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Abstract  
 
A low-altitude platform utilising a 1.8-m diameter tethered helium balloon was used to 
position a multispectral sensor, consisting of two digital cameras, above a fertiliser trial plot 
where wheat (Triticum spp.) was being grown.  Located in Cecil Plains, Queensland, 
Australia, the plot was a long-term fertiliser trial being conducted by a fertiliser company to 
monitor the response of crops to various levels of nutrition. The different levels of nutrition 
were achieved by varying nitrogen application rates between 0-120 units of N at 40 unit 
increments.  Each plot had received the same application rate for 10 years. Colour and near-
infrared images were acquired that captured the whole 2 ha plot. These images were 
examined and relationships sought between the captured digital information and the crop 
parameters imaged at anthesis and the at-harvest quality and quantity parameters. The 
statistical analysis techniques used were correlation analysis, discriminant analysis, and 
partial least squares regression. A high correlation was found between the image and yield 
(R2 = 0.91) and a moderate correlation between the image and grain protein content (R2 = 
0.66).  The utility of the system could be extended by choosing a more mobile platform.  
This would increase the potential for the system to be used to diagnose the causes of the 
variability and allow remediation, and/or to segregate the crop at harvest to meet certain 
quality parameters.  
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1. Introduction 
 
Considerable research has been conducted using satellite and aircraft based imagery to 
observe cropping areas.  Studies have used remotely sensed images for yield prediction 
(Layrol, et al. 2000; Staggenborg and Taylor 2000), pest and disease detection (Roth 1993), 
crop modelling (Barnes, et al. 1997), and measuring crop growth parameters (Price and 
Bausch 1995). However, imagery acquired from satellite platforms are often confined by 
repeat cycle, availability, cloud cover, cost and spatial resolution limitations (Zhang, et al. 
2002) . Airborne sensors offer much greater flexibility than satellite platforms by being able 
to operate under clouds and having a much finer spatial resolution (Lamb and Brown 
2001).  However, this type of imagery is still costly when dedicated ‘mobilisation’ of the 
aircraft is required, especially for remote localities and repeated data acquisition needs.   
 
There have been several occurrences of low altitude aerial platforms being reported as 
research tools to collect imagery.  A cable-supported and helium balloon platform has been 
used to record temporal changes in surficial environments (Baker, et al. 2004).  Kites and 
balloons were used to map periglacial geomorphology in Alaska (Boike and Yoshikawa 
2003).  Blimps have been used to map spatial variability between and within agricultural 
(rice and soybean) fields (Inoue, et al. 2000) and  to monitor gully erosion (Ries and 
Marzolff 2003).  Remote-control helicopters were used to generate maps of crop status 
(Sugiura, et al. 2005) and model aircraft were used as the platform to remotely sense crop 
biomass and nitrogen status (Hunt Jr., et al. 2005).  Additionally, a high altitude unmanned 
aerial vehicle was used to monitor crop ripeness and weeds in a coffee plantation (Herwitz, 
et al. 2004). 
 
Although digital cameras have been used on aerial platforms since the early 1990s (Everitt, 
et al. 1995), recent technological developments in sensors and miniaturisation of systems 
offer new innovative applications for tactical level farming. Thus, the aim of this study was 
to investigate the potential of detecting and mapping grain crop attributes using digital 
imagery acquired from a low-altitude platform (i.e. a helium-filled balloon). The specific 
attributes mapped were grain yield and, more particularly, grain protein levels. If surrogates 
for these parameters of cereal grain can be discovered during the growing season, 
interventions to crop management would be possible. Alternatively, segregating grain at 
harvest to maintain quality has the potential to return the greatest profit to the farmer. 
 
