

Alternative Fuels from Microalgae for Diesel Engine

Saddam H. Al-Iwayzy

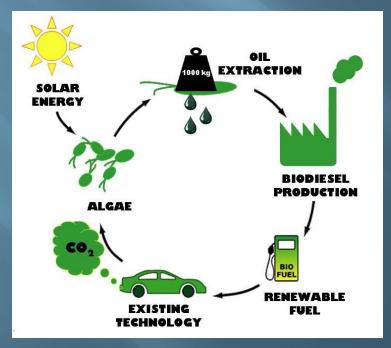
Supervisors: Dr. Talal Yusaf Dr. Paul Baker Dr. Troy Jensen

OUTLINE

- 1. Introduction
- 2. Literature review
- 3. Research aim
- 4. Methodology
- 5. Some results

Introduction

Fuels from Microalgae are reported as the potential alternative fuel for replacing the current fossil.


 Microalgae biodiesel is renewable, produce less emissions, and its productivity is many times higher than crops biodiesel

•Many studies have been done on microalgae biodiesel production and its properties, however the performance and the emissions of this fuel in diesel engine has not been reported.

Literature Review (Why microalgae?)

1. It is renewable , environmentally friendly and it can contribute in reducing the CO_2 level at the atmosphere because microalgae consume CO_2 and converts it to oil (Hossain et al., 2008).

Literature Review (Why microalgae?)

- 2. Microalgae is non-edible and have the ability to grow in conditions that do not affect the human food production process (Widjaja et al., 2009), (Mata et al., 2010).
- Microalgae biodiesel production per unit of area is many times higher than crops biodiesel. The productivity of diatom algae are about 46000 Kg of oil/hectare/year (Demirbas, 2007).
- 4. Some microalgae oil species content about 80% of dry weight (Amin, 2009).
- 5. Microalgae biofuel is non-toxic, contains no sulphur and highly biodegradable. After extracting oil the left material can be used as soil fertilizer or to produce ethanol (Demirbas & Fatih Demirbas, 2010)

Literature Review

(Harvesting microalgae and oil extracting)

*Microscreen, centrifugation, and flocculation are the most common harvesting methods. (Amin, 2009). Centrifugation is efficient and reliable, but expensive for the production of microalgae as energy (Shen et al., 2009).

*The extraction of microalgae oil from the biomass can be in physical or chemical methods. Oil press is used as physical extraction, while chemical extraction is used to make the extraction more effective (Anderson & Sorek, 2009).

Research Aim

The overall aim of this project is to produce and evaluate alternative, renewable and environmentally friendly fuels from microalgae in form of biodiesel and emulsion fuels of biodiesel+water+microalgae and use it in single cylinder diesel engine and tractor engine.

Methodology

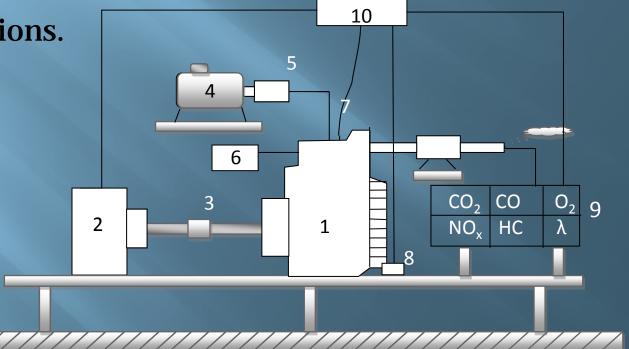
The objectives of this study are to;

- Grow, harvest and lipid extract of fresh water microalgae *Chlorella vulgaris* FWM-CV to produce microalgae biodiesel and enhance the lipid content.
- 2. Study some of the physical and chemical properties of microalgae biodiesel from FWM-CV and *Chlorella protothecoides MCP-B and its blends*.
- 3. Produce emulsion fuel from cottonseed biodiesel with water (with and without adding FWM-CV using ultrasound.
- 4. Evaluate the performance and the exhaust gas emissions components of a single cylinder diesel engine using MCP-B in different blend ratios and the emulsion fuel with and without adding FWM-CV.
- 5. Evaluate tractor performance and emissions using MCP-B20.

