experimental set up and data preparation 

procedure are addressed in section 4. The experimental 

results are discussed in section 5. Finally, the concluding 

remarks are stated in section 6. 

2. Problem Statement 

This low-cost approach is based on the deployment of 

wireless sensors at arbitrary but know locations in the 

substation compound; these sensors can record radio 

emission from PD sources in real-time. The locations of 

these sources can be inferred by sophisticated algorithms.   

Due to the topography of assets in a substation, PD 

localisation in this setting can be regarded as a 2 

dimensional problem. The compound is modelled as a finite 

location space },...,{ 1 n
llL =  of n discrete locations where 

),( y

i

x

ii lll =  represents the 2D coordinate of a PD source 

in physical space. In this paper we exploit the mathematical 

relationship between PD location and signal attenuation to 

estimate a function which provides PD source location 

),( y

i

x

ii lll = from measured signal strength. This can be 

modelled as;   

)()( rerfl +=                        (1) 

where RrÎ  is the vector containing the RSS from M 

known locations captured by Q antennas, LRf Q

M ®=  

and e accounts for the noise.      

Each of the sensors take a turn at emitting a radio pulse, 

which is monitored by the others. Given that they are at 

known locations, this permits a database of to be built which 

implicitly characterises the radio environment of the 

substation. The database is defined as },...,{ 1 M
DDD =  

with ),(
mmm
lrD =  where ],...[

1 Q

mmm rrr =  are the RSS 

measurement from the Q antennas at location
m
l . The 

transmission power of a true PD source is dependent on a 

great many factors and cannot be known a priori, 

furthermore, it increases in severity over time. Therefore, 

the ratio of RSS components between pairs of sensor nodes 

is preferred to absolute values of RSS in our model.  

 

It is assumed that for any pair of PD sources close in the 

physical location space, their RSS, hence RSS ratio vectors 

should be similar compare to sources far away. This 

assumption is based on the fact that these locations may 

have relatively similar propagation channels and may 

exhibit comparable RF characteristics. Suppose 

],...,[ 1 iQii rrr = and ],...,[ 1 jQjj rrr =  are the signal 

strength vectors from locations 
i
l  and jl . If |||| ji ll -  is 

small, then ||||
ji
rr -  should also be small.  

The key challenge is to develop a model that can 

determine as accurate as possible the planar location of PD 

sources based on the location data at low cost. Both the 

receiving sensor nodes and the PD sources are made 

stationary during measurement. 

3. Modelling ANN and SVM for PD Location  

3.1 Artificial Neural Network 

 
The artificial neural network (ANN) [22] approach for PD 

localisation is regarded as a function approximation problem 

consisting of a nonlinear mapping of the PD signal strength 

input onto dual output variables representing the location 

coordinates of the PD source. In this work, two variants of 

ANN; the multilayer perceptron (MLP) [23] [24]  and the 

radial basis function neural network (RBFN) [25] [26] 

models are adopted for PD localization.  

 

3.1.1 PD Localisation Based on Multilayer Perceptron 
 

The MLP network consists of an input layer, hidden layer(s) 

and an output layer. An MLP with a single hidden layer can 

be represented graphically as shown in Fig. 1. A sigmoidal 

activation function is used in the hidden layer to provide 

robustness against outliers and a linear activation function in 

the input and output layers. The MLP-type ANN is based on 

the back propagation [24] training of error estimate. It is 

generally an iterative non-linear optimisation technique. In 

this study, the MLP approach has been processed in two 

phases: a training phase and location estimation phase. 

During the training phase, the MLP network is trained to 

form a set of fingerprints as a function of PD location.  
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Fig. 1. MLP Architecture 
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Fig. 2. MLP model for PD localisation 

A set of training examples (fingerprint (RSS) and their 

corresponding locations) is applied to the network to learn 

the relation between fingerprints and their locations. This 

involves tuning the values of the weights and biases of the 

network to optimise network performance. The batch mode 

training is implemented in this work. All the inputs in the 

training set are applied to the network before weights are 

adjusted to minimise the error between the network output 

and the desired output. The MLP model developed for PD 

localisation is as shown in Fig. 2. 

During the estimation phase, the PD signal strength values 

from unknown locations are applied to the input of the 

trained network to give output corresponding to the PD 

location. To develop an appropriate MLP model for PD 

localisation, cross validation is used to determine a suitable 

network structure in terms of number of hidden neurons. 