2. Materials and methods  
 
2.1 Sensor and platform system 
 
This project deployed a multispectral sensor system that consisted of two Kodak DC3200 
digital cameras (1 megapixel), a small (25 mm x 25 mm) black-and-white analogue video 
camera and transmitter, two 6 volt battery packs, a radio controlled receiver and transmitter, 
and a small printed circuit board (Figure 1).  Each of the 6 V sources were used to power a 
camera and joined in series by the electronics in the circuit board to supply 12 V for the 
video camera and video transmitter. The electronics was also used to trigger the cameras. 
The sensor was suspended underneath a 1.8 m diameter helium-filled latex balloon and 
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controlled with two tether lines. The sensor prior to deployment at a test site is shown in 
Figure 2. 
 
Figure 1  The various components of the sensor system. 

 
 
 
To initiate image capture, a button was depressed on the radio controlled transmitter.  The 
signal detected by the receiver on the balloon was a 50 Hz square wave that had a pulse 
duration of 1-2 milliseconds. This was used to retrigger the monostable multivibrator. By 
momentarily disconnecting power to the transmitter (by depressing the button), the receiver 
signal ceased causing a retriggerable monostable output to momentarily drop to 0 volts. 
This signal became the input to a non-retriggerable monostable that created a 0.5 second 
pulse to initiate an image acquisition request. 
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Figure 2 The sensor ready for deployment at a football field 

 
 
In order to conserve power, the cameras would automatically power down after 5 minutes 
of inactivity and, as a result, would fail to take images. To avoid one or both cameras 
failing to trigger, a feedback and re-initialisation system was developed. The system was 
based on the light emitting diode (LED) on the rear of the camera that indicated the 
operational state of the cameras.  The LED has three states: (1) LED is continuously 
energized - camera is ready for image acquisition, (2) LED is intermittently energized (at a 
frequency of approximately 1 Hz) - camera is processing and storing an image, and (3) 
LED is not energized - camera is not powered, the memory is full, or some other problem. 
A photo-transistor was positioned over this LED and a micro-controller used to monitor the 
state of each LED, and hence the camera readiness.  If the micro-controller encountered a 
problem (i.e. anything other than a ready signal), the power would be disconnected from 
both digital cameras and the video camera for four seconds. This video interruption 
provided a visual feedback to the operator and allowed the cameras to power down and 
reboot ready for the next image acquisition. This ensured matching images from the pair of 
cameras. 
 
The images captured were stored to the 64 Mb CompactFlash™ card inserted into each 
camera. The video camera transmitted footage to the ground to aid in positioning and the 
receiver was used to trigger the cameras to take an image. One camera captured the visible 
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(VIS) wavelengths (approximately 400 to 700 nm) and the other camera captured the near 
infrared (NIR) information (700 to 1050 nm).  For the NIR camera, the visible wavelengths 
of light were excluded by the use of a ‘Hoya R72’ filter (details available from 
www.hoyaoptics.com).  The specifications of this filter state that it cuts out all light below 
700 nm. There is a near-linear ramp to 750 nm at which point approximately 90% of all 
available light is transmitted.  This transmission rate continues up to and beyond 2600 nm.  
The total weight of the system was 1.0 kg, had a run time of two hours and could store 200 
images (each image approximately 300 kb) per camera.   
 
2.2 Study area 
 
The study area was located at the ‘Colonsay’ fertiliser trial site (170 m x 120 m), in the 
Cecil Plains district of southeastern Queensland (151°54′ E, -27°40′ S), Australia.   During 
the 2003 winter crop season, it was planted with cereal wheat (Triticum spp.). The site was 
a long-term fertiliser trial where N, P and S were varied.  The nitrogen application rates 
varied between 0-120 units of N at 40 unit increments. The same fertiliser rates had been 
applied for 10 years resulting in preplant available N rates varying between 5 kg/ha at the 0 
applied plots to over 150 kg/ha at the 120 applied plots. The starting moisture was uniform 
across all plots tested.  There were 120 plots in total, with 3 replicates in a randomised 
design. A large range of agronomic measurements were taken, including the amount of 
fertiliser applied, soil analysis (nutritional information and water content) at planting, and 
harvest parameters (grain yield and protein content). This paper focused on the 
relationships between these harvest parameters and imagery.  
 
