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 2 

Irrigation control strategies may be used to improve the site-specific irrigation of 26 

cotton via lateral move and centre pivot irrigation machines.  A simulation framework 27 

‘VARIwise’ has been created to aid the development, evaluation and management of 28 

spatially and temporally varied site-specific irrigation control strategies.  VARIwise 29 

accommodates sub-field scale variations in all input parameters using a 1 m2 cell size, 30 

and permits application of differing control strategies within the field, as well as 31 

differing irrigation amounts down to this scale.   32 

 33 

In this paper the motivation and objectives for the creation of VARIwise are discussed, 34 

the structure of the software is outlined and an example of the use and utility of 35 

VARIwise is presented.  Three irrigation control strategies have been simulated in 36 

VARIwise using a cotton model with a range of input parameters including spatially 37 

variable soil properties, non-uniform irrigation application, three weather profiles and 38 

two crop varieties.  The simulated yield and water use efficiency were affected by the 39 

combination of input parameters and the control strategy implemented.    40 

 41 

Keywords 42 

Variable-rate irrigation, centre pivot, lateral move, management, automation 43 

 44 

1. Introduction 45 

Managing the irrigation of crops using physical and agronomic principles has been 46 

shown by Evans (2006) to improve efficiency of water use by 15 to 44%.  The 47 

irrigation application determined using these principles may be automatically 48 

implemented on a lateral move or centre pivot irrigation machine.  Irrigation control 49 

strategies can use historical data or quantitative measurements of crop status, weather 50 
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and soil, or some combination of these, to automatically adjust the irrigation 51 

application.  However, irrigation is traditionally applied uniformly over an entire field, 52 

although not all plants in a crop may require the same amount of water at any given 53 

time.  It follows that differential application of water (and possibly fertiliser, applied 54 

via fertigation) will be required according to plant requirements at different locations 55 

in the field.   56 

 57 

Much of standard control theory (developed for electrical and chemical applications, 58 

for example) assumes that a system does not vary with time and has fully-defined 59 

dynamics (Zaknich 2005).  However, these assumptions are not valid for many 60 

agricultural systems.  For example, crop growth, pests and weather vary within and 61 

between crop seasons and these alter the optimal irrigation amount to be applied to the 62 

plants.  For every change in conditions a standard feedback control system would 63 

have to be manually redesigned and this is labour-intensive.  Furthermore, 64 

determination of the appropriate local irrigation amount may require differing local 65 

irrigation strategies (e.g. as a result of varying soil properties).  Hence, control 66 

strategies which accommodate temporal and spatial variability in the field and which 67 

locally modify the control actions (irrigation/fertigation amounts) need to be 68 

‘adaptive’ (McCarthy et al., 2008; Smith et al., 2009).   69 

 70 

Adaptive control systems automatically and continuously re-adjust (‘retune’) the 71 

controller to retain the desired performance of the system (e.g. Warwick 1993).  72 

Similarly, adaptive control strategies may be used to accommodate the various levels 73 

of data complexity normally found in irrigation (i.e. for the various combinations of 74 

plant, soil and weather data depending on data availability).  By comparing adaptive 75 
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control strategies, we may identify superior and hopefully optimal control strategies 76 

for irrigation, sensor variable requirements, and temporal and spatial scales 77 

requirements.  The conceptual components of an adaptive control system for variable-78 

rate irrigation are illustrated in Figure 1.   79 

 80 

{Insert Figure 1 here} 81 

 82 

Adaptive irrigation control strategies (Figure 1) can use both historical data and real-83 

time quantitative measurements of crop status, weather and soil, either singly or in 84 

combination, to locally adjust the irrigation application, as required, to account for 85 

temporal and spatial variability in the field.  It should be noted that in Figure 1, the 86 

‘decision support system’ embodies the control strategy; ‘actuation’ is the action of 87 

adjusting the irrigation volume and/or timing; and ‘application’ is the resulting 88 

physical amount and timing of water and fertiliser applied to the crop.   89 

 90 

Considerable work is reported in the literature toward the development of variable-91 

rate applicators for lateral move and centre pivot irrigation machines to achieve site-92 

specific irrigation (e.g. King and Wall 2005), some of which include a wireless sensor 93 

network (e.g. Pierce et al. 2006; Coates and Delwiche 2008) and irrigation system 94 

self-monitoring capabilities (e.g. Chávez et al. 2009a; Chávez et al. 2009b).  The 95 

evaluation of these applicators typically consisted of a predetermined irrigation 96 

prescription map; however, King and Wall (2005) utilised digitised remote images of 97 

the field to withhold water from non-cropped areas.  Commercial irrigation control 98 

systems also commonly apply pre-determined, spatially-varied irrigation volumes 99 

derived from historical data (e.g. field maps) when indicated by sensed data (e.g. 100 
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Dukes and Perry (2006) evaluated the commercial ‘Farmscan’ variable-rate irrigation 101 

system).   102 

 103 

Control systems have been used to determine spatially-variable irrigation application 104 

using measured soil data (e.g. Capraro et al. 2008; Kim and Evans 2009; Kim et al. 105 

2009; Park et al. 2009) and plant data (e.g. Peters and Evett 2008).  The system 106 

developed by Kim et al. (2009) divided the field into five areas based on a soil 107 

electrical conductivity map and the irrigation volume applied to each area was 108 

proportional to the soil water deficit that was remotely sensed in each area (i.e. no 109 

irrigation was applied if the soil water deficit was at a minimum).  The irrigation 110 

events were triggered when the deficit of any of the five soil sensors reached mid-111 

range.  Park et al. (2009) developed a model predictive controller that determined 112 

spatially variable irrigation volumes (applied by changing the machine speed of a 113 

centre pivot) to maintain soil moisture.  This controller predicted soil moisture 114 

responses and irrigation applications using real-time weather and a soil model 115 

calibrated using measured soil moisture.  Capraro et al. (2008) reported a closed-loop 116 

neural network-based irrigation controller for drip irrigation in which a soil model 117 

was developed using a neural network and soil moisture data gathered during a 118 

sequence of irrigation events.  The soil model was then used to estimate the irrigation 119 

application to regulate soil moisture.  Another controller for variable-rate centre pivot 120 

irrigation using soil moisture data feedback was conceptualised by Moore and Chen 121 