Methodology (growing microalgae)

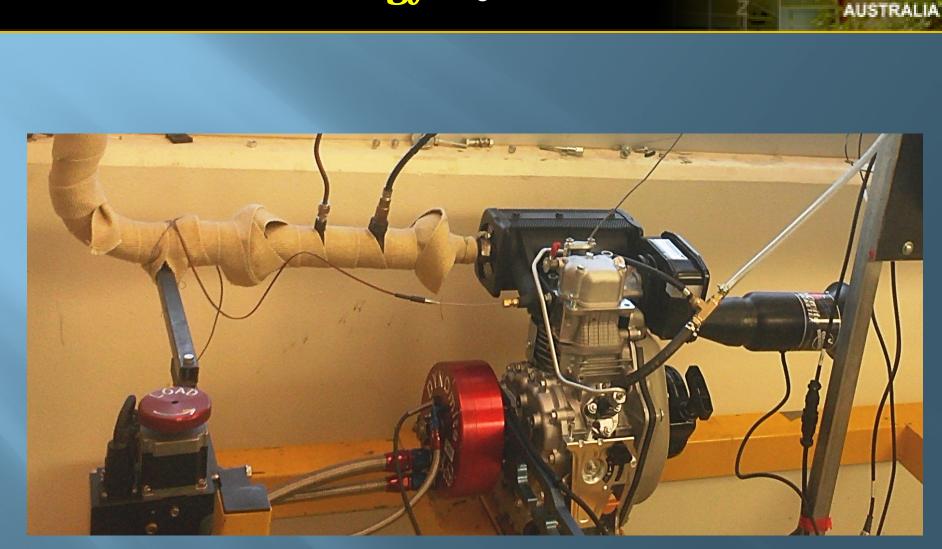
The culture was obtained from the Commonwealth Scientific and Industrial Research Organization (CSIRO), Australia. The FWM-CV were grow in MBL medium and the experiment for enhancing the lipid content was performed

Methodology


(microalgae harvesting, oil extracting and transesterification)

- The microalgae have been extracted from the medium using a centrifuge at 8000 rpm for 10 min
- The oil have been extracted from the biomass using the method as in (Folch, 1957) using chloroform/methanol (2/1).
- The transesterification conducted using methanol and NaOH as catalyst.
- □ The fatty acid methyl esters (FAME) produced after transesterification from FWM-CV and MCP-B100 analyzed using gas chromatography GC ms.

Methodology (engine test)


A single-cylinder four-stroke air cooled direct injection diesel engine is used in the test. To evaluate the engine performance

and emissions.

Schematic diagram of experimental setup consist of 1- Engine, 2- Dynamometer, 3-Drive shaft, 4-Fuel tank, 5- Fuel rate meter, 6- Inlet air flow meter, 7-Pressure sensor, 8- Crank angle encoder, 9- Gas analyser, 10- Data acquisition.

Methodology (engine test)

Some physical properties of microalgae Chlorella vulgaris FAMEs

	Cetane number	Density (g cm ⁻ ³)	Kinematic viscosity (40 C mm ² s ⁻¹)	Heat of combustion (MJ kg ⁻¹)
Myristic acid	66.2 ^{a,b,c}	0.867 ^d	3.3 ^e	38.89 ^d
Palmitic acid	74.5 ^{a,c}	0.865 ^d	4.38 ^e	39.449 ^{d,g}
Palmatoleic acid	51.0 ^{a,b}	0.869 ^d	3.67 ^f	39.293 ^{d,g}
Stearic acid	86.9 ^a	0.864 ^d	5.85 ^e	40.099 ^{d,g}
Linoleic acid	38.2 ^{a,b}	0.886 ^d	3.65 ^e	39.698 ^{d,g}
α-Linoleic acid	22.7 ^{b,c}	0.901 ^d	3.14 ^e	39.342 ^d , ^g

