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Abstract: A batch experiment was conducted to compare the Cu scavenging capacity 

between two different red mud types: the first one was a highly basic red mud derived from a 

combined sintering and Bayer process, and the second one was a seawater-neutralized red mud 

derived from the Bayer process. The first red mud contained substantial amounts of CaCO3, 

which, in combination with the high OH− activity, favored the immobilization of water-borne 

Cu through massive formation of atacamite. In comparison, the seawater-neutralized red mud 

had a lower pH and was dominated by boehmite, which was likely to play a significant role in 

Cu adsorption. Overall, it appears that Cu was more tightly retained by the CaCO3-dominated 

red mud than the boehmite-dominated red mud. It is concluded that the heterogeneity of 

red mud has marked influences on its capacity to immobilize water-borne Cu and maintain 

the long-term stability of the immobilized Cu species. The research findings obtained from 

this study have implications for the development of Cu immobilization technology by 

using appropriate waste materials generated from the aluminium industry. 

Keywords: alumina; bauxite; red mud; calcite; alkaline; copper; boehmite; atacamite; 
metal immobilization 
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1. Introduction 

As an abundant waste material generated from alumina refining, beneficial utilization of red mud is 

a viable option to reduce the amount of this hazardous material that requires costly containment 

facilities for its safe disposal [1–11]. The uses of red mud or modified red mud for treating acidic, 

heavy metal-bearing soils and wastewater are among the proposed applications [12–24]. 

In a previous study [22] to investigate the competitive removal of water-borne Cu, Zn and Cd by a 

red mud sample collected from the Zhengzhou Alumina Refinery, we found that the water-borne Cu 

had a higher affinity to the red mud in the presence of chloride, as compared to the water-borne Zn and 

Cd. The major mechanism responsible for the preferential retention of Cu by the red mud was the 

formation of atacamite (Cu2(OH)3Cl), which maximized the Cu scavenging effect.  

Red mud is a heterogeneous material and its characteristics varies markedly from place to place, 

depending on the sources of bauxite ores, alumina refining processes and the methods used for red 

mud disposal [25,26]. Consequently, the capacity of red mud to scavenge Cu may also vary from red 

mud type to red mud type. In the current study, two significantly different red mud types were used to 

test their capacities to remove water-borne Cu. Fractionation of the retained Cu was also investigated. 

The objective was to understand the influences of red mud heterogeneity on its performance as a Cu 

scavenger under the set experimental conditions. 

2. Materials and Methods 

2.1. The Red Mud Samples 

Two different red mud types were used for the experiment. The first one (labeled as GR) was 

collected from the Guizhou Alumina Refinery at Guiyang, China and the second one (Labeled as QR) 

was collected from the Queensland Alumina Refinery at Gladstone, Australia. The Guizhou Alumina 

Refinery used diaspore-dominated bauxite ore as the feedstock [27]. A combined sintering process and 

Bayer Process method was used for bauxite processing and the red mud was disposed of using a wet 

disposal method. The Queensland Alumina Refinery used a Bayer Process method for alumina 

extraction from gibbsite-boehmite type bauxite ore mined from Weipa, northern Queensland [28]. The 

red mud was treated by seawater before being thickened and deposited as slurry in the disposal facility.  

Surface red mud samples were collected from the red mud storage facilities of the above two 

refineries. In the laboratory, the red mud samples were air-dried and ground to pass through a 60 mesh 

sieve (250 µm). Some chemical characteristics of the two red mud samples are given in Table 1. 