(2006).  In this case, an iterative learning controller adjusted the irrigation application 122 

flow rate to control the water or concentration of nutrients in the soil.  Peters and 123 

Evett (2008) used crop stress as the indicator of irrigation requirement via an array of 124 
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infrared thermometers mounted on the centre pivot which permitted the adjustment of 125 

the irrigation application for each of 48 areas of the field.   126 

 127 

The majority of these control strategies are one-dimensional (using only soil or plant 128 

data for irrigation management).  However, local microclimate, plant genetics and 129 

pest infestations in the crop may result in one area having a different optimal yield 130 

relative to another area of the field, and if the control strategy aims for uniform yield 131 

across the field then the yield cannot be maximised.   132 

 133 

The control systems described above respond (and adjust the irrigation control) only if 134 

the need to change control settings is manifest in the sensed variables.  Soil data has 135 

been utilised in the majority of the irrigation control systems currently in the literature 136 

(as discussed above), whilst weather data has been used to manage irrigations under 137 

limited water supply (e.g. Rao et al. 1992) and plant data has been utilised for 138 

automatic irrigation control (Peters and Evett 2008).  However, soil and weather 139 

sensors may not provide the most accurate indication of crop status; rather, the plant 140 

may be the best indicator of water availability (e.g. Kramer and Boyer 1995; Wanjura 141 

and Upchurch 2002; Jones 2004).  This is because the plants essentially integrate the 142 

atmospheric and soil factors that affect plant water status.  Because of the relatively 143 

short time constant associated with the evaporative demand (and hence transpiration 144 

response) of plants, an irrigation control system using plant growth data should enable 145 

input of parameters with appropriately short time constants (e.g. weather which 146 

affects sub-daily dynamics of crop response) as well as data with long time constants 147 

(e.g. change in soil water status).  Hence, it is likely that the incorporation of multiple 148 
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sensed variables (i.e. plant, soil and weather data) will normally be required for an 149 

optimal irrigation control system. 150 

 151 

A general-purpose irrigation simulation framework is required to develop, simulate 152 

and evaluate alternative site-specific irrigation control strategies incorporating 153 

multiple sensor variables.  This paper reports the development of a framework, 154 

‘VARIwise’, for site-specific irrigation and illustrates its capability using a case study 155 

on the irrigation of cotton.   156 

 157 

2. Specification of a Variable-rate Irrigation System Simulation/Control 158 

Framework  159 

The framework must: (i) simulate alternate irrigation control strategies to determine 160 

optimal strategies; and (ii) enable optimised control strategies to be executed in real-161 

time and provide data outputs (i.e. irrigation volume and/or timing) in an appropriate 162 

form for control actuation.  Optimal adaptive control strategies to decide irrigation 163 

volume and timing may be identified by simulating and evaluating adaptive control 164 

strategies using a framework.  For both control strategy simulation and real-time 165 

control, the framework must enable data input for a range of field conditions in which 166 

data (e.g. weather, soil type, irrigation machine type) is available at various spatial 167 

and temporal scales.  Smith et al. (2009) discuss the various conditions and the 168 

capabilities of simulation software for adaptive irrigation control.   169 

 170 

The framework should accommodate data entry as text (e.g. daily Australian Bureau 171 

of Meteorology SILO patched point environmental data; QNRM 2009) or images (e.g. 172 

aerial and in-field photos or EM38 maps) as well as numerical values.   The minimum 173 
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resolution of the imported images should correspond to the spatial scale specified for 174 

the field in the framework (e.g. if the field is divided into 10 m² cells, then the pixels 175 

in the image should cover a maximum of 10 m²).  Image file formats should include 176 

all commonly used formats, including TIFF, JPEG and BMP.  Certain data collected 177 

across the field or otherwise imported may be at a high spatial resolution (e.g. from an 178 

electromagnetic soil moisture (EM38) survey), whereas others may only be available 179 

as widely-separated point measurements (e.g. from in-field soil moisture probes).  It 180 

follows that the framework must be able to interpolate sparse spatial data to estimate 181 

field data at a higher spatial resolution.   182 

 183 

For some sensor variables, only one data reading may be available for the whole field 184 

(e.g. rainfall) and the presumption that this value is constant across the field may be 185 

questionable.  For control strategy simulations, single-point field scale data may be 186 

insufficient to thoroughly evaluate irrigation control strategies at a high spatial 187 

resolution.  Therefore, the framework should be able to impose additional variation 188 

(data ‘noise’) on chosen input data sets to estimate the spatial distribution across the 189 

field and permit the simulation of a wider variety of input conditions, in particular the 190 

effect of unmeasured variability.  For example, in Australia, cotton is grown in areas 191 

dominated by unstable cumulonimbus storms which cause highly variable in-field 192 

rainfall (with a spatial scale of 10 to 100 m).  A local weather station would only 193 

measure rainfall for a single nearby point, and imposing spatial variability in the 194 

rainfall data would enable the variability to be evaluated in simulation experiments.   195 