2.3 Deployment 
 
The balloon was inflated with balloon-grade helium and tied off with a soft cotton string.  
The balloon was attached to the stabilizing frame (see Figure 2) with 100 kg breaking-strain 
trace wire. The stabilizing frame was constructed of balsa wood and served to attach the 
tether lines to the balloon. In addition, the frame provided a location where the sensor was 
suspended and hung under the force of gravity. To stop the sensor from rotating freely 
beneath the frame, the rotation was restricted to ± 15o by the use of a slack light nylon line 
that was treaded through the sensor and attached to the two stabiliser arms. The two tether 
lines, each with 25 kg breaking strain nylon fishing line, were attached to each arm.   
 
The day of image acquisition, 14th October 2003 (123 days after sowing), had clear skies 
and only a light breeze was blowing.  The balloon was deployed by playing out the 
tetherline by releasing the brakes on the Alvey® sidecast fishing reels. As the line was run 
out, the persons controlling the lines moved further apart giving the sensor stability. The 
sensor was positioned above the area of interest by viewing the video footage that was 
transmitted from the sensor and adjusting the tether lines accordingly. Most of the trial site 
was in view with the sensor positioned at approximately 400 m above ground level. 
Approximately 200 images were acquired with both cameras in the hour either side of solar 
noon.   
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The images were transferred and viewed on a laptop computer while at the location and  
later to a desktop computer where the most appropriate images were chosen for further 
processing. One of these images is shown in Figure 3.  Images were geo-referenced using 
20 ground control points that were collected with a differentially corrected global 
positioning system (GPS) at the time of image acquisition. The resulting ground resolution 
of the sensor was approximately 0.25 m when flown at an altitude of 400 m above ground 
level. 
 

Figure 3  One of the colour images collected above the trial site. 

 
 
2.4 Data pre-processing and analysis 
  
The charged couple device (CCD), the imaging sensor in digital cameras, is a collection of 
tiny light-sensitive diodes, which convert photons (light) into electrons (electrical charge). 
These diodes are called photosites. The photosites on a CCD respond only to light – not to 
colour. Colour is added to the image by means of red, green and blue filters placed over 
each pixel. Although the spectral sensitivity of the DC3200 is not published, the 
information from another CCD camera (see figure 4) indicates that all three photosites have 
a degree of sensitivity in the NIR. As the human eye is not sensitive to NIR, a NIR 
blocking filter is placed over all photosites to give the most acceptable colour 
representation. In the NIR camera, this blocking filter was removed to increase the 
camera’s sensitivity in the NIR region, and by combining with the Hoya R72 filter, enabled 
the camera to capture the spectrum above 700 nm. 
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Figure 4 The spectral response for a typical CCD (sourced from www.pulnix.com). 

 
 
An analogue-to-digital converter turns each pixel's value into a digital value or digital 
number (DN) which is then stored by the camera.  An image processing package ERDAS 
IMAGINE® 8.7 (Leica Geosystems GIS & Mapping LLC - Norcross, GA, USA) was used 
to extract the digital number from the stored camera information.  Digital number values 
for red (R), green (G) and blue (B) were obtained from the colour camera and DN values 
for the red (NIRR), green (NIRG) and blue (NIRB) photosite were obtained from the NIR 
camera.   
 
As the primary interest was in the crop attributes of yield and grain protein (measured at 
harvest time for the whole plot), the DN values for the whole plot were extracted, except 
for a 2-pixel buffer around the edge of the plot. This resulted in an average of 1300 pixels 
being exported for each of the 120 plots.  The average digital number for each band of the 
sensor, for each of the plots, was tabulated.  Spectral vegetation indices derived from these 
values, as well as the yield and protein values, were also added to the table. The spectral 
bands and vegetation indices used in this research are listed in Table 1.  
 