2.2. Copper Scavenging Experiment 

The experiment was performed in triplicate. For each red mud type, 25 grams of the red mud 

sample were reacted with a series of CuCl2 solutions with varying concentrations. A total of eight Cu 

concentration levels were originally set for the experiment: 3437.5, 6875, 13,750, 27,500, 34,375, 

41,250, 48,125 and 61,875 mg/L. Pre-experiment test showed that the QR was not able to remove all 

water-borne Cu at a dosage level of 27,500 mg/L. Therefore, only five Cu concentration levels were 

performed for the QR: 3437.5, 6875, 13,750, 27,500, 34,375 mg/L. The red mud sample was mixed 
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with 100 mL of a relevant solution in a stoppered conical flask (150 mL) and shaken on a HY-4 

horizontal shaker for 16 h. The suspension was then transferred to a centrifuge tube for centrifugation 

at 4000 rpm for 10 min. After separation, the supernatant was used for determination of soluble Cu, Ca 

and Fe. The solid residue was used for various chemical and mineralogical analyses after washing with 

deionized water twice and air-drying.  

Table 1. Some major chemical and mineralogical parameters of the two red mud types 

used in the experiment. 

Parameter Guizhou red mud Queensland red mud 

pH 11.0 9.4 
EC (dS/m) 0.89 1.26 
Total carbon (%) 4.13 1.05 
Total Ca (mg/kg) 183,800 61,900 
Total Cu (mg/kg) 85 145 
Soluble K (mmol/kg) 6.24 16.9 
Soluble Na (mmol/kg) 70.2 71.9 
Soluble Ca (mmol/kg) 1.19 0.36 
Soluble Mg (mmol/kg) 0.06 0.11 
Exchangeable K (mmol/kg) 83.7 74.0 
Exchangeable Na (mmol/kg) 218 236 
Exchangeable Ca (mmol/kg) 341 23.7 
Exchangeable Mg (mmol/kg) 4.01 4.16 
Major minerals calcite, perovskite, 

monohydrocalcite, magnetite 
boehmite, quartz, larnite, calcite, magnetite, 
perovskite, gibbsite, sodalite, anatase 

2.3. Analytical Methods 

Various fractions of Cu in the solid samples were extracted by different extractants. 1:5 (red 

mud:deionized water) and 1:5 (red mud:1 M NH4Cl) extracts were prepared for determinations of the 

water-extractable and the 1 M NH4Cl-extractable Cu. The water-extractable fraction was used to 

estimate the concentration of the water-soluble Cu fraction. The 1 M NH4Cl-extractable fraction includes 

water-soluble and exchangeable Cu. The improved BCR sequential extraction procedure [29] was used 

to separate the following three Cu fractions in the solid residues: (a) 0.11 M HCH3COO-extractable Cu 

(termed as Fraction I), (b) 0.5 M NH2OH·HCl-extractable Cu (termed as Fraction II) and (c) 1 M 

NH2CH3COOH-extractable Cu after 30% H2O2 digestion (termed as Fraction III). In the BCR system, 

Fraction I was thought to include water-soluble, adsorbed and carbonate-bound metal; Fraction II was 

viewed to be in the forms bound to oxides of iron and manganese; and Fraction III was believed to 

include a metal bound to organic matter and sulfide minerals. The BCR sequential extraction 

procedure was designed for fractionation of heavy metals in soils and sediments. It was adopted for 

this study because no verified sequential extraction methods for red mud materials were available. 

However, it was realized that the operationally defined fractions of heavy metals obtained from the 

BCR sequential extraction procedure may require new interpretation when the method was used for 

heavy metal fractionation of red mud, which is somewhat different from soils or sediments in terms of 
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physico-chemical properties and composition. Total Cu were extracted by digestion of a sample with a 

HF/HNO3/HClO4 mixed solution.  

The concentrations of Cu, Ca and Fe in the supernatants and various extracts of the solid residues 

were determined by atomic absorption spectrometry (AAS). Carbon concentration of the solid residues 

was measured by a LECO CNS Analyzer. Mineral composition was determined using a Bruker D8 

ADVANCE X-ray diffractometer. The Materials Data Inc. software Jade 5.0 was used for phase 

identification. Semi-quantitative phase analysis was performed using the computer program 

PCPDFWIN (I/Icor reference intensity ratio method). The samples were also used for examination of 

micro-morphological characteristics by A FEI-XL30 environmental scanning electron microscope 

coupled with energy dispersive X-ray spectrometer (ESEM/EDS). 