 196 

Most field data is highly dynamic (e.g. plant water use changes throughout the day); 197 

hence, the framework should be able to handle input data at any temporal scale.  It 198 
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follows that for control strategy simulation, crop production models appropriate for 199 

these variables must have appropriately short time steps.  However, the temporal scale 200 

of the framework simulation is limited by the characteristics of the model and 201 

currently most crop production models operate at a daily time step.  In this situation, 202 

the simulation inputs must be averaged daily as the model outputs are determined 203 

daily.  Temporal variability of the data (i.e. data collected at different time steps) may 204 

also be evaluated for different control strategies.   205 

 206 

Either simulated or measured in-field data should be utilised to provide feedback to 207 

the controller.  Hence, the framework must be able to accumulate databases for all 208 

field data, simulation results and irrigation/fertigation applications, and retain these 209 

databases for use as historical input data in subsequent crop seasons.  The simulation 210 

results of the control strategy output should be saved and graphically displayed over 211 

the crop season.   212 

 213 

3. Software Development 214 

A framework, ‘VARIwise’, with the capabilities outlined above, has been developed 215 

using Borland Delphi 6 (http://www.embarcadero.com/products/delphi/).  Borland 216 

Delphi has the capability to create software frameworks that build databases and web 217 

applications, conduct image processing and statistical analysis, and execute 218 

mathematical functions and external applications (e.g. simulation models).  VARIwise 219 

has the following major functional characteristics:  220 

(1) the ability to input whole-of-field data;  221 

(2) division of the field into variably sized cells;  222 

(3) creation, accumulation and management of spatial databases;  223 
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(4) simulation of natural variability; 224 

(5) incorporation of variable-rate application; 225 

(6) incorporation of simulation model/s (e.g soil moisture response, plant 226 

response); 227 

(7) implementation of control strategies; and  228 

(8) display of control strategy output.   229 

 230 

The transfer of data between these functional areas is illustrated in Figure 2.  The 231 

following sections 3.1 to 3.5 describe processes within the framework which can be 232 

applied to both physical and simulation environments.   233 

 234 

{Insert Figure 2 here} 235 

 236 

3.1 Ability to input whole-of-field data 237 

Data entry screens are provided to input farm, field and crop data.  Data inputs 238 

required for the farm database include GPS location; for the field database include 239 

irrigation type and dimensions of the computational ‘cells’ (‘cells’ refer to sub-areas 240 

of the field); and for the crop database include a crop label to distinguish between 241 

crop seasons on each field.  Databases are also created for irrigation machine and 242 

sensor details.  One database is created for each of the following: farms, field, crops, 243 

irrigation machines and sensors. 244 

 245 

3.2 Division of the field into cells 246 

The field is automatically divided into cells according to the dimensions and number 247 

of cells specified in the field information.  The cell size is also automatically adjusted 248 
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to fit evenly across the irrigation machine.  Cells approximately 1 m wide and 1 m 249 

long for a centre pivot-irrigated and lateral move-irrigated field are displayed in 250 

Figure 3(a) and (b), respectively.   251 

 252 

{Insert Figure 3 here} 253 

 254 

A high level of control in centre pivot and lateral move irrigation application can be 255 

achieved using a Low-Energy Precision Application (LEPA) sock: LEPA socks apply 256 

water at low pressure within the crop canopy or directly onto the soil (e.g. Foley 257 

2004).  For example, for a machine irrigating a cotton crop, LEPA socks may be 258 

positioned 1 to 2 m apart; hence, in VARIwise the smallest controllable area has been 259 

assumed to be 1 m².  If LEPA socks are not used on an irrigation machine, then 260 

irrigation decisions can be simulated at spatial scales larger than 1 m² and in these 261 

cases, the cells are automatically aggregated.   262 

 263 

3.3 Creation, accumulation and management of spatial databases 264 

Creating spatial databases in VARIwise requires the following characteristics of the 265 

data collection: farm label, field label, crop label, data type, sensor type, measurement 266 

units, location in the field, and date and time of measurement.  Data types include 267 

nitrogen applied, soil moisture, leaf area index, plant height, temperature, rainfall and 268 

humidity.  A new database file is automatically created for each unique combination 269 

of these characteristics; for example, the filename for a database containing soil 270 

moisture content data measured with an Enviroscan probe is shown in Figure 4.  The 271 

databases created within the software are shown in Table 1.   272 

 273 
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{Insert Figure 4 here} 274 

 275 

{Insert Table 1 here} 276 

 277 

Field-scale data is entered into VARIwise either manually or imported from a data file 278 

(as text or .csv files) or image file (as BMPs or JPEGs).  Input of an image requires a 279 

legend and the measurement that corresponds to the minimum and maximum legend 280 

values.  For an RGB image, the data values are obtained for each cell by comparing 281 

the colour value on the image to the corresponding RGB values in a legend for the 282 

image.   283 

 284 

The pattern of irrigation application as measured using standard catch can tests (in 285 

accordance with ASABE Standard S436.1, ASABE 2007) for a particular irrigation 286 

machine can be imported into VARIwise (commonly as a .csv file) and is 287 

automatically saved to the irrigation machine database.  The application uniformity 288 

for two machines is illustrated in Figure 5.   289 

 290 

{Insert Figure 5 here} 291 

 292 

3.4 Simulation of natural variability 293 

Imposing simulated variability upon the input parameters may be useful to conduct 294 

simulation experiments for control strategy simulation and evaluation.  However, it 295 

should be noted that when the framework is operated in real-time control mode using 296 

measured field data, there should be no need to introduce additional variation into the 297 

data.  For simulation experiments, spatial variability may be imposed to single-point 298 
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field data values to account for local variations (that are anticipated but not directly 299 

measured) by one of two methods in the present implementation of VARIwise.  These 300 

methods are: 301 

(1) For field-scale data (e.g. rainfall) representing a sub-area or (strictly) just a point 302 

in the field, any statistical distribution of variability (e.g. Gaussian, gamma, 303 

Weibull) or variability according to an imported map may be imposed.  For 304 

example, given a single value of measured rainfall, the rainfall value ascribed to 305 

each cell may be chosen either randomly (to recognise rain gauge catch 306 

uncertainty) and/or as a gradient across the field (e.g. to recognise the spatial 307 

distribution of an individual storm).   308 

(2) Interpolating spatial data points (e.g. soil moisture) using ‘ordinary kriging’ (e.g. 309 