The available training data is randomly partitioned into k 

disjointed sets. The network is trained for each set of 

parameters, on all the subsets except for one and the 

validation error is measured on the subset left out. The 

procedure is repeated for a total of k trials, each time using a 

different subset for validation. The average of MSE under 

validation represent the performance of the network. This 

process is repeated for different network architecture in 

terms of number of hidden neurons. The 3-4-2 network 

model with 3 inputs nodes, 4 hidden neurons and 2 outputs 

nodes has the best performance and is adopted in this work. 

In order to improve the generalisation of the model (that is 

model’s ability to do well on unseen data rather than just 

training set) and avoid overfitting, Bayesian regularisation 

[23] is used to train the network.  

 

3.1.2 Radial Basis Function Network Method 
 

In general, Radial Basis Function (RBF) networks are ANNs 

that have single hidden layer with nonlinear radial basis 

function. In this work, the RBF network architecture used 

for PD localisation consist of three inputs, corresponding to 

the RSS measurement data from the three sensors, a hidden 

layer and an output layer with two neurons, representing PD 

location coordinates ),( yx . The structure of a fully 

connected PD localisation RBF network is as shown in Fig. 

3. A radial basis type activation function (Gaussian function) 

is used for neurons in the hidden layer and a linear 

activation function for the output layer. The fully connected 

RBF network is used to approximate LRf Q

M ®= , a 

mapping of PD RSS fingerprints onto PD locations in the 

physical space.  

 
 

Fig. 3. RBFN PD localisation model 

 

The RBF network consist of two phases: a learning phase 

and an estimation phase. In the learning phase, the RBF 

network is trained to form a set of RSS fingerprints as a 

function of PD location. Each fingerprint is applied to the 

input of the network and corresponds to the measured RSS-

location data. The weights between the hidden layer and the 

output layer are iteratively adjusted to minimise location 

error. In the real-time estimation phase, measured PD RSS is 

applied to the input of the RBF network (acting as a pattern 

matching algorithm). The output of the RBF network which 

is the weighted sum of the radial basis function is the PD 

location estimate.  

Given a PD fingerprint r ¢ (RSS), the estimated location l̂  

given by the weighted sum of Gaussian basis function [25] 

is 

å
=

-¢=¢=¢
H

k

kk hruwrfrl
1

)()()(ˆ                (2) 

 

Where )exp()(
2

kk
hrhr -¢-=-¢ bj is the Gaussian 

radial basis function. H is the number of neurons (basis 

functions) in the hidden layer which correspond to the 

number of training samples, 
k
h is the 3-dimensional center 

for hidden layer neuron k , and 
k
w are the 2-dimensional 

weights for the linear output layer. b  is the spread or width 

of the Gaussian function. For improved performance, the 

normalized basis function can be used in the model. The 

weights can be determined in order to optimize the model. 

Each fingerprint defines the center of a neuron and the width 

b  is obtained via cross validation. Thus, forming the 

following set of equations; 

å
=

==-=

H

k

kiki
MmLihmlruwl

1

...,1,,...,1),),((  

                                                                                            (3) 

This system of linear equations can be written in matrix 

form as dUw =  and the weights are easily obtained by 

.
1
dUw

-
=  }...,,1),()({ RijhruU ij =-=  and 

)(×u  is the normalised Gaussian basis function. The 

computed weights are then used during the estimation phase 

to locate PD. RBF networks suffer from high memory 

requirements since all reference fingerprints are used as 

centers for the basis functions and required for localisation.  
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3.2 Support Vector Machine 

 
Support Vector Machines (SVM) [3] [27] [28] are kernel-

based learning techniques applicable to both classification 

and regression problems. SVMs are based on the idea of 

mapping the original input data point to a high dimensional 

feature space where a separating hyper-plane can be easily 

identified. SVMs have shown tremendous success in 

applications such as data classification, time series 

prediction, identification systems and data clustering [28] 

[29] [30] [31] [32]. In the context of PD localisation, SVM 

is formulated as a regression task, which consist of training 

a model that defines the non-linear mapping function 

between the PD RSS and its geo-spatial location in high 

dimensional feature space, leading to Support Vector 

Regression (SVR) [33] [34] [35].  

 

3.2.1 Support Vector Regression: 

 
3.2.1.1! Basic theory of SVR 

 

Support vector regression technique is a learning procedure 

based on statistical learning theory which employs structural 

risk minimisation principles [33]. SVR uses training data to 

build its prediction model. This method can solve both 

linear and nonlinear regression problems. If the training 

samples are nonlinear, SVR maps the samples into a high-

dimensional feature space by a nonlinear mapping function, 

where samples become linearly separable and the optimal 

regression surface is constructed [36].  