2.4. Statistical Method 

The data for the replicated experiment are presented as mean ± SD. The significant treatment 

differences were tested using a Duncan's multiple range test method. 

3. Results  

3.1. Concentrations of Cu, Fe and Ca in the Solutions after 16 h Reaction 

After shaking of the red mud-CuCl2 solution mixtures for 16 h, almost all the added Cu was 

removed from the solution for the Guizhou red mud (GR). The highest dose of Cu in this experiment 

was 61,875 mg/L, indicating that GR had a Cu scavenging capacity greater than 247 g/kg. In comparison, 

greater than 7% and 19% of the added Cu remained in the solution for the Queensland red mud (QR) 

when the initial concentration of solution Cu was 27,500 and 34,375 mg/L, respectively (Table 2). 

Table 2. Concentrations of Cu, Fe and Ca in the reacting solutions after 16 h reaction for 

the two red mud types. 

Red mud type OCCRS (mg/L) Cu (mg/L) Fe (mg/L) Ca (mg/L) 

GR 3437.5 0.05 ± 0.01a 0.04 ± 0.00ab 935.6 ± 21.17a 
6875 0.04 ± 0.00a 0.03 ± 0.01a 2294 ± 268.1b 

13,750 0.07 ± 0.07a 0.04 ± 0.01ab 5623 ± 133.2c 
27,500 0.05 ± 0.01a 0.04 ± 0.01ab 11,482 ± 256.70d 
34,375 0.30 ± 0.37a 0.49 ± 0.01ab 14,128 ± 41.36e 
41,250 0.11 ± 0.02a 0.05 ± 0.00ab 17,274 ± 267.1f 
48,125 0.13 ± 0.02a 0.05 ± 0.01ab 19,520 ± 476.9g 
61,875 0.12 ± 0.01a 0.08 ± 0.06b 27,407 ± 598.2h 

QR 3437.5 1.46 ± 0.19a 0.04 ± 0.00a 536.2 ± 15.31a 

6875 1.40 ± 0.68a 0.05 ± 0.02a 1281 ± 194.5b 

13,750 2.23 ± 0.29a 0.05 ± 0.00a 3484 ± 22.45c 

27,500 1988 ± 168.1b 0.12 ± 0.07b 5593 ± 361.7d 

34,375 6748 ± 182.0c 0.10 ± 0.02b 5781 ± 190.1d 

Notes: OCCRS: Original Cu concentration in the reacting solution; Means with different letters in 
the same column differ significantly at P < 0.05. 
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With the increase in Cu dose, the concentration of Ca in the solution increased for both red mud 

types. This was consistent with what was observed in our previous study [22]. However, Ca 

concentration was always higher in GR than in QR at the same Cu dose level (Table 2).  

At any dose of CuCl2, only trace amounts of Fe was detected in the solutions of either GR or QR 

after 16 h reaction (Table 2). 

3.2. Total Retained Cu and Total Carbon in the Solid Residues 

Change in the total retained Cu with the increase in CuCl2 dose for the two red mud types is shown 

in Figure 1a. For GR, the total retained Cu increased nearly linearly with increasing dose for the 

examined range of CuCl2 concentrations. Initially, the dose-response relationship for QR was highly 

consistent with that for GR. However, a gap was created at least before a Cu dose of 27,500 mg/L was 

reached; QR had a lower total retained Cu value than did GR. There was no marked change in the total 

retained Cu between the Cu dose of 27,500 mg/L and 34,375 mg/L. 

Figure 1. Diagrams showing the change in (a) the total retained Cu and (b) the total carbon 

in the solid residues with increasing dose of CuCl2 for the two tested red mud types.  