Güyagüler & Horne 2003).  Kriging is a method for estimating the value of a 310 

property at an unsampled point location (e.g. Webster & Oliver 2001); and 311 

ordinary kriging uses linear interpolation (i.e. its estimates are weighted linear 312 

combinations of the available data) without prior knowledge of the mean, and 313 

assumes that the local mean may not be closely related to the population mean (e.g. 314 

Scott 2000).  Simulated variability may also be imposed on kriged data as 315 

described in (1) above.   316 

 317 

Database files for the data modified to include variability are saved in VARIwise in 318 

the same format as the original data.  However, the filename also contains:  319 

• the text string Variability,  320 

• the type of variability added (i.e. statistical probability distribution or kriging), and  321 

• the parameters for the variability introduced (e.g. standard deviation).   322 

 323 
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3.5 Incorporation of variable-rate application 324 

In the VARIwise framework, variable-rate irrigation in both control strategy 325 

simulations and real-time control is achieved by adjusting the output of individual 326 

outlets (to sprinklers or LEPA socks).  To compensate for the change in water 327 

application hydraulics required by variable-rate irrigation, either one or both of two 328 

parameters (i) machine speed and (ii) pump flow rate, may be changed.  For (i) the 329 

required machine speed is estimated in VARIwise using the machine capacity 330 

(specified in the machine database) and the total irrigation depth applied by the 331 

machine at one time.  Option (ii) is not considered further in this paper.   332 

 333 

3.6 Incorporation of simulation model/s 334 

When VARIwise is used to generate or evaluate irrigation strategies, a simulation 335 

model appropriate to the crop and agricultural system will normally be utilised to 336 

generate synthetic field data which become inputs to the control system.  Because 337 

simulation models are typically tested by comparing measured and predicted data 338 

averaged across the field over multiple years, such models are generally not calibrated 339 

or tested for their ability to appropriately represent measured spatial and temporal 340 

differences.  Therefore calibrating the model using measured spatial and temporal 341 

data will allow for local real-time parameterisation of the model and may also 342 

improve the overall performance of the model (although it is beyond the scope of the 343 

present paper to further develop this conjecture).  We note also that it is likely the 344 

calibration procedure will vary according to the model. 345 

 346 

The input data required for complete evaluation of irrigation control strategies include 347 

crop growth (e.g. leaf area index), fruit development (for cotton), soil moisture and 348 
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weather data.  For cotton this data set may be obtained using the crop simulation 349 

model OZCOT which is routinely used for cotton irrigation management in Australia 350 

(Richards et al., 2008).  OZCOT is a cotton fruiting and leaf area growth model 351 

(Hearn & Da Roza 1985) coupled with a soil water balance sub-model (Ritchie 1972) 352 

and nitrogen uptake sub-model (Wells and Hearn 1992).  The fruiting model captures 353 

the basic pattern of cotton growth and fruit development and is driven by weather data 354 

(e.g. day degrees) and soil properties (e.g. soil water deficit).  The soil model 355 

calculates the components of the soil water balance, i.e. soil evaporation is estimated 356 

using the atmospheric evaporative demand and the capacity of the soil to transmit 357 

water to the surface, and transpiration is estimated using the leaf area index (Ritchie 358 

1972).  Spatial customisation/calibration for OZCOT involves adjustment of 359 

parameters in the soil properties and crop variety files (which describe the rate of boll 360 

and vegetative growth): these may be adjusted iteratively based on the error between 361 

the modelled data and measured data on the measurement days.   362 

 363 

The interfacing (i.e. input and output data requirements) of crop simulation models 364 

typically varies between each model; hence the incorporation of each model into 365 

VARIwise must be specifically programmed.  The model OZCOT has been 366 

incorporated into VARIwise and was obtained as a stand-alone model from the 367 

simulation software HydroLOGIC (Richards et al. 2008).  However, it is anticipated 368 

that other models will be able to be integrated into VARIwise due to the generic 369 

nature of the software structure.  Again, further work here is beyond the scope of this 370 

paper.   371 

 372 
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Actual field data replaces the simulation model as controller inputs when VARIwise 373 

is used as part of a decision support system in a field implementation.  However, data 374 

from the simulation model may be used in a field implementation to predict the crop 375 

response for an irrigation control strategy (if required).  Data from the output of the 376 

simulation model is saved to the corresponding VARIwise database files.   377 

 378 

The procedure for updating VARIwise database files for a control strategy simulation 379 

is dependent on the constraints of the simulation model used.  For example, for 380 

OZCOT the irrigation applied is entered as equivalent rainfall and measured data 381 

input variables include soil moisture, leaf area index, cotton boll count and 382 

temperature.   383 

 384 

A simulation is executed for each cell and irrigation event and requires measured data 385 

input from the VARIwise databases to be transferred to the necessary model input 386 

files.  For OZCOT this involves four steps, namely:  387 

(1) Weather details to the OZCOT weather input file (including irrigation 388 

application determined by the control strategy which is entered as rainfall). 389 

(2) Management details (including seed depth, row spacing, plant stand and crop 390 

variety) to the OZCOT agronomy input file and crop variety input file. 391 

(3) Soil measurements (including measured plant available water content and soil 392 

moisture) to the OZCOT soil input file and the OZCOT observations input file. 393 

(4) Plant measurements (including measured boll counts and leaf area index) to the 394 

OZCOT observations input file. 395 

 396 

3.7 Implementation of control strategies 397 
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VARIwise is formulated to impose minimal (ideally zero) constraints on the control 398 

strategies that can be implemented in either simulation or physical (machine control) 399 

applications.  For the purpose of illustration, this paper uses simulated data to 400 

demonstrate the following control strategies which are presently implemented in 401 

VARIwise: 402 

Strategy A: Fixed irrigation schedule in which the dates and amounts for the 403 

irrigation events are defined by the user;    404 

 405 

Strategy B: Soil moisture deficit-triggered irrigation schedule in which the 406 

irrigation amount and deficit triggering the irrigation are defined by the user; and 407 