Suppose we are given training dataset )},{(
ii
lrD =  with 

Rr
i
Î and Ll

i
= , the goal of SVR is to find the mapping 

LRf ®=  and make 
ii lrf ~)( , where r  is input 

feature vector. For nonlinear problem, the training patterns 

are pre-processed by a map into some feature space before 

SVR is applied. SVR finds the best or optimal regression 

surface )(rf  within a deviation e  as the prediction model, 

leading to epsilon-SVR [37].  The model can be expressed 

as 

 

brwrf +ñá= ,)( ,       ÂÎÂÎ bw
n
,          (4) 

Where ..,  denotes the dot-product and w and b are the 

support vector weight and bias respectively. A small w is 

desired to get an optimal regression surface. This can be 

achieved by solving the following optimisation problem 

with the training data ],[ LRD = : 

 

î
í
ì

£-+

£--

e

e

ii

ii

lbrw

brwl
tosubject

w

,

,

min
2

2

1

                 (5) 

 

Where .,
2

www =  The problem in (5) might be 

restrictive by bounding the range of errors of the training 

data within e . Thus, to deal with otherwise infeasible 

constraints, introduce slack variables 
*

,
ii
xx  for each point. 

The slack variables allow errors to exist up to the value of 

i
x and 

*

i
x  without degrading performance. With slack 

variables the problem becomes [38]: 

 

ï
î

ï
í

ì

³

+£-+

+£--

++ å
=

0,

,

,

)(min

*

*

1

*2

2
1

ii

iii

iii

N

i

ii

lbrw

brwl

tosubject

Cw

xx
xe
xe

xx

         (6) 

 

Where C is the box constraint, a positive numeric value that 

controls the penalty imposed on data points that lie outside 

the e  margin and helps to prevent overfitting 

(regularisation).  To solve the problem in (6), a standard 

dualisation method with Lagrange multipliers 
*

,
ii

aa  can 

be used [36]. By solving the dual problem, w  can be 

expanded as  

 å
=

-=

N

i

iii
rw

1

* )( aa                                          (7) 

 

Where 0³
i

a  and 0
*
³

i
a . Substituting (7) in (4), and 

replacing the dot-product .,.  with a kernel function 

),( rrk
i

 [38] to simplify the nonlinear mapping from the 

input space to the feature space in SVR, the model can be 

expressed as  

  

 å
=

+-=

N

i

iii brrkrf
1

* ),()()( aa                   (8) 

i
a are the Lagrange multipliers which satisfy 

C
i
<<

*
0 a , 

i
r  are the support vectors whose 

i
a  is not 

zero,  and N  is the number of support vectors. Equation (8) 

shows that the decision function depends on support vectors. 

This means optimal regression surface is constructed by 

these support vectors. The idea of support vectors form a 

sparse subset of the training data that can be used and is 

particularly useful for resource constraint applications such 

as the one under investigation. 

 

 

3.2.1.2 PD Localisation based on SVR 
 

In PD localisation problem, sensors are deployed at arbitrary 

but known locations in a two-dimensional substation 

compound; these sensors record radio emission from PD 

sources in real-time and estimate the location of the PD. The 

compound is divided into a 1x1 squared grid. Each grid 

point represented by x-y coordinate is considered a PD 

location (source).  Therefore, to compute PD location, two 

SVR models are required; one for each x-y coordinates The 

PD features/patterns used to develop the SVR models is the 

received signal strength. Firstly, RSS from known locations 

are gathered by the three sensors deployed in the substation 

compound. These RSS and their locations form a database 

for the compound. Suppose the true coordinates of PD 
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location 
i
l  are ),(

ii
yx  and the corresponding values of 

RSS for the PD from this location are ),,( 321

iii
rrr .   

 
 

Fig. 4. SVR PD Localisation model 

 

The vector ],,[
321

iiii
rrrR =  is taken as the SVR input 

feature vector and used to infer the location ),( iii yxl . All 

the feature vectors from known locations and their 

corresponding location coordinates constitute the SVR 

training sample set. Using this training set, the SVR is 

trained to build a PD localisation models that would 

subsequently be used to predict or estimate PD location 

given RSS vector. During training, the input features (RSS) 

from each known location are transformed to a new feature 

space with N features, one for each support vector. That is to 

say that, they are represented only in terms of their dot 

products with support vectors (special data points chosen by 

the SVR optimisation algorithm). Gaussian kernel function 

is employed in the transformation to provide a nonlinear 

mapping from the input space to the new feature space.  In 

the location estimation phase, for a given RSS vector the 

kernel finds the similarity or a distance measure between the 

vector and the support vectors stored after training. The 

corresponding coordinates of the support vectors closest to 

the RSS vector are used to compute the PD location for the 

given RSS vector. The SVR PD location model is as shown 

in Fig. 4. 