Table 1 Spectral bands and vegetation indices used in this study 

   Spectral Band (Raw DN values) 
Name Abbreviation Approximate spectral range (nm) 
Blue B 400-500 

Green G 500-600 
Red R 600-700 

Near-infrared NIR (NIRR, 
NIRG, NIRB) 

700-≈1050 

 
Vegetation Indices 

Name Abbreviation Formula Reference 
Normalised NDVI (NIR-R) / (NIR+R) (Rouse, et al. 1974) 
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difference 
vegetation index 

Difference 
vegetation index 

DVI NIR-R (Tucker 1979) 

Green NDVI GNDVI (NIR-G) / (NIR+G) (Gitelson, et al. 
1996) 

Ratio vegetation 
index 

RVI NIR / R (Jordan 1969) 

 
 
 
The statistical analysis included correlation and discriminant function analysis using SPSS 
for Windows® Version 12.0.1 (SPSS Inc - Chicago, Ill, USA)  and partial least squares 
regression using Unscrambler 9.1 (CAMO Process AS – Oslo, Norway). The correlation 
analysis and partial least squares regression was performed on the raw digital camera bands 
and the vegetation indices that could be derived using these bands. The discriminant 
function analysis (DA) was performed to see if the sensor could accurately discriminate 
between the various fertiliser regimes, i.e. if the plots that had 0 kg/ha of fertiliser applied 
could be differentiated from the plots that had 40, 80, and 120 kg/ha N applied. The DA 
procedure generates one or more discriminant functions based on linear combinations of the 
predictor variables that provide the best discrimination between groups. It has been used 
successfully in spectral discrimination studies (Strachan, et al. 2002).  The entire sample set 
of 120 was used in the DA calculations. 
 
To assess the predictive power of the relationship between grain yield/protein and imagery 
values, a partial least squares (PLS) regression was implemented. PLS regression is a 
bilinear modeling method for relating the variations in one or several response variables 
(Y-variables) to the variations of several predictors (X-variables), with explanatory or 
predictive purposes (Esbensen 2002). Unlike the classical multiple regression technique, 
PLS performs particularly well when the various X-variables have high correlation (which 
is often the case for multispectral data). Information in the original X-data is projected onto 
a small number of underlying (“latent”) variables called PLS components. 
 
Aside from the raw imagery data, the set of derived vegetation indices was also calculated 
and analysed using the full cross-validation (leave-one-out) technique. The root mean error 
of prediction (RMSEP) was calculated, which gave the measurement of the average 
difference between predicted and measured response values. It can be interpreted as the 
average prediction error, expressed in the same unit as the original response value 
(Unscrambler 9.1, CAMO Process AS – Oslo, Norway). The RMSEP values between 
datasets can be compared to determine which PLS regression model is better than others. 
 
3 Results and discussion 
 
The results for each plot were summarised prior to the analysis being conducted.  An 
example of the band information for a 40 units of N-applied plot is shown in Table 2.  This 
table shows that there is variation between the sensor bands and that the within-band 
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variation indicates that the plots were not entirely uniform.  The information contained in 
the three near infrared bands (NIRB, NIRG and NIRR) were relatively similar as they were 
measuring the same light intensities.  The magnitude differed however, due to the 
difference in sensitivities of each of the sensors.  As the red sensor has more sensitivity to 
near infrared light (refer to figure 4) compared to that of the blue and green, the DN values 
for NIRR were proportionally larger than that of NIRG and NIRB.  Although the exposure 
time/shutter speed is not recorded in the *.jpg file, laboratory tests indicated that under the 
same lighting conditions, the NIR camera had a noticeably slower shutter speed.  This is a 
possible reason for the DN values NIRR being higher than any of the visible (RGB) bands 
 

Table 2 The summary statistics of the band values for a 40 units of N-applied plot 

 R G B NIRR NIRG NIRB 
average 161.4 143.7 122.5 185.3 48.4 62.7 
median 161.0 143.0 123.0 185.0 48.0 62.0 
minimum 143.0 127.0 98.0 161.0 35.0 50.0 
maximum 179.0 158.0 145.0 213.0 64.0 79.0 
Standard 
deviation 

5.7 5.5 8.5 10.1 4.6 5.0 

 
 
An analysis of variance was performed on the data to check for statistical differences (at the 
0.05 level) between yield / protein and the amount of N fertilizer applied.  As can be seen 
from table 3, all the results were significant except at the higher application rates (80-120 
kg/Ha) for both yield and protein. 
 