 408 

Strategy C: Self-optimising irrigation management which involves, firstly, the 409 

system inputs (i.e. irrigation application) changing iteratively such that the system 410 

output (i.e. plant and soil measurements and yield) is closer to the goal; and then, 411 

secondly, using ‘hill climbing’ to improve the irrigation decision.  ‘Hill climbing’ 412 

involves changing the state of the system into one that is closer to the goal in the 413 

direction of steepest gradient (Russell & Norvig 1995).   414 

 415 

Hill climbing is typically implemented in processes which are repeatedly executed 416 

and evaluated in a small amount of time (e.g. within seconds).  Therefore, direct 417 

application of this method to irrigation would not be efficient due to the different time 418 

scales (i.e. irrigations occurring days apart).  However, the efficiency of hill climbing 419 

may be improved by using ‘test cells’ to evaluate a range of inputs to the system (i.e. 420 

at each irrigation event); and test cells may be selected in each area of the field with 421 

homogenous properties.  For soil, the areas of homogenous properties may be 422 
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determined from an EM38 map, and in this paper each such area is referred to as a 423 

‘zone’.  Hence, the self-optimising irrigation strategy involves the following 424 

procedure: 425 

 426 

Step 1. The field is automatically divided into zones of homogenous properties 427 

according to input data.  For example, an EM38 electromagnetic survey 428 

imported into VARIwise for the irrigated area of the field as shown in Figure 429 

6(a) can be used to derive a soil moisture map shown in Figure 6(b).  Figure 7 430 

shows a field divided into two zones using this EM38 map.   431 

 432 

{Insert Figure 6 here} 433 

 434 

{Insert Figure 7 here} 435 

 436 

Step 2. A small number of cells (i.e. a group of ‘test cells’) are selected in each zone 437 

to evaluate different irrigation applications.   438 

 439 

Step 3. The number of days until the first irrigation is determined by dividing the 440 

readily available water (RAW) of the soil by the daily crop water use.  The 441 

RAW is the fraction of the total available water (specified by the user as a soil 442 

property) that can be extracted from the effective root zone before the crop 443 

suffers water stress (Chapter 8 of Allen et al. 1998) and this fraction 444 

(‘depletion fraction’) is estimated using Table 22 of Allen et al. (1998).  The 445 

daily crop water use is estimated by calculating the crop evapotranspiration 446 

(ETC) from: (i) weather data (i.e. reference evapotranspiration (ETO) and 447 
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effective rainfall) entered by the user or obtained in the framework from an 448 

Australian Bureau of Meteorology data set; and (ii) crop coefficient (Kc) 449 

estimated from Table 12 of Allen et al. (1998) using the sowing date entered 450 

by the user, i.e. ETC = KC × ETO (Equation 56 of Allen et al. 1998).  The crop 451 

coefficient indicates the crop coverage which changes during the growing 452 

season and affects soil evaporation (Allen et al. 1998).  For example, from 453 

Table 12 of Allen et al. (1998) (which has been incorporated into VARIwise), 454 

crop coefficient estimates for cotton grown under typical irrigation 455 

management are KC  = 0.35 during the initial crop stage (0 to 30 days after 456 

sowing), KC  = 0.35 linearly increasing to 1.2 during the plant development 457 

stage (31 to 80 days after sowing), KC  = 1.2 during the mid-season stage (81 458 

to 135 days after sowing) and KC  = 0.7 during the late season stage (136 days 459 

after sowing until the end of the crop season).  The interval from 460 

commencement to the first irrigation is estimated to be: 461 

 462 

(mm/day) ETc
(mm) rainfall Effective(mm) RAWDays +

=  463 

 464 

where the effective rainfall is calculated on a daily time step basis taking into 465 

account the soil moisture deficit.  The day calculated for the first irrigation 466 

may be different for each zone in the field (defined in step 1) since the soil 467 

properties, and hence the readily available water content, are spatially variable.  468 

In this situation, the field is irrigated according to the most limiting cell 469 

condition (i.e. on the earliest date calculated).    470 

 471 
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Step 4. The first irrigation application is calculated for the non-test cells in each zone 472 

by aggregating the daily crop water use (calculated using weather data (ETO) 473 

and the crop coefficient) since the crop was sown.  In each test cell, the crop 474 

coefficient used to estimate the crop water use is offset from the crop 475 

coefficient used to calculate the irrigation applied to the non-test cells.  For 476 

example, for KC  = 0.35 and five test cells, the crop coefficients might be 477 

chosen as 0.07, 0.21, 0.35, 0.49 and 0.63 for each test cell, respectively (i.e. 478 

multiples of 0.14 on either side of the mean, 0.35). 479 

 480 

Step 5. Before the next irrigation is applied (in this case, a fixed number of days), the 481 

crop response to the previous irrigation is evaluated.  A performance index (PI) 482 

is calculated for each test cell in each zone.  In VARIwise, the data used to 483 

determine the PI is specified by the user, and for a cotton crop appropriate 484 

parameters are leaf area index (LAI) and ‘square count’ (‘squares’ are flower 485 

buds on a cotton plant).  The type of data specified affects how the PI is 486 

calculated.    487 

 488 

For cotton, the LAI data should not simply be maximised as this would result 489 

in excessive vegetative growth rather than reproductive growth.  Hence, the PI 490 

for LAI can be calculated and compared to the reported LAI for an optimal 491 

crop (e.g. optimal LAI data obtained from OZCOT as shown in Figure 8).  For 492 

data that follows an optimal time series data set (e.g. Figure 8), the 493 

performance index is: 494 

 495 
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)(
)()(

tvalue Target
tvalue tCurrentvalue TargetPI −

=  496 

 497 

where t represents the day of the data collection.   498 

 499 

{Insert Figure 8 here} 500 

 501 

To optimise cotton yield, the PI can be calculated as the ratio of the current 502 