However, when the electromagnetic environment changes 

due to external influences, for example change in the 

location of an electrical equipment, the localisation model 

would be retrained by the latest collected data. The 

retraining process can be done automatically, triggered by 

the location error analysis. If the location error exceeds a 

predefined threshold, the retraining begins.  

The optimal combination of the RBF kernel based SVR 

hyper-parameters (kernel parameter, insensitive loss 

function and regularisation parameter) is obtained via cross 

validation/grid search method. 

 

 

3.2.2 Least Squares Support Vector Regression: 

 
Least squares support vector regression (LSSVR) algorithm 

[32] [39]  is a reformulation of the standard SVR algorithm 

described in section 3.2.1.1, which leads to solving a system 

of linear equations. The idea of linear equations makes 

LSSVR more appealing and computationally more 

economical compare to solving the convex quadratic 

programming (QP) for standard SVR.  LSSVR algorithm for 

PD localisation consist of two phases: Training and 

Localisation. During the training phase, the parameters of 

LSSVR algorithm are estimated using PD measurements at 

known locations (training points). In the localisation phase, 

PD measurements taken at unknown locations are analysed, 

and their locations obtained using the parameters estimated 

in the training phase. Given a training data set 

Â´ÂÌ
n

nn
lrlrlr )},(.,..),,(),,{( 2211

 of n points, with 

PD input (RSS) data 
n

i
r ÂÎ , and output (PD location 

coordinate) data 
2),( ÂÎiii yxl  in 2-dimension, the 

LSSVR based PD location optimisation problem in the 

primal weight space is formulated as: 

 å
=

+=

n

i

i
ebw

ewewJ

1

2

2
12

2
1

,,
),(min g                  (9) 

  s.t  

niebrwl
iii

,...,1,)(, =++F=  

with hnn Â®Â× :)(j  a function which non-linearly map 

the input space into the so-called higher dimensional feature 

space, weight vector h
n

w ÂÎ  in primal weight space, bias 

term b and error variable Â=
k
e . The error term here 

represents the true deviation between actual PD location and 

estimated location, rather than a slack variable which is 

needed to ensure feasibility (as in SVR case). 0³g  is a 

regularisation constant. 

To solve the optimisation problem in the dual space, one 

defines the Lagrangian 

å
=

-++F-=

n

i

iii

T

i
lebrwewJebwL

1

})({),();,,( aa       (10) 

with Lagrange multipliers ÂÎ
i

a . The conditions for 

optimality are given by 
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  (11)  

After eliminating w and e, the solution yields the following 

linear equations: 

  ú
û

ù
ê
ë

é
=ú

û

ù
ê
ë

é

ú
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û

ù

ê
ê
ë

é

I+W l

b

v

T

v
0

1
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1 ag

    (12) 

where 
T

v

T

n
lll )1,...,1(1,),...,( 1 ==  and  

T

n
),...,( 1 aaa =  the Lagrange multipliers. Appling 
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Mercer’s condition [32]  , the ik-th element of W  is given 

by nkirrKrr
kik

T

iik
,...,1,),()()( ==FF=W , 

where W  is a positive definite matrix and ik-th element of 

the matrix ),(
kiik
rrK=W  is a symmetric, continuous 

function. The resulting LSSVR model for PD location 

estimation becomes: 

 å
=

+=

n

i

iii brrKrf
1

),()( a            (13) 

 where b,a  are obtained during the training phase by 

solving (10). In LSSVR, there are only two parameters to be 

tuned: the kernel setting and the regularisation constant. 

Cross-validation/grid search is used to determine the optimal 

combination of the parameters. 

4. Experimental Procedure 

4.1 Experimental Set Up 

 
In order to verify the effectiveness of the PD localisation 

system that is based on the deployment of a network of 

sensor nodes, a systematic test experiment was conducted in 

a 19.20m x 8.40m laboratory at the University of 

Strathclyde.  