Density, cetane number and kinematic viscosity for Chlorella vulgaris, diesel and biodiesel

	Density (kg m ⁻³)	Cetane number	Kinematic viscosity	Heat of combustion (MJ	
			(40 °C mm ² s ⁻¹)	kg-1)	
Control	875.31	57.499	4.239	39.608	
ISC	873.034	59.224	4.361	39.666	
Diesel	838 ^c	46.00 ^d	1.9–4.1 ^a	45.3–46.7 ^f	
Biodiesel	860 – 900 ^c	≥47 ^e	1.9-6.0 ^b	39.3–39.8 ^f	

The oil from *Chlorella protothecoides* and small sample of *Chlorella vulgaris* were converted to biodiesel.

properties	stage one	Stage two		Chlorella vulgaris (Lee et al., 2010)	Chlorella vulgaris (Mata et al., 2010)	
		Control	ISC ^a		(Mata et al., 2010)	
Growing time days	40	75.5	78.5	7	-	
Dry weight g L ⁻¹	0.487	0.636	0.885	0.5	-	
Biomass productivity mg L-1day-1	12.16	10.598	14.755	74.2	20–200	
lipid content %	10.06	8.94	19.272	14.96-15.58	5.0-58.0	
lipid productivity mg L-1day-1	1.224	0.74	2.192	$11.1 - 6.91^{b}$	11.2–40.0	

Tractor test

Results

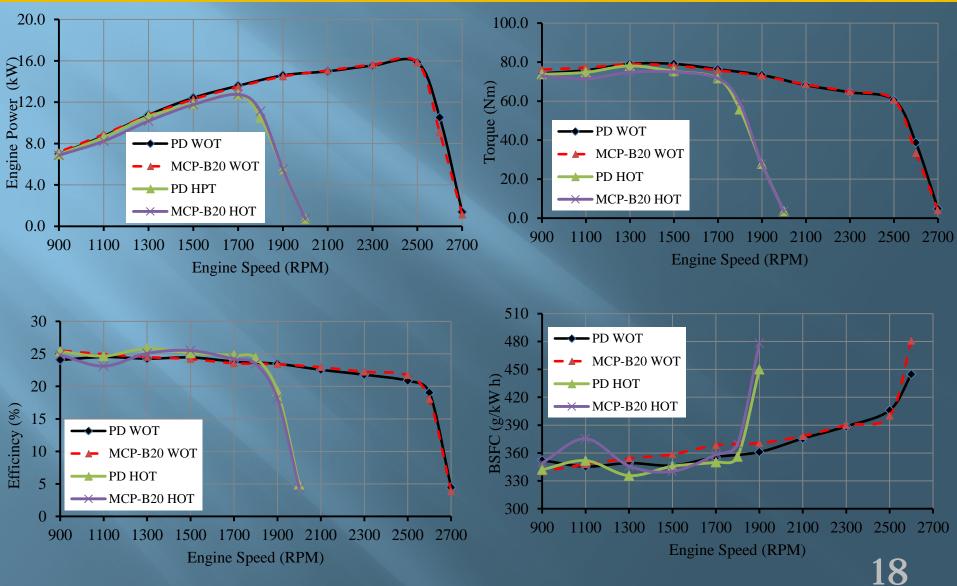
Descriptive statistics and ANOVA summary for tractor engine performance and emissions at WOT, rated PTO speed 540RPM (engine speed 2600RPM).