boll or square count to the maximum count of the test cells using: 503 

 504 

)(
)(
tvalue Maximum

tvalue CurrentPI =  505 

 506 

Multiple data variables may be incorporated into the PI by applying weights to 507 

the performance index of each data type and summing the weighted indices.  508 

For example, if leaf area index and square count are used with respective 509 

weights of 0.2 and 0.8, the total PI would be: 510 

 511 

PI = 0.2 × PLAI  + 0.8 × Psquare/boll count 512 

 513 

The PI for each test cell can be evaluated to determine the crop coefficient to 514 

be used for the ‘non-test’ cells in the next irrigation.  The crop coefficient used 515 

for the next irrigation corresponds to the maximum PI: this would be obtained 516 

by finding the maximum point of a quadratic equation fitted through points 517 

plotted on a PI versus crop coefficient graph (e.g. Figure 9).   518 

 519 
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{Insert Figure 9 here} 520 

 521 

Step 6. After a preset time interval, the non-test cells are irrigated with an amount 522 

calculated using the crop coefficient corresponding to the maximum 523 

performance index of the test cells from the previous irrigation and the 524 

aggregated reference evapotranspiration since the previous irrigation.  The 525 

irrigation amounts applied to the test cells are calculated using crop 526 

coefficients offset (as step (4) above) from the optimal coefficient of the 527 

previous irrigation.   528 

 529 

VARIwise automatically selects new test cells in each zone after every 530 

irrigation to ensure that the response of the test cell is indicative of the rest of 531 

the zone.  This is achieved by a simple increment of the cell number (e.g. 532 

right-hand spiral for a centre pivot irrigated field) provided that the 533 

replacement cell still lies in the required zone.  534 

 535 

Step 7. Steps 5. and 6. are repeated for each irrigation event. 536 

 537 

By integrating a range of control strategies – the three above and others which may be 538 

added – and using different combinations of sensor variables, the user may then 539 

explore: (i) optimal control strategies for irrigation; (ii) temporal and spatial scale 540 

requirements for irrigation control; and (iii) the usefulness of additional sensors. 541 

 542 

3.8 Display of control strategy output 543 
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All sensor variables and control strategy outputs are retained in databases and can be 544 

viewed in the software by the user for each cell throughout the crop season as either: 545 

(i) tables of values; (ii) plotted graphs; (iii) or animated field maps.  Examples of 546 

these outputs are shown in Figure 10.   547 

 548 

{Insert Figure 10 here} 549 

 550 

4. Case study on the Irrigation of Cotton 551 

Simulations of the three control strategies introduced in Section 3.7 are compared in 552 

this case study with various input conditions. 553 

 554 

4.1 Case study inputs 555 

In a simulation, cotton was sown on a 400 m diameter centre pivot-irrigated field on 4 556 

October and was irrigated until 14 March of the following year.  Nitrogen application 557 

was 120 kg/ha at the start of the season and a cell size of 100 m² was specified.  Both 558 

the low and high uniformity irrigation machine application data of Figure 5 were 559 

utilised for the fixed irrigation schedule, and only the low uniformity data was used 560 

for the soil moisture deficit-triggered irrigation schedule.  These two irrigation 561 

schedules were simulated using the Sicot 73 crop variety and a weather profile 562 

(‘Weather Profile 1’).  The self-optimising irrigation strategy was evaluated for two 563 

crop varieties (Sicot 73 and Sicot 71B) and under the three weather profiles in which 564 

Weather Profile 1 is hot and wet late in the crop season, Weather Profile 2 is hot and 565 

wet early in the crop season, and Weather Profile 3 is hot early in the crop season with 566 

limited rainfall, and with respective GPS locations of -28.18°N 151.26°E, -29.50°N 567 

149.90°E and -30.09°N 145.94°E.  Daily weather profiles for these sites were 568 
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obtained from Australian Bureau of Meteorology SILO data (QNRM 2009) for 569 

2004/2005. 570 

 571 

The spatially varied soil properties (i.e. plant available water content) produced the 572 

underlying variability for the simulations presented in this case study (Figure 6).  For 573 

the soil moisture deficit-triggered irrigation schedule, irrigation events (in which 20 574 

mm was applied) were triggered when a 30 mm soil moisture deficit was predicted 575 

(using the OZCOT model) in the three cells shown in Figure 11.   576 

 577 

{Insert Figure 11 here} 578 

 579 

For the self-optimising irrigation strategy, the field was automatically divided into 580 

two zones (Figure 7) using the EM38 map imported into VARIwise (Figure 6) and 581 

five test cells.  The target LAI derived from a VARIwise simulation of soil moisture 582 

deficit-triggered irrigation with the highest yield (triggered by Point 3 in Figure 11) 583 

was used and is shown in Figure 8.   584 

 585 

The performance index was calculated using leaf area index and square count with 586 

respective weights of 0.2 and 0.8.  This data was obtained from the OZCOT model 587 

one day before the next scheduled irrigation event.  Irrigations were applied every six 588 

days following the first scheduled irrigation event.   589 

 590 

4.2 Case study output and discussion 591 

The simulation output using three alternative control strategies is shown in Figures 12, 592 

13 and 14 in which ‘IWUI’ denotes Irrigation Water Use Index and is the ratio of the 593 
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crop yield (bales) to the irrigation water applied (ML) (BPA 1999).  The simulations 594 

demonstrated the effect (on yield and irrigation water use index) of the fixed irrigation 595 

schedule and machine uniformity (Figure 12), the location of the trigger point used for 596 

soil moisture deficit-triggered irrigation schedule (Figure 13) and the variable-rate, 597 

self-optimising irrigation strategy (Figure 14).  Inspection of these results indicates: 598 