Table 3 The summary statistics for yield and protein of the entire trial site. 

N applied  Mean ± standard error  

(kg/ha)  
Protein  

(%) 
Yield 

(kg/Ha) 
0 9.92 ± 0.24 (a) 2237 ± 72 (a)

40 11.69 ± 0.20 (b) 3182 ± 75 (b)

80 13.77 ± 0.18 (c) 3989 ± 70 (c)

120 13.76 ± 0.27 (c) 4162 ± 130 (c)

(a,b,c)Significance at the 0.05 level 

 
 
3.1 Correlation analysis to predict yield and protein 
 
A good correlation was found between all near infrared bands and yield, due to the similar 
nature of information recorded by the sensor.  Correlations ranged from R2=0.834 for NIRB 
to R2=0.806 for NIRR. The various vegetation indices were investigated and the highest 
correlation was with the Difference Vegetation Index (DVI).  The DVI was highly 
correlated with yield (R2=0.91).  The relationship between this vegetation index and yield is 
shown in Figure 5.  The relationship between crop yield and image is in agreement with the 

9 



 
 

theoretical expectations and with some other related studies (Yang and Anderson 2000). 
This study also agrees with other studies (Staggenborg and Taylor 2000; Yang, et al. 2000) 
that the best relationship was found with the near infrared band.   
 
This study is one of a few (Apan, et al. 2004; Basnet, et al. 2003; Lui, et al. 2006; Zhao, et 
al. 2005) that has endeavoured to find a relationship between remotely sensed imagery and 
grain protein. These previous studies found protein-image relationships ranging from R2 up 
to 0.56 (for barley/wheat and Landsat/ASTER in Australia) and R2 up to 0.37 (for wheat 
and Landsat in China). For this present study, the relationship found is comparable too and 
exceeds those previously reported. The grain protein was correlated with all the near 
infrared bands due to the similar nature of information recorded by the sensor.  Correlations 
ranged from R2=0.560 for NIRB to R2=0.524 for NIRR.  The correlation was improved by 
combining the red with the NIR (DVI index), as was the case with yield. The DVI was 
moderately correlated with grain protein (R2=0.66) (see Figure 5).  
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Figure 5 The relationship between yield/protein and DVI for the various amounts of N applied (kg/ha). 
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In Figure 5, as well as displaying the yield/protein and image values for each of the 120 
plots, the amount of N applied is also displayed. The four different rates are displayed as 
different symbols and give a good visual representation of the grouping of the data.  The 
plots with 0 units of N applied were suffering from nutrient deficiency and resulted in a low 
crop growth/vigour and with reduced biomass. This low fertiliser rate equates to a low 
protein and yield and a corresponding low DVI values.  These are represented as the + sign 
in the graph and occur in the bottom left hand corner of both graphs.  The other three 
classes (40, 80 and 120 N applied) do not fall into similarly tight clusters, however  
grouping is still evident.   
 
3.2 Discriminant function analysis to predict the amount of fertiliser applied  
 
Discriminant analysis was used to predict the amount of fertiliser applied to the crop using 
the raw digital camera values (Table 4). Of the original grouped cases, 90 of the 119 plots 
(75.6%) were correctly classified. However, in the nutrient deficient plots where plant 
available N had run down (the 0 and 40 unit treatments), the sensors were able to predict 
these areas with 91% accuracy.  It was more difficult to predict the 80 kg treatments (68% 
accuracy) and the 120 kg treatments (58% accuracy). The 80 kg treatments were sufficient 
to sustain the crop (no build-up or run down of plant available N) and the 120 kg treatments 
had excess nutrients to requirements (N building up).  This indicates that the sensor is better 
at detecting where nutrients are limited rather than where they are in excess. This study 
attained comparable accuracy with the hyperspectral work of Strachan et al. (2002) who 
used canonical discriminant analysis to accurately classify different levels of crop nutrition 
(varying rates of nitrogen) using reflectance data with overall success rates varying from 
70-93%, depending on timing during the season.   
 