  

 

The change in the total carbon content in the solid residues with increasing Cu dose showed an 

opposite trend to that of the total retained Cu. Similarly, a nearly linear dose-response relationship was 

observed for GR while QR exhibited a relatively rapid, gentle and insignificant change in the dose 

ranges of 3437.5–13,750, 13,750–27,500 and 27,500–34,375 mg/L, respectively (Figure 1b). 
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3.3. pH, EC, Water-Extractable and NH4Cl-Extractable Cu of the Solid Residues 

There was a trend that pH decreased and EC increased with increasing dose of CuCl2 for both red 

mud types. For GR, the mean pH decreased from 9.12 to 7.60 with the increase in Cu dose from 

3437.5 to 61,875 mg/L. For QR, the pH was below 5 at a Cu dose greater than 27,500 mg/L (Table 3).  

Table 3. pH, EC, water-extractable and NH4Cl-extractable Cu in the solid residues after 16 h reaction. 

Red mud type OCCRS (mg/L) pH EC (dS/m) Cuw (mg/kg) Cuam (mg/kg) 

GR 3437.5 9.12 ± 0.02e 0.198 ± 0.003bc 0.23 ± 0.10ab 275 ± 28.2d 
6875 8.79 ± 0.04d 0.189 ± 0.008b 0.14 ± 0.05ab 286 ± 7.97d 

13,750 8.46 ± 0.07c 0.174 ± 0.003a 0.50 ± 0.08c 145 ± 13.4c 
27,500 8.00 ± 0.05b 0.204 ± 0.009c 0.27 ± 0.15ab 91.3 ± 4.55b 
34,375 7.91 ± 0.06b 0.222 ± 0.006d 0.09 ± 0.07a 81.7 ± 8.53b 
41,250 8.00 ± 0.20b 0.222 ± 0.005d 0.09 ± 0.02a 85.9 ± 7.37b 
48,125 7.73 ± 0.16a 0.233 ± 0.008e 0.27 ± 0.19ab 71.6 ± 1.26ab 
61,875 7.60 ± 0.03a 0.286 ± 0.001f 0.33 ± 0.16bc 55.0 ± 4.32a 

QR 3437.5 7.99 ± 0.03d 0.214 ± 0.003a 0.02 ± 0.02a 198 ± 12.66d 

6875 7.95 ± 0.01d 0.215 ± 0.003a 0.04 ± 0.02a 181 ± 1.87c 

13,750 7.66 ± 0.06c 0.228 ± 0.005b 0.04 ± 0.02a 92.5 ± 9.10a 

27,500 4.82 ± 0.19b 0.253 ± 0.012c 51.9 ± 3.41b 108 ± 3.06b 

34,375 4.64 ± 0.04a 0.358 ± 0.001d 186 ± 5.22c 196 ± 5.13ab 

Notes: OCCRS: original Cu concentration in the reacting solution; Cuw: water-extractable Cu; Cuam: 
NH4Cl-extractable Cu; Means with different letters in the same column differ significantly at P < 0.05. 

For GR, the water-extractable Cu (Cuw) was all very low regardless of the dosage level of CuCl2. In 

contrast, Cuw in QR was >50 mg/kg at a Cu dose greater than 27,500 mg/L. Extraction by ammonium 

chloride enhanced the release of the retained Cu. This was particularly true for the treatments with 

lower doses of CuCl2 (Table 3).  

3.4. Ca- and Cu-Bearing Minerals in the Solid Residues 

For GR, the abundance of atacamite showed no marked increase in the Cu dose range of  

3437.5–13,750 mg/L; an increase in atacamite occurred when the Cu dose was increased to 27,500 mg/L; 

the abundance of atacamite sharply increased from the Cu dose of 27,500 mg/L to the Cu dose of 

41,250 mg/L, followed by a relatively gentler increase in the Cu dose range of 41,250–61,875 mg/L. 

This dose-response trend was accompanied by an opposite dose-response trend of calcite. In contrast 

with calcite, perovskite displayed no marked change despite that a general trend showing slight 

decrease in the abundance of perovskite with increasing Cu dose was observed (Figure 2a). 