Variable	PD		MCP-B20		ANOVA F
	М	SD	Μ	SD	
Engine Torque (Nm)	38.205	1.246	35.37	0.65	16.246***
PTO Torque (Nm)	220.25	7.182	203.9	3.747	16.294***
Gross input power	55.347	2.34	50.3	1.949	10.951**
Engine Power (kW)	10.395	0.337	9.627	0.178	16.206***
PTO Power (kW)	12.232	0.399	11.327	0.209	16.129***
BSFC (kg/kWh)	451.645	31.642	453.735	25.47	0.011
Engine efficiency (%)	18.825	1.374	19.162	1.08	0.149
Noise level (db)	90.9	0.408	90.375	0.33	3.997
Exhaust temperature (°C)	356	4.082	350	4.32	4.075
CO ₂ (%)	7.97	0.049	7.375	0.15	56.720***
CO (%)	0.036	0.006	0.250	0.005	7.188***
0 ₂	9.58	0.258	10.53	0.294	23.543***
No	541.5	20.68	493.5	41.86	4.228
HC (PPM)	9	0	6	0	
Lambda	1.835	0.034	2.016	0.0325	59.114***

10

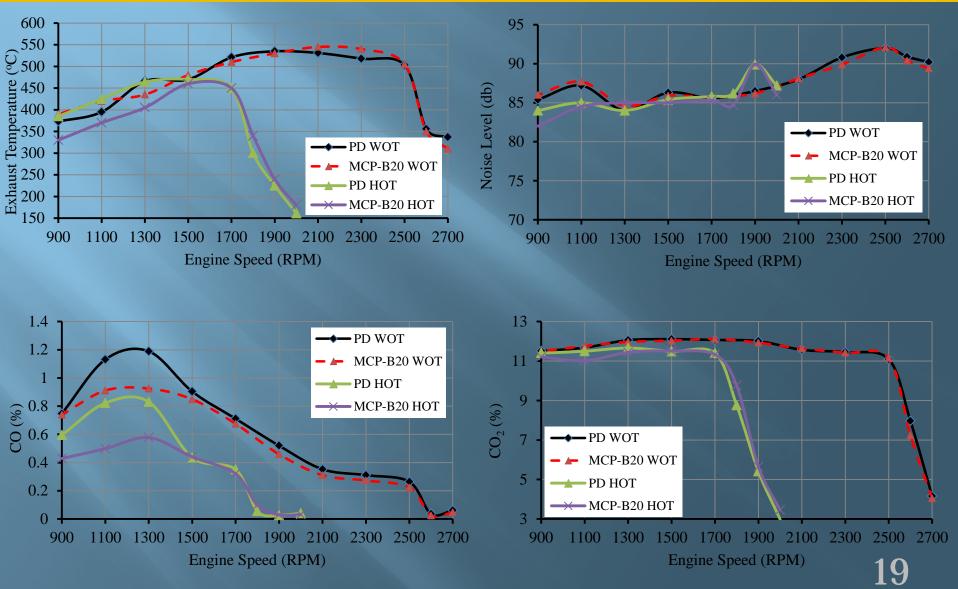
ERING

Results



Descriptive statistics and ANOVA summary for tractor engine performance and emissions at WOT, peak PTO torque (1500RPM).

Variable	PD		MCP-B20		ANOVA F
	М	SD	М	SD	
Engine Torque (Nm)	79.1025	0.587	78.235	0.585	4.38
PTO Torque (Nm)	456	3.366	451	3.35	4.412
Gross input power	50.937	3.118	50.882	2.578	0.001
Engine Power (kW)	12.42	0.092	12.28	0.09	4.292
PTO Power (kW)	14.6	0.106	14.450	0.109	4.297
BSFC (kg/kWh)	347.547	23.798	359.35	17.559	0.637
Engine efficiency (%)	24.454	1.589	24.184	1.158	0.076
Noise level (db)	86.3	0.622	85.9	0.648	0.793
Exhaust temperature (°C)	470	5.77	480	5.788	5.985*
CO ₂ (%)	12.105	0.0914	12.025	0.881	1.587
CO (%)	0.902	0.015	0.85	0.008	37.8***
02	2.98	0.077	3.102	0.074	5.254
Νο	970	5.715	994	3.651	50.087***
HC (PPM)	6	000	6	00	
Lambda	1.13	0.008	1.14	0.016	1.2



Results

Thank you