Table 4 Prediction accuracy of fertilizer treatment classification using discriminant 
analysis  

 

N 
applied 
(kg/ha) Predicted Group Membership Total 

  0 40 80 120   
Count 0 22 2 0 0 24 
  40 1 22 1 0 24 
  80 0 5 32 10 47 
  120 0 0 10 14 24 
% 0 91.7 8.3 .0 .0 100.0 
  40 4.2 91.7 4.2 .0 100.0 
  80 .0 10.6 68.1 21.3 100.0 
  120 .0 .0 41.7 58.3 100.0 
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3.3 Partial least squares regression  
 
The PLS regression results showed that it is possible to predict grain yield using digital 
camera imagery obtained from a balloon platform. Correlations between predicted and 
measured values for the calibrated and validated samples were very high (r=0.97 for all 
models) (Table 5). For both raw imagery and vegetation indices, the RMSEP values were 
relatively low, equivalent to prediction accuracy of 94.1% and 94.2%, respectively. The 
optimal number of PLS factors (components) was minimal (i.e. one for the raw imagery 
and two for the vegetation indices), but was able to explain the Y-variance sufficiently (i.e. 
over 94%). This is desirable as it is good to have simple models, where the total explained 
variance goes to 100% with as few components as possible. 
 

Table 5  PLS regression results of imagery values and yield and protein 
Calibration 
 

Cross-Validation 
(leave-one-out) 

Data Optimal no. 
of PLS 
factors R* RMSEC** 

value 
 

R* RMSEP*** 
value 
 

Prediction 
Accuracy 
(%) 

% of Y Variance 
Explained 
 

YIELD (n=117)        
1. Raw values 1 0.97 193.01 0.97 197.50 94.1 94.4 
2. Vegetation indices 2 0.97 189.14 0.97 194.75 94.2 94.6 
PROTEIN (n=102)        
1. Raw values 4 0.88 0.83 0.86 0.89 88.5 74.2 
2. Indices 3 0.85 0.92 0.83 0.96 87.6 70.1 

*R – Correlation is between predicted and measured values     ** RMSEC – root mean square error of calibration     *** RMSEP – 
root mean square error of prediction 

 
For grain protein, correlations between predicted and measured values for calibrated and 
validated samples were also high (i.e. from r=0.83 to r=0.88), although they were lower 
than for grain yield values (Table 5). Consequently, prediction accuracies for grain protein 
were lower than for grain yield, i.e. 87.6% to 88.5% for the validated model. The regression 
models needed three to four PLS components to explain 70.1% to 74.2% of the variation in 
grain protein. Compared with grain yield, these values indicate that imagery has less 
predictive power for grain protein. 
 
Based on the regression coefficient plot of grain yield, the NIR bands attained relatively 
higher coefficient values compared to the visible bands, indicating their relatively higher 
significance in grain yield prediction (Figure 6a). This agrees with previous findings in 
correlation analysis that the response seen in the NIR region has a strong relationship with 
yield (Staggenborg and Taylor, 2000; Yang, et al. 2000). For the vegetation indices (Figure 
6b), the DVI produced the highest regression coefficient, indicating that this is the most 
significant predictor variable among the vegetation indices used. 
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Figure 6  Regression coefficients for the cross-calibrated prediction model involving grain 
yield, grain protein, raw imagery values, and vegetation indices.  