No perovskite was detected for QR. Similar to GR, change in either atacamite or calcite was not 

remarkable in the low Cu dose range. The abundance of atacamite markedly increased, accompanied 

by a marked decrease in calcite when the Cu dose was increased from 6875 mg/L to 13,750 mg/L. 

After this, atacamite increased slowly with increasing Cu dose. Calcite was not detected in the high Cu 

dose range (13,750–34,375 mg/L). 
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Figure 2. Changes in the abundance of Ca- and Cu-bearing minerals with increasing Cu 

dose for (a) GR and (b) QR. 

 

 

3.5. Cu Fractionation 

The distribution of three operationally defined Cu fractions was different between the two red mud 

types. The order of various Cu fractions was: Fraction II > Fraction I > Fraction III for GR and 

Fraction I > Fraction II > Fraction III for QR (Figure 3). For individual fractions, Fraction I was higher 

in QR than in GR; Fraction II was much higher in GR than in QR; and Fraction III was slightly higher 

in GR than in QR. 

3.6. SEM Observation and EDS Analysis 

The original GR and QR consisted predominantly of densely packed aggregates (Figure 4a and 4e). 

Reaction with CuCl2 resulted in the formation of loose aggregates (Figure 4b and 4f), and the 

abundance and size of such loose aggregates tended to increase with increasing Cu dose (Figure 4c).  

There were some blue precipitates on the wall of the conical flask for GR at high Cu doses. These 

precipitates appeared as loose, rough and irregular aggregates of varying sizes (Figure 4d). EDS 
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analysis showed that these materials had markedly elevated concentration of Cu and Cl and reduced 

concentration of Ca (Figure 5a), as compared to the original GR (Figure 5b). 

Figure 3. Comparison of the variation trend of various Cu fractions between GR and QR: 

(a) Fraction I; (b) Fraction II; (c) Fraction III. 
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Figure 4. SEM images showing micro-morphological characteristics of (a) original GR; 

(b) GR at a Cu dose of 27,500 mg/L; (c) GR at a Cu dose of 61,875 mg/L; (d) blue precipitates 

for GR at a Cu dose of 61,875 mg/L; (e) original QR; (f) QR at a Cu dose of 34,375 mg/L. 

 

(a) (b)

(c) (d)

(e) (f)
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Figure 5. EDS graphs showing peaks of major elements detected for (a) blue precipitates 

(at Cu dose of 61,875 mg/L) and (b) the original GR sample.  

 

 

4. Discussion  

The two red mud types investigated in this study were remarkably different in terms of chemical 

and mineralogical characteristics. GR was a CaCO3-dominated, highly basic red mud while QR was a 

boehmite-dominated and less basic red mud. Due to the presence of substantial amounts of NaOH in 

GR, the initial formation of atacamite was likely to be through the following reaction [22]: 

2CuCl2 + 3NaOH  Cu2(OH)3Cl + 3NaCl (1) 

The above reaction did not involve dissolution of calcite. This explains why the carbon content in 

the soil residue did not decrease in the lower Cu dose range (3437.5–6875 mg/L). The even higher 

carbon content in the solid residues, as compared to that in the original red mud, can be attributed to 

the mass loss of the solid material as a result of dissolution of the soluble constitutes when they were in 

contact with the CuCl2 solution. This is further confirmed by the fact that the pH of these two solid 

residues had a pH > 8.7, indicating that there was still free OH− in the solid residues. Dissolution of 

calcite at a pH > 8.3 was kinetically slow [30]. Therefore, reaction in Equation (2) was unlikely to take 

(a) 

(b) 
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place to any significant degree. With the increase in the Cu dose, OH− was eventually depleted and 

CaCO3 replace OH− to react with CuCl2, as expressed below:  

2CuCl2 + 2CaCO3 + 2H2O  Cu2(OH)3Cl + 3Cl− + OH− + 2Ca2+ + CO2 (2) 

This was well reflected in the scenarios of high Cu doses, showing lower carbon content in the solid 

residue, relative to that in the original red mud and a clear trend that carbon content in the solid residue 

decreased with increasing Cu dose (Figure 1b). 