• For the fixed irrigation schedule, the yield generally improved when the irrigation 599 

volume was increased.   600 

• The uniformity of the machine affected the simulated yield: a low uniformity 601 

machine which applied large volumes of irrigation in some areas of the field 602 

resulted in higher yields.   603 

• For the soil moisture deficit-triggered irrigation schedule, the location of the 604 

trigger point used to initiate irrigation events significantly affected the yield.  The 605 

spatial variability of the yield was a function of the non-uniformity of the 606 

irrigation machine and the relationship between the location of the trigger point 607 

and the machine.   608 

• The simulated yield for the self-optimising irrigation strategy was higher than the 609 

fixed and soil moisture deficit-triggered irrigation schedules under the same input 610 

conditions and when the weather and crop properties were varied.  The spatial 611 

variability of the yield was caused by the spatial variability of the soil properties 612 

and the ‘test’ irrigation volumes being applied to various cells across the field.   613 

 614 

The irrigation strategies and input conditions simulated in VARIwise in this case 615 

study show significant differences in yield and water use.  These differences 616 

demonstrate the potential value of VARIwise as a variable-rate irrigation simulation 617 

framework and for further investigations of adaptive irrigation control strategies.   618 
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 619 

It is intended that VARIwise will be used as part of a decision support system in real-620 

time field implementations, i.e. a computing system would be mounted on a lateral 621 

move or centre pivot and transmit control actions to variable-rate irrigation hardware.  622 

VARIwise could be interfaced with input data sources including an automatic weather 623 

station, wireless sensor networks of soil sensors, on-the-go plant sensors, field 624 

observations from the irrigation manager or agronomist (e.g. plant stress) and flow 625 

meters for machine water applications.  It is anticipated that computing the irrigation 626 

application and/or timing for one cell would take 2 seconds (which is the execution 627 

time for an algorithm in Borland Delphi 6 on an Intel Core 2 Quad Q9400 (2.66 GHz) 628 

processor and Windows XP operating system), enabling real-time implementation on 629 

a lateral move or centre pivot moving at 2 metres per minute.   630 

 631 

Future work will involve comparing the irrigation control strategies and management 632 

constraints (e.g. limited water situations), comparing the simulation results with field 633 

data, integrating measured field data with in-built simulation models, and exploring 634 

the data requirements for irrigation control and the optimal spatial scales and time 635 

steps for measurements (e.g. soil moisture, LAI, weather).  For the field evaluations, 636 

data would be collected by an agronomist from in-field sensors.   637 

 638 

5. Conclusion 639 

The simulation framework VARIwise has been created to aid the development, 640 

evaluation and management of spatially and temporally varied site-specific irrigation 641 

control strategies.  The input, database and output can provide resolutions of 1 m2 642 

(cell size) and sub-daily time steps, and the framework accommodates simulation 643 
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models according to crop type and alternative control strategies.  A case study for the 644 

irrigation of cotton demonstrated that VARIwise accommodates field-scale variations 645 

in input parameters, a standard cotton plant model (OZCOT) and evaluation of 646 

adaptive control strategies which have the potential to improve yield and irrigation 647 

water use index.  Further work in VARIwise will entail an analysis of the control 648 

strategy outputs and exploration of the strategies using input data with various spatial 649 

scales and time steps.   650 
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Table caption 790 

 791 

Table 1: Databases within VARIwise 792 

 793 

Figure captions 794 

 795 

Figure 1: Conceptual adaptive control system for variable-rate irrigation – the basis of 796 

the simulation framework VARIwise 797 

 798 

Figure 2: Flow chart for VARIwise software 799 

 800 

Figure 3: VARIwise cells for field irrigated by a: (a) centre pivot; and (b) lateral move 801 

 802 

Figure 4: Example filename of spatial database in VARIwise 803 

 804 

Figure 5: Examples of centre pivot uniformity for fixed and soil-moisture deficit 805 

triggered irrigation schedules (obtained from Raine et al. (2008) and as used in the 806 

cotton irrigation case study presented in this paper) 807 

 808 

Figure 6: EM38 map: (a) to be imported in VARIwise; and (b) with electrical 809 

conductivity values assigned to each cell for the area circled in (a) 810 

 811 

Figure 7: Zones for self-optimising irrigation strategy in VARIwise derived from the 812 

soil electrical conductivity data of Figure 6(b) 813 
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Figure 8: Target leaf area index used for self-optimising irrigation strategy for cotton 814 

in VARIwise 815 

 816 

Figure 9: VARIwise determination of maximum PI using a quadratic fit to the 817 

available data points 818 

 819 

Figure 10: Example simulation output for soil moisture deficit-triggered irrigation: (a) 820 

graph of soil moisture during crop season in one cell; and (b) yield map for last day of 821 

season 822 

 823 

Figure 11: Trigger points for soil moisture deficit-triggered irrigation schedule in 824 

VARIwise 825 

 826 

Figure 12: Output of the fixed irrigation schedule for Weather Profile 1 and Sicot 73 827 

and legend for yield maps in Figures 12-14 828 

 829 

Figure 13: Output of the soil moisture deficit-triggered irrigation schedule for 830 

Weather Profile 1 and Sicot 73 (where legend for yield maps is in Figure 12) 831 

 832 

Figure 14: Output of the self-optimising irrigation strategy with variable-rate 833 

irrigation machine (where legend for yield maps is in Figure 12) 834 
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Table 835 
 836 
Table 1: Databases within VARIwise 837 
Type of 
database Input method Database entries 

Static (unchanging) databases:   

Farms 

Input screen/ 
Google Maps via an 
embedded web browser in 
VARIwise 

Label, GPS location 

Fields 
Input screen Label, irrigation type, dimensions of 

computational cell, number of cells to 
aggregate 

Crops Input screen Label 

Irrigation 
machines 

Input screen Dimensions, tower positions, 
configuration of irrigation outlets, type 
of outlets (i.e. end gun, boombacks), 
pump flow rate, irrigation application 
uniformity 

Sensors Input screen Type of sensor, data type, units, time 
intervals of measurement 

Field-scale 
database (i) 