 
 
With regards to grain protein, the regression coefficient plots (Figure 6c) indicated that the 
near infrared band (NIRB) and the visible wavelength green band (G) were the most 
significant predictor variables among the raw imagery. These results further reinforce the 
importance of the NIR bands in grain protein prediction. These findings agree with the 
results of Basnet et al. (2003) that listed the tasselled cap greenness index (a transformation 
involving the NIR and VIS bands) as among those with the highest statistical association 
with grain protein content. The Ratio Vegetation Index (RVI) and DVI were the best 
performing vegetation indices (Figure 6d). The simple ratio image RVI and the difference 
image DVI performed better than the normalised ratios. This agrees with a study (Wright, 
et al. 2003) of spectral data and grain protein content which found that the simple ratio of 
NIR and red bands achieved the highest correlation coefficient (r = 0.59). 
 
3.4 The yield-protein relationship 
 
Work on cereal wheat (Strong  and Holford, 1997; Kelly, et al. 2004) in Northern Australia 
indicated that there is a high likelihood that a yield response would occur to added N, when 
grain protein is <11.5%.  Conversely, there is a low likelihood that a yield response would 
occur to added N when grain protein is >12.5%.  Looking at this relationship in another 
way: if the final grain protein is <11.5%, then the crop has been limited by nutrition.  
However, if the final grain protein is >12.5%, then the crop has been limited by moisture. 
Between 11.5 – 12.5%, the available moisture has matched the amount of nutrition.  
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These protein thresholds have been shown in figure 5.  This identifies the areas in the trial 
where the yield had been limited by rainfall and stored moisture, and those areas where 
nutrition had been limiting.  It is not surprising that the areas limited my nutrition were the 
areas where the fertiliser application rates were low.  In the nutrient-rich areas, the yield 
potential had been limited by water. 
 
The limitations, be they water or nutrition, are expressed in the plant as crop stress.  When 
the crop is stressed, the stomata begin to shut down, reducing the photosynthetic activity.  
With the associated reduction in chlorophyll, less light is being reflected in the NIR, 
providing a darker signal in the image.  The lack of stress in the crop is indicted by an 
actively growing crop (higher biomass) that has high reflectance in the NIR due to the 
photosynthetic activity. 
 
The ability to identify areas of fields where stress has hindered crop performance may 
allow better management decisions to be made. These decisions could include remedial 
actions to rectify these causal agents or to deal with the variation at harvest time.  The 
ability to apply remedial actions is dependent on the nature of the stress. If the stress is a 
lack of water and the crop is rainfed, there is no potential for remedial action. If nutrition is 
limiting growth, then a fertiliser application may be possible dependent on the ability to 
apply the nutrients and for these nutrients to be made available to the plant.  If no action is 
possible during the growing season of the crop, then segregation maybe possible at harvest 
to allow targeting of grain protein for specific markets to optimise crop return. 
Alternatively, the data gained on the spatial distribution of the yield and protein could be 
used to change management decisions in following crops. 
 
This research offers proof-of-concept that digital cameras can provide relatively cheap and 
useful data layers that are highly correlated with at-harvest parameters.  For trial sites, the 
balloon is the ideal platform, however the utility of applying this system to broadacre 
agriculture would be greatly expanded by having a more mobile platform. Plans are 
currently underway to mount a higher resolution sensor system on a remotely controlled 
aircraft that has an onboard autopilot to provide the capacity to fly to waypoints and initiate 
image acquisition. 
 
4 Conclusions  
 
This study demonstrated that it is feasible to accurately predict grain yield and protein 
content using a digital camera system acquired using a helium-filled balloon. This is a 
relatively simple and inexpensive system to set up, which is easy to deploy with low on-
going operational cost. High correlations have been found between the captured images and 
the grain yield, and a strong correlation between image and grain protein. The results in this 
study have surpassed the correlation coefficients found for satellite and airborne 
multispectral sensors. While the visible region provided useful information, it was those 
bands in the NIR region that appear to have the most significant role in the prediction. The 
system has the potential to be used to identify areas where remedial actions could be 
undertaken to manage the variability and/or to segregate the crop at harvest to meet certain 
quality parameters. The information can also be used as an additional data layer from which 
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to make management decisions for future crops.   Greater utility of the system could be 
achieved with a more mobile platform. 
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