In contrast, the carbon content in the solid residue was lower than that in the original red mud for 

QR even at the lowest Cu dose (3437.5 mg/L). Since the amount of free OH− in QR was very limited, 

reaction in Equation (2) took place immediately following the mixing of red mud with CuCl2. It is 

clear that the Cu-scavenging capacity of QR was almost depleted at a Cu dose of 27,500 mg/L. This 

can be attributed to the small amount of CaCO3 present in QR. 

The difference in the distribution of the three Cu fractions suggests that the mineral composition of 

red mud had a marked influence on the binding form of Cu. The boehmite-dominated QR tended to 

have stronger capacity to hold Cu in the form of Fraction I, which consists of soluble, adsorbed and 

carbonate-bound Cu species. The pH of the QR residues was <5 when the Cu dose was >27,500 mg/L 

(Table 3). This explains the high soluble Cu concentration in the QR residues at high Cu doses because 

the solubility of Cu compounds tend to increase with decreasing pH. Since aluminium oxides are good 

adsorbents for Cu [31,32], the presence of substantial amounts of aluminium oxides/hydroxides 

(boehmite and gibbsite) might be responsible for the increased amounts of adsorbed Cu and 

consequently contributed significantly to the high proportion of Fraction I-Cu species in QR. The 

Fraction II-dominated regime for Cu in GR was attributable to the presence of considerable amounts of 

atacamite [22]. Fraction I-Cu species was believed to be more labile than Fraction II-Cu species [29]. 

Therefore, it appears that the water-borne Cu was more tightly bound by GR than QR. This suggests 

that the former is a better material than the latter in terms of its capacity to immobilize water-borne Cu 

and maintain long-term stability of the immobilized Cu species. 

The Cu scavenging capacity of GR was over 247 g/kg, which was much greater than that reported for an 

alginate encapsulated magnetic sorbent (63 g/kg) [33] and other organic sorbents (3.9–16.4 g/kg) [34,35]. 

The extremely high capacity of GR to immobilize water-borne Cu was attributable to the precipitation 

of atacamite as a result of acid neutralization by the alkaline materials present in the red mud. This 

differs from the adsorption mechanisms dominated in the latter scenarios. It is possible that adsorption 

mechanisms were also involved in our experiment. However, the adsorption fingerprints in the Cu 

dose-response chart could be masked by the strong precipitation footprints. 

Copper is commonly present in wastewater generated by mining, printed circuit board 

manufacturing, electronics plating, plating, wire drawing, copper polishing, paint manufacturing, wood 

preservatives and printing operations. The research findings obtained from this study have implications 

for developing innovative technologies to treat various Cu-containing wastewaters. 

5. Conclusions  

The highly basic, CaCO3-rich red mud had much stronger capacity than the seawater-neutralized, 

boehmite-dominated red mud in terms of scavenging Cu from solutions. It is also likely that the Cu 
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was more tightly retained by the former than the latter. Based on these observations, it is concluded 

that the heterogeneity of red mud has marked influences on its capacity to immobilize water-borne Cu 

and maintain the long-term stability of the immobilized Cu species.  

Acknowledgments 

This work was financially supported by the Natural Science Foundation of China (Project No. 

40471067 and 40773058) and the Guangdong Bureau of Science and Technology (Project No. 

2005A30402006).  

References 

1. Knight, J.C.; Wagh, A.S.; Reid, W.A. The mechanical properties of ceramics from bauxite waste. 

J. Mater. Sci. 1986, 21, 2179–2184. 

2. Lopez, E.; Soto, B.; Arias, M.; Nunez A.; Rubinos, D.; Barral, T. Adsorbent properties of red mud 

and its use for wastewater treatment. Water Res. 1998, 32, 1314–1322. 