 

 

Fig. 5. Measurement grid for measurement campaign 

The laboratory contained a great deal of clutter including 

metallic objects which gives rise to a multipath rich radio 

environment. Within the accessible area of the laboratory,  

144 distinct training locations and 32 testing locations were 

uniformly selected to form a grid such that the spacing 

between adjacent training locations is 1 m and the spacing 

between a training location and its nearest testing location is 

0.7 m which represent an array of sensor nodes. Pulse 

emulated PD sources were set up and 20 RF PD 

measurements collected at each training and testing location, 

resulting in 2880 training and 640 testing cases.  In real life 

however, the electrical equipment in which PDs are most 

likely to appear are not evenly arranged in substations and 

moreover some areas may be inaccessible. Signal strength 

decays as the transmission distance increases. This signal 

propagation characteristic in conjunction with an 

interpolation algorithm can be explore to automatically 

estimate PD signal strength at unobserved locations based 

on the known data values. The duration and the repetition 

frequency of the discharge pulses were 10ps and 100 kHz 

respectively. Three omnidirectional antennas used for 

capturing the RF signals were deployed at predefined 

locations. The arrangement of this procedure is shown in Fig. 

5. A high-speed multichannel oscilloscope with memory 

function was used as a signal-acquisition system to capture 

and store the PD traces. The oscilloscope has a bandwidth of 

9GHz. The PD data acquired from measurement were 

sampled at 2GS/s. A sample waveform of the received PD 

signals is shown in Fig. 6. The injected PD pulse waveform 

and the sensor response are shown in Fig. 7. 

 4.2 Data Preparation  

 
RF signals collected during the measurement campaign are 

corrupted by noise/interference and this needs to be 

removed before the PD signals are analysed. In this work, 

the process of noise removal is accomplished using a 

wavelet multivariate de-noising technique [6]. This de-

noising scheme combines the decomposition of information 

given by wavelet transform and the ability of decorrelation 

among variables given by the Principal Component Analysis 

(PCA) [40].  The objective is to obtain better de-noised data 

so as to extract meaningful information from the raw data 

for PD location. The energy (defined here as the signal 

strength) contained in each PD trace is then calculated.  The 

average of the 20 individual measurements taken at each 

training and test locations is computed. Fig. 8 shows PD 

signal strength variation with respect to location for each of 

the antennas. The unique signatures created by PD signal 

strength at different locations facilitate the application of 

machine learning algorithms for PD localisation. In order to 

provide more robustness to our system, the ratio of the 

averaged signal strength components between pairs of 

receiving antennas is computed and used as fingerprint input 

vectors to the developed models.  

 

Fig. 6. Recorded PD signal 

 

Fig. 7. Response of the receiver sensor for the injected PD 

pulse 
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Fig. 8. Spatial variation of RSS for each antenna 

5. Results and Discussions 

The performance of SVM-based models (SVR and LSSVR) 

on the PD data collected is presented and compared with the 

ANN method. The empirical evaluation of the models is 

based on statistical operators of location error as well as 

their cumulative distribution functions (CDFs).  

 

 
 

Fig. 9. Model localisation error in x-coordinate 

 

The localisation error is computed as the Euclidean distance 

between the true location and the estimated location of the 

PD source. CDF describes the probability of locating PD 

within a specify range of localisation error. This shows how 

consistent the models perform and capture both the accuracy 

and precision of the models.  

Fig. 9 and Fig. 10 show the errors in each coordinate (x and 

y) of the test locations for the three models. This result 

shows that the location errors in x and y vary from -3.5 m to 

1.9 m and -3.7 m to 3.7 m respectively for the MLP model 

and from -5.2 m to 2.3 m in x and -3.9 m to 3.6 m in y for 

RBFN. For SVR model, the errors in x and y vary from -3.4 

m to 1.5 m and -3.7 m to 2.9 m respectively. The result for 

LSSVR model is similar to that for the other models with 

errors in x and y varying from -3.3 m to 1.5m and -3.9 m to 

3.3 m respectively. It is observed that the overall accuracy 

of each of the models will be affected mostly by the y-

coordinate predictions. 

Fig. 11 shows the localisation error in Euclidean distance for 

each test location. The maximum localisation error for MLP, 

RBFN, SVR and LSSVR models is found to be 3.90 m, 6.20 

m, 4.5 m and 3.99 m respectively with LSSVR model 

producing location estimate with the lowest error of 0.2 m. 

Fig. 12 shows CDFs of localisation error for the models. 