Input screen A new database (i=1,2,3,…) is created 
for each of the following variables: 

sowing date,  
defoliation date/s,  
harvest date,  
crop variety,  
plant available water content 

Control 
strategy 
evaluation 
database (j) 

Input screen Each database (j=1,2,3,...) contains the 
following data for each control 
strategy evaluated: 
Type of control strategy, data 
variable/s to use, whether machine 
speed is constant or variable 

Temporally-modified databases:   

Field-scale 
database (k) 

(As appropriate:) 
Input screen/ 
text file/ 
image file (e.g. aerial or 
ground photos, EM map)/ 
Internet (e.g. weather data 
from SILO data set (QNRM, 
2009) using GPS location in 
property database) 

Each database (k=1,2,3,…) contains 
one variable, for example: 

Management details: nitrogen 
application 

Plant measurements: boll counts  
Soil measurements: soil  moisture, 

electrical conductivity 
Weather measurements: solar 

radiation, temperature, rainfall, 
evapotranspiration 

Other: yield 
 838 
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Figures 839 
 840 

 841 
Figure 1: Conceptual adaptive control system for variable-rate irrigation – the basis of the simulation 842 

framework VARIwise 843 
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 844 
Figure 2: Flow chart for VARIwise software 845 
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  846 
(a) (b) 847 

 848 
Figure 3: VARIwise cells for field irrigated by a: (a) centre pivot; and (b) lateral move 849 
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 850 
Figure 4: Example filename of spatial database in VARIwise 851 
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 852 
Figure 5: Examples of centre pivot uniformity for fixed and soil-moisture deficit triggered irrigation 853 

schedules (obtained from Raine et al. (2008) and as used in the cotton irrigation case study presented 854 
in this paper) 855 
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 856 
 857 

(a) 858 
 859 

 860 
(b) 861 

 862 
Figure 6: EM38 map: (a) to be imported in VARIwise; and (b) with electrical conductivity values 863 

assigned to each cell for the area circled in (a)864 
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 865 
Figure 7: Zones for self-optimising irrigation strategy in VARIwise derived from the soil electrical 866 

conductivity data of Figure 6(b)867 
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 868 
Figure 8: Target leaf area index used for self-optimising irrigation strategy for cotton in VARIwise 869 
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 870 
Figure 9: VARIwise determination of maximum PI using a quadratic fit to the available data points 871 
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 872 
(a) 873 
 874 

 875 
(b) 876 

Figure 10: Example simulation output for soil moisture deficit-triggered irrigation: (a) graph of soil 877 
moisture during crop season in one cell; and (b) yield map for last day of season 878 
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879 
Figure 11: Trigger points for soil moisture deficit-triggered irrigation schedule in VARIwise 880 
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 881 

 
20mm every 6 days 
High uniformity machine 
Yield = 1.4 bales/ha 
Irrigation applied = 65 ML 
IWUI = 0.3 bales/ML 

 
40mm every 6 days 
High uniformity machine 
Yield = 5.6 bales/ha 
Irrigation applied = 132 ML 
IWUI = 0.5 bales/ML 

 
60mm every 6 days 
High uniformity machine 
Yield = 6.2 bales/ha 
Irrigation applied = 196 ML 
IWUI = 0.4 bales/ML 

 
20mm every 6 days 
Low uniformity machine 
Yield = 3.3 bales/ha 
Irrigation applied = 68 ML 
IWUI = 0.6 bales/ML 

 
40mm every 6 days 
Low uniformity machine 
Yield = 6.4 bales/ha 
Irrigation applied = 134 ML 
IWUI = 0.6 bales/ML 

 
60mm every 6 days 
Low uniformity machine 
Yield= 6.2 bales/ha 
Irrigation applied = 200 ML 
IWUI = 0.4 bales/ML 

 
Yield (bales/ha) 

0                                                                                                  11 

 
 

Figure 12: Output of the fixed irrigation schedule for Weather Profile 1 and Sicot 73 and legend for yield 882 
maps in Figures 12-14 883 
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 884 

 
Triggered by Point 1 
Low uniformity machine 
Yield = 7.0 bales/ha 
Irrigation applied = 85 ML  
IWUI = 1.0 bales/ML 

 
Triggered by Point 2 
Low uniformity machine 
Yield = 4.6 bales/ha 
Irrigation applied = 127 ML 
IWUI = 0.5 bales/ML 

 
Triggered by Point 3 
Low uniformity machine 
Yield = 7.1 bales/ha 
Irrigation applied = 99 ML 
IWUI = 0.9 bales/ML 

Figure 13: Output of the soil moisture deficit-triggered irrigation schedule for Weather Profile 1 and 885 
Sicot 73 (where legend for yield maps is in Figure 12) 886 
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 887 

 
Weather Profile 1, Sicot 73  
Yield = 9.3 bales/ha 
Irrigation applied = 116 ML 
IWUI = 1.0 bales/ML 

 
Weather Profile 2, Sicot 73  
Yield = 9.2 bales/ha 
Irrigation applied = 130 ML 
IWUI = 0.9 bales/ML 

 
Weather Profile 3, Sicot 73  
Yield = 8.4 bales/ha 
Irrigation applied = 162 ML 
IWUI = 0.7 bales/ML 

 
Weather Profile 1, Sicot 71B  
Yield = 9.1 bales/ha 
Irrigation applied = 136 ML 
IWUI = 0.8 bales/ML 

 
Weather Profile 2, Sicot 71B  
Yield = 9.3 bales/ha 
Irrigation applied = 116 ML 
IWUI = 1.0 bales/ML 

 
Weather Profile 3, Sicot 71B 
Yield = 8.4 bales/ha 
Irrigation applied = 162 ML 
IWUI = 0.6 bales/ML 

Figure 14: Output of the self-optimising irrigation strategy with variable-rate irrigation machine (where 888 
legend for yield maps is in Figure 12) 889 

 890 