3. Lin, C.; Long, X.; Mai, S.; Xu, S.; Chu, C.; Jiang, D. Effects of multi-conditioners on minesite 

acid sulfate soils for vetiver grass growth. Pedosphere 2004, 14, 371–378. 

4. Snars, K.E.; Gilkes, R.J.; Wong, M.T.F. The liming effect of bauxite processing residue (red mud) 

on sandy soils. Aust. J. Soil Res. 2004, 42, 321–328. 

5. Maddocks, G.; Lin, C.; McConchie, D. Effect of bauxsol and biosolids on soil conditions of  

acid-generating mine spoil for plant growth. Environ. Pollut. 2004, 127, 157–167. 

6. Wang, S.; Boyjoo, Y.; Choueib, A.; Zhu, Z.H. Removal of dyes from aqueous solution using fly 

ash and red mud. Water Res. 2005, 39, 129–138. 

7. Jústiz-Smith, N.; Buchanan, V.E.; Oliver, G. The potential application of red mud in the 

production of castings. Mat. Sci. Eng. A 2006, 420, 250–253. 

8. Ghosh, I.; Guha, S.; Balasubramaniam, R.; Ramesh Kumar, A.V. Leaching of metals from fresh 

and sintered red mud. J. Hazard. Mater. 2011, 185, 662–668.  

9. Zhang, N.; Liu, X.M.; Sun, H.H.; Li, L.T. Evaluation of blends bauxite-calcination-method red 

mud with other industrial wastes as a cementitious material: Properties and hydration characteristics. 

J. Hazard. Mater. 2011, 185, 329–335. 

10. Qin, S.; Wu, B.L. Effect of self-glazing on reducing the radioactivity levels of red mud based 

ceramic materials. J. Hazard. Mater. 2011, 198, 269–274. 

11. Liu, D.Y.; Wu, C.S. Stockpiling and comprehensive utilization of red mud research progress. 

Materials 2012, 5, 1232–1246. 

12. Apak, R.; Tutem, E.; Hungal, M.; Hizal, J. Heavy metals cation retention by unconventional 

sorbents (Red mud and fly ashes). Water Res. 1998, 32, 430–440. 

13. Pradhan, J.; Das, S.N.; Thakur, R.S. Adsorption of hexavalent chromium from aqueous solution 

by using activated red mud. J. Colloid Interface Sci. 1999, 217, 137–141. 

14. Lombi, E.; Zhao, F.J.; Zhang, G.; Sun, B.; Fitz, W.; Zhang, H.; McGrath, S.P. In situ fixation of 

metals in soils using bauxite residue: chemical assessment. Environ. Pollut. 2002, 118, 435–443. 

15. Ciccu, R.; Ghiani, M.; Serci, A.; Fadda, S.; Peretti, R.; Zucca, A. Heavy metal immobilization in 

the mining-contaminated soils using various industrial wastes. Miner. Eng. 2003, 16, 187–192. 



Materials 2012, 5             

 

 

1720

16. Friesl, W.; Horak, O.; Wenzel, W.W. Immobilization of heavy metals in soils by the application of 

bauxite residues: Pot experiments under field conditions. J. Plant Nutr. Soil Sci. 2003, 166, 191–196. 

17. Lin, C.; Maddocks, G.; Lin, J.; Lancaster, G.; Chu, C. Acid neutralizing capacity of two bauxite 

residues and their potential applications for treating acid sulfate soil and water. Aust. J. Soil Res. 

2004, 42, 649–657. 

18. Dan, U. Chromate removal from water using red mud and cross flow microfiltration. Desalination 

2005, 181, 135–143. 

19. Castaldi, P.; Melis, P. Evaluation of the interaction mechanisms between red muds and heavy 

metals. J. Hazard. Mater. 2006, 136, 324–329. 

20. Liu, Y.; Lin, C.; Wu, Y. Characterization of red mud derived from a combined bayer process and 

bauxite calcination method. J. Hazard. Mater. 2007, 146, 255–261. 