The LSSVR model has a precision of 72 % within 2.5 m 

compare to SVR, RBFN and MLP models with precision of 

69 %, 54% and 60 % within 2.5 m respectively. In other 

words, the localisation error is less than 2.5 m with 

probability of 72 %, 69 %, 54% and 60 % for LSSVR, SVR, 

RBFN and MLP respectively.  

 

Fig. 10. Model localisation error in y-coordinate 

 

 

Fig. 11. Model localisation errors 
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Fig. 12. CDF of model localization errors 

 

 

Fig. 13. Model location accuracy 

Table. 1. Cumulative error probability of model location 

error 

                      MLP     RBFN       SVR     LSSVR 
CEP=0.25     1.09        1.40          1.43         1.46 
CEP=0.50     2.14        2.43          2.03         1.97 
CEP=0.75     2.83        3.39          2.76         2.94 
 

Comparison of the performance of the models based on 

localisation error corresponding to 0.25, 0.50, and 0.75 

overall cumulative error probabilities (CEP) is presented in 

Table. 1. This clearly shows that half of the time PD sources 

were located with error less than 2 m when LSSVR 

algorithm is used for localisation. 

The results of localisation accuracy for the models are 

shown in Fig. 13. It is clear that there is a steady 

improvement in location accuracy in terms of median error 

when the SVM-based models are used compared to ANN 

models. LSSVR model particularly shows an 8.32 % and 

22.8 % reduction in median location error when compared 

with MLP and RBFN models respectively. 

6. Conclusion 

 Machine learning technique for locating PD sources 

based on RSS measurement have been considered. The 

principle and computational realisation of the methods based 

on support vector machine have been described. Support 

vector regression (SVR) as well as least squares support 

vector regression (LSSVR) approach uses the spatial pattern 

of received signal strength to construct a regression surface 

in a high dimensional feature space where PD location is 

determined. This approach models PD location as a linear 

combination of RSS measurement. In this study, signal 

strength ratio is used as location fingerprints rather than 

absolute RSS. The performance of the proposed methods 

have been evaluated and compared with ANN in terms of 

statistical operators of localisation error. The results indicate 

that SVM-based approaches are superior to ANN in 

accuracy showing a reduction in median location error and 

represent practical alternatives for PD source localisation. It 

is believed that the superior performance of SVM-based 

approaches is due to their ability to converge to a global 

minimum whereas neural networks are susceptible to 

converging to local minima. Given the rich complexity of 

the underlying radio environment convergence to a local 

minima is highly likely; therefore, SVM-based approaches 

are more appropriate in this environment. This PD 

localisation system can monitor and locate discharges from 

several items of plant concurrently making it suitable for 

substation-wide PD localisation. 

7.  Acknowledgments 

The authors acknowledge the Engineering and 

Physical Sciences Research Council for their support of this 

work under grant EP/J015873/1 and Tertiary Education 

Trust Fund (TETFund) Nigeria. 

8. References 

 

[1]  H. Hou, G. Sheng, and X. Jiang, “Localization algorithm for the PD 

source in substation based on L-shaped antenna array signal 

processing,” IEEE Transactions on Power Delivery, vol. 30, no. 1, pp. 

472--479, 2015.  

[2]  H. A. Illias, M. A. Tunio, A. H. A. Bakar, H. Mokhlis, and G. Chen, 

“Partial discharge phenomena within an artificial void in cable 

insulation geometry: experimental validation and simulation,” IEEE 

Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 1, 

pp. 451--459, 2016.  

[3]  R. Rostaminia, M. Saniei, M. Vakilian, S. S. Mortazavi and V. Parvin, 

“Accurate power transformer PD pattern recognition via its model,” 

IET Science, Measurement Technology, vol. 10, no. 7, pp. 745-753, 

2016.  

[4]  P. J. Moore, I. E. Portugues, and I. A. Glover, “Partial discharge 

investigation of a power transformer using wireless wideband radio-

frequency measurements,” IEEE Transactions on Power Delivery, 

vol. 21, no. 1, pp. 528--530, 2006.  

[5]  F. P. Mohamed, W.H. Siew and J.J. Soraghan, “Online partial 

discharge detection in medium voltage cables using protection and 

instrument current transformers,” Second UHVNet Colloquium on 

high voltage measurement and insulation research, Glasgow, 2009.  

[6]  D. Evagorou, A. Kyprianou, P.L. Lewin, A. Stavrou, V. Efthymiou, 

A.C. Metaxas, and G.E. Georghiou, “Feature extraction of partial 

discharge signals using the wavelet packet transform and 

classification with a probabilistic neural network,” IET Science, 

Measurement & Technology, vol. 4, no. 3, pp. 177-192, 2010.  

[7]  Y. Lu, X. Tan and X. Hu, “PD detection and localisation by acoustic 

measurements in an oil-filled transformer,” IEE Proceedings - 

Science, Measurement and Technology}, vol. 147, no. 2, pp. 81-85, 

2000.  

[8]  P Li, W Zhou, S Yang, Y Liu, Y Tian and Y Wang, “Method for 

partial discharge localisation in air-insulated substations,” IET 

Science, Measurement & Technology, 2017.  

[9]  F. P. Mohamed, W. H. Siew, J. J. Soraghan, S. M. Strachan and J. 

Mcwilliam, “Remote monitoring of partial discharge data from 

insulated power cables,” IET Science, Measurement Technology, vol. 

8, no. 5, pp. 319-326, 2014.  

[10]  I. E. Portugues, P. J. Moore, I. A. Glover, C. Johnstone, R. H. 

McKosky, M. B. Goff, and L. Van Der Zel, “RF-based partial 

discharge early warning system for air-insulated substations,” IEEE 

Transactions on Power Delivery , vol. 24, no. 1, pp. 20--29, 2009.  



9 

 

[11]  H. Hou, G. Sheng, P. Miao, X. Li, Y. Hu, and X. Jiang, “Partial 

discharge location based on radio frequency antenna array in 

substation,” High Voltage Engineering, vol. 38, no. 6, pp. 1334-1340, 

2012.  

[12]  J. Tang and Y. Xie, “Partial discharge location based on time 

difference of energy accumulation curve of multiple signals,” IET 

Electric Power Applications, vol. 5, no. 1, pp. 175-180, 2011.  

[13]  H. Hou, G. Sheng and X. Jiang, “Robust Time Delay Estimation 

Method for Locating UHF Signals of Partial Discharge in Substation,” 

IEEE Transactions on Power Delivery, vol. 28, no. 3, pp. 1960-1968, 

2013.  

[14]  M. D. Judd, “Radiometric partial discharge detection,”  International 

Conference on Condition Monitoring and Diagnosis, Beijing, 2008.  

[15]  I. E. Portugues, P. J. Moore and P. Carder, “The use of radiometric 

partial discharge location equipment in distribution substations,” 18th 

International Conference and Exhibition on Electricity Distribution, 

Turin, 2005.  

[16]  M. X. Zhu, Y. B. Wang, Q. Liu, J. N. Zhang, J. B. Deng, G. J. Zhang, 

X. J. Shao and W. L. He, “Localization of multiple partial discharge 

sources in air-insulated substation using probability-based algorithm,” 

IEEE Transactions on Dielectrics and Electrical Insulation, vol. 24, 

no. 1, pp. 157-166, 2017.  

[17]  R. A. Hooshmand, M. Parastegari and M. Yazdanpanah, 

“Simultaneous location of two partial discharge sources in power 

transformers based on acoustic emission using the modified binary 

partial swarm optimisation algorithm,” IET Science, Measurement 

Technology, vol. 7, no. 2, pp. 112-118, 2013.  

[18]  C. Boya, M. V. Rojas-Moreno, M. Ruiz-Llata, and G. Robles, 

“Location of partial discharges sources by means of blind source 

separation of UHF signals,” IEEE Transactions on Dielectrics and 

Electrical Insulation, vol. 22, no. 4, pp. 2302--2310, 2015.  

[19]  H. H. Sinaga, B. T. Phung, and T. R. Blackburn, “Partial discharge 

localization in transformers using UHF detection method,” IEEE 

Transactions on Dielectrics and Electrical Insulation, vol. 19, no. 6, 

pp. 1891--1900, 2012.  

[20]  E. T. Iorkyase and C. Tachtatzis and R. C. Atkinson and I. A. Glover, 

“Localisation of partial discharge sources using radio fingerprinting 

technique,” Loughborough Antennas Propagation Conference 

(LAPC), Loughborough, 2015.  

[21]  D. Genming and J. Zhang, L. Zhang, and Z. Tan, “Overview of 

received signal strength based fingerprinting localization in indoor 

wireless LAN environments,” IEEE 5th International Symposium on 

Microwave, Antenna, Propagation and EMC Technologies for 

Wireless Communications (MAPE), 2013.  

[22]  P. J. Chuang and Y. J. Jiang, “Effective neural network-based node 

localisation scheme for wireless sensor networks,” IET Wireless 

Sensor Systems, vol. 4, no. 2, pp. 97-103, 2014.  