21. Wang, S.; Ang, H.M.; Tadé, M.O. Novel applications of red mud as coagulant, adsorbent and 

catalyst for environmentally benign processes. Chemosphere 2008, 72, 1621–1635. 

22. Ma, Y.Q.; Lin, C.X.; Jiang, Y.H.; Lu, W.Z.; Si, C.H.; Liu, Y. Competitive removal of water-borne 

copper, zinc and cadmium by a CaCO3-dominated red mud. J. Hazard. Mater. 2009, 172, 1288–1296. 

23. Smiljanić, S.; Smičiklas, I.; Perić-Grujić, A.; Šljivić, M.; Đukić, B.; Lončar, B. Study of factors 

affecting Ni2+ immobilization efficiency by temperature activated red mud. Chem. Eng. J. 2011, 

168, 610–619. 

24. Luo, H.L.; Huang, S.S.; Luo, L.; Wu, G.Y.; Liu, Y. Modified granulation of red mud by weak 

gelling and its application to stabilization of Pb. J. Hazard. Mater. 2012, 227–228, 265–273. 

25. Liu, W.C.; Yang, J.K.; Xiao, B. Review on treatment and utilization of bauxite residues in China. 

Int. J. Miner. Process. 2009, 93, 220–231. 

26. Gräfe, M.; Power, G.; Klauber, C. Bauxite residue issues: III. Alkalinity and associated chemistry. 

Hydrometallurgy 2011, 108, 60–79. 

27. Gu, S.; Yin, Z.; Yang, Z.; He, W. Improvements of the Processes to Produce Alumina from 

Chinese Diaspore Bauxite. In Light Metals; Crepeau, P.N., Ed.; The Minerals, Metals & Materials 

Society: Warrendale, PA, USA, 2003; pp. 153–158. 

28. McAuthur, L.; Greensill, C. Mineralogical Analysis of Weipa Bauxite Using NIR Spectroscopy. 

In Proceedings of Australian Institute of Physics 17th National Congress, Brisbane, Australia, 3–8 

December 2006; Australian Institute of Physics: South Melbourne, Australia, 2006; pp. 3–8. 

29. Sahuquillo, A.; Lopez-Sanchez, J.F.; Rauret, G.; Ure, A.M.; Muntau, H. Sequential Extraction 

Procedures for Sediment Analysis. In Methodologies for Soil and Sediment Fractionation Studies; 

Quevauviller, P., Ed.; The Royal Society of Chemistry: Cambridge, UK, 2002; pp. 10–27. 

30. Compton, R.G.; Pritchard, K.L. The dissolution of calcite at pH > 7: Kinetics and mechanism. 

Philos. Trans. R. Soc. London, Ser. A 1990, 330, 47–70. 

31. Bibak, A. Cobalt, copper, and manganese adsorption by aluminium and iron oxides and humic 

acid. Commun. Soil Sci. Plan. 1994, 25, 19–20. 

32. Silveira, M.L.A.; Alleoni, L.R.F. Copper adsorption in tropical oxisols. Braz. Arch. Biol. Technol. 

2003, 46, 529–536. 

33. Lim, S.F.; Zheng, Y.M.; Zou, S.W.; Chen, J.P. Characterization of copper adsorption onto an 

alginate encapsulated magnetic sorbent by a combined FT-IR, XPS, and mathematical modeling 

study. Environ. Sci. Technol. 2008, 42, 2551–2556.  



Materials 2012, 5             

 

 

1721

34. Ho, Y.S.; Wase, D.A.J.; Forster, C.F. The adsorption of divalent copper ions from aqueous 

solution by sphagnum moss peat. Trans. IChemE 1994, 72, 185–194. 

35. Tumin, N.D.; Chuah, A.L.; Zawani, Z.; Rashid, S.A. Adsorption of copper from aqueous solution 

by Elais guineensis kernel activated carbon. J. Eng. Sci. Technol. 2008, 3, 180–189. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