[23]  J. Roj, “Estimation of the artificial neural network uncertainty used 

for measurand reconstruction in a sampling transducer,” IET Science, 

Measurement Technology, vol. 8, no. 1, pp. 23-29, 2014.  

[24]  S. Mohanty and S. Ghosh, “Artificial neural networks modelling of 

breakdown voltage of solid insulating materials in the presence of 

void,” IET Science, Measurement Technology, vol. 4, no. 5, pp. 278-

288, 2010.  

[25]  C. Laoudias, P. Kemppi, and C. G. Panayiotou, “Localization using 

radial basis function networks and signal strength fingerprints in 

WLAN,” IEEE Global telecommunications conference, 2009. , 

Honolulu, 2009.  

[26]  C. Nerguizian, C. Despins, and S. Affes, “Indoor geolocation with 

received signal strength fingerprinting technique and neural 

networks,” International Conference on Telecommunications, Berlin, 

2004.  

[27]  E. Jiang, P. Zan, X. Zhu, J. Liu and Y. Shao, “Rectal sensation 

function rebuilding based on optimal wavelet packet and support 

vector machine,” IET Science, Measurement Technology, vol. 7, no. 

3, pp. 139-144, 2013.  

[28]  L. Hao, and P. L. Lewin, “Partial discharge source discrimination 

using a support vector machine,” IEEE Transactions on Dielectrics 

and Electrical Insulation, vol. 17, no. 1, pp. 189--197, 2010.  

[29]  B. Ravikumar, D. Thukaram and H. P. Khincha, “Application of 

support vector machines for fault diagnosis in power transmission 

system,” IET Generation, Transmission Distribution, vol. 2, no. 1, pp. 

119-130, 2008.  

[30]  Y. Khan, A. A. Khan, F. N. Budiman, A. Beroual, N. H. Malik, and 

A. A. Al-Arainy, “Partial discharge pattern analysis using support 

vector machine to estimate size and position of metallic particle 

adhering to spacer in GIS,” Electric Power Systems Research, vol. 

116, pp. 391--398, 2014.  

[31]  A. Ben-Hur, D. Horn, H. T. Siegelmann, and V. Vapnik, “Support 

vector clustering,” The Journal of Machine Learning Research, vol. 2, 

pp. 125--137, 2002.  

[32]  S. A. Bessedik and H. Hadi, “Prediction of flashover voltage of 

insulators using least squares support vector machine with particle 

swarm optimisation,” Electric Power Systems Research, vol. 104, pp. 

87-92, 2013.  

[33]  D. Basak, S. Pal, and D. C. Patranabis, “Support vector regression,” 

Neural Information Processing-Letters and Reviews, vol. 11, no. 10, 

pp. 203--224, 2007.  

[34]  H. R. Zhang, X. D. Wang, C. J. Zhang and X. S. Cai, “Robust 

identification of non-linear dynamic systems using support vector 

machine,” IEE Proceedings - Science, Measurement and Technology, 

vol. 153, no. 3, pp. 125-129, 2006.  

[35]  S. M. Clarke, J. H. Griebsch, and T. W. Simpson, “Analysis of 

support vector regression for approximation of complex engineering 

analyses,” Journal of mechanical design, vol. 127, no. 6, pp. 1077--

1087, 2005.  

[36]  K. Shi, Z. Ma, R. Zhang, W. Hu, and H. Chen, “Support Vector 

Regression Based Indoor Location in IEEE 802.11 Environments,” 

Mobile Information Systems, vol. 2015, p. 14, 2015.  

[37]  K. P. Bennett, and C. Campbell, “Support vector machines: hype or 

hallelujah?,” ACM SIGKDD Explorations Newsletter, vol. 2, no. 1, 

pp. 1-13, 2000.  

[38]  M. Junshui, T. James and P. Simon, “Accurate On-line Support 

Vector Regression,” Neural Computation, vol. 15, no. 11, pp. 2683--

2703, 2003.  

[39]  Z. Wu, C. Li, Z. Yang, and P. Wang, “Research on tourists' 

positioning technology based on LSSVR,”  IEEE Advanced 

Information Technology, Electronic and Automation Control 

Conference, Chongqing, 2015.  

[40]  S. Mohanty, K. K. Gupta and K. S. Raju, “Adaptive fault 

identification of bearing using empirical mode decomposition-

principal component analysis-based average kurtosis technique,” IET 

Science, Measurement Technology, vol. 11, no. 1, pp. 30-40, 2017.  

 

 
